
18.700 JORDAN NORMAL FORM NOTES

These are some supplementary notes on how to find the Jordan normal form of a small
matrix. First we recall some of the facts from lecture, next we give the general algorithm for
finding the Jordan normal form of a linear operator, and then we will see how this works for
small matrices.

1. Facts

Throughout we will work over the field C of complex numbers, but if you like you may
replace this with any other algebraically closed field. Suppose that V is a C-vector space of
dimension n and suppose that T : V → V is a C-linear operator. Then the characteristic
polynomial of T factors into a product of linear terms, and the irreducible factorization has
the form

cT (X) = (X − λ1)
m1(X − λ2)

m2 . . . (X − λr)
mr , (1)

for some distinct numbers λ1, . . . , λr ∈ C and with each mi an integer m1 ≥ 1 such that
m1 + · · ·+ mr = n.

Recall that for each eigenvalue λi, the eigenspace Eλi
is the kernel of T − λiIV . We

generalized this by defining for each integer k = 1, 2, . . . the vector subspace

E(X−λi)k = ker(T − λiIV )k. (2)

It is clear that we have inclusions

Eλi
= EX−λi

⊂ E(X−λi)2 ⊂ · · · ⊂ E(X−λi)e ⊂ . . . . (3)

Since dim(V ) = n, it cannot happen that each dim(E(X−λi)k) < dim(E(X−λi)k+1), for each
k = 1, . . . , n. Therefore there is some least integer ei ≤ n such that E(X−λi)ei = E(X−λi)ei+1 .
As was proved in class, for each k ≥ ei we have E(X−λi)k = E(X−λi)ei , and we defined the
generalized eigenspace Egen

λi
to be E(X−λi)ei .

It was proved in lecture that the subspaces Egen
λ1

, . . . , Egen
λr

give a direct sum decomposition
of V . From this our criterion for diagonalizability of follows: T is diagonalizable iff for each
i = 1, . . . , r, we have Egen

λi
= Eλi

. Notice that in this case T acts on each Egen
λi

as λi times
the identity. This motivates the definition of the semisimple part of T as the unique C-linear
operator S : V → V such that for each i = 1, . . . , r and for each v ∈ Egen

λi
we have S(v) = λiv.

We defined N = T − S and observed that N preserves each Egen
λi

and is nilpotent, i.e. there
exists an integer e ≥ 1 (really just the maximum of e1, . . . , er) such that N e is the zero linear
operator. To summarize:

(A) The generalized eigenspaces Egen
λ1

, . . . , Egen
λr

defined by

Egen
λi

= {v ∈ V |∃e, (T − λiIV )e(v) = 0}, (4)
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give a direct sum decomposition of V . Moreover, we have dim(Egen
λi

) equals the algebraic
multiplicity of λi, mi.

(B) The semisimple part S of T and the nilpotent part N of T defined to be the unique
C-linear operators V → V such that for each i = 1, . . . , r and each v ∈ Egen

λi
we have

S(v) = S(i)(v) = λiv, N(v) = N (i)(v) = T (v)− λiv, (5)

satisfy the properties:

(1) S is diagonalizable with cS(X) = cT (X), and the λi-eigenspace of S is Egen
λi

(for T ).

(2) N is nilpotent, N preserves each Egen
λi

and if N (i) : Egen
λi

→ Egen
λi

is the unique linear

operator with N (i)(v) = N(v), then
[
N (i)

]ei−1
is nonzero but

[
N (i)

]ei = 0.
(3) T = S + N .
(4) SN = NS.
(5) For any other C-linear operator T ′ : V → V , T ′ commutes with T (T ′T = TT ′) iff T ′

commutes with both S and N . Moreover T ′ commutes with S iff for each i = 1, . . . , r,
we have T ′(Egen

λi
) ⊂ Egen

λi
.

(6) If (S ′, N ′) is any pair of a diagonalizable operator S ′ and a nilpotent operator N ′ such
that T = S ′ + N ′ and S ′N ′ = N ′S ′, then S ′ = S and N ′ = N . We call the unique
pair (S, N) the semisimple-nilpotent decomposition of T .

(C) For each i = 1, . . . , r, choose an ordered basis B(i) = (v
(i)
1 , . . . , v

(i)
mi) of Egen

λi
and let

B =
(
B(1), . . . ,B(r)

)
be the concatenation, i.e.

B =
(
v

(1)
1 , . . . , v(1)

m1
, v

(2)
1 , . . . , v(2)

m2
, . . . , v

(r)
1 , . . . , v(r)

mr

)
. (6)

For each i let S(i), N (i) be as above and define the mi ×mi matrices

D(i) =
[
S(i)

]
B(i),B(i) , C(i) =

[
N (i)

]
B(i),B(i) . (7)

Then we have D(i) = λiImi
and C(i) is a nilpotent matrix of exponent ei. Moreover we have

the block forms of S and N :

[S]B,B =


λ1Im1 0m1×m2 . . . 0m1×mr

0m2×m1 λ2Im2 . . . 0m2×mr

...
...

. . .
...

0mr×m1 0mr×m1 . . . λrImr

 , (8)

[N ]B,B =


C(1) 0m1×m2 . . . 0m1×mr

0m2×m1 C(2) . . . 0m2×mr

...
...

. . .
...

0mr×m1 0mr×m2 . . . C(r)

 . (9)

Notice that D(i) has a nice form with respect to ANY basis B(i) for Egen
λi

. But we might hope

to improve C(i) by choosing a better basis.
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A very simple kind of nilpotent linear transformation is the nilpotent Jordan block, i.e.
TJa : Ca → Ca where Ja is the matrix

Ja =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

 . (10)

In other words,

Jae1 = e2, Jae2 = e3, . . . , Jaea−1 = ea, Jaea = 0. (11)

Notice that the powers of Ja are very easy to compute. In fact Ja
a = 0a,a, and for d =

1, . . . , a− 1, we have

Jd
ae1 = ed+1, J

d
ae2 = ed+2, . . . , J

d
aea−d = ea, J

d
aea+1−d = 0, . . . , Jd

aea = 0. (12)

Notice that we have ker(Jd
a ) = span(ea+1−d, ea+2−d, . . . , ea).

A nilpotent matrix C ∈ Mm×m(C) is said to be in Jordan normal form if it is of the form

C =


Ja1 0a1×a2 . . . 0a1×at 0a1×b

0a2×a1 Ja2 . . . 0a2×at 0a2×b
...

...
. . .

...
...

0at×a1 0at×a1 . . . Jat 0at×b

0b×a1 0b×a1 . . . 0b×at 0b×b

 , (13)

where a1 ≥ a2 ≥ · · · ≥ at ≥ 2 and a1 + · · ·+ at + b = m.

We say that a basis B(i) puts T (i) in Jordan normal form if C(i) is in Jordan normal form.
We say that a basis B =

(
B(1), . . . ,B(r)

)
puts T in Jordan normal form if each B(i) puts T (i)

in Jordan normal form.

WARNING: Usually such a basis is not unique. For example, if T is diagonalizable, then
ANY basis B(i) puts T (i) in Jordan normal form.

2. Algorithm

In this section we present the general algorithm for finding bases B(i) which put T in Jordan
normal form.

Suppose that we already had such bases. How could we describe the basis vectors? One
observation is that for each Jordan block Ja, we have that ed+1 = Jd

a (e1) and also that spane1

and ker(Ja−1
a ) give a direct sum decomposition of Ca.

What if we have two Jordan blocks, say

J =

(
Ja1 0a1×a2

0a2×a1 Ja2

)
, a1 ≥ a2. (14)
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This is the matrix such that

Je1 = e2, . . . , Jea1−1 = ea1 , Jea1 = 0, Jea1+1 = ea1+2, . . . , Jea1+a2−1 = ea1+a2 , Jea1+a2 = 0.
(15)

Again we have that ed+1 = Jde1 and ed+a1+1 = Jdea1+1. So if we wanted to reconstruct this
basis, what we really need is just e1 and ea1+1. We have already seen that a distinguishing
feature of e1 is that it is an element of ker(Ja1) which is not in ker(Ja1−1). If a2 = a1,
then this is also a distinguishing feature of ea1+1. But if a2 < a1, this doesn’t work. In
this case it turns out that the distinguishing feature is that ea1+1 is in ker(Ja2) but is not in
ker(Ja2−1) + J (ker(Ja2+1)). This motivates the following definition:

Definition 1. Suppose that B ∈ Mn×n(C) is a matrix such that ker(Be) = ker(Be+1). For
each k = 1, . . . , e, we say that a subspace Gk ⊂ ker(Bk) is primitive (for k) if

(1) Gk + ker(Bk−1) + B
(
ker(Bk+1)

)
= ker(Bk), and

(2) Gk ∩
(
ker(Bk−1) + B

(
ker(Bk+1)

))
= {0}.

Here we make the convention that B0 = In.

It is clear that for each k we can find a primitive Gk: simply find a basis for ker(Bk−1) +
B

(
ker(Bk+1)

)
and then extend it to a basis for all of ker(Bk). The new basis vectors will

span a primitive Gk.

Now we are ready to state the algorithm. Suppose that T is as in the previous section. For
each eigenvalue λi, choose any basis C for V and let A = [T ]C,C. Define B = A − λiIn. Let
1 ≤ k1 < · · · < ku ≤ n be the distinct integers such that there exists a nontrivial primitive
subspace Gkj

. For each j = 1, . . . , u, choose a basis
(
v[j]1, . . . , v[j]pj

)
for Gkj

. Then the
desired basis is simply

B(i) =
(
v[u]1, Bv[u]1, . . . , B

u−1v[u]1,

v[u]2, Bv[u]2, . . . , B
ku−1v[u]2, . . . , v[u]pu , . . . , B

ku−1v[u]p1 , . . . ,

v[j]i, Bv[j]i, . . . , B
kj−1v[j]i, . . . , v[1]1, . . . , B

k1−1v[1]1, . . . ,

v[1]p1 , . . . , B
k1−1v[1]p1

)
.

When we perform this for each i = 1, . . . , r, we get the desired basis for V .

3. Small cases

The algorithm above sounds more complicated than it is. To illustrate this, we will present
a step-by-step algorithm in the 2× 2 and 3× 3 cases and illustrate with some examples.

3.1. Two-by-two matrices. First we consider the two-by-two case. If A ∈ M2×2(C) is a
matrix, its characteristic polynomial cA(X) is a quadratic polynomial. The first dichotomy
is whether cA(X) has two distinct roots or one repeated root.

Two distinct roots Suppose that cA(X) = (X − λ1)(X − λ2) with λ1 6= λ2. Then for
each i = 1, 2 we form the matrix Bi = A−λiI2. By performing Gauss-Jordan elimination we
may find a basis for ker(Bi). In fact each kernel will be one-dimensional, so let v1 be a basis
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for ker(B1) and let v2 be a basis for ker(B2). Then with respect to the basis B = (v1, v2), we
will have

[A]B =

(
λ1 0
0 λ2

)
. (16)

Said a different way, if we form the matrix P = (v1|v2) whose first column is v1 and whose
second column is v2, then we have

A = P

(
λ1 0
0 λ2

)
P−1. (17)

To summarize:

span(v1) = Eλ1 = ker(A− λ1I2) = ker(A− λ1I2)
2 = · · · = Egen

λ1
, (18)

span(v2) = Eλ2 = ker(A− λ2I1) = ker(A− λ2I2)
2 = · · · = Egen

λ2
. (19)

Setting B = (v1, v2) and P = (v1|v2), We also have

[A]B,B =

(
λ1 0
0 λ2

)
, A = P

(
λ1 0
0 λ2

)
P−1. (20)

Also S = A and N = 02×2.

Now we consider an example. Consider the matrix

A =

(
38 −70
21 −39

)
. (21)

The characteristic polynomial is X2−trace(A)X +det(A), which is X2 +X−12. This factors
as (X + 4)(X − 3), so we are in the case discussed above. The two eigenvalues are −4 and 3.

First we consider the eigenvalue λ1 = −4. Then we have

B1 = A + 4I2 =

(
42 −70

21− 35

)
. (22)

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: v1 = (5, 3)†.

Next we consider the eigenvalue λ2 = 3. Then we have

B2 = A− 3I2 =

(
35 −70
21 −42

)
. (23)

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: v2 = (2, 1)†.

We conclude that:

E−4 = span

((
5
3

))
, E3 = span

((
2
1

))
. (24)

and that

A = P

(
−4 0
0 3

)
P−1, P =

(
5 2
3 1

)
. (25)
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One repeated root: Next suppose that cA(X) has one repeated root: cA(X) = (X−λ1)
2.

Again we form the matrix B1 = A− λ1I2. There are two cases depending on the dimension
of Eλ1 = ker(B1). The first case is that dim(Eλ1) = 2. In this case A is diagonalizable. In
fact, with respect to some basis B we have

[A]B,B =

(
λ1 0
0 λ1

)
. (26)

But, if you think about it, this means that A has the above form with respect to ANY basis.
In other words, our original matrix, expressed with respect to any basis, is simply λ1I2. This
case is readily identified, so if A is not already in diagonal form at the beginning of the
problem, we are in the second case.

In the second case Eλ1 has dimension 1. According to our algorithm, we must find a
primitive subspace G2 ⊂ ker(B2

1) = C2. Such a subspace necessarily has dimension 1, i.e.
it is of the form span(v1) for some v1. And the condition that G2 be primitive is precisely
that v1 6∈ ker(B1). In other words, we begin by choosing ANY vector v1 6∈ ker(B1). Then we
define v2 = B(v1). We form the basis B = (v1, v2), and the transition matrix P = (v1|v2).
Then we have Eλ1 = span(v2) and also

[A]B,B =

(
λ 0
1 λ

)
, A = P

(
λ 0
1 λ

)
P−1. (27)

This is the one case where we have nontrivial nilpotent part:

S = λ1I2 =

(
λ 0
0 λ

)
, N = A− λ1I2 = B1 = P

(
0 0
1 0

)
P−1. (28)

Let’s see how this works in an example. Consider the matrix from the practice problems:

A =

(
−5 −4
1 −1

)
. (29)

The trace of A is −6 and the determinant is (−5)(−1) − (−4)(1) = 9. So cA(X) = X2 +
6X + 9 = (X + 3)2. So the characteristic polynomial has a repeated root of λ1 = −3. We
form the matrix B1 = A + 3I2,

B1 = A + 3I2 =

(
−2 −4
1 2

)
. (30)

Performing Gauss-Jordan elimination (or just by inspection) a basis for the kernel is given by
(2,−1)†. So for v1 we choose ANY vector which is not a multiple of this vector, for example
v1 = e1 = (1, 0)†. Then we find that v2 = B1v1 = (−2, 1)†. So we define

B =

((
1
0

)
,

(
−2
1

))
, P =

(
1 −2
0 1

)
. (31)

Then we have

[A]B,B =

(
−3 0
1 −3

)
, A = P

(
−3 0
1 −3

)
P−1. (32)

The semisimple part is just S = −3I2, and the nilpotent part is:

N = B1 = P

(
0 0
1 0

)
P−1. (33)
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3.2. Three-by-three matrices. This is basically as in the last subsection, except now there
are more possible types of A. The first question to answer is: what is the characteristic
polynomial of A. Of course we know this is cA(X) = det(XI3 − A). But a faster way of
calculating this is as follows. We know that the characteristic polynomial has the form

cA(X) = X3 − trace(A)X2 + tX − det(A), (34)

for some complex number t ∈ C. Usually trace(A) and det(A) are not hard to find. So it
only remains to determine t. This can be done by choosing any convenient number c ∈ C
other than c = 0, computing det(cI2 − A) (here it is often useful to choose c equal to one of
the diagonal entries to reduce the number of computations), and then solving the one linear
equation

ct + (c3 − trace(A)c2 − det(A)) = det(cI2 − A), (35)

to find t. Let’s see an example of this:

D =

 2 1 −1
−1 1 2
0 −1 3

 . (36)

Here we easily compute trace(D) = 6 and det(D) = 8. Finally to compute the coefficient t,
we set c = 2 and we get

det(2I2 − A) = det

 0 −1 1
−1 1 −2
0 1 −1

 = 0. (37)

Plugging this in, we get

(2)3 − 6(2)2 + t(2)− 8 = 0 (38)

or t = 12, i.e. cA(X) = X3 − 6X2 + 12X − 8. Notice from above that 2 is a root of this
polynomial (since det(2I3 − A) = 0). In fact it is easy to see that cA(X) = (X − 2)3.

Now that we know how to compute cA(X) in a more efficient way, we can begin our analysis.
There are three cases depending on whether cA(X) has three distinct roots, two distinct roots,
or only one root.

Three roots: Suppose that cA(X) = (X − λ1)(X − λ2)(X − λ3) where λ1, λ2, λ3 are
distinct. For each i = 1, 2, 3 define Bi = λ1I3 − A. By Gauss-Jordan elimination, for each
Bi we can compute a basis for ker(Bi). In fact each ker(Bi) has dimension 1, so we can find
a vector vi such that Eλ1 = ker(Bi) = span(vi). We form a basis B = (v1, v2, v3) and the
transition matrix P = (v1|v2|v3). Then we have

[A]B,B =

 λ1 0 0
0 λ2 0
0 0 λ2

 , A = P

 λ1 0 0
0 λ2 0
0 0 λ2

 P−1. (39)

We also have S = A and N = 0.
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Let’s see how this works in an example. Consider the matrix

A =

 7 −7 2
8 −8 2
4 −4 1

 . (40)

It is easy to see that trace(A) = 0 and also det(A) = 0. Finally we consider the determinant
of I3 − A. Using cofactor expansion along the third column, this is:

det

 −6 7 −2
−8 9 −2
−4 4 0

 = −2((−8)4−9(−4))− (−2)((−6)4−7(−4)) = −2(4)+2(4) = 0. (41)

So we have the linear equation

13 − 0 ∗ 12 + t ∗ 1− 0 = 0, t = −1. (42)

Thus cA(X) = X3 −X = (X + 1)X(X − 1). So A has the three eigenvalues λ1 = −1, λ2 =
0, λ3 = 1. We define B1 = A − (−1)I3, B2 = A, B3 = A − I3. By Gauss-Jordan elimination
we find

E−1 = ker(B1) = span

 3
4
2

 , E0 = ker(B2) = span

 1
1
0

 ,

E1 = ker(B3) = span

 2
2
1

 .

We define

B =

 3
4
2

 ,

 1
1
0

 ,

 2
2
1

 , P =

 3 1 2
4 1 2
2 0 1

 . (43)

Then we have

[A]B,B =

 −1 0 0
0 0 0
0 0 1

 , A = P

 −1 0 0
0 0 0
0 0 1

 P−1. (44)

Two roots: Suppose that cA(X) has two distinct roots, say cA(X) = (X − λ1)
2(X − λ2).

Then we form B1 = A− λ1I3 and B2 = A− λ2I3. By performing Gauss-Jordan elimination,
we find bases for Eλ1 = ker(B1) and for Eλ2 = ker(B2). There are two cases depending on
the dimension of Eλ1 .

The first case is when Eλ1 has dimension 2. Then we have a basis (v1, v2) for Eλ1 and a
basis v3 for Eλ2 . With respect to the basis B = (v1, v2, v3) and defining P = (v1|v2|v3), we
have

[A]B,B =

 λ1 0 0
0 λ1 0
0 0 λ2

 , A = P

 λ1 0 0
0 λ1 0
0 0 λ2

 P−1. (45)

In this case S = A and N = 0.
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The second case is when Eλ1 has dimension 2. Using Gauss-Jordan elimination we find
a basis for Egen

λ1
= ker(B2

1). Choose any vector v1 ∈ Egen
λ1

which is not in Eλ1 and define
v2 = B1v1. Also using Gauss-Jordan elimination we may find a vector v3 which forms a basis
for Eλ2 . Then with respect to the basis B = (v1, v2, v3) and forming the transition matrix
P = (v1|v2|v3), we have

[A]B,B =

 λ1 0 0
1 λ1 0
0 0 λ2

 , A = P

 λ1 0 0
1 λ1 0
0 0 λ2

 P−1. (46)

Also we have

[S]B,B =

 λ1 0 0
0 λ1 0
0 0 λ2

 , S = P

 λ1 0 0
0 λ1 0
0 0 λ2

 P−1, (47)

and

[N ]B,B =

 0 0 0
1 0 0
0 0 0

 , A = P

 0 0 0
1 0 0
0 0 0

 P−1. (48)

Let’s see how this works in an example. Consider the matrix

A =

 3 0 0
0 3 −1
−1 0 2

 . (49)

It isn’t hard to show that cA(X) = (X − 3)2(X − 2). So the two eigenvalues are λ1 = 3 and
λ2 = 2. We define the two matrices

B1 = A− 3I3 =

 0 0 0
0 0 −1
−1 0 −1

 , B2 = A− 2I3 =

 1 0 0
0 1 −1
−1 0 0

 . (50)

By Gauss-Jordan elimination we calculate that E2 = ker(B2) has a basis consisting of v3 =
(0, 1, 1)†. By Gauss-Jordan elimination, we find that E3 = ker(B1) has a basis consisting of
(0, 1, 0)†. In particular it has dimension 1, so we have to keep going. We have

B2
1 =

 0 0 0
1 0 1
1 0 1

 . (51)

By Gauss-Jordan elimination (or inspection), we conclude that a basis consists of (1, 0,−1)†, (0, 1, 0)†.
A vector in Egen

3 = ker(B2
1) which isn’t in E3 is v1 = (1, 0,−1)†. We define v2 = B1v1 =

(0, 1, 0)†. Then with respect to the basis

B =

 1
0
−1

 ,

 0
1
0

 ,

 0
1
1

 , P =

 1 0 0
0 1 1
−1 0 1

 . (52)

we have

[A]B,B =

 3 0 0
1 3 0
0 0 2

 , A = P

 3 0 0
1 3 0
0 0 2

 P−1. (53)
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We also have that

[S]B,B =

 3 0 0
0 3 0
0 0 2

 , S = P

 3 0 0
0 3 0
0 0 2

 P−1 =

 3 0 0
−1 3 −1
−1 0 2

 , (54)

[N ]B,B =

 0 0 0
1 0 0
0 0 0

 , N = P

 0 0 0
1 0 0
0 0 0

 P−1 =

 0 0 0
1 0 1
0 0 0

 . (55)

One root: The final case is when there is only a single root of cA(X), say cA(X) =
(X − λ1)

3. Again we form B1 = A1 − λ1I3. This case breaks up further depending on the
dimension of Eλ1 = ker(B1). The simplest case is when Eλ1 is three-dimensional, because in
this case A is diagonal with respect to ANY basis and there is nothing more to do.

Dimension 2 Suppose that Eλ1 is two-dimensional. This is a case in which both G1 and
G2 are nontrivial. We begin by finding a basis (w1, w2) for Eλ1 . Choose any vector v1 which
is not in Eλ1 and define v2 = B1v1. Then find a vector v3 in Eλ1 which is NOT in the span of
v2 . Define the basis B = (v1, v2, v3) and the transition matrix P = (v1|v2|v3). Then we have

[A]B,B =

 λ1 0 0
1 λ1 0
0 0 λ1

 , A = P

 λ1 0 0
1 λ1 0
0 0 λ1

 P−1. (56)

Notice that there is a Jordan block of size 2 and a Jordan block of size 1. Also, S = λ1I3 and
we have N = B1.

Let’s see how this works in an example. Consider the matrix

A =

 −1 −1 0
1 −3 0
0 0 −2

 . (57)

It is easy to compute cA(X) = (X + 2)3. So the only eigenvalue of A is λ1 = −2. We define
B1 = A− (−2)I3, and we have

B1 =

 1 −1 0
1 −1 0
0 0 0

 . (58)

By Gauss-Jordan elimination, or by inspection, we see that E−2 = ker(B1) has a basis
((1, 1, 0)†, (0, 0, 1)†). Since this is 2-dimensional, we are in the case above. So we choose any
vector not in E−2, say v1 = (1, 0, 0)†. We define v2 = B1v1 = (1, 1, 0)†. Finally, we choose a
vector in Eλ1 which is not in the span of v2, say v3 = (0, 0, 1)†. Then we define

B =

 1
0
0

 ,

 1
1
0

 ,

 0
0
1

 , P =

 1 1 0
0 1 0
0 0 1

 . (59)
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We have

[A]B,B =

 −2 0 0
1 −2 0
0 0 −2

 , A = P

 −2 0 0
1 −2 0
0 0 −2

 P−1. (60)

We also have S = −2I3 and N = B1.

Dimension One In the final case for three by three matrices, we could have that cA(X) =
(X − λ1)

3 and Eλ1 = ker(B1) is one-dimensional. In this case we must also have ker(B2
1) is

two-dimensional. By Gauss-Jordan we compute a basis for ker(B2
1) and then choose ANY

vector v1 which is not contained in ker(B2
1). We define v2 = B1v1 and v3 = B1v2 = B2

1v1.
Then with respect to the basis B = (v1, v2, v3) and the transition matrix P = (v1|v2|v3), we
have

[A]B,B =

 λ1 0 0
1 λ1 0
0 1 λ1

 , A = P

 λ1 0 0
1 λ1 0
0 1 λ1

 P−1. (61)

We also have S = λ1I3 and N = B1.

Let’s see how this works in an example. Consider the matrix

A =

 5 −4 0
1 1 0
2 −3 3

 . (62)

The trace is visibly 9. Using cofactor expansion along the third column, the determinant is
+3(5 ∗ 1 − 1(−4)) = 27. Finally, we compute det(3I3 − A) = 0 since 3I3 − A has the zero
vector for its third column. Plugging in this gives the linear relation

(3)3 − 9(3)2 + t(3)− 27 = 0, t = 27. (63)

So we have cA(X) = X3− 9X2 +27X − 27. Also we see from the above that X = 3 is a root.
In fact it is easy to see that cA(X) = (X − 3)3. So A has the single eigenvalue λ1 = 3.

We define B1 = A1 − 3I3, which is

B1 =

 2 −4 0
1 −2 0
2 −3 0

 . (64)

By Gauss-Jordan elimination we see that E3 = ker(B1) has basis (0, 0, 1)†. Thus we are in
the case above. Now we compute

B2
1 =

 0 0 0
0 0 0
1 −2 0

 . (65)

Either by Gauss-Jordan elimination or by inspection, we see that ker(B2
1) has basis ((2, 1, 0)†, (0, 0, 1)†)).

So for v1 we choose any vector not in the span of these vectors, say v1 = (1, 0, 0)†. Then we
define v2 = B1v1 = (2, 1, 2)† and we define v3 = B1v2 = B2

1v1 = (0, 0, 1)†. So with respect to
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the basis and transition matrix

B =

 1
0
0

 ,

 2
1
2

 ,

 0
0
1

 , P =

 1 2 0
0 1 0
0 2 1

 , (66)

we have

[A]B,B =

 3 0 0
1 3 0
0 1 3

 , A = P

 3 0 0
1 3 0
0 1 3

 P−1. (67)

We also have S = 3I3 and N = B1.


