Name:			
		ATT THE PARTY OF T	

Problem 1: _______ /25

Problem 1(25 points)

(a)(5 points) Construct a field E of finite order 5 and an extension field F of finite order 25.

(b)(5 points) What is the order and isomorphism type of E^{\times} ? What is the order and isomorphism type of F^{\times} ?

(c)(15 points) Find a generator for E^{\times} and find a generator for F^{\times} . (Hint. You might find it convenient to work out the formulas for the squaring and cubing maps in the quotient group F^{\times}/E^{\times} .)

(a)
$$F_{S} = \mathbb{Z}/S\mathbb{Z} = \{0, \pm 1, \pm 2\}, \quad F_{2S} = F_{S}[x]/x^{2} = \{ax + b \mid a, b \in F_{S}\}.$$

F_{2s}/F_s = Z/6Z. $\overline{x} \cdot \overline{x} = \overline{\Gamma}$ mod $\overline{F_s}^{x}$

 $\bar{x} \cdot \bar{x} = \bar{1} \mod \mathbb{F}_{s}^{x}$ $(\bar{x} - a)(\bar{x} + a) = \bar{x}^{2} - a^{2} = 2 - a^{2} = 1 \mod \mathbb{F}_{s}^{x}$ $2(\bar{x} - a)(\bar{x} - b) = -(a + b)\bar{x} + (ab + 2) = \bar{x} - \frac{ab + 2}{a + b} \mod \mathbb{F}_{s}^{x}$

So $(\bar{x}-a)^2 = x - \frac{3+2}{2a}$ if $a \neq 0$. So $(\bar{x}-a)^2 = (\bar{x}-a)^2 = \bar{x}+a$ (=) $\frac{3^2+2}{2a} = -a$ (=) $2a^2-2=0$ (=) $a = \pm 1$. So $(\bar{x}-1)^2 = 1$ mod f_s^{-1} ($\bar{x}+1)^3 = 1$

So $\overline{X}-Z$, $\overline{X}+Z$ generate $\overline{F_{xx}}$ mod $\overline{F_{xx}}$. Since $y(24)=p(9)y(3)=4\cdot 2=8$, the 8 elements $|a(\overline{X}-Z), b(\overline{X}+Z), |a,b\in \overline{F_{xx}}$ are the generators of $\overline{F_{zx}}$.

Name:	Problem 2:	/35
-------	------------	-----

Problem 2(35 points) Let f(x,y) in $\mathbb{C}[x,y]$ be the irreducible polynomial $y^3 - x^5$. Let S be the quotient ring $\mathbb{C}[x,y]/\langle f(x,y)\rangle$. And let R be the subring $\mathbb{C}[x]$. Let F denote the fraction field of

- (a) (10 points) Prove that $R \subset S$ is an integral ring extension, and find a minimal set of generators for S as an R-module. (Hint. What is a basis for $\mathbb{C}[x,y]$ as a free $\mathbb{C}[x]$ -module, and which of these basis elements are linearly independent in S?
- (b)(5 points) Using your set of generators, prove that there is no element s in S such that $x \cdot s$ equals y.
- (c)(5 points) Consider the monic polynomial $t^3 x^2$ in S[t]. Prove that this polynomial has three distinct roots in the fraction field F. (Hint. The denominator of each root is x.)
- (d)(5 points) Prove that $t^3 x^2$ has no roots in S.
- (e) (10 points) Explain why this implies that S is not a Unique Factorization Domain. (If you have trouble with (a), (b), (c) or (d), but you know a different proof that S is not a UFD, you may explain that proof for partial credit.)

(a) S has free basis 1, y, y2 as an R-module. Hence S is a finitely generated R-module, thus integral extension of R.

(b) x. (a(x).1+b(x).y+c(x).y2) = (xa(x)).1+(xb(x)).y+(xdx)).y2 Since X(b(x)) = 1 has no solution in G(x), there is no s in S with x-s=y.

(c) $x^2 = \frac{x^2 \cdot x^3}{x^3} = \frac{x^5}{x^3} = \frac{x^5}{x^3} = (\frac{x}{x})^3$. So $t^3 - x^2 = (t - \frac{x}{x})(t - \omega \frac{x}{x})(t - \omega^2 \frac{x}{x})$

where w= eris is a 3rd root of 2.

(d) By (b), there is no s with x-say so also no s with X.S=wy or X.S= wzy (otherwise divide by w, resp. wz). (e) By Gauss's Lemma, if 5 is a UFD then every factorization

of t3-x2 over F comes from a factorization over S => 7 a root in S.

Problem 3: ______ /40

Problem 3(40 points) Let R be a commutative ring with 1. Let f be an element in R. And let I be an ideal in R which is disjoint from the subset $f^{\mathbb{N}} := \{1, f, f^2, f^3, \dots\}$. Consider the following subset of R.

$$I' = \{ r \in R | \exists f^n \in f^{\mathbb{N}}, f^n r \in I \}.$$

- (a)(10 points) Prove that I' is an ideal in R which contains I and which is disjoint from $f^{\mathbb{N}}$.
- (b)(15 points) Assume that P is an ideal in R which is maximal among those ideals which are disjoint from $f^{\mathbb{N}}$. Prove that P is a prime ideal: if r is not in R yet rs is in R, then s is in R. (Hint. Since $P + \langle r \rangle$ is an ideal which strictly contains P, what relation does this imply with $f^{\mathbb{N}}$? What happens when you multiply your relation by s?)
- (c)(10 points) Now let I be an ideal in R, and let f be an element of R which is not contained in the radical rad(I). Prove that there exists a prime ideal P containing I such that f is not in P.
- (d)(5 points) Conclude that the radical of I equals the intersection of all prime ideals P which contain I.

Problem 3 continued

1C) Since $f \notin rad(I)$, I is disjoint from f^{W} .

Let S = set of all ideals JCR wr ICJ R $J \cap f^{W} = \emptyset$. For a chain of elements of S(partially ordered by inclusion), the union is an element of S. So by Form's Lemma, F a maximal element P. And by (b), F is a prime ideal.

(d) Certainly $rad(I) \subset \bigcap_{\substack{f \in S \\ P \neq ime}} P$.

And for $f \notin rad(I)$, by the above also $f \notin P \Rightarrow f \notin \bigcap_{\substack{f \in S \\ P \neq ime}} P$. So rad(I) equals $\bigcap_{\substack{f \in S \\ P \neq ime}} P$.