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MAT 535 Notes on Logic, Sets, and Classes

1 Propositional calculus

Category theory is most often formalized using classes. Classes can be formalized as a second-order
theory using the first-order theory of predicate calculus and Zermelo – Fraenkel set theory. The
zeroth-order theory is propositional calculus.

1.1 Formal languages

Every formal language has an alphabet, A. In our case, A is a nonempty finite set. The Kleene
star (or Kleene closure), A∗, is the set of all strings of elements of A, i.e., the elements of A∗

are those ordered pairs whose second entry is a nonnegative integer n, the length of the string,
and whose first entry is itself an ordered n-tuple of elements of A, sometimes called a literal (the
empty set is the unique 0-tuple). Thus, the second projection is a function from A∗ to the set Z≥0
whose fiber over each n is the set An.

Every formal language also has a specified subset of A∗ whose elements are called well-formed
formulas. In formalizing mathematics, a formal language is usually defined to be an ordered pair
whose first entry is an alphabet A and whose second entry is this subset of A∗. Most often this subset
is specified by a subset of atomic strings and a collection of production rules for producing new
well-formed formulas from existing well-formed formulas. The well-formed formulas are all strings
obtained by iteratively applying the production rules to the atomic strings. Automata theory
is the mathematical study of such formal languages via the Chomsky hierarchy, the Chomsky-
Schützenberger theorem, etc.

For every finite nonempty set A with a specified total order, the set A∗ with the lexicographic order
is equivalent to the set of nonnegative integers with its total order. Thus, any two such alphabets
are equally expressive, and the study of formal languages is equivalent to the study of subsets of
the set of nonnegative integers via automata. Here our interest is not in the study of all formal
languages, but rather in the small number of formal languages relevant to formalize sets, classes,
and categories.
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1.2 The formal language of propositional calculus

In the formal language for propositional logic, the alphabet includes one symbol for the propositional
variable, say “p”, as well as symbols for the usual logical connectives (we use the pipe to separate
items in a list).

Alphabet for propositional calculus.

p ∣ ⇒ ∣ ¬ ∣ ( ∣ ) ∣ ⊺ ∣ ⊥ ∣ ∧ ∣ ∨ ∣ ⇐ ∣ ⇔

The symbol “⊺” represents “true,” and the symbol “⊥” represents “false.” For each positive integer
n, a consecutive substring of n entries of p, where the symbol p is neither directly preceding nor
succeeding the substring, is interpreted as a propositional variable pn. Thus, the alphabet expresses
denumerably many propositional variables.

A string in propositional logic is a well-formed formula if and only if it can be obtained, starting
from ⊺, ⊥ or the propositional variables pn for all positive integers n, by iterated application of the
following production rules. For all well-formed formulas f and g, also the following are well-formed
formulas.

Traditional form of production rules of propositional calculus.

(f) ⇒ (g) ∣ ¬(f) ∣ (f) ∧ (g) ∣ (f) ∨ (g) ∣ (f) ⇐ (g) ∣ (f) ⇔ (g)

In the language of a context-free grammar, all of the above symbols of the alphabet are terminal
symbols, and we introduce two new nonterminal symbols: a symbol “B” for “begin” and a
symbol “P” (for producing the propositional variables). The automaton begins with the length-1
string with literal “B” and then performs any of the following substitutions iteratively (in any
order) until it reaches an output string consisting of only terminal symbols (the symbols other than
“B” and “P”).

Context-free grammar of propositional calculus.

B → P ∣ (B) ⇒ (B) ∣ ¬(B) ∣ ⊺ ∣ ⊥ ∣ (B) ∨ (B) ∣ (B) ∧ (B) ∣ (B) ⇐ (B) ∣ (B) ⇔ (B)

P → p ∣ pP

The well-formed formulas are all output strings. The set of these is denoted LProp or L.
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1.3 Deductive system of propositional calculus

This formal language becomes a Hilbert system by introducing a second list of production rules
– called axioms (if they have arity 0) and inference rules (if they have arity > 0). One common
Hilbert system, the  Lukasieweicz system, is obtained by first adopting modus ponens, i.e., the
production rule that associates to each pair of well-formed formulas of the form f and (f) ⇒ (g)
the well-formed formula g. In symbols, this inference rule is as follows.

Modus Ponens for f and g. f, (f) ⇒ (g) ⊢ g

We also have three additional axiom schemata for the  Lukasieweicz system, where f , g and h are
substituted with all triples of well-formed formulas.

 L1 for f and g. ⊢ (f) ⇒ ((g) ⇒ (f))

 L2 for f , g and h. ⊢ ((f) ⇒ ((g) ⇒ (h))) ⇒ (((f) ⇒ (g)) ⇒ ((f) ⇒ (h)))

 L3 for f and g. ⊢ ((¬(f)) ⇒ (¬(g))) ⇒ ((g) ⇒ (f))

Since we are also using other logical connectives than just⇒ and ¬, we add as axioms the definitions
of those logical connectives in terms of ⇒ and ¬.

Conjunction. ⊢ ¬((f) ⇒ (¬(g))) ⇒ ((f) ∧ (g))

⊢ ((f) ∧ (g)) ⇒ ¬((f) ⇒ (¬(g)))

Disjunction. ⊢ ((¬(f)) ⇒ (g)) ⇒ ((f) ∨ (g))

⊢ ((f) ∨ (g)) ⇒ ((¬(f)) ⇒ (g))

Reverse Implication. ⊢ ((f) ⇒ (g)) ⇒ ((g) ⇐ (f)),

⊢ ((g) ⇐ (f)) ⇒ ((f) ⇒ (g))

Logical Equivalence. ⊢ (((f) ⇒ (g)) ∧ ((g) ⇒ (f))) ⇒ ((f) ⇔ (g))

⊢ ((f) ⇔ (g)) ⇒ (((f) ⇒ (g)) ∧ ((g) ⇒ (f)))

A theorem of this Hilbert system is a well-formed formula obtained by iteratively applying modus
ponens beginning with the axioms above. For instance one algorithmic scheme producing such
iterative proofs gives the Deduction Theorem: for every finite collection Γ = {g1, . . . , gn} of well-
formed formulas, for every well-formed formula f , if there is a finite sequence of applications of
the inference rules to the well-formed formulas in Γ and to the  Lukasieweicz axioms that leads to
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a proof of the well-formed formula f , then we also have a finite sequence of applications of the
inference rules to the  Lukasieweicz axioms that leads to a proof of the well-formed formula

(g1 ∧ (g2 ∧ (. . . (gn−1 ∧ gn) . . . ))) ⇒ f.

Conversely, Modus Ponens applied to Γ and this well-formed formula gives f , so that the Deduction
Theorem becomes an “if and only if” statement.

The theory of the  Lukasieweicz deductive system is the set of all theorems, denoted TProp or T .
For every set Γ of well-formed formulas, for every well-formed formula f , we write Γ ⊢ f if we can
deduce f from Γ using the inference rules. In this case we say that f derives from Γ. We denote
by TProp,Γ or TΓ the set of all well-formed formulas that derive from Γ. By Post’s Completeness
Theorem, a well-formed formula f derives from a set Γ of well-formed formulas if and only if Γ
entails f , i.e., f is valid in every model that makes Γ valid.

1.4 Semantics of propositional calculus

As explained above, the set of propositional variables is naturally bijective to the set of positive
integers via n ↦ pn. A model of propositional calculus is (specified by) a subset S of Z≥1. Thus,
the set of all models is identified with the power set P(Z≥1). Associated to each subset S of Z≥1 is
the indicator function 1S: the unique function from Z≥1 to the binary set B = {⊺,⊥} such that
the fiber of 1S over ⊺ equals S.

By Tarski’s recursive scheme, each function 1S extends uniquely to a valuation function αS from
the set L of all propositions to B satisfying all of the following.

(i) Both αS(⊺) equals ⊺, and αS(⊥) equals ⊥.

(ii) For every element n of Z≥1, the value αS(pn) equals ⊺ if and only if n is an element of A.

(iii) For every proposition f , the value αS(¬(f)) equals ⊥ if and only if αS(f) equals ⊺.

(iv) For all propositions f and g, the value αS((f) ⇒ (g)) equals ⊥ if and only if both αS(f)
equals ⊺ and αS(g) equals ⊥.

Since ¬ and ⇒ are a functionally complete system of connectives, these rules alone force the rest
of the recursive scheme.

(v) For all propositions f and g, the value αS((f)∧(g)) equals ⊺ if and only if both αS(f) equals
⊺ and αS(g) equals ⊺.
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(vi) For all propositions f and g, the value αS((f)∨(g)) equals ⊥ if and only if both αS(f) equals
⊥ and αS(g) equals ⊥.

(vii) For all propositions f and g, the value αS((f) ⇐ (g)) equals ⊥ if and only if both αS(f)
equals ⊥ and αS(g) equals ⊺.

(vii) For all propositions f and g, the value αS((f) ⇔ (g)) equals ⊺ if and only if αS(f) equals
αS(g).

For a given model S, for every well-formed formula f , we write ⊧S f if (and only if) αS(f) equals
⊺. In this case, f is valid in S; also f is a validity of S. More generally, for a set Σ of models,
we write ⊧Σ f if, for every element S of Σ, we have ⊧S f ; then f is a validity of Σ. In particular,
we write ⊧ f if (and only if), for every model S we have ⊧S f , and then we say f is a validity
(of propositional calculus). We denote the set of all validities by VProp or V . More generally, for
every set Γ of well-formed formulas, we write ⊧S Γ, respectively ⊧ Γ, if (and only if), for every
element g of Γ we have ⊧S g, resp. ⊧ g. Similarly, for every set Γ of well-formed formulas, for every
well-formed formula f , we write Γ ⊧ f if (and only if), for every model S such that ⊧S Γ, also ⊧S f .
This is called entailment. We denote the set of all well-formed formulas entailed by Γ as VProp,Γ or
VΓ. Please note that the deductive system above is sound: for every set Γ of well-formed formulas,
for every well-formed formula f that can be deduced from Γ using the axioms and inference rules,
we also have Γ entails f , i.e., Γ ⊧ f . Post’s Completeness Theorem is the converse, i.e., TΓ equals
VΓ for propositional calculus.

2 Predicate calculus

The alphabet of predicate calculus appends a few symbols to the alphabet of propositional calculus.

Alphabet for predicate calculus.

p ∣ ⇒ ∣ ¬ ∣ ( ∣ ) ∣ ⊺ ∣ ⊥ ∣ ∧ ∣ ∨ ∣ ⇐ ∣ ⇔ ∣

t ∣ , ∣ = ∣ ∀ ∣ ∃

The symbol t produces term variables. As with the propositional variables, this allows to express
denumerably many term variables: for each positive integer ℓ, the string tℓ is ℓ consecutive instances
of t neither immediately preceded nor succeeded by t. Thus, the set {tℓ}ℓ∈Z≥1 of all term variables can
be identified with Z≥1. The alphabet also includes a symbol – the comma “,” – for separating term
variables in a list (this is the reason we prefer the pipe to separate items in our metalanguage). Every
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well-formed formula f , or predicate, in predicate calculus has a specified finite set Free(f) of free
variables whose cardinality is a nonnegative integer called the arity. It also has a specified finite set
Bound(f) of bound variables. The set Var(f) of all variables of f is the union Free(f)⊔Bound(f).
For each positive integer n, for each each nonnegative integer m, for each ordered m-tuple of positive
integers (ℓ1, . . . , ℓm), we interpret the string pn(tℓ1 , . . . , tℓm) of total length (1+n)+(1+ℓ1)+⋅ ⋅ ⋅+(1+ℓm)
as an atomic predicate denoted pn,m(tℓ1 , . . . , tℓm) whose set of free variables is {tℓ1 , . . . , tℓm} and
whose arity equals the cardinality of this set (an integer from 1 to m). The set of bound variables
is empty. Thus, for each nonnegative integer m, the alphabet expresses denumerably many arity-m
predicate variables, pn,m for each positive integer n, into which we may insert any ordered m-tuple of
term variables, and then the set of free variables equals the set of that m-tuple. By convention, we
identify the propositional variables pn of propositional calculus with the arity-0 predicate variables
pn,0, i.e., pn succeeded by no term variables in parentheses.

The alphabet also includes a symbol – “=” – for equality. This behaves as a predicate variable of
arity 2, but written in infix notation. For all positive integers ℓ and m, the string (tℓ = tm) is an
atomic predicate whose list of free variables is {tℓ, tm} of arity equal to the cardinality of {ℓ,m} (2
unless ℓ =m, in which case 1) and with empty set of bound variables.

To avoid lengthy discussion of disambiguating predicates where bound variables of subpredicates
“collide” with variables of a different subpredicate, we formulate the production rules only in cases
where this does not happen. The main production rule allowing this is term substitution. For
every predicate f of arity m ≥ 1, for every term variable tℓ, for every term variable tm that is not one
of the bound variables of f , the term substitution f[tm/tℓ] replaces each instance of the substring
tℓ in f with the string tm.

Term substitution. f → f[tm/tℓ] for tm /∈ Bound(f)

In particular, we can use this to replace a bound variable tℓ of f with some term variable tm with
m arbitrarily positive (to avoid the variables of other expressions that we combine with f).

There are also quantifier symbols: “∀” and “∃”. Each quantifier in a predicate is immediately
succeeded by a term variable tℓ followed by a predicate in parentheses f where tℓ is not already one
of the bound variables of f .

Universal quantifiers. f → ∀ tm (f) for tm /∈ Bound(f)

Existential quantifiers. f → ∃ tm (f) for tm /∈ Bound(f)

For these new quantified predicates, the set of free variables is Free(f)∖{tm}, and the set of bound
variables is Bound(f) ⊔ {tm}. Thus, the arity goes down by 1 (if tm is a free variable of f) or by 0
(if tm is not a free variable of f).
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We also allow the traditional production rules of propositional calculus, but with the proviso that
when combining two predicates via a logical connective we require that the set of bound variables
of each predicate is disjoint from the set of variables (both free and bound) of the other predicate.
Because we have a denumerable set of term variables, by first applying term substitutions to any
“colliding” bound variables in the two predicates, we can always achieve this (and such term
substitutions will not affect the deductive or semantic meaning of the predicates). For such a
combined predicate, the set of free variables is the union of the sets of free variables of each
component predicate, and the set of bound variables is the (disjoint) union of the sets of bound
variables of each component predicate.

The predicates are all output strings beginning with the atomic predicates and iteratively applying
the production rules. The set of all predicates is denoted LPred or L. There is a context-free
grammar producing LPred, but we do not record it here.

2.1 Deductive system of predicate calculus

As with propositional calculus, the formal language of predicate calculus becomes a Hilbert system
by introducing a second list of production rules: the axioms and inference rules of predicate calculus.
Beginning from the axioms, iterated application of the inference rules produces all theorems of
predicate calculus. The set of all theorems is denoted TPred or T .

The inference rule of modus ponens and the axioms of propositional calculus are part of the deduc-
tive system of predicate calculus, but only in those cases where the strings involved are predicates,
i.e., only when no bound variable of a component subpredicate collides with a variable of some
other subpredicate. We can always achieve this using an axiom schemata of bound substitution.

For every predicate f , for every bound variable tℓ of f , for every term variable tm that is not a
variable of f , we have the following axiom.

Bound variable substitution. ⊢ (f) ⇒ (f[tm/tℓ]) for tℓ ∈ Bound(f) and tm /∈ Var(f).

Axioms of Equality. For all positive integers ℓ, m and n, we have the following axioms.

Reflexivity. tℓ = tℓ

Symmetry. (tℓ = tm) ⇒ (tm = tℓ)

Transitivity. ((tℓ = tm) ∧ (tm = tn)) ⇒ (tℓ = tn)

Also, for every predicate f and for all term variables tℓ, and tm that are not bound variables of f ,
we add the following axiom.

Substitution. (tℓ = tm) ⇒ (f ⇒ f[tm/tℓ]) for tℓ, tm /∈ Bound(f).

7

http://www.math.stonybrook.edu/~jstarr/M535s26/index.html
mailto:jstarr@math.stonybrook.edu


MAT 535 Algebra II
Stony Brook University

Jason Starr
Spring 2026

Deduction for quantifiers. The deductive system for predicate calculus is the weakest deductive
system (allowing the fewest axioms and inference rules) that includes the rules above and that
satisfies the following conditions regarding quantifiers.

Universal Generalization. For every positive integer ℓ and for all predicates f and g such that
tℓ is not a bound variable of f and is not a variable of g (neither bound nor free), if g proves f ,
then also g proves ∀tℓ (f).

UG. If g ⊢ f then g ⊢ ∀tℓ (f) for tℓ /∈ Bound(f) ∪Var(g).

Universal Instantiation. For all positive integers ℓ and m, and for every predicate f such that
tℓ and tm are not bound variables of f , we have the following axiom.

UI. (∀tℓ (f)) ⇒ (f[tm/tℓ]) for tℓ, tm /∈ Bound(f).

Existential Generalization. For all positive integers ℓ and m, and for every predicate f such
that tℓ and tm are not bound variables of f , we have the following axiom.

EG. (f[tm/tℓ]) ⇒ (∃tℓ (f)) for tℓ, tm /∈ Bound(f).

Existential Instantiation. For every positive integer ℓ, and for all predicates f and g such that
tℓ is not a bound variable of f and is not a variable of g (neither bound nor free), if g can be derived
from f , then also g can be derived from ∃tℓ (f).

EI. If f ⊢ g then ∃tℓ (f) ⊢ g for tℓ /∈ Bound(f) ∪Var(g).

As with propositional calculus, each predicate that can be deduced from the axioms via iterated
application of the inference rules is a theorem. The set of all theorems is denoted TPred, or just
T when confusion is unlikely. Similarly, for every set Γ of predicates, we denote TPred,Γ, or just TΓ,
is the set of all predicates that derive from Γ. By Gödel’s Completeness Theorem, a predicate f
derives from a set Γ of predicates if and only if Γ entails f , i.e., f is valid in every model that makes
Γ valid.

2.2 Semantics of predicate calculus

The semantics of predicate calculus uses a theory of sets. A model S of predicate calculus consists
of an ordered pair (A,π) of a nonempty set A, called a universe, together with an assignment
π = (πn,m)n,m for each nonnegative integer n and each positive integer m of a function πn,m from
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An to the binary set B = {⊺,⊥}. For determining validity, it will suffice to restrict A to finite sets,
say {1, . . . , k} as k varies among all nonnegative integers. For this model, there is a valuation
function αS that assigns to every predicate f of arity n and free variable set (tℓ1 , . . . , tℓn) for
ℓ1 < ⋅ ⋅ ⋅ < ℓn a function αS(f) from An to B. The valuation function assigns to each atomic
predicate pn(tℓ1 , . . . , tℓn) the function πn,m. The valuation assigns to tℓ = tℓ the constant function
on A with value ⊺. The valuation assigns to tℓ = tm with ℓ ≠m the function on A2 whose fiber over
⊺ is the diagonal.

Under term variable substitution, the valuation changes by substitution of variables on An (with
appropriate shuffling of components if the order of the variables changes). For every predicate f
of arity n ≥ 1 and free variables {tℓ1 , . . . , tℓn−1 , tℓn}, the valuation of ∀tn (f) is the function on An−1

whose value on each input (a1, . . . , an−1) is ⊥ precisely if there exists an such that the value of
αS(f) on (a1, . . . , an−1, an) is ⊥. Similarly, the valuation of ∃tn (f) is the function on An−1 whose
value on each input (a1, . . . , an−1) is ⊺ precisely if there exists an such that the value of αS(f) on
(a1, . . . , an−1, an) is ⊺. Similarly, for each term variable tm that is not a variable of f , so that the
free variable set of f equals the free variable set of ∀tm (f) and ∃tm (f), then valuation of f equals
the valuation of both ∀tm (f) and ∃tm (f). Together with Tarski’s recursive scheme, this uniquely
determines the valuation of every predicate. Of course the valuation of f gives a B-valued function
on the set Aω of countable sequences of elements of A via projection to An through the coordinates
of ℓ1 < ⋅ ⋅ ⋅ < ℓn, and then the valuation is the unique morphism of Boolean algebras that maps ∀tm
to minimimum over tm (thinking of ⊺ as 1 and ⊥ as 0) and maps ∃tm to maximum over tm.

In particular, the valuation of each predicate f of arity 0 is equivalent to an element of B. A
predicate of arity 0 is a closed formula. For a given model S, for every closed formula f , we write
⊧S f if (and only if) αS(f) equals ⊺. In this case, f is valid in S; also f is a validity of S. More
generally, for a set Σ of models, we write ⊧Σ f if, for every element S of Σ, we have ⊧S f ; then f
is a validity of Σ. In particular, we write ⊧ f if (and only if), for every model S we have ⊧S f ,
and then we say f is a validity (of predicate calculus). Please note, if the number of variables of
f equals k, then it suffices to consider only models where A equals {1, . . . , k}, and we only need
to refer to the functions πn,m for m,n ≤ k (so validation is inherently finite and computable). We
denote the set of all validities by VPred or V . More generally, for every set Γ of closed formulae, we
write ⊧S Γ, respectively ⊧ Γ, if (and only if), for every element g of Γ we have ⊧S g, resp. ⊧ g.
Similarly, for every set Γ of closed formulae, for every closed formula f , we write Γ ⊧ f if (and only
if), for every model S such that ⊧S Γ, also ⊧S f . This is called entailment. We denote the set of
all well-formed formulas entailed by Γ as VPred,Γ or just VΓ. The deductive system above is sound:
for every set Γ of closed formulas, for every closed formula f that can be deduced from Γ using the
axioms and inference rules, we also have Γ entails f , i.e., Γ ⊧ f . Gödel’s Completeness Theorem is
the converse, i.e., TΓ equals VΓ for predicate calculus.
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3 Zermelo-Fraenkel axioms

The only additional symbol in Zermelo-Fraenkel set theory is an arity-2 predicate written in infix
notation, x ∈ y, read “x is an element of y” or “y contains x as an element.” Of course we
could identify this predicate with the atomic predicate p2,1(x, y) in outfix notation to jibe with the
previous section, but we trust no confusion will arise from the traditional infix notation. Adding
this predicate, the production rules produce the Zermelo – Fraenkel predicates. To the axioms and
inference rules of predicate calculus, we also add the following axioms of Zermelo – Fraenkel set
theory (which can be recursively enumerated). Also we relax our conventions about naming of term
variables and atomic predicates so as to write the axioms in their conventional formulation.

Axiom 3.1 (Axiom of Extensionality). For every set a and for every set b, the set a equals the set
b if and only if, for every set x, the set x is an element of a if and only if x is an element of b.

∀a (∀b (∀x ((x ∈ a) ⇔ (x ∈ b))) ⇔ (a = b))

Axiom 3.2 (Axiom of Regularity). For every set a such that there exists a set x that is an element
of a, there exists an element y of a such that every element of y is not an element of a.

∀a ((∃x (x ∈ a)) ⇒ (∃y (y ∈ a) ∧ (∀z (z ∈ y) ⇒ ¬(z ∈ a))))

Together with the other axioms, the axiom of regularity implies a strong form of foundation: there
does not exist a sequence of sets (an)n∈Z≥0 such that for every element n of Z≥0 the set an+1 is an
element of the set an (every formalization of this requires first formalizing natural numbers).

The next axiom is sometimes also called the “Axiom of Separation.” It is an axiom schema: there
is one axiom for each predicate f(s, t) in the first-order language of set theory together with an
ordered pair (s, t) of (all of) the free variables of the predicate (and an arbitrary set of bound
variables that includes neither s nor t).

Axiom 3.3 (Axiom Schema of Specification). For every set b, for every set c, there exists a set a
whose elements are precisely those elements x of b such that the predicate f(c, x) is true.

∀b ∀c ∃a(∀x ((x ∈ a) ⇔ ((x ∈ b) ∧ p(c, x)))

In particular, assuming that the universe of sets has at least one member (which we do assume),
for the predicate p(s, t) of s equals s and t does not equal t, for each set a = ∅ produced by the
axiom (for any set b and for any set c), for every set x, the set x is not an element of ∅. The Axiom
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of Extensionality guarantees that this empty set is unique; we denote this set by ∅. So (together
with the tacit axiom that the universe of sets has at least one member), the Axiom Schema of
Specification gives the existence of a unique empty set.

Please note, we certainly do need to guard the quantifier of x in the Axiom Schema of Specification,
restricting x to an element of the specified set b, to avoid asserting that there exists a “set whose
elements are all sets that do not include themselves as an element” (which leads to Russell’s
Paradox about whether the set is an element of itself). Also note, we do not claim that we can
recover the predicate p(s, t) from the subset of b. For one thing, different predicates can be logically
equivalent, so the best we could hope for is to recover the truth-valued function whose domain equals
b determined by the predicate. A subset a of b is equivalent to such a truth-valued function, and
every such subset arises from substitution of a for s in the specific predicate p: t ∈ s. So this
axiom schema is producing “every” subset that it should. Even though predicates are specified via
a finite string of symbols from an (at most) countable alphabet, this certainly does not imply that
we have (at most) countably many distinct subsets of b (in a given model of Zermelo – Fraenkel
set theory), since the subset c can range freely. As Cantor proved, for every set b, there does not
exist a surjective function from b to the set of all subsets of b.

Axiom 3.4 (Axiom of Pairing). For every set a, for every set b, there exists a set {a, b} whose
elements are precisely a and b.

∀a ∀b ∃c ∀x ((x ∈ c) ⇔ ((x = a) ∨ (x = b)))

Please note, for every set a and for every set b, the set {a, b} equals the singleton set {a} if (and
only if) b equals a. Thus, this axiom also gives the existence of the Kuratowski ordered pair,
(a, b) ∶= {{a},{a, b}}, by applying the axiom to the singleton set {a} and the doubleton set {a, b}.
By the Axiom of Extensionality, for every set a, for every set b, for every set a′, for every set b′, the
ordered pair (a, b) equals the ordered pair (a′, b′) if and only if both a equals a′ and b equals b′.

Axiom 3.5 (Axiom of Union). For every set a, there exists a set b such that, for every set x, the
set x is an element of b if and only if there exists an element y of a such that x is an element of y.

∀a ∃b ∀x ((x ∈ b) ⇔ (∃y ((x ∈ y) ∧ (y ∈ a))))

By the Axiom of Extensionality, the union set produced by this axiom is unique. In particular, for
every set a, for every set b, the Axiom of Union applied to the set {a, b} guarantees the existence
of a set, denoted a ∪ b, such that, for every set x, the set x is an element of a ∪ b if (and only if)
either x is an element of a or x is an element of b (or both).
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Similar to the Axiom Schema of Specification, the next axiom schema has one axiom for each
predicate f(x, b, y) in the first-order language of set theory together with an ordered triple (x, b, y)
of (all of) the free variables of the predicate.

Axiom 3.6 (Axiom Schema of Replacement). For every set b and for every set d such that, for
every element x of d there exists a unique set y satisfying f(x, b, y), then there exists a set c whose
elements are precisely those sets y such that there exists an element x of d such that f(x, b, y)
holds.

∀b ∀d ((∀x ((x ∈ d) ⇒ (∃y p(x, b, y)) ∧ (∀z ∀w((p(x, b, z) ∧ p(x, b,w)) ⇒ (y = z)))) ⇒

(∃c ∀y′ ((y′ ∈ c) ⇔ (∃x (x ∈ d) ∧ p(x, b, y′)))))

Consider the predicate f with an ordered triple of free variables (x, b, y): the set y equals (x, b),
i.e., y equals {{x},{x, b}}. By the Axiom of Pairing, for every set a, for every set b, and for every
element x of a, there exists a unique set y satisfying the predicate p(x, b, y). Thus, the Axiom
Schema of Replacement guarantees the existence of a set, denoted a × {b}, such that for every set
y, the set y is an element of a×{b} if (and only if) there exists an element x of a such that y equals
(x, b). Moreover, by the Axiom of Extensionality, this set a × {b} is unique.

Next, consider the predicate f ′ with an ordered triple of free variables (x′, b′, y′): y′ equals b′×{x′}.
By the previous paragraph, for every set a′, for every set a, and for every element x of a′, there exists
a unique set a×{x} satisfying the predicate f ′(x′, a, y′). Thus, the Axiom Schema of Replacement
and the Axiom of Union guarantees the existence of a set, denoted a × a′, such that for every set
x′′, the set x′′ is an element of a× a′ if (and only if) there exists an element x of a and there exists
an element x′ of a′ such that x′′ equals (a, a′). Therefore, for every set a and for every set a′, the
Axiom Schema of Replacement (together with the earlier axioms) guarantees the existence of a
Cartesian product set a × a′. By the Axiom of Extensionality, the Cartesian product set a × a′ is
unique.

This, finally, leads to the essential meaning of the Axiom Schema of Replacement. For every
ordered triple (b, d, g(x, z, y)) of a set b, of a domain set d, and of a “function” predicate g(x, z, y)
for (b, d), i.e., such that for every element x of d there exists a unique set y such that g(x, b, y)
holds, there exists an image set c for (b, d, g(x, z, y)), and also there exists a Cartesian product
set d × c. Finally, by the Axiom Schema of Specification, the predicate g(x, z, y) and the set b
(substituted for z) determines a subset graph(g(x, b, y)) of d × c that equals the graph of a unique
set function from d onto c. Therefore, for every domain set d, for every “parameter” set b, and for
every predicate g(x, b, y) that determines a function in the “traditional” sense on the domain set d,
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there exists a unique image set c = codd,b,g and a unique surjective set function funcd,b,g from d to
codd,b,g such that for every element x of d, for every set y, the predicate g(x, b, y) holds if and only
if both y is an element of codd,b,g and y equals the value of funcd,b,g on x. Thus, to every function
in the “traditional” sense on the domain set d, there exists a function in the set-theoretical sense
of a subset of a Cartesian product d × c satisfying the “vertical line test.”

As with the Axiom Schema of Specification, the Axiom Schema of Replacement is producing all
the set-theoretical functions from d to c, since we can let g(x, b, y) be the predicate that x is an
element of d, that y is an element of c, that (x, y) is an element of b, and that b is a subset of
c × d such that for every element x of d, there exists a unique element y of c for which (x, y) is an
element of b (i.e., b is a subset of c × d that satisfies the “vertical line test”).

Axiom 3.7 (Axiom of Infinity). There exists a set Z≥0 such that (i) the empty set, ∅, is one
element of Z≥0, such that (ii) for every element n ∈ Z≥0 the set n ∪ {n} is an element in Z≥0, and
such that (iii) the set Z≥0 is a subset of every set that satisfies both (i) and (ii).

∃z ((∅ ∈ z) ∧ (∀n ((n ∈ z) ⇒ (n ∪ {n} ∈ z))))∧

(∀z′ (((∅ ∈ z′) ∧ (∀n′ ((n′ ∈ z′) ⇒ (n′ ∪ {n′} ∈ z′)))) ⇒ (∀n′′ (n′′ ∈ z) ⇒ (n′′ ∈ z′))))

Consider the predicate g(x, b, y) with three free variables: b equals b and y equals x ∪ {x}. This is
a predicate as in the Axiom Schema of Replacement, i.e., it can be used to define a set function,
succ (for “successor”), in the “traditional” sense for each specification of domain set. Since the
empty set contains no element {n}, the empty set can never be an element of the image set of such
a function. The empty set can be an element of the domain set, i.e., {∅} can be a subset of the
domain that is disjoint from the image set. The Axiom of Infinity guarantees the existence of a
domain set for this function such that the domain set equals the disjoint union of the image set
and the singleton set {∅}.

For each such domain set, the intersection of all subsets of the domain set satisfying these conditions
is a unique subset, by the Axiom Schema of Specification and the Axiom of Extensionality. So,
up to replacing any domain set as above by this unique subset, there exists a unique domain set
Z≥0 for succ that equals the disjoint union of the image set and the singleton set {∅}, and such
that every domain set satisfying these conditions contains Z≥0 as a subset. For every model of
Zermelo – Fraenkel set theory, the set Z≥0, the element ∅ of Z≥0 (interpreted as the element 0), and
the associated set function succ from Z≥0 to Z≥0 is a model of the (second order) axiom schema
of Peano arithmetic. So the Axiom of Infinity inteprets Peano arithmetic within Zermelo-Fraenkel
set theory. This addresses the difficulty, mentioned earlier, that many of the metamathematical
notions about this axiomatization of set theory implicitly use some formalization of the natural
numbers.
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Axiom 3.8 (Axiom of Power Sets). For every set b, there exists a set, denoted P(b), such that for
every set a, the set a is an element of P(b) if and only if the set a is a subset of b, i.e., if and only
if, for every set x, if x is an element of a then a is an element of b.

∀b ∃b′ ∀a ((a ∈ b′) ⇔ (∀x ((x ∈ a) ⇒ (x ∈ b))))

Really the axiom of power sets is only the first in a continuing list of axioms (e.g., “large cardinal”
axioms) considered by set theorists that allow more and more of the operations on sets that are
relevant in both mathematics and metamathematics.

The following axiom, the Axiom of Choice, is not part of the Zermelo – Fraenkel axiom system,
but it is accepted by most current mathematicians. Assuming the consistency of the Zermelo –
Fraenkel axiom system, Cohen and Gödel proved the independence of the Axiom of Choice: the
Zermelo – Fraenkel axiom system remains consistent if we add the Axiom of Choice, and the
Zermelo – Fraenkel axiom system remains consistent if we add the negation of the Axiom of Choice
(obviously it is not consistent if we add both simultaneously).

Axiom 3.9 (Axiom of Choice). For every set a, for every set b, for every set c, if c is a subset of
a× b such that for every element y of b there exists an element (x, y) of c, then there exists a subset
d of c such that for every element y of b there exists a unique element (x, y) of d.

∀a ∀b ∀c ((∀y ((y ∈ b) ⇒ (∃x ((x, y) ∈ c)))) ⇒

(∃d (∀w ((w ∈ b) ⇒ ((∃z ((z,w) ∈ d)) ∧ (∀v ∀u ((((v,w) ∈ d) ∧ ((u,w) ∈ d)) ⇒ (v = u))))))))

As discussed in all books on set theory, in the presence of the Zermelo – Fraenkel axioms, the Axiom
of Choice is equivalent to the Well-Order Principle (every set has a well-order), it is equivalent to
Zorn’s lemma, etc.

4 Classes

The definition of category uses the notion of a class. Classes can be axiomatized as a first-order
theory, as done by von Neumann – Bernays – Gödel or by Morse – Kelley. The approach here is a
second-order theory using the metalanguage of (first-order) Zermelo – Fraenkel set theory. This can
be formalized, for instance, by using a Gödel numbering of the well-formed formulas of (first-order)
Zermelo – Fraenkel set theory, but we prefer the verbose alternative of writing out the predicates
of Zermelo – Fraenkel set theory. The classes produced in this way are the parametrically definable
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classes. For every model of Zermelo – Fraenkel set theory, the parameterically definable classes
in that model form a model of class theory (the model most often intended in analysis, algebra,
geometry, and topology). In particular, the (Kuratowski) ordered pair (a, b) ∶= {{a},{a, b}} converts
predicates of higher arity into predicates of lower arity, i.e., every predicate p(t1, t2, . . . , tn−1, tn) of
arity n ≥ 1 (with n a “true” natural number) in the first-order language of Zermelo – Fraenkel set
theory converts to the following predicate p̃(t) of arity 1 with unique free variable t,

∃t1 ∃t2 . . .∃tn−1 ∃tn ((t1, (t2, . . . , (tn−1, tn) . . . )) = t) ∧ p(t1, t2, . . . , tn−1, tn).

Definition 4.1 (Parametrically definable classes). For every ordered pair ((p(s, t), a), (p′(s′, t′), a′))
of (first-order, Zermelo – Fraenkel) predicates p, respectively p′, with a specified ordered pair (s, t),
resp. (s′, t′), of (all of) its free variables and of a set a, resp. a′, the ordered pair (p(s, t), a) is
Lindenbaum-Tarski equivalent to (p′(s′, t′), a′) if (and only if)

∀b (p′(a′, b) ⇔ p(a, b)) .

Because logical equivalence is reflexive, transitive and symmetric, also Lindenbaum-Tarski equiv-
alence is reflexive, transitive and symmetric. A parametrically definable class is a Lindenbaum-
Tarski equivalence class [p(s, t), a] (i.e., we are extending the usual equality predicate a = a′ to a
predicate [p(s, t), a] = [p′(s′, t′), a′] via Lindenbaum-Tarski equivalence). For every class [p(s, t), a],
a set b is a member of [p(s, t), a] if (and only if) p(a, b) holds (i.e., we are extending the set mem-
bership predicate b ∈ a to a predicate of membership of b in the class [p(s, t), a] as above). For
every class C, a class B is a subclass of C if (and only if) every member of B is a member of C
(i.e., we are extending the subset predicate b ⊆ c to a subclass predicate).

With this definition, we have a variant of extensionality for classes.

Lemma 4.2 (Extensionality). For every class B, for every class B′, the class B equals the class
B′ if and only if, for every set x, the set x is a member of B if and only if x is a member of B′.

Proof. This is just a restatement of Lindenbaum-Tarski equivalence.

By construction we also have the axiom of class formation.

Lemma 4.3 (Class Formation). For every (first-order, Zermelo – Fraenkel) predicate p(s, t) with
an ordered pair (s, t) of (all of) its free variables, for every set a, there exists a unique class C such
that, for every set b, the set b is a member of C if and only if p(a, b) holds.

Proof. The class C ∶= [p(s, t), a] is one such class. By the previous lemma, this is unique.
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In particular, we have a universal class.

Lemma 4.4. There exists a unique class V such that every set is a member of V.

Proof. Let p(s, t) be tautological, e.g., (s = s) ∧ (t = t). Then for every set a, say a = ∅, every set
is a member of the class V ∶= [(s = s) ∧ (t = t), a]. By Lemma 4.2, this class is unique.

Also, we have a class for each set (including for the empty set). In most axiomatizations of class
theory, each set is identified with its associated class (but we prefer not to do this).

Lemma 4.5. For every set a, there exists a unique class whose members are the elements of a. In
particular, for a equal to the empty set, the associated class has no members. Two sets are equal if
and only if their associated classes are equal.

Proof. The members of the class [t ∈ s, a] are precisely the sets the elements of a. By Lemma
4.2, this class is unique. By the Axiom of Extensionality, two sets are equal if and only if their
associated classes are equal.

We also have a variant for classes of the axiom of foundation.

Lemma 4.6 (Foundation). For every class C, there does not exist a sequence (an)n∈Z≥0 of members
of C such that, for every element n of Z≥0, the set an+1 is an element of the set an. In particular,
for every class C that has at least one member, there exists a member a of C such that for every
element of a, that element is not a member of C.

Proof. By foundation for Zermelo – Fraenkel set theory, there does not exist any sequence (an)n∈Z≥0
of sets such that, for every element n of Z≥0, the set an+1 is an element of the set an. Thus, there
exists no such sequence satisfying the additional condition that every set an is a member of C.

For every class C that has a member, there exists a set a0 that is a member of C. If there exists an
element a1 of a0 that is also a member of C, then this gives a finite sequence (a0, a1) of members
of C such that a1 is an element of a0. If there exists an element a2 of a1 that is also a member
of C, then this gives a finite sequence (a0, a1, a2) of member of C such that a1 is an element of a0
and a2 is an element of a1. Continuing inductively, either there exists a sequence (a0, a1, . . . , an)
of members of C such that a1 is an element of a0, etc., an is an element of an−1 and every element
of an is not a member of C, or there exists a sequence (an)n∈Z≥0 of members of C such that, for
every element n of Z≥0, the member an+1 is an element of an. This second case is forbidden by the
previous paragraph. Thus, there exists a member an of C such that every element of an is not a
member of C.
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The axioms in the previous section define Zermelo – Fraenkel set theory, i.e., ZF, but do not include
the Axiom of Choice that gives ZFC set theory. The lemmas above verify the axioms of NBG, von
Neumman – Bernays – Gödel class theory, for the model of parameterically definable classes in each
model of ZF set theory, except for the Axiom of Limitation of Size, which is essentially a global
analogue of the Axiom of Choice.

Of course there are many additional results about classes. Many of these are the analogues for
classes of well-known results for sets.

Lemma 4.7. For every class B, for every class B′, the class B equals the class B′ if and only if
both B is a subclass of B′ and B′ is a subclass of B.

Proof. Of course if B equals B′, then every member of B is a member of B′, i.e., B is a subclass
of B′, and every member of B′ is a member of B, i.e., B′ is a subclass of B.

Conversely, if both B is a subclass of B′ and B′ is a subclass of B, then for every set x that is a
member of B, also x is a member of B′, and for every set x that is a member of B′, also x is a
member of B. By Lemma 4.2, the class B equals the class B′.

Definition 4.8. The class that has every set as a member is the von Neumann class, sometimes
called the von Neumann universe or the universal class, denoted V or obSet. For every set a,
the class that has as members precisely the elements of a is the class of the set a, denoted Cla.

Lemma 4.9. The von Neumann class V is the unique class such that, for every class B, the class
B is a subclass of V. For every set a, the class Cla is the unique class such that, for every class
B, the class Cla is a subclass of B if and only if x is a member of B for every element x of a.

Proof. By definition of V, every set is a member of V. Thus, every class is a subclass of V. For
every class B, if also V is a subclass of B, then B equals V by Lemma 4.7. Thus, if every class is
a subclass of B, so that V is a subclass of B in particular, then B equals V. Therefore V is the
unique class such that every class is a subclass of V.

For every set a, for every class B, by the definition of subclass, the class Cla is a subclass of B if
and only if, for every set x that is a member of Cla, also x is a member of B. By the definition of
Cla, this holds if and only if, for every set x that is an element of a, also x is a member of B.

Lemma 4.10. For every class B, for every class B′, there exists a unique class B ∧ B′ whose
members are those sets that are simultaneously members of B and members of B′. The subclasses
of B ∧B′ are precisely the classes that are simultaneously subclasses of both B and B′. For every
ordered pair (b, b′) of sets, the class Clb ∧Clb′ equals Clb∩b′. Finally, for every class B there exists
a class ∩B whose members are all sets x such that for every member b of B, the set x is an element
of b. In particular, for every set c, the class ∩Clc equals Cl∩c.
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Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′] the class [p′′(s′′, t′′), (a, a′)]
for the following predicate has as members precisely those sets that are simultaneously members of
B and members of B′.

∃s ∃s′ (p(s, t′′) ∧ p′(s′, t′′)) ∧ (s′′ = (s, s′)).

By Lemma 4.2, the class B∧B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets that are simultaneously members of B and members of B′.

By definition, a class C is a subclass of B ∧B′ if and only if, for every member x of C, also x is
a member of B ∧B′. By the definition of B ∧B′, for every set x, a set x is a member of B ∧B′ if
and only if both x is a member of B and x is a member of B′. Thus, C is a subclass of B ∧B′ if
and only if, for every member x of C, both x is a member of B and x is a member of B′. By the
definition of subclass, C is a subclass of B ∧B′ if and only if both C is a subclass of B and C is a
subclass of B′.

For every ordered pair (b, b′) of sets, by the definition of Cl, for every set x, the set x is a member
of Clb if and only if x is an element of b, and the set x is a member of Clb′ if and only if x is an
element of b′. Thus, for every set x, the set x is a member of Clb ∧Clb′ if and only if both x is an
element of b and x is an element of b′. By the definition of intersection, for every set x, the set x is
both an element of b and an element of b′ if and only if x is an element of b∩ b′. Thus, again using
the definition of Cl, for every set x, the set x is a member of Clb ∧Clb′ if and only x is a member
of Clb∩b′ . By Lemma 4.2, the class Clb ∧Clb′ equals Clb∩b′ .

Finally, for every class B = [p(s, t), a], for the class ∩B ∶= [∀t (p(s, t) ⇒ (t′ ∈ t)), a] with the ordered
pair of free variables (s, t′), for every set x, the set x is a member of ∩B if and only if, for every
member b of B, the set x is an element of b. By Lemma 4.2, the class ∩B is the unique class such
that, for every set x, the set x is a member of ∩B if and only if, for every member b of B, the set
x is an element of b. In particular, for every set c, the class ∩Clc equals Cl∩c.

Lemma 4.11. For every class B, for every class B′, there exists a unique class B ∨ B′ whose
members are those sets that are either members of B or members of B′ (or both). The classes that
have B ∨B′ as a subclass are precisely the classes that both have B as a subclass and have B′ as a
subclass. For every ordered pair (b, b′) of sets, the class Clb ∨Clb′ equals Clb∪b′. Finally, for every
class B there exists a class ∪B whose members are all sets x such that there exists a member b of
B with x an element of b. In particular, for every set c, the class ∪Clc equals Cl∪c.

Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′], the class [p′′(s′′, t′′), a′′]
with a′′ = (a, a′′) and with the following predicate has as members precisely those sets that are
either members of B or members of B′.

∃s ∃s′ (p(s, t′′) ∨ p′(s′, t′′)) ∧ (s′′ = (s, s′)).
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By Lemma 4.2, the class B∨B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets that are either members of B or members of B′.

By definition, a class C has B ∨B′ as a subclass if and only if, for every member x of B ∨B′, also
x is a member of C. By the definition of B ∨B′, for every set x, a set x is a member of B ∨B′ if
and only if either x is a member of B or x is a member of B′. Thus, B ∧B′ is a subclass of C if
and only if, both every member x of B is a member of C and every member x of B′ is a member
of C. By the definition of subclass, B ∧B′ is a subclass of C if and only if both B is a subclass of
C and B′ is a subclass of C.

For every ordered pair (b, b′) of sets, by the definition of Cl, for every set x, the set x is a member
of Clb if and only if x is an element of b, and the set x is a member of Clb′ if and only if x is an
element of b′. Thus, for every set x, the set x is a member of Clb ∨Clb′ if and only if either x is an
element of b or x is an element of b′. By the definition of union, for every set x, the set x is either
an element of b or an element of b′ if and only if x is an element of b ∪ b′. Thus, again using the
definition of Cl, for every set x, the set x is a member of Clb ∨Clb′ if and only x is a member of
Clb∪b′ . By Lemma 4.2, the class Clb ∨Clb′ equals Clb∪b′ .

Finally, for every class B = [p(s, t), a], for the class ∪B ∶= [∃t (p(s, t) ⇒ (t′ ∈ t)), a] with the ordered
pair of free variables (s, t′), for every set x, the set x is a member of ∪B if and only if there exists
a member b of B that has x as an element. By Lemma 4.2, the class ∪B is the unique class such
that, for every set x, the set x is a member of ∪B if and only if there exists a member b of B that
has x as an element. In particular, for every set c, the class ∪Clc equals Cl∪c.

Lemma 4.12. For every class B, there exists a unique class ¬B whose members are those sets that
are not members of B. A class is a subclasses of ¬B if and only if every member of the class is not
a member of B. The class ¬(¬B) equals B. For every class B′, both ¬(B∧B′) equals (¬B)∨(¬B′)
and ¬(B ∨ B′) equals (¬B) ∧ (¬B′). Also ¬(∩B) equals ∪(¬B), and ¬(∪B) equals ∩(¬B). For
every set b, for every set b′, the class Clb ∧ (¬Clb′) equals Clb∖b′.

Proof. For every class B = [p(s, t), a], the members of [¬p(s, t), a] are precisely the sets that are
not members of B, and this class is unique by Lemma 4.2.

By definition, a class C is a subclass of ¬B if and only if, for every member x of C, also x is a
member of ¬B. By definition, for every set x, the set x is a member of ¬B if and only if x is not a
member of B. Therefore, C is a subclass of ¬B if and only if every member x of C is not a member
of B. In particular, a class C is a subclass of ¬(¬B) if and only if every member x of C is not a
member of ¬B, i.e., if and only if every member x of C is a member of C. By Lemma 4.7, the class
¬(¬B) equals B.

For every class B = [p(s, t), a] and for every class B′ = [p′(s′, t′), a′], since ¬(p(a, t′′) ∧ p′(a′, t′′))
is logically equivalent to (¬p(a, t′′)) ∨ (¬p′(a′, t′′)), also the class ¬(B ∧B′) equals (¬B) ∨ (¬B′).
Similarly, the class ¬(B ∨B′) equals the class (¬B) ∧ (¬B′).
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Since the following two predicates are logically equivalent,

¬(∃t (x ∈ t) ∧ p(a, t)) ,

∀t (x ∈ t) ⇒ ¬p(a, t),

the class ¬(∪B) equals ∩(¬B). Similarly, the class ¬(∩B) equals ∪(¬B).

Finally, for every set b, for every set b′, for every set x, the set x is a member of Clb∧(¬Clb′) if and
only if both x is an element of b and x is not an element of b′, i.e., if and only if x is an element of
b ∖ b′. Thus, the class Clb ∧ (¬Clb′) equals Clb∖b′ by Lemma 4.2.

Lemma 4.13. For every class B, for every class B′, there exists a unique class B × B′ whose
members are ordered pairs (b, b′) of a member b of B and a member b′ of B′. A class is a subclass
of B ×B′ if and only if every member of the class is of the form (b, b′) for a member b of B and a
member b′ of B′. For every set c, for every set c′, the class Clc ×Clc′ equals Clc×c′.

Proof. For every class B = [p(s, t), a], for every class B′ = [p′(s′, t′), a′], the class [p′′(s′′, t′′), a′′]
with a′′ = (a, a′′) and with the following predicate has as members precisely those sets (b, b′) such
that b is a member of B and such that b′ is a member of B′.

∃s ∃s′ ∃t ∃t′ (p(s, t) ∨ p′(s′, t′)) ∧ (s′′ = (s, s′)) ∧ (t′′ = (t, t′)).

By Lemma 4.2, the class B×B′ = [p′′(s′′, t′′), (a, a′)] is the unique class whose members are precisely
those sets (b, b′) such that b is a member of B and such that b′ is a member of B′.

By definition, a class C is a subclass of B ×B′ if and only if, for every member b′′ of C is also a
member of B ×B′. By the definition of B ×B′, a set b′′ is a member of B ×B′ if and only if b′′

equals (b, b′) for a member b′ of B and for a member b′ of B′. Thus, C is a subclass of B ×B′ if
and only if every member of C equals (b, b′) for a member b of B and for a member b′ of B′.

For every set c, for every set c′, by the definition of Cl, a set is an element of Clc ×Clc′ if and only
if the set equals (b, b′) for an element b of c and for an element b′ of c′, i.e., if and only if the set is
an element of c × c′. Therefore, by Lemma 4.2, the class Clc ×Clc′ equals Clc×c′ .

Lemma 4.14. For every class R, there exists a unique subclass rel(R) of R whose members are
those members of R of the form (b, c) for a set b and for a set c. In particular, for every set r,
the class rel(Clr) is the class of the unique maximal subset rel(r) of r such that rel(r) is a binary
relation.

Proof. For every class R = [p(s, t), a], the class of the following predicate rel(p)(s, t), the members
of the class [rel(p)(s, t), a] are those members of R of the form (b, c) for a set b and for a set c.

∃u ∃v (t = (u, v)) ∧ p(s, (u, v)).
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By Lemma 4.2, this subclass of R is unique.

For every set r, by the Axiom Schema of Specification, there exists a unique subset rel(r) of r
consisting of those elements of r of the form (b, c) for some set b and for some set c. By the Axiom
Schema of Replacement, there exists a unique set active(rel(r)) and a unique set image(rel(r)) such
that rel(r) is a subset of active(rel(r))× image(rel(r)) and each of the two projection functions are
surjective.

Definition 4.15. For every class R, the class R is a class relation if (and only if) the subclass
rel(R) equals R, i.e., if (and only if) every member of R is of the form (b, c) for a set b and for a
set c.

Lemma 4.16. For every class R, for every subclass of R, the subclass is a class relation if and
only if it is a subclass of rel(R). For every class relation R, there exists a unique class relation
Ropp whose members are those sets of the form (c, b) such that (b, c) is a member of R. Also there
exists a unique class image(R) whose members are all sets c such that (b, c) is a member of R for
some set b. Similarly, there exists a unique class active(R) = image((R)opp) whose members are
all sets b such that (b, c) is a member of R for some set c. More generally, for every class relation
R and for every class B, there exists a unique class R[B] whose members are those sets c such
that there exists a member b of B for which (b, c) is a member of R. Similarly, for every class R
and for every class C, there exists a unique class Ropp

[C] whose members are those sets b such
that there exists a member c of C for which (b, c) is a member of R.

Proof. For every class R = [p(s, t), a], the class of the following predicate rel(p)(s, t), the members
of the class [rel(p)(s, t), a] are those members of R of the form (b, c) for a set b and for a set c.

∃u ∃v (t = (u, v)) ∧ p(s, (u, v)).

By Lemma 4.2, this subclass of R is unique.

Similarly, for the following predicate rel(p)opp(s, t), the members of the class [rel(p)opp(s, t), a] are
those sets of the form (c, b) such that (b, c) is a member of R.

∃u ∃v (t = (v, u)) ∧ p(s, (u, v)).

By Lemma 4.2, this class is unique.

For the following predicate image(rel(p))(s, t), the members of the class [image(rel(p))(s, t), a] are
those sets c such that (b, c) is a member of R for some set b.

∃u p(s, (u, t)).
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Similarly, for the following predicate active(rel(p))(s, t), the members of the class [active(rel(p))(s, t), a]
are those sets b such that (b, c) is a member of R for some set c.

∃v p(s, (t, v)).

By Lemma 4.2, this class is unique.

For every class R, for every class B, the members of the class image(rel(R)) ∧B are those sets c
such that there exists a member b of B for which (b, c) is a member of R. By Lemma 4.2, this class
rel(R)[B] is unique.

Similarly, for every class R, for every class C, the members of the class C∧active(rel(R)) are those
sets b such that there exists a member c of C for which (b, c) is a member of R. By Lemma 4.2,
this class [C]rel(R) is unique.

Lemma 4.17. For every class R, for every set b, there exists a unique class Rb whose members
are those sets c such that (b, c) is a member of R.

Proof. For every class R = [p(s, t), a], for every set b, for following predicate rel(p)(s, t), the
members of the class [rel(p)(s, t), (a, b)] are those sets c such that (b, c) is a member of R.

∃u ∃v (s = (u, v)) ∧ p(u, (v, t)).

By Lemma 4.2, this subclass of R is unique.

Definition 4.18. For every class B and for every class C, a subclass R of B × C is a relation
from B to C. In particular, for every class B, a B-class is a relation from B to the von Neumann
class V. For every B-class R, for every member b of B, the fiber class Rb of R over b is the class
whose members are all sets c such that (b, c) is a member of R.

Lemma 4.19. For every class B, for every B-class R, for every B-class R′, the B-class R equals
R′ if and only if, for every member b of B, the fiber class Rb equals R′b.

Proof. By Lemma 4.2, the class R equals R′ if and only if, for every set x, the set x is a member
of R if and only if x is a member of R′. Since R is a B-class, every member x of R is of the form
(b, c) for a unique member b of B and for a unique set c. Since R′ is a B-class, every member x′

of R′ is of the form (b′, c′) for a unique member b′ of B and for a unique set c. By the defining
property of Kuratowski ordered pairs, the Kuratowski ordered pair (b, c) equals (b′, c′) if and only
if both b equals b′ and c equals c′.

Thus, the following two conditions are equivalent: (i) for every set x, the set x is a member of R
if and only if x is a member of R′; (ii) for every member b of B, for every set c, the Kuratowski
ordered pair (b, c) is a member of R if and only if (b, c) is a member of R′. Therefore R equals R′

if and only if, for every member b of B, the class Rb equals R′b.
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Lemma 4.20. For every class B, for every class B′, there exists a unique Cl{0,1}-class (B,B′)
whose 0-fiber equals B and whose 1-fiber equals B′, where 0 is ∅ and 1 is {∅}. For every Cl{0,1}-
class R, for every class B, for every class B′, the Cl{0,1}-class (B,B′) equals R if and only if both
B equals the fiber class R0 and B′ equals the fiber class R1. In particular, for every class C, for
every class C′, the Cl{0,1}-class (C,C′) equals (B,B′) if and only if both B equals C and B′ equals
C′.

Proof. For every class B = [p(s, t), a] and for every class B′ = [p′(s′, t′), a′], for the following
predicate p′′(s′′, t′′), the members of the class [p′′(s′′, t′′), (a, a′)] are those sets of the form (0, b)
for a member b of B and those sets of the form (1, c) for a member c of C.

∃s ∃s′ ∃u ∃v (s′′ = (s, s′)) ∧ (t′′ = (u, v)) ∧ (((u = 0) ∧ p(s, v)) ∨ ((u = 1) ∧ p′(s′, v))).

By Lemma 4.2, this subclass of R is unique.

For every Cl{0,1}-class R, by the previous lemma, the Cl{0,1}-class (B,B′) equals R if and only if
both the 0-fiber class B equals R0 and B′ equals R1. In particular, for every class C, for every
class C′, the Cl{0,1}-class (B,B′) equals (C,C′) if and only if both the 0-fiber B equals C and the
1-fiber B′ equals C′.

5 Morphisms and spans between classes

For defining categories, a bit more useful than class morphisms or relations is the notion of spans.

Definition 5.1. For every class B, for every class C, a (B,C)-span M is a B × C-class. For
every member b of B, for every member c of C, the fiber class Mb

c of M over (b, c) is the fiber
class M(b,c). A B-class is a B-set if (and only if) every fiber class is a class of a set. Similarly, a
(B,C)-span is a (B,C)-set if (and only if) it is a B×C-set. Finally, for every class O, an O-Hom
span is an (O,O)-set M, i.e., for every ordered pair (b, c) of members of O, the fiber class Mb

c is
the class of a set.

Example 5.2. For every class B, the identity relation IdB from B to itself is the class whose
members are all ordered pairs (b, b) such that b is a member of B. In particular, for every set a,
IdCla equals ClIda for the usual identity set relation Ida whose elements are all ordered pairs (b, b)
such that b is an element of a. For every class O, the identity O-Hom span IdO is the class
whose members are all ordered pairs ((b, b), Idb) such that b is a member of O. In particular, the
identity Cla-Hom span is the ClIda-class whose fiber class (IdCla)

b
c has a unique member Idb if c

equals b is an element of a and otherwise has no member.
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Definition 5.3. For every class B, a B-class F is a class morphism from B if (and only if), for
every member b of B, the fiber class Fb is the class of a singleton set, i.e., there exists a unique set
c such that (b, c) is a member of F. For every class B, for every class C, a class morphism from
B to C is a relation from B to C that is also a class morphism from B. The class morphism is a
class isomorphism if also, for every member c of C, there exists a unique member b of B such
that (b, c) is a member of the class morphism.

Example 5.4. For every class B, the identity IdB is a class isomorphism from B to itself.

Example 5.5. For every class B, for every morphism of classes F from B, there is a B-class clB,F

whose members are all ordered pairs (b, c) of a member b of B and of an element c of the set F(b).

Exercise 5.6. For every class B, for every morphism of classes F from B, check that clB,F is a
B-set. Conversely, for every B-set D, check that there is a unique morphism of classes funB,D

from B associating to every member b of B the unique set whose associated class is the fiber class
Db. Check that these two operations determine an equivalence between B-sets and morphisms of
classes from B.

Definition 5.7. For every class B, for every B-class Q, for every B-class R, a B-class morphism
from Q to R is a class morphism F from Q to R such that, for every member b of B, for every
member c of Qb, there exists a unique member d of Rb such that ((b, c), (b, d)) is a member of F.
In this case, the fiber class morphism Fb from Qb to Rb associated to F is the class morphism
whose members are all ordered pairs (c, d) such that ((b, c), (b, d)) is a member of F. A B-class
morphism F from Q to R is a B-class isomorphism if and only if F is a class isomorphism from
R to Q.

In particular, for every class B, for every class C, for every (B,C)-span M, for every (B,C)-span
N, a (B,C)-span morphism from M to N is a B ×C-class morphism from M to N. This is a
(B,C)-span isomorphism F from M to N if (and only if) it is a B ×C-class isomorphism from
M to N.

Example 5.8. For every class B, for every B-class Q, the identity class isomorphism IdQ is a B-
class isomorphism from Q to itself such that (IdQ)b equals IdQb

for every member b of B. Similarly,
for every class B, for every class C, for every (B,C)-span M, the identity class isomorphism IdM

is a (B,C)-span isomorphism such that (IdM)
b
c equals IdMb

c
for every member (b, c) of B ×C. In

particular, for every class O, the identity IdIdO
class morphism from IdO to itself is an isomorphism

of O-Hom spans.

The notion of composition of functions and relations between sets extends to composition of mor-
phisms and relations between classes, as well as composition of spans.
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Definition 5.9. For every class B, for every class C, for every class D, for every relation Q from
B to C, for every relation R from C to D, a class the composition R ○Q of R and Q is the class
whose members are all ordered pairs (b, d) such that there exists a member c of C with both (b, c)
a member of Q and (c, d) a member of R.

Definition 5.10. For every class B, for every class C, for every class D, for every span M from
B to C, for every span N from C to D, the span composition N ○M of N and M is the span
from B to D such that for every member (b, d) of B ×D, the members of the fiber class (N ○M)bd
are all ordered pairs (c, (n,m)) of a member c of C and members n and m of the respective fiber
categories Nc

d and Mb
c.

Example 5.11. For every class B, for every class C, for every span M from B to C, there is an
isomorphism of (B,C)-spans rM from M ○ IdB to M, respectively lM from IdC ○M to M, sending
every member ((b, c), (b, (m, Idb))) of M ○ IdB to ((b, c),m), respectively sending every member
((b, c), (c, (Idc,m))) of IdC ○M to ((b, c),m). The isomorphism rM, respectively lM, is the right
unitor of M, resp. the left unitor of M.

Example 5.12. For every class B, for every class C, for every class D, for every class E, for every
span M from B to C, for every span N from C to D, and for every span P from D to E, there is
an isomorphism of (B,E)-spans aP,N,M from (P ○N) ○M to P ○ (N ○M) sending every member
((b, e), (c, ((d, (p, n)),m))) of (P○N)○M to the member ((b, e), (d, (p, (c, (n,m))))) of P○(Q○R).
In other words, for every member (b, e) of B × E, the induced isomorphism of fiber classes from
((P○N)○M)be to (P○(N○M))be sends (c, ((d, (p, n)),m)) to (d, (p, (c, (n,m)))), i.e., it transposes
c and d while leaving p, n and m in the same order. The isomorphism aP,N,M is the associator of
P, N and M.

Example 5.13. For the von Neumann class V of all sets, consider the span mor(Set) from V to
V such that for every set b and for every set c, the members of the fiber class over (b, c) are all
subsets of b × c that are (graphs of) functions from b to c. In other words, for every member (b, c)
of V × V, the fiber class is the class of the set Fun(b, c) of all functions from b to c. The span
mor(Set) from V to itself, together with the usual composition law, is the category Set of all sets.

Proposition 5.14. Composition of relations between classes is strictly associative, and the identity
relations are strict left-right identities for this composition. Composition of spans is associative up
to the specified associator a, and the identity spans are left-right identities for this composition up
to the left and right unitors l and r. The associator and unitors satisfy the triangle (coherence)
identity and the pentagon (coherence) identity of monoidal categories.

There is a notion of morphisms of spans. Together with the composition, associator and unitors,
spans satisfy the axioms of (a version of) double category. Of course spans are classes that may not
be sets, so extreme care is necessary in forming any kind of category of spans.
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Exercise 5.15. Read about double categories. Formulate and verify the axioms of a double cate-
gory that are satisfied by the operations above for spans.

Spans admit a more general notion of morphisms that is useful in formulating natural transforma-
tions.

Definition 5.16. For every ordered triple (B,C,M) of classes B and C and a span M from B to
C, for every ordered triple (B′,C′,M′

) of classes B′ and C′ and a span M′ from B′ to C′, a span
cell from (B,C,M) to (B′,C′,M′

) is a class F = ((s(F), t(F)),Fmor) of a morphism of classes
s(F) from B to B′, of a morphism of classes t(F) from C to C′, and of a morphism of classes Fmor

from M to M′ such that for every member ((b, c),m) of M, for the unique member ((b′, c′),m′)
of M′ such that (((b, c),m), ((b′, c′),m′)) is a member of F, also (b, b′) is a member of s(F) and
(c, c′) is a member of t(F).

Example 5.17. For every ordered triple (B,C,M) of class B and C and a span M from B to C,
the identity span cell is (IdB, IdC, IdM).

Exercise 5.18. Check that the identity span cell is a span cell.

Example 5.19. For every ordered triple (B,C,M) of a span M from a class B to a class C, for
every ordered triple (B′,C′,M′

) of a span M′ from a class B′ to a class C′, for every ordered triple
(B′′,C′′,M′′

) of a span M′′ from a class B′′ to a class C′′, for every span cell F = (s(F), t(F),Fmor)

from (B,C,M) to (B′,C′,M′
), and for every span cell F′ = (s(F′), s(F′),F′mor) from (B′,C′,M′

)

to (B′′,C′′,M′′
), the composition span cell is (s(F′) ○ s(F), t(F′) ○ t(F),F′mor ○ Fmor) from

(B,C,M) to (B′′,C′′,M′′
).

Exercise 5.20. Check that the composition span cell is a span cell.

Exercise 5.21. Check that composition of span cells is strictly associative. Also check that identity
span cells are strict left-right identities for composition of span cells.

One advantage of relations, and more generally of spans, over morphisms is that they have opposites.

Definition 5.22. For every class B, for every class C, for every relation R from B to C, the
opposite relation Ropp from C to B is the unique subclass of C × B whose members are all
ordered pairs (c, b) such that (b, c) is a member of R.

More generally, for every span M from B to C, the opposite span Mopp from C to B is the
C×B-class such that for every member b of B and for every member c of C, the fiber class (Mopp

)
c
b

equals the fiber class Mb
c.

Exercise 5.23. Formulate the notion of the opposite of a span cell. Check that the opposite span
of a span composite is naturally span isomorphic to the span composite of the span opposites of
the factors (in the opposite order). Read about dagger categories. Formulate and check the axioms
of a dagger category that hold for spans.
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6 Definition of categories

A category is a span from a class to itself whose fiber classes are required to be (classes of) sets,
and equipped with a morphism of spans to itself from the span composite of the span with itself
that is associative and unital.

Definition 6.1. For every class O, an O-Hom span is an (O,O)-set M, i.e., a class in which
every member is of the form ((a, b), f) for members a and b of O and a set f , and such that each
fiber class Ma

b of all sets f with ((a, b), f) is a member of M is the class of a set, the Hom set of M
over (a, b). For every class O, for every O-Hom span M′, for every O-Hom span M, a morphism
of O-Hom spans from M′ to M is a morphism of (O,O)-classes from M′ to M.

Breaking with our earlier convention, we sometimes denote the Hom set by Ma
b . More often it is

denoted HomO,M(a, b), or just Hom(a, b) when O and M are understood, i.e., the members of M
are sets ((a, b), f) for members a and b of O and elements f of Hom(a, b).

Example 6.2. For every class O, the empty (O,O)-span M with no members is an O-Hom span,
the initial O-Hom span. For every class O, the identity IdO×O of O ×O, considered as a span
from O to itself, is an (O,O)-span, the final O-Hom span. Finally, the identity Hom span
IdO is the class whose members are all ordered pairs ((b, b), Idb) for b a member of O. This is also
called the discrete O-Hom span.

Example 6.3. For every set H, let OH be a class with a unique member (say ∅, for definiteness),
and let MH be the unique OH-Hom span whose unique Hom set is H.

Example 6.4. Recall the earlier example, where O is the von Neumann class V of all sets, the
span mor(Set) from V to itself is the class of all triples ((a, b), f) of a set a, of a set b, and of a
function f from a to b. Thus, each Hom set HomV,mor(Set)(a, b) is the set Fun(a, b) of all functions
from a to b.

Example 6.5. For another example, again let O be the von Neumann class V of all sets, but now
let the span mor(Rel) from V to itself be the class of all triples ((a, b),R) of a set a, of a set
b, and of a relation R from a to b, i.e., R is an (arbitrary) subset of a × b. Thus, each Hom set
HomV,mor(Rel)(a, b) is the power set P(a × b) of a × b.

Example 6.6. For every class O, for every O-Hom span M, for every O-Hom span M′, for every
O-Hom span M′′, for every morphism F′ of O-Hom spans from M′ to M, and for every morphism
F′′ of O-Hom spans from M′′ to M, the fiber product M′

×F′,M,F′′ M′′, or just M′
×M M′′ when

confusion is unlikely, is also an O-Hom span whose fiber class for each ordered pair (a, b) of members
of O equals the fiber product set (M′

)
a
b ×Ma

b
(M′′
)
a
b . In particular, M ×O×O M is the O-Hom span

whose fiber class is just the product set Ma
b ×Ma

b for every ordered pair (a, b) of members of O.
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Of course, for a Hom span (O,M), the composite span M○M from O to O is typically not a Hom
span: for all members a and c of O, the members of (M ○M)ac are all ordered triples (b, (g, f)) of
a member b of O, of an element f of the set Hom(a, b) and of an element g of Hom(b, c). Since b
varies over members of a class (that is typically not a set), the class (M ○M)ac is typically not a
set. This is a Hom span if and only if O is the class of a set.

Definition 6.7. A Hom span (O,M) is small if (and only if) the class O is the class of a set.

Example 6.8. In the example Set, for every set a, for every set c, the fiber class (mor(Set) ○mor(Set))
a
c

is the class of all triples (b, (g, f)) of a set b, of a function f from a to b, and of a function g from b
to c. This is not the class of a set, since the class of all sets b (i.e., the von Neumann class) is not
the class of a set.

Example 6.9. On the other hand, for every small Hom span (O,M), for every nonnegative integer
n, the n-fold composite of the O-Hom span is again an O-Hom span. Taking the union over all
positive integers n gives a new O-Hom span (O,M∗

) where the fiber class over (a, b) is the set

of strings, i.e., ordered pairs (n, (a = a0
f1
Ð→ a1, a1

f2
Ð→ a2, . . . , an−1

fn
Ð→ an = b)) of a positive integer

n and an ordered n-tuple of “composable” members of M. We “complete” this by also adding a
member (0, (a = a0, a0 = a)) of M∗ mapping to (a, a) in O ×O for every member a of O.

Definition 6.10. For every class O, for every Hom span M from O to itself, an (O,M)-composition
law is a span morphism ○ from the composition (O,O)-span M ○ M to M, i.e., a morphism of
O×O-classes such that, for all members a and c of O, the induced fiber morphism from (M ○M)ac
to Ma

c sends each member (b, (g, f)) of (M ○M)ac to a member g ○ f of Ma
c .

A composition law is associative if (and only if), for all members a, b, c and d of O, for every
element (h, g, f) of Hom(d, e) ×Hom(c, d),Hom(b, c), the composition (h ○ g) ○ f equals h ○ (g ○ f)
as elements of Hom(a, e).

An associative composition law is unital if (and only if), for every member a of O, there exists
an element IdO,M,○

a of Hom(a, a) such that, for every member b of O, both the left composition
with IdO,M,○

a from Hom(b, a) to itself is the identity, and the right composition with IdO,M,○
a from

Hom(a, b) to itself is the identity.

A category is an ordered triple class (O,M, ○) of a class O, called the class of objects, an O-Hom
span M, called the class of morphisms, the specification of the source morphism, respectively
target morphism, from M to O sending every member ((a, b), f) of M to the member a of O,
respectively to the member b of O, and a (O,M)-composition law ○ that is both associative and
unital. An isomorphism in a category is a morphism ((a, b), f) such that there exists a morphism
((b, a), g) with both g ○ f equal to Ida and f ○ g equal to Idb; in this case we denote g by f−1.
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For a category C, the class O is often denoted ob(C) and its members are called C-objects
or objects of C. The class M is often denoted mor(C), each set HomO,M(a, b) is denoted Ca

b or
HomC(a, b) and its elements are called C-morphisms from a to b. The composition law is denoted
○
C, or just ○ when confusion is unlikely. For every object a of C, the left-right identity morphism

from a to itself is usually denoted IdC
a or Ida when confusion is unlikely (this set may or may not

equal the identity function from the set a to itself, so please use caution). A category is small if
(and only if) the class of objects is (the class of) a set.
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