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1 Introduction

These are additional notes on categories and functors for this course. Some of the notes are cut-
and-pasted from previous courses I taught about basic algebraic objects (semigroups, monoids,
groups, acts and actions, associative rings, commutative rings, and modules), elementary language
of category theory, and adjoint pairs of functors. Much of the notes are exercises working through
the basic results about these definitions.

2 Algebraic Objects

Definition 2.1. A semigroup is a pair (G, m) of a set G and a binary relation,
m:GxG -G,

such that m is associative, i.e., the following diagram commutes,

mxIdg

GxGxG —/ GxG

Ideml lm .

GxGd — G

The binary operation is equivalent to a set function,
L,:G - Homgets(G,G), g+~ Ly,

such that for every g, g’ € G, the composition Ly o Ly equals Ly, 4, where m(g,g’) is defined to
equal L,(g’"). When no confusion is likely, the element m(g,g’) is often denoted g - ¢'.

For semigroups (G, m) and (G',m’) a semigroup morphism from the first to the second is a set
map
u:G->G,

such that the following diagram commutes,

GxG 2% G x @G

G —— G
The set of semigroup morphisms is denoted Homgemigroups((G,m), (G’,m")).
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Definition 2.2. For a semigroup (G, m), an element e of G of is a left identity element, resp.
right identity element, if for every g € G, g equals m(e, g), resp. g equals m(e,g). An iden-
tity element is an element that is both a left identity element and a right identity element.
A monoid is a triple (G, m,e) where (G,m) is a semigroup and e is an identity element. For
monoids (G, m,e) and (G’,m’,e’) a monoid morphism from the first monoid to the second is a
semigroup morphism that preserves identity elements. The set of monoid morphisms is denoted
Homyonoias ((G,m, e), (G',m’,e")).

Example 2.3. For every semigroup (G, m), the opposite semigroup is (G, m°PP), where m°PP(g, g’)
is defined to equal m(g’, g) for every (g,9’) € GxG. A left identity element of a semigroup is equiv-
alent to a right identity element of the opposite semigroup. In particular, the opposite semigroup
of a monoid is again a monoid.

Example 2.4. For every set I and for every collection (G, Mg )aer of semigroups, for the Cartesian
product set G := [],; G with its projections,

pr, : G = Ga,

there exists a unique semigroup operation m on G such that every projection is a morphism of
semigroups. Indeed, for every «, the composition

pr,om:GxG - G,

equals m, o (pr, x pr,). There exists an identity element e of (G, m) if and only if there exists an
identity element e, of (G,,m,) for every «, in which case e is the unique element such that pr,(e)
equals e, for every e [.

Example 2.5. For every set S, the set Homges(1S,.5) of set maps from S to itself has a structure
of monoid where the semigroup operation is set composition, (f,g) = f o g, and where the identity
element of the monoid is the identity function on S. For every semigroup (G,m), a left act of
(G,m) on S is a semigroup morphism

p:(G,m) - (Homgets(S,S5),0).

For every ordered pair ((S,p), (T, 7)) of sets with left G-acts, a left G-equivariant map from
(S,p) to (T, m) is a set function u: S — T such that u(p(g)s) equals 7(g)u(s) for every g € G and
for every se S.

For each set S, a right act of G on S is a semigroup morphism p from (G, m) to the opposite
semigroup of Homges(S,.5). Note, this is equivalent to a left act of the opposite semigroup G°PP
on S. For every ordered pair ((S,p), (7T, 7)) of sets with a right G-act, a right G-equivariant
map is a set function u:.S — T such that u(sp(g)) equals u(s)w(g) for every g € G and for every
s € S. Note, this is equivalent to a left G°PP-equivariant map.

For an ordered pair ((G,m), (H,n)) of semigroups, for each set S, a G — H-act on S is an ordered
pair (p,m) of a left G-act on S, p, and a right H-act on S, m, such that (p(g)s)m(h) equals
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p(g)(sm(h)) for every g € G, for every h € H, and for every s € S. This is equivalent to a left act
on S by the product semigroup of G and H°PP. A G — H-equivariant map is a map that is left
equivariant for the associated left act by G x HPP.

For every monoid (G, m,e), a left action of (G,m,e) on S is a monoid morphism from (G, m,e)
to Homgets(S,.5). There is a category GG — Sets whose objects are pairs (S, p) of a set S and a left
action of (G,m,e) on S, whose morphisms are left G-equivariant maps, and where composition
is usual set function composition. A right action is a monoid morphism from (G,m,e) to the
opposite monoid of Homgets(.S,.5). There is a category Sets — G whose objects are pairs (.9, p) of a
set S and a right action of (G, m,e) on S, whose morphisms are left G-equivariant maps, and where
composition is usual set function composition. Finally, for every ordered pair ((G,m,e), (H,n, f))
of monoids, a G- H-action on S is a G- H act (p, ) such that each of p and 7 is an action. There
is a category G — H — Sets whose objects are sets together with a G — H-action, whose morphisms
are G — H-equivariant maps, and where composition is usual set function composition.

Definition 2.6. A semigroup (G,-) is called left cancellative, resp. right cancellative, if for
every f,g,h in G, if f-g equals f-h, resp. if g- f equals h- f, then g equals h. A semigroup is
cancellative if it is both left cancellative and right cancellative. A semigroup is commutative
if for every f,g € G, f-g equals g- f, i.e., the identity function from G to itself is a semigroup
morphism from G to the opposite semigroup. For an element f of a monoid, a left inverse, resp.
right inverse, is an element g such that g- f equals the identity, resp. such that f-g equals the
identity. An inverse of f is an element that is both a left inverse and a right inverse. An element
f is invertible if it has an inverse.

Definition 2.7. A group is a monoid such that every element is invertible. The map that associates
to each element the (unique) inverse element is the group inverse map, i : G - G. If the
monoid operation is commutative, the group is Abelian. A monoid morphism between groups
is a group homomorphism, and the set of monoid morphisms between two groups is denoted
Homgoups((G,m,e), (G',m’,¢e’')). If both groups happen to be Abelian, this is also denoted
Homy, 04 ((G,m,e),(G',m’,e")). In this case, this set is itself naturally an Abelian group for the
operation that associates to a pair (u,v) of group homomorphisms the group homomorphism - v

defined by (u-v)(g) =m’(u(g),v(g)).

Definition 2.8. An associative ring is an ordered pair ((A, +,0), L,) of an Abelian group (A4, +,0)
and a homomorphism of Abelian groups,

Le: A—> Homz moa(A,A), ar (Ly: A—> A)

such that for every a,a’ € A, the composition L, o L, equals L., where a-a’ denotes L,(a’). The
set map L, is equivalent to a biadditive binary operation,

AxA-> A, (a,a)=a-d,

that is also associative, i.e., for every a,a’,a” in A, the element (a-a’)-a” equals a- (a’-a"). In
particular, (A,-) is a semigroup. For associative rings (A4, +,0,-) and (A’,+/,0’,"), a ring homo-
morphism from the first to the second is a set function that is simultaneously a morphism of
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Abelian groups from (A, +,0) to (A’,+',0’) and a morphism of semigroups from (A4,-) to (A’,).
For every associative ring (A, +,0,-), the opposite ring is (A, +,0,-°PP).

Definition 2.9. An associative, unital ring is an associative ring such that the multiplication
semigroup has an identity element, i.e., there exists a multiplicative identity. An unital ring
homomorphism is a ring homomorphism that preserves multiplicative identities. For associative,
unital rings (A, +,0,-,1) and (A’,+',0’,-,1"), the set of unital ring homomorphisms from the first to
the second is denoted Homunitalrings((4, +,0,-, 1), (A’,+/,0’,/,1")), or just HomunitaiRings(4, A)
if the identities and operations are understood. In particular, a commutative, associative,
unital ring is an associative unital ring such that the multiplication monoid is commutative. The
set of unital ring homomorphisms between two commutative, associative, unital rings is denoted

HomCommUnitalRings (A7 A,) .

Definition 2.10. For every Abelian group (F,+,0), the Abelian group Homy_moq(F, F') of group
homomorphisms from the group to itself has a structure of associative, unital ring where the multi-
plication operation is composition, and where the identity element is the identity homomorphism.
For every associative ring (R, +,0,-), a (not necessarily unital) left module structure on F' for
the associative ring R is a morphism of associative rings from R to Homz_mea(F, F'). A (not neces-
sarily unital) right module structure is a morphism of associative rings from R to the opposite
ring of Homg_mea(F, F'). For every associative, unital ring (R,+,0,-,1), a (unital) left module
structure on F' for the associative unital ring R is a morphism of associative unital rings from R
to Homy_moa(F, F'). A (unital) right module structure on F' for R is a morphism of associative
unital rings from R to the the oppsite ring of Homg_mea(F, F'). For every left module structure on

F of R, the opposite module is the equivalent right module structure on F' of the opposite ring
of R.

For left R-modules F' and F”,
Le: R— Homyg moa(F, F), L,:R— Homy moa(F', F'),
a left R-module morphism from F' to F” is a group homomorphism,
b+ (F,+,0) - (F',+,0"),
such that for every r € R, the following composition functions are equal,
poL, L' og:F—F
ie., ¢(r-x) equals r/ ¢(x) for every r € R and for every x € F. For right R-modules G and G,
a right R-module morphism from G to G’ is a left R°PP-module morphism from the opposite
module G°PP to the opposite module (G')°PP.
3 Categories

Definition 3.1. A category A consists of (i) a “recognition principle” or “axiom list” for deter-
mining whether a specified set a is an object of this category, (ii) an assignment to every ordered
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pair (a,a’) of objects of A a specified set Homy(a,a’), and (iii) an assignment to every ordered
triple (a,a’,a’) of objects of A of a set function

—o—:Homy(a',a") x Hom4(a,a’) » Homy(a,a”), (g,f)=gef,

such that for every object a of A, there exists an element Id, € Homy(a,a) that is a left-right
identity for o, and such that for every ordered 4-tuple (a,a’,a”,a’") of objects of A and for every
ordered triple

(g, f,e) e Homy(a",a"") x Homy(a',a") x Homy4(a,a'),

the elements go (foe) and (go f)oe in Hom4(a,a") are equal. The elements of Hom 4(a,a’) are
morphisms from a to a’ in A. The set function — o — is composition in A.

Definition 3.2. For a category A, for an ordered pair (a,a’) of objects of A, for an ordered pair
of elements
(97 f) € HomA(a, CL,) X HOH’IA(GI, (1),

if the composition go f € Hom 4(a,a) equals Id,, then g is a left inverse of f in A and f is a right
inverse of g in A. If g is both a left inverse of f and a right inverse of f, then ¢ is an inverse of
fin A. An isomorphism in A is a morphism in A that has an inverse in A.

Definition 3.3. For a category A, an initial object, respectively a terminal object (or final
object), is an object a such that for every object a’, the set Hom 4(a, a’), resp. the set Hom 4(a’, a),
is a singleton set. An object that is simultaneously an initial object and a terminal object is called
a zero object.

Example 3.4. The category Sets has as objects all sets. For every ordered pair of sets, the
associated set of morphisms in Sets is defined to be the set of all set functions from the first set
to the second set. The composition in Sets is usual composition of functions. A set function has a
left inverse, respectively a right inverse, an inverse, if and only if the set function is injective, resp.
surjective, bijective. The empty set is an initial object. Every singleton set is a final object.

Example 3.5. For every category A, for every object a of A, there is a monoid H¢ := Hom(a,a)
whose semigroup operation is the categorical composition and whose monoid identity element is
the categorical identity morphism of a. This is the A-momnoid of the object a. For every ordered
pair (a,a’) of objects of A, the set H% := Homy(a,a') the categorical composition defines a set
map,
HY x H% x H* - HY, (u', f,u) = o fou.

This is a HY — Hg-action on HY. This is the A-action of H% — H* on HY%. Finally, for every
ordered triple (a,a’,a) of objects, the composition binary operation,

I
H% x H% - H°,,

. " . . . ! . " !

is a HY, — Hg-equivariant map that is H¢-balanced, i.e., for every u” € H¢,, for every g € H¢,, for
’

every u' € HZ,, for every f e H?, and for every u € H?, we have,

u'o(gof)=(u"og)ef, (gou)of=go(uof), (gof)ou=go(fou)

This is the A-equivariant binary operation.
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Example 3.6. For every monoid, there is a category with a single object whose unique categorical
monoid is the specified monoid. Every category with a single object is (strictly) equivalent to such
a category for a monoid (unique up to non-unique isomorphism).

Example 3.7. For every monoid (G, m,e), for every set S together with a left G-action p, there
is an associated category, sometimes denoted [(S, p)/G], whose objects are the elements of S, and
such that for every ordered pair (s,s’) € S x S the set of morphisms is

Gy ={g€Glp(g)s = 5"}
For every ordered triple (s,s’,s"”) € S xS xS, the semigroup operation defines a binary operation,
Gi:/ X Gzl i Gz//, (g,,g) g g,g

The morphism of an element g € G%, is left invertible, respectively right invertible, invertible, in this
category if and only if the element g of the monoid is left invertible, resp. right invertible, invertible.
This category has an initial object if and only if the left G-action is left G-equivariantly isomorphic
to the left regular representation of the monoid G on itself, in which case every invertible element
is an initial object. For the left regular representation, the category has a final object if and only
if the monoid is a group (every element is invertible), in which case every object is both initial and
final.

Example 3.8. For every ordered pair of monoids (G, G"), for every ordered pair (M, M') where
M is a set with a specified G’ — G-action and where M is a set with a specified G — G’-action, for
every ordered pair of biequivariant and balanced binary operations,

OMI7M:M,XM—>G’ OM,M’:GXM,%GG
that are associative, i.e., for all f, f1, fo € M and for all f’, f], f5 € M’,
(fl O M, M f’) “fa=f1- (f' oM M f2)» (f1, oMM f) ’ fé = f1' : (f oM, M’ f2,)7

there is a category A with precisely two objects a and a’ such that the categorical monoid G equals
G, such that the categorical monoid GZ; equals G’, such that the categorical G'~G-set G% equals M,
such that the categorical G — G’-set G¢ equals M’ and such that the composition binary relations
are the specified binary operations oy a and o . Every category with precisely two objects is
(strictly) equivalent to such a category for some datum as above, (G, G, M, M’ oy m, o).

Example 3.9. Continuing the previous example, let (S, S’) be an ordered pair of sets, let
P G - HomSets(Sa 5)7 IO, : G, - HomSets(S,7 S,)u

be an ordered pair of left actions so that Homges(S,S’) has an induced G’ - G action and
Homgets(57,S) has an induced G — G’ action. Let

s M - HomSets(Su S,)a ,U/, : M, - HomSets(S,7S)7

7
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be an ordered pair of a G’ — G equivariant map and a G — G’ equivariant map that are compatible
with the composition maps, i.e., for every f € M and for every f’' e M’,

w (f)oulf)=p(f onrnn ), p(f)op'(f") =o' (f orsner f1).

There is a category [(S, S, p, p', p, i) [(G,G", M, M’ opp ar, onr )] whose objects are elements s of
S and elements s” of S’, such that for every pair of elements (s1,s2) € S xS, resp. (s],s5) € 5" x 5",

the morphisms are G3}, resp. (G’ 2:1, as in [(S, p)/G], resp. as in [(S,p")/G'], and such that for
every s € S and for every s’ € S, the morphisms from s to s, resp. the morphisms from s’ to s,
are those elements m of M with pu(m)s = s, resp. those elements m’ of M’ with u/(m')s’ = s. The

compositions are defined in the evident way.

Example 3.10. For every monoid M, for the associated category A with one object a whose
monoid of self-morphisms equals M, the category HomA has objects (a,a, f) for every f e M. For
an ordered pair (f,g) € M x M, the set of morphisms from (a,a, f) to (a,a,g) equals the set of
ordered pairs (q,q') € M x M such that g-q equals ¢’ - f.

Example 3.11. For every semigroup (G, m), for every set S with a left G-act p on S, the iden-
tity function from S to itself is a left G-equivariant map from (S, p) to (S,p). Also, for every
ordered triple ((S,p),(T,7),(U,\)) of sets with a left G-act, the composition of each left G-
equivariant map from (S,p) to (7, 7) with a left G-equivariant map from (7',7) to (U,\) is a
left G-equivariant map from (S, p) to (U,A). Thus, there is a category G — Act whose objects
are sets with a left G-act, (S, p), where for every ordered pair ((S,p), (T, 7)) of sets with a left
G-act, Homg_act((S, p), (T,m)) is the subset of Homgets(S,T") of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Act - G
whose objects are sets with a right G-act, (S, p), where for every ordered pair ((S,p), (7, 7)) of sets
with a right G-act, Homaci—c((S, p), (T, 7)) is the subset of Homgets(S,7T") of right G-equivariant
maps, and where composition is the usual set function composition. Finally, for every ordered pair
((G,m),(H,n)) of semigroups, there is a category G — H — Act whose objects are sets S with
a G — H-act, whose morphisms are GG — H-equivariant maps, and where composition is usual set
function composition.

Example 3.12. For every monoid (G,m,e), for every set S with a left G-action p on S, the
identity function from S to itself is a left G-equivariant map from (S, p) to (S, p). Also, for every
ordered triple ((S,p),(T,7),(U, X)) of sets with a left G-action, the composition of each left G-
equivariant map from (9, p) to (7, 7) with a left G-equivariant map from (7, 7) to (U, \) is a left
G-equivariant map from (5, p) to (U, \). Thus, there is a category G — Sets whose objects are
sets with a left G-action, (S, p), where for every ordered pair ((S,p), (T, 7)) of sets with a left
G-action, Homg_gets((S, p), (T, 7)) is the subset of Homgets (.S, T") of left G-equivariant maps, and
where composition is the usual set function composition. Similarly, there is a category Sets - G
whose objects are sets with a right G-action, (.5, p), where for every ordered pair ((S,p),(T,))
of sets with a right G-action, Homgets_((S, p), (T, 7)) is the subset of Homgets(S,7") of right G-
equivariant maps, and where composition is the usual set function composition. Finally, for every
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ordered pair ((G,m,e),(H,n, f)) of monoids, there is a category G — H — Sets whose objects are
sets S with a G — H-action, whose morphisms are G — H-equivariant maps, and where composition
is usual set function composition.

Example 3.13. The category Semigroups, respectively Monoids, Groups, Rings, UnitalRings,
CommUnitalRings, has as objects all semigroups, respectively all monoids (semigroups that have
an identity element), all groups, all associative, unital rings, all associative, commutative, unital
rings. For every ordered pair of objects, the set of morphisms in each of these categories is the set
of all set maps between the objects that preserve the algebraic operations (and identity elements,
when these are part of the structure). Composition is usual composition of set maps. In each of
these categories, a morphism is an isomorphism if and only if it is a bijection, in which case the
set-theory inverse of the bijection is also the inverse in the category. Each of these categories has a
terminal object consisting of any object whose underlying point set is a singleton set. The trivial
object is also an initial object, hence a zero object, in Monoids and Groups. The commutative,
unital ring Z is an initial object in UnitalRings and CommUnitalRings.

Example 3.14. For every associative, unital ring A, the category A — mod, resp. mod - A, is
the category whose objects are left A-modules, resp. right A-modules, and whose morphisms are
homomorphisms of left A-modules, resp. of right A-modules. Composition is usual composition of
set functions. The zero module is both an initial object and a terminal object, i.e., a zero object.

Definition 3.15. For a commutative, unital ring R, an R—mod enriched category is a category
A together with a specified structure of (left-right) R-module on each set of morphisms such that
each composition set map is R-bilinear.

Definition 3.16. For every category A, the arrow category of A is the category A~ whose
objects are ordered triples (ag, a1, f) of objects ag and a; of A and an element f € Homy(ag,a;),
such that for every ordered pair ((ag, a1, f), (ag,a, f')) of objects the set of morphisms is

HOHl_AH((CL(),CLl,f), (ag,a’l, f,)) = {(QO>Q1) € HOHl_A(CL[),CL{)) x HOHl_A(CLl,all)Lf’ °do=q1° f}?

and for every ordered triple of objects, ((ao, a1, f), (ag,ay, f'), (af,ay, f"")), for every morphism
(g0, q1) from (ag, a1, f) to (aj,a}, f'), and for every morphism (g, ¢;) from (ay,al, f') to (ay,af, f"),
the composition (g, q]) o (qo,q1) is defined to be (gf © qo,q] © q1)-

Definition 3.17. For every category, the opposite category has the same objects, but the set of
morphisms from a first object to a second object in the opposite category is defined to be the set of
morphisms from the second object to the first object in the original category. With this definition,
composition in the opposite category is defined to be composition in the original category, but
in the opposite order. For every object, the associated categorical monoid of that object in the
opposite category equals the opposite monoid of the categorical monoid in the original category.
For every ordered pair of objects, the categorical biaction for the opposite category is the opposite
biaction of the categorical biaction of the original category.
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Example 3.18. For every commutative, unital ring R, for every category enriched over R — mod,
every categorical monoid has an associated structure of an associative, unital, central R-algebra
such that the algebra product is the monoid operation. Conversely, for every central R-algebra,
there is a category enriched over R-mod with precisely one object whose central R-algebra of
self-morphisms is the specified central R-algebra. Also, for the opposite category enriched over
R - mod, every central R-algebra of self-morphisms of an object is the opposite central R-algebra
of that in the original category.

Example 3.19. For every commutative, unital ring R, for every category A enriched over R—mod,
for every ordered pair (a,a’) of objects of A with the associated central R-algebra structures on
the monoids H? and H g,’ , categorical composition defines an associated structure of R-central
H¢ — Ho-bimodule on HY inducing the categorical H% — H2-action. Also, for every ordered triple
(a,a’,a') of objects of A, the composition binary operation defines an R-central H g,’,' — H2-bimodule
homomorphism,
H @ por He — Hi.

Conversely, for every ordered pair of central R-algebras (H, H'), for every ordered pair (S,T) of
an R-central H'— H bimodule S, i.e., a left H' ® g H°PP-module, and an R-central H — H' bimodule
T, for every ordered pair of balanced bimodule homomorphisms,

ors:T®p S—>H, osr:SegT ~ H,

that are associative, there is a category A enriched over R — mod with precisely two objects a
and a’ such that the categorical central R-algebra H? equals H, such that the categorical central
R-algebra H g,’ equals H’, such that the categorical R-central H’' — H bimodule H? equals S, such
that categorical R-central H — H' bimodule H? equals T', and such that the composition binary
operationss are the specified binary operations og r and op .

Also, for the opposite category enriched over R — mod, the R-central algebras of self-morphisms
of an object are replaced by their opposites, and the opposite of the R-central H' — H bimodule
structure on HY is the categorical R-central H°PP — (H')°PP bimodule structure of the opposite
category.

Example 3.20. For every partially ordered set (S,<), there is a category whose objects are the
elements of S, and such that for every ordered pair (s,s’) € S xS, the set of morphisms is empty
unless s < s’; in which case the set of morphisms is a singleton set. There is a unique composition
law consistent with these sets of morphisms. The opposite category is the category associated to
the opposite partially ordered set (.S,>).

Definition 3.21. For a category A, a subcategory of A is a category B such that every object
of B is an object of A, such that for every ordered pair (b,0") of objects of B, the set Homgp(b, ")
is a subset of Hom4(b,0’), and such that for every ordered triple (b,b’,0") of objects of B, the
composition in B is the restriction of composition in 4. A subcategory B of A is full if for every
ordered pair (b,") of objects of B, the subset Homp(b,d") equals all of Hom 4(b,b").
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Similarly, for a commutative, unital ring R and a category A enriched over R — mod, an R — mod
enriched subcategory is a subcategory B of A such that every subset Homp(b,d") of Hom 4(b, ")
is an R-submodule.

Example 3.22. For every monoid M, for the associated category with one object whose categorical
monoid equals M, the subcategories are precisely the categories with one object associated to
the submonoids of M. For every commutative, unital ring R, for every R-central algebra A, for
the associated category enriched over R — mod that has precisely one object whose categorical
central R-algebra equals A, the R — mod enriched subcategories are precisely those associated to
R-subalgebras of A. For every partially ordered set (5,<), the subcategories of the associated
category are precisely the categories of pairs (T,<7) of a subset T of S and a partial ordering <
on T such that the inclusion map is order-preserving, (7, <r) — (5,<). The subcategory is full if
and only if <7 is the restriction of < to T'.

4 Functors

Definition 4.1. For every pair of categories A and B, a covariant functor F' from A to B is
defined to be a rule that associates to every object a of A an object F'(a) of B and that associates
to every ordered pair of objects (a,a’) of A a set map

Foor - Homy(a, a’) > Homg(F(a), F(a)),

such that for every object a of A, F, ,(Id,) equals Idr(,), and such that for every triple of objects
(a,a’,a") of A,

Foar(9° 1) = Fuar(9) © Fau(f), ¥(g.) € Homy(a',a”) x Homa(a,a').

The functor is faithful, resp. fully faithful, if every set map F, . is injective, resp. bijective.
The functor is essentially surjective if every object of B is isomorphic to F'(a) for an object of
A. The functor is an equivalence if it is fully faithfuly and essentially surjective.

A contravariant functor from A to B is a covariant functor from the opposite category A°PP to

B.

Definition 4.2. For every triple of categories A, B and C, for every covariant functor F' from A to
B and for every covariant functor G from B to C, the composition functor G o F' from A to C is
the covariant functor associating to every object a of A the object G(F'(a)) of C, and associating
to every ordered pair of objects (a,a’) of A, the composition set map,

Gra),F(a) © Foo s Homy(a,a") - Homp(F(a), F(a"))Home(G(F (a)), G(F(a"))).

For every category A, the identity functor from A to A is the rule associating every object to
itself, and sending each set of morphisms to itself by the identity set map.
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Definition 4.3. For every triple of categories A, B, C, for every pair of covariant functors, F': A - C
and G : B - C, the comma category, F' | G, has as objects ordered triples (a,b,u) of an object
a of A, an object b of B, and a C-morphism u : F(a) - G(b). For an ordered pair of objects,
((a,b,u),(a’,b',u")), a morphism in the comma category is an ordered pair (g,7) of ¢ € Hom4(a,a’)
and r € Homg(b, 0’) such that o F'(q) equals G(r)ou in Home(F'(a), G(0')). Composition is defined
in the evident way. In particular, the arrow category of C is the comma category when A equals B
equals C and each of F' and G is the identity functor on C. In general, there is a domain functor or
source functor, F' | G — A, associating to every object (a,b,u) the A-object a and associating to
every morphism (g¢,7) the A-morphism q. There is also a codomain functor or target functor,
F | G - B, associating to every object (a,b,u) the B-object b and associating to every morphism
(q,r) the B-morphism r. Finally, there is an arrow functor, F' | G - C~ associating to every
object (a,b,u) the C~-object (F(a),G(b),u) and associating to every morphism (q,r) the C~-
morphism (F(q),G(r)).

Definition 4.4. For a category A, a full subcategory is skeletal if every object of A is isomorphic
to an object of the subcategory. If there exists a skeletal subcategory whose objects are indexed
by a set, then A is a small category. If the objects of A form a set, then A is a strictly small
category.

Example 4.5. Let FinSets be the full subcategory of Sets whose objects are the finite subsets.
Let B be the full subcategory whose objects are the subsets [1,n] = {1,...,n} of Zs; for every
integer n > 0. Then B is a strictly small category that is a skeletal subcategory of FinSets, but
FinSets is not a strictly small category.

Example 4.6. For every partially ordered set (5,<) and for every partially ordered set (7,<), a
functor from the associated category of (.5,<) to the associated category of (7', <) is equivalent to
a order-preserving function from S to T'. Such a functor is always faithful. It is full if and only if
the function is strict, i.e., for every (s,s’) € S x S, the image pair (¢,t") € T x T satisfies ¢t < ¢ if
and only if s < s’. The functor is essentially surjective if and only if the set function is surjective.

Example 4.7. For every pair of categories A and B, for every covariant functor F' from A to B, the
opposite functor F°PP from the opposite category A°PP to the opposite category BOPP associates
to every object a of A°PP the object F'(a) of B°PP, and associates to every ordered pair (a,a’) of
objects of A°PP the set function Fy, , of (a’,a). For a triple of categories A, B and C, for covariant
functors F' : A —» B and G : B - C, the functor (G o F))°PP is the composition G°PP o F°PP  and
the opposite functor of the identity functor is the identity functor of the opposite category. The
opposite functor is faithful, respectively full, essentially surjective if and only if the original functor
is faithful, resp. full, essentially surjective. Finally, the opposite functor of F°PP is the original
functor F.

Example 4.8. For every set a, denote by P(a) the power set of a, i.e., the set whose elements are
all subsets of a. For every set map f:a — a/, define P, o (f) to be the set map from P(a) to P(a’)
associating to every subset b of a the image subset f(b) of a’. Similarly, define P*-¢(f) to be the
set map from P(a’) to P(a) that associates to every subset b’ of b the preimage subset fPre(b')

12


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

of a. This defines a covariant functor P, from Sets to itself and a contravariant functor P* from
Sets to itself. These functors preserve the full subcategory FinSets, but they do not preserve the
skeletal subcategory B.

Example 4.9. There is a forgetful functor from Groups to Sets that forgets the group structure.
Similarly, there is a forgetful functor from R - mod to Groups that remembers only the additive
group structure on the R-module. Similarly, there is a forgetful functor from Rings to Z-mod that
remembers only the additive group structure. There is a forgetful functor from UnitalRings to
Rings. All of these are faithful functors. The category CommUnitalRings is a full subcategory
of UnitalRings.

Example 4.10. For every ordered pair of monoids, the covariant functors between the associated
categories are naturally equivalent to the morphisms of monoids. For every commutative, unital
ring R, for every ordered pair of central R-algebras, the covariant functors between the associ-
ated categories that are R-linear on sets of morphisms are naturally equivalent to the R-algebra
homomorphisms between these central R-algebras.

Definition 4.11. For every category A and for every object a of A, the Yoneda covariant
functor of a is the covariant functor,

h®: A — Sets, h%(a’)=Homy(a,a").

For every ordered pair of objects (a’,a”), for every morphism g € Homy(a’,a"), and for every
element f € h®(a’), i.e., for every morphism f € Hom 4(a,a’), composition defines an element g o f
in h%(a’). This defines a set function,

s g - Hom 4(a’,a") - Homgets (A (a'), h*(a")), g~ (f~ go f).

a

In particular, h% , sends the identity morphism of a’ to the identity set function of h%(a’). Also,
since composition is associative, the set maps h? ., respect composition. Altogether, this defines a
covariant functor.

Similarly, the Yoneda contravariant functor of a” is the contravariant functor,
hov : A — Sets, hgr(a") =Homy(a',a").
Each set map hZ}fL, is defined by sending g € Hom 4(a, a’) to the set map
har(a) > har(a), g go .

Example 4.12. For every partially ordered set (.9, <), for the associated category, for every element
a € S, the Yoneda functor h, associates to each element a’ the empty set unless a’ < a, in which
case it associates a singleton set. Similarly, the Yoneda functor A associates to each element a the
empty set unless a’ < a.
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5 Natural Transformations

Definition 5.1. For categories A and B, for covariant functors ' and G from A to B, a natural
transformation from F' to GG is a rule # that associates to every object a of A an element 6, €
Homgp(F(a),G(a)) such that for every ordered pair of objects (a,a’) of A, for every element
f e Hom4(a,a’), the following compositions of morphisms in B are equal,

ea’oF(f):G(f)oea-

For covariant functors, F', G and H from A to B, for natural transformations from F to G and
from G to H, the (vertical) composite natural transformation from F' to H is defined in the
evident way. Also, for every functor F', the identity natural transformation from F' to itself is
defined in the evident way. An invertible natural transformation (with respect to composition of
natural transformations and the identity natural transformations) is called a natural equivalence
or natural isomorphism. This holds if and only if 6, is an invertible morphism for every object
a, in which case the inverse natural transformation associates to a the inverse of 6,,.

For every natural transformation 6 between covariant functors F,G : A — B, for every natural
transformation 6’ between covariant functors F’, G’ : B — C, the horizontal composition natural
transformation, or Godement product, is the natural transformation 6 0’ : F’ o F - G' o G
associating to every object a of A the C-morphism,

elG(a) °c FI,?(a),G(a)(Qa) =(0%0), = G}“(a),a(a)(ea) ° 92“((1)-

This is associative in 6 and 6’. For every covariant functor I : B — C, the I-pushforward
natural transformation, 1,0 = 0 * Id;, is the natural transformation between the composition
functors I o F,1 oG : A - C associating to every object a of A the morphism Ip(,) c(a)(f.) in
Home(I(F(a)),I(G(a))). Similarly, for every covariant functor F : D - A, the E-pullback
natural transformation, £*0 = Idg * 6, is the natural transformation between the composi-
tion functors F'o E/,G o E': D — B that associates to every object d of D the morphism 0 in
Homg(F(E(d)),G(E(d))). Of course the Godement product can be expanded in terms of push-
forward, pullback and vertical composition,

G*0'o (F'),0=0+0 =G.00F*0.

In particular,
L.(E*(0)) = (Idg * 0) » Id; = Idg * (0 = Id;) = E*(1.(0)).

Example 5.2. For every partially ordered set (5,<), for every partially ordered set (7T,<), for
every pair of order-preserving functions,

F,.G:(5,2) - (T,=),

there exists a natural transformation from F to G if and only if F'< G, i.e., F(s) < G(s) for every
s € S. In this case, the natural transformation is unique. Notice that F' < F, and if both F' < G
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and G < H for order-preserving functions F', GG, and H, then also F' < H, reflecting composition
of natural transformations. If F' < (G, then the natural transformation is a natural equivalence
if and only if the set functions are equal. For order-preserving functions [ : (T,<) — (U,<’) and

E:(R,<") - (5,2),if F <G, thenalso [oF <’ [oG and FoE < GoFE, reflecting the I-pushforward
and E-pullback of the natural transformation.

Example 5.3. For categories A and B, for covariant functors F' and G from A to B, for every
natural transformation 6 from F' to (G, the opposite natural transformation 6°PP from G°PP to
Forp associates to every object a of A the element 6, in Homp(F(a), G(a)) = Hompe (G(a), F'(a)).
The natural transformation 6 is a natural equivalence if and only if #°PP is a natural equivalence.
The opposite natural transformation of #°PP is the original natural transformation #. The opposite
natural transformation is compatible with vertical composition and Godement product.

Example 5.4. Let F': A - C and G : B - C be covariant functors, and let F' | G be the comma
category with its domain functor, s: F' | G - A, and its codomain functor ¢ : F' | G — B. For the
composite functors, F'os,Got: F | G — C, there is a natural transformation,

O:Fos=Got, Ogpu =u.
For every category D, for every functor E: D — F | G, there is a triple (S,7T,n) of functors,
S=soE:D->A, T=toE:D-B,

and a natural transformation 1 = E*6 from F' oS to G oT. Conversely, for every natural transfor-
mation (S,7,n) as above, there is a unique functor F : D - F' | G such that so E (strictly) equals
S, such that t o E (strictly) equals 7', and such that E*6 equals 7.

Example 5.5. As a special case of the preceding, for every category A, for every category D, a
covariant functor to the arrow category,

E:D- A",
is (strictly) equivalent to an ordered pair (S,7") of covariant functors,
S:D->A, T:D- A,
and a natural transformation n: S5 = T.

Example 5.6. For every set a, denote by 6, : a > P(a) the set function that associates to every
element x € a the singleton set of x. This defines a natural transformation from the identity functor
of Sets, resp. FinSets, to the covariant functor P,.

Example 5.7. For every category A, for every covariant functor F : A — Sets, for every object a
of A, for every element t € F'(a), for every object a’ of A, for every element f € Hom4(a,a’), denote
by f.(t) the element of F(a’) that is the image of ¢ under F, ,,(f). This defines a set function,

to:h?(a') > F(a'), [ f(1).
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This is a natural transformation 7 from the covariant functor he to F. Every natural transformation
from he to F' is of the form ¢ for a unique element ¢ € F'(a).

Similarly, for every contravariant functor G : A°P — Sets, for every element ¢t € G(a), for every
object a’ of A, and for every element f € Homy(a’,a), denote by f*(t) the element of G(a’) that
is the image of t under G*-¢(f). This defines a set function,

' ha(a’) > G(d), [ f(2).

This is a natural transformation  from the contravariant functor h, to G. Every natural transfor-
mation from h, to G is of the form ¢ for a unique element t € F'(a).

Definition 5.8. For a category A and for a covariant functor F': A — Sets, a representation
of F is a pair (a,t) of an object a of A and an element ¢ € F'(a) such that the associated natural
transformation 7 : h, = F is a natural equivalence. If there exists a representation, then F is a
representable functor. Similarly, a representation of a contravariant functor is a represen-
tation of the associated covariant functor from A°PP to Sets, and the contravariant functor is a
representable functor if there exists a representation.

Example 5.9. For a covariant functor F': A — B, for every object a of A, let 0, : F'(a) - G(a) be
an isomorphism in B. For every ordered pair (a,a’) of objects of A, denote by G, . the unique set
map,

Gy Homy(a,a’") - Homg(G(a),G(a')),

such that for every u € Homy(a,a’), the composite G, (u) o 0, equals 6, o F, o(u). The rule
associating to every object a of A the object G(a) of B and associating to every ordered pair (a,a’)
of objects of A the set map G, is a covariant functor G : A — B, and the rule associating to every
object a of A the isomorphism 6, in B is a natural equivalence between F' and G. In this sense, a
rule that covariantly associates to every object of A an object of B only up to unique isomorphism
in B defines a “natural equivalence class” of covariant functors.

Example 5.10. As an explicit example of the preceding, let R : B - A be a fully faithful, essentially
surjective covariant functor, i.e., an equivalence of categories. Also assume that A is strictly small.
For every object a of A, since R is essentially surjective, there exists an object b of and an
isomorphism, a - R(b). Using the Axiom of Choice, let b= L(a) and 6, : a - R(L(a)) be such a
choice of object and isomorphism for every object a of A. For every ordered pair (a,a’) of objects,
since R is fully faithful, there exists a unique bijection of sets,

La,a’ : HOIIIA(CL, Cl,) - HOIHB(R((Z), R(CL,)), Ur-v= La,a'(u)

such that the composition R(v)o#f, equals 6, ou for every u in Hom4(a, a’). This defines a covariant
functor L : A — B and a natural equivalence 6 : Id4 = Ro L. Since R is fully faithful, also L is fully
faithful.

Again using that R is fully faithful, there is a unique natural equivalence n : L o R = Idp such
that the R-pullback R*n equals the inverse natural isomorphism of the R-pushforward R.6. In

16


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

particular, L is essentially surjective. Thus, L is also an equivalence of categories. For a given
equivalence R from a category A to a strictly small category B, the extended datum of functors
and natural transformations, (L, R,0,n) as above, is unique up to unique natural equivalence in R.

6 Adjoint Pairs of Functors

Let A and B be categories.

Definition 6.1. An adjoint pair of (covariant) functors between A and B is a pair of (covariant)
functors,

L:A—->B, R:B— A,

be (covariant) functors, and a pair of natural transformations of functors,
0:1d4 = RL, 6(a):a - R(L(a)),

n: LR =1dg, n(b): L(R(b)) > b,
such that the following compositions of natural transformations equal Idg, resp. 1dy,

(+r): RZ RLRE'R,

Lof

(+1): LS LRL"S R.

For every object a of A and for every object b of B, define set maps,
HE(a,b) : Homp(L(a),b) - Hom(a, R(b)),

(L(a) 5 b) (a ), R(L(a)) 29 R(b)) ,

and
HE(CL, b) : HomA(a, R(b)) - HOIHB(L(CL), b)7
(a %> RO)) > (L(a) 2 L(R@®) " b).
Adjoint Pairs Exercise.

(i) For L, R, 6 and n as above, the conditions (*g) and (%) hold if and only if for every object a
of A and every object b of B, H:(a,b) and H}(a,b) are inverse bijections.
(ii) Prove that both H%(a,b) and Hf(a,b) are binatural in a and b.

(iii) For functors L and R, and for binatural inverse bijections Hf(a,b) and HF(a,b) between the
bifunctors
Hompg(L(a),b),Homy(a, R(b)) : A x B — Sets,
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prove that there exist unique ¢ and 7 extending L and R to an adjoint pair such that H5 and HF
agree with the binatural inverse bijections defined above.

(iv) Let (L, R,60,n) be an adjoint pair. Let a (covariant) functor
R:B— A,
and natural transformations,
g: [dy = EoL,?)’: Lo R = Idg,

be natural transformations such that (L,ﬁ,a,ﬁ) is also an adjoint pair. For every object b of B,
define I(b) in Homg(R(b), R(b)) to be the image of Id, under the composition,

Homp (6(b),b) HE(R(b),b)
_ _—

Homgp(b,b) Hompg(L(R(D)),b) Homg(R(b), R(b)).

Similarly, define J(b) in Homg(R(b), R(b)), to be the image of Id, under the composition,

Homp (9(b),b) HE(R(b),b)
—

Homp(b, ) Homgp(L(R(b)),b) Homp(R(b), R(b)).

Prove that I and J are the unique natural transformations of functors,
I:R=R, J:R=R,

such that @ equals (I o L) o, 0 equals (Jo L) o8, 7 equals o (Lo I), and 7 equals 7o (Lo J).
Moreover, prove that I and J are inverse natural isomorphisms. In this sense, every extension
of a functor L to an adjoint pair (L, R,6,n) is unique up to unique natural isomorphisms (7, .J).
Formulate and prove the symmetric statement for all extensions of a functor R to an adjoint pair

(L, R,0,n).
v) For every adjoint pair (L, R, 0,n), prove that also (R°PP, LoPP 7noPP_(oPP) is an adjoint pair.
Ui Ui

(vi) Formulate the corresponding notions of adjoint pairs when L and R are contravariant functors
(just replace one of the categories by its opposite category).

Exercise on Composition of Adjoint Pairs. Let A, B, and C be categories. Let
L':A-B,R:B- A,
be (covariant) functors, and let
0':Idy = R'L', n: L'R' = 1dp,
be natural transformations that are an adjoint pair of functors. Also let

L":B-C,R":C—- B,
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be (covariant) functors, and let
0" :1dg = R"L", 0" : L"R" = 1d¢,
be natural transformations that are an adjoint pair of functors. Define functors
L:A-C, R:C—-> A
by L=L"o L', R=R'o R". Define the natural transformation,
f:1dy = Ro L,
to be the composition of natural transformations,
Iy 2 Rol S RoR Lo L.
Similarly, define the natural transformation,

n:LoR=1Idg,

to be the composition of natural transformations,

LIIOTIIORII ,r]I/
L// o L/ o R/ o R// = L// o R// = Idc

Prove that L, R, 6 and n form an adjoint pair of functors. This is the composition of (L', R',0",1")
and (L", R",0" . n"). If A equals B, if L' and R’ are the identity functors, and if §” and 7’ are the
identity natural transformations, prove that (L, R,6,n) equals (L”, R" 0" n"). Similarly, if B equals
C,if L and R" are the identity functors, and if 8” and 1" are the identity natural transformations,
prove that (L, R,6,n) equals (L', R’,0',n"). Finally, prove that composition of three adjoint pairs
is associative.

7 Adjoint Pairs of Partially Ordered Sets

Partially Ordered Sets Exercise. Let (5,<) and (7, <) be partially ordered sets, and consider
the associated categories. For an order-preserving function,

L:(5,2)~>(T,%),
prove that there exists an order-preserving function,
R:(T.2) > (5,)

extending (uniquely) to an adjoint pair of functors (L, R,0,n) if and only if for every element ¢ of
T, there exists an element s of S (necessarily unique) such that

L HreT|r<t}={oeS|o<s}.

In particular, conclude that L is injective and strict, i.e., the associated functor is fully faithful.
Formulate and prove a similar criterion for an order-preserving function R from (7', <) to (.5,<) to
admit a left adjoint.
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8 Adjoint Pair between a Category and its Pointed Cate-
gory

Definition 8.1. A pointed set is an ordered pair (5,s) of a set S and an element s of the set
S. For pointed sets (5,s) and (S’,s’), the set of morphisms of pointed sets is the subset of
Homges (.S, S”) of set functions that map s to s'.

Notation 8.2. For every set S, denote by S the subset of the power set P(S) whose elements are
{S} and all singleton sets. Thus, S contains the image of the set function fg : S — P(S) from
Example . For every set function u : S - S, define @: S - S’ to be the unique set function
that maps {S} to {S’} and such that @o fg equals s o u. For every pointed set (S, s), define
Nes.s) (S, {S}) = (S,s) to be the unique function of pointed sets such that 7s ) o fs equals the
identity function on S.

Pointed Sets Exercise.

(i) Prove that the rules above define a category PtdSets of pointed sets together with a faithful
functor PtdSets — Sets associating to every pointed set (S,s) the set S and restricting to the
inclusion from the set of morphisms of pointed sets from (.S, s) to (S, s’) inside the set of all set
functions from S to s’. This is the forgetful functor.

(ii) Prove that the rule associating to every set S the ordered pair (S,{S}) and associating to
every set function u: S — S’ the set function u defines a faithful functor from Sets to PtdSets.

(iii) Prove that the rule associating to every set S the set function fg : S — S defines a natural
transformation from the identity functor on Sets to the composition of the above functors, Sets —
PtdSets — Sets.

(iv) Prove that the rule associating to every pointed set (5, s) the set function n(s : (S, {S}) -
(S, s) is a natural transformation to the identity functor on PtdSets from the composition of the
above functors PtdSets — Sets - PtdSets.

(v) Prove that these functors and natural transformations define an adjoint pair of functors.

Semigroups and Monoids Exercise. Modify the construction of the previous exercise to con-
struct an adjoint pair of functors between Semigroups and Monoids whose right adjoint functor is
the (faithful) forgetful functor from Monoids to Semigroups that “forgets” the specified identity
element of the monoid (since identity elements in a monoid are unique, this functor is faithful).

Definition 8.3. A category is a category with an initial object, respectively a category with
a terminal object, a pointed category, if it has an initial object, resp. if it has a terminal
object, it has an object that is simultaneously an initial object and a terminal object, i.e., if it has
a zero object. A functor between categories that both have an initial object, respectively a terminal
object, a zero object, is a initial preserving, resp. terminal preserving, a pointed functor, if
it maps each initial object to an initial object, resp. if it maps each terminal object to a terminal
object, resp. if it maps each zero object to a zero object.
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Definition 8.4. A trivial category is a pointed category such that every object is a zero object
(i.e., there are objects, and every Hom set is a singleton set). A terminal category is a trivial
category that has a unique object; every object of a trivial category gives a skeletal subcategory
that is a terminal category.

Definition 8.5. For every category C, for every set 0, the associated category Cp inix With initial
object 0 is the category whose objects consist of 0 together with ordered pairs (A, 0) for all objects
A of C. For every object of Ci,, the set of morphisms from 0 to that object is a singleton set. For
every pair of objects A and B of C, the set of morphisms of Cp it from (A,0) to (B,0) is the set of
morphisms of C from A to B. For every object A of C, the set of morphisms in Cy it from (A,0)
to 0 is the empty set. There is a rule F¢ that associates to every object A of C the object (A,0)
of Cpinit and, for every pair of objects A and B of C, identifies the set of morphisms of C from A
to B to the set of morphisms of Cy it from (A,0) to (B,0). There is a unique composition rule on
Co,init that makes Cpiniy @ category in such a way that Fg is a fully faithful functor.

Adjointness property of the associated category with initial object. Show that the object
0 of Cpinit is an initial object. Show that for every functor G : C - B to a category B and for
every initial object b of B, there exists a unique functor Gy g init : Cinit = B that is initial preserving,
that sends the initial object 0 of Cg it to b, and such that Gpginit © F' equals G. Show that for
every initial object b’ of B, there is a unique natural equivalence Gy p 0 init * Gb,0,init = Gpr.0,init Such
that Gy p0mit © F' equals the identity natural equivalence of G to itself. In this sense, (=)o nit iS
a 2-functor from the 2-category of categories to the 2-category of categories with initial objects
with morphisms being natural equivalence classes of initial preserving functors, and (=), is “left
adjoint” to the faithful (but not full) functor from the 2-category of categories with initial objects
to the 2-category of categories (not necessarily having an initial object).

Associated category with a terminal object. For a category C, define Cyterm to be the
opposite category of the associated category with initial object of the opposite category CoPP, i.e.,
((€CoPP) g init )°PP. Formulate the analogues of the above for the associated functor Fj term : C = Co term-

Definition 8.6. For every category C that has a terminal object, for every terminal object 0, the
associated category C, with final object (0,Id) is the category whose objects are all ordered
pairs (A, f) of an object A of C and a morphism f:0 — A of C. For every pair of such ordered pairs,
(A, f) and (A’, f"), the set of morphisms of Cy from (A, f) to (A’, f’) is the set of all morphisms
of C g: A - A’ such that go f equals f’. There is a rule ®¢ o that associates to every object (A, f)
of Cy the object A of C and that associates to every morphism of Cy, g : (A, f) = (A4’, f'), the
morphism g : A - A’ of C. There is a unique composition rule on Cy that makes Cy a category in
such a way that ®¢ is a faithful functor (usually not full).

Adjointness property of the associated category with zero object. Show that (0,1dg) is a
zero object of Cy. Show that for every terminal-preserving functor G : B — C from a category with
a zero object b to a category with a terminal object 0, there exists a unique zero-preserving functor
Gop : B = Cy such that &¢ oo Goy equals G. In this sense, the rule associating to a category with
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a terminal object C the category with zero object Cy is right adjoint to the fully faithful 2-functor
from the 2-category of categories with zero object and zero-preserving functors to the 2-category
of categories with terminal object and terminal-preserving functors.

9 Adjoint Pairs of Free Objects

Definition 9.1. A concrete category is a category, A, together with a faithful functor, R: A —
Sets, the forgetful functor of the concreted category. A left adjoint of R is a free functor for the
specified concrete category. For concrete categories (A, R) and (A’, R'), a functor of concrete
categories is a functor F' : 4 - A’ together with a natural equivalence 6 : R = R’ o F'| cf. the
articles of Porst.

Remark 9.2. If there exists a free functor L for R, then the natural equivalence # in a functor of
concrete categories is uniquely determined by its value on the object L({*}) for any singleton set
{#}. for a given functor F': 4 - A’, there is at most one natural equivalence ¢ such that (R,0)
is a functor of concrete categories. Thus, there is a unique concrete equivalence of the concrete
category of sets extending the identity functor, but the extensions of the identity functor on the
concrete category of groups has two elements (the identity extension and the extension given by
group inversion).

Notation 9.3. For every nonnegative integer n, denote by [1,n] the set {k € Z.o|k < n}, which has
precisely n elements. For every ordered pair (n/,n’) of nonnegative integers, denote by @y and
Qs the following set maps,

Qo [0 ] = [0+ 0], ke k,

Qo 2 [0] = [0 +0"], ke +k.
For every set ¥ and for every ordered pair of set functions,
]SS s
denote by my n(f’, f") the unique set function
fen'+n"] =% foqu =1 fody. =f"

Denote the unique set function [0] - X by Oyx. For every element o € 3, denote by tx, the unique
set function [1] — ¥ with image {o}.

Notation 9.4. For every set X, denote by F(X) the set of all ordered pairs (n, f) of an integer
n >0 and a set map f:[n] - X. For every set function u: ¥ — II, denote by F'(u): F(X) — F(II)
the set function (n, f) = (n, f ou). Denote by pry; : F((¥) — Zso the set map that sends (n, f) to
n. Denote by my the following binary operation,

my: F(E) x F(X) > F(X), (0, ), (", f") = (0" +n" mepa (f, 7).
Denote by ¢x, the following set map,

1N —>F(X), o~ ([1],tss).

22


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

Free Monoids Exercise.

(i) Prove that the rule associating to every monoid (G,m,e) the set G and associating to every
monoid morphism the same set map defines a faithful functor Monoids — Sets. This is the
forgetful functor of the concrete category of monoids.

(ii) For every set X, prove that (F(X), mx, ([0],0x)) is a monoid. For this monoid structure, for
every set map u : ¥ — II, prove that F'(u) is a monoid morphism. Prove that this defines a covariant
functor Sets - Monoids.

(iii) Prove that the rule associating to every set ¥ the set function ¢y is a natural transformation
from the identity functor on Sets to the composition of the two functors above, Sets - Monoids —
Sets.

(iv) For every monoid (G,m,e) and for every set function j: 3 — G, use induction on the integer
n >0 to prove that there exists a unique morphism of monoids,

J:F (%) -G,

such that 7 o 5 equals j.

(v) For every monoid (G, m, e), for the identity set map Idg : G — G, prove that the rule associating
to (G, m, e) the monoid morphism Idg : F/(G) - G is a natural transformation to the identity func-
tor on Monoids from the composition of the two functors above, Monoids - Sets — Monoids.

(vi) Check that these functors and natural transformations define an adjoint pair of functors. The
monoid F'(X) is the free monoid on X.

(vii) Also check that for the functor Sets -~ Monoids that associates to every set the additive
monoid Zso and associates to every set function the identity morphism of Zq, the rule associating
to every set ¥ the monoid morphism pr, 5, : F/(X) — Zs is a natural transformation from the free
monoid functor to this functor. Also, check that this equals the composition of the free monoid
functor with the natural transformation from the identity functor on Sets to the “constant” functor
from Sets to itself associating to every set the singleton {1} and associating to every set function
the identity set function on {1} (since this singleton is a final object in Sets, there is a unique
natural transformation from the identity functor to this constant functor).

Notation 9.5. For every set X, denote by F,o(X) c F(X) the inverse image under pry; of the
subset Z.o c Zsg. For every set function u : ¥ — II, define F.q(u) to be the restriction of F'(u) to
F.o(X), which is a set function with image contained in F.q(II).

Free Semigroups Exercise.

(i) Since Zsg is a subsemigroup of Z,, (although not a submonoid), check that also F1o(X) is a
subsemigroup of F'(X) for every set.

(ii) Also check that Flg(u) is a morphism of semigroups for every set function u : 3 — II.
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(iii) Check that these rules define a functor from Sets to Semigroups. Check that the natural
transformations of the previous exercise modify to define an adjoint pair of functors between Sets
and Semigroups whose right adjoint functor is the forgetful functor.

(iv) Double-check that the composite of this adjoint pair with the adjoint pair between Semigroups
and Monoids is naturally equivalent to the adjoint pair between Sets and Monoids from the pre-
vious exercise.

Notation 9.6. For every set X, denote the Cartesian product 3 x {+1}, respectively ¥ x {-1}, by
>, resp. 2_, with the corresponding bijections,

j2,+ DI Z+> jE,— IS 2—7 j2,+(0) = (0_7 +1)> jZ,—(U) = (07 _1)

For every set function u : ¥ — II, denote by u, Uwu_ the unique set function from ¥, uX_ to IT, uIl_
whose composition with js ,, resp. with js _, equals ji4 o u, resp. equals ji_- ou. Denote by
Asc F(X,uX ) x F(X, uX_), the subset whose elements are the following ordered pairs,

(f-(iojs)(0)-(iojs-)(o)-g,f9),

(f-(iojs-)(o)-(iojs:)(0) g, f9),
for all f,ge FI(X,uX_), and for all o € 3. Denote by ~x to be the weakest equivalent relation on
F(X, uX_) generated by the relation Ay. Denote the quotient by this equivalence relation by

gs: F(X,uX) = Faroups(2).
Denote the composition gs, o7 o jx ;. by

iGroups,E DI FGroups(Z)-

[Free Groups Exercise.|

(i) For an equivalence relation ~ on a semigroup (G, m) with quotient ¢ : G — H, check that there
exists a semigroup structure on H for which ¢ is a morphism of semigroups if and only if there
exists a left act of G on H for which ¢ is a morphism of left G-acts if and only if there exists a
right act of G on H for which ¢ is a morphism of right acts if and only if ~ satisfies the following:
for every g,9’,9"” € G, if g~ ¢’, then also g-¢”" ~¢’'-¢” and also ¢”-¢' ~g" - g.

(ii) For a monoid (G,m,e), check that every surjective morphism of semigroups v : G - G’ is a
morphism of monoids. Conclude that for an equivalence relation ~ on GG, the quotient is a morphism
of monoids if and only if it is a morphism of semigroups.

(iii) Check that the rule associating to each set ¥ the monoid F(X, uX_) and associating to each
set function u : ¥ — II the monoid morphism F'(u,Uu_) is a functor from Sets to Monoids. Check
that the functions 7o jy . and 7o jy _ are natural transformations from the identity functor on Sets
to the composite of this functor with the forgetful functor Mlonoids — Sets. Check that the rule
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associating to every set 3 the set F'(X, uX_) x F(X,; u_) and associating to every set function
u: 2 — II the set function

Fluyvu ) x Fluybu ) : F(Z,uX ) x F(X,uX ) > F(II,ull ) x F(IT, ull.)

is a functor from Sets to itself. Check that this function sends Ay, to Ap. Conclude that the
rule associating to every set X the subset Ay and associating to every set function u : ¥ — II the
restriction of F'(uy Uwu_) x F(uy Uwu_-) is a subfunctor of the previous functor. Conclude that the
rule associating to every set X the equivalence relation ~y, is also a subfunctor.

(iv) For every set X, check that the equivalence relation ~y satisfies the condition necessary for
the quotient map to be a monoid morphism. Conclude that there is a unique pair of a functor
Sets — Monoids and a natural transformation to this functor from the free monoid functor
F(X,uX_) associating to every set ¥ the monoid Fgroups(X) and the quotient monoid morphism

gs.

(v) Check that each of the monoid generators i(js 4 (0)) and i(js (o)) of the free monoid F'(3, u
¥_) map under gy, to an invertible element of Fgroups(X). Conclude that the functor Fgroups from
Sets to Monoids factors through the full subcategory Groups of Monoids. Thus, Fgroups is @
functor from Sets to Groups.

(vi) Check that the rule associating to every set 3 the set function igroupsx is a natural transfor-
mation from the identity functor to the composition of the forgetful functor with the functor above,
Sets - Groups — Sets. Similarly, modify the definition of 7y to obtain a natural transformation
from the composition Groups — Sets - Groups to the identity functor on Groups. Prove that
these functors and natural transformations define an adjoint pair whose right adjoint functor is the
(faithful) forgetful functor Groups — Sets. The group Fgroups(X) is the free group on the set
3.

vii) For every monoid (G, m,e), denote by N(g ... the fiber over e of the natural transformation,
(vii) y Y NGm.e)

Denote by Ngroups,(G,m.e) the normal subgroup of Fgroups(G) generated by the image under
qo F(jg+) of NGme). Check that this is functorial in (G,m,e) and that the quotient group
Froups(G)/Naroups,(G,m,e) define a left adjoint functor to the (fully faithful) forgetful functor from
Groups to Monoids. This left adjoint functor is the group completion functor. Double-check
that the composite of the group completion functor with the free monoids functor is naturally
equivalent to Fgroups-

(viii) For categories B, C, for functors
L":B-C, R":C—- B,
and for natural transformations

QIIZIdB = R”OL”, 7]// L'o R = Idc,
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such that (L”, R",0" n") is an adjoint pair, the adjoint pair is reflective if R" is fully faithful. In
this case, prove that there exists a unique binatural transformation

HE,(b,b') : Home (L"(R" (b)), ") - Home (b, '),
such that the composition with R",

HE, (b,b)

Home (L"(R" (b)), ') =2 Home (b, b') 25> Homg(R" (b), R" (1)),
equals HE,(R(b),b'). In particular, taking &' = L”(R"(b)), denote the image of Idy by
,r]’%b/ . b — L//(R/I(b)).

Prove that 7} is an inverse to 7, : L” (R (b)) — b. Thus, for a reflective adjoint pair, " is a natural
isomorphism. Conversely, if " is a natural isomorphism, prove that the adjoint pair is reflective,
i.e., R" is fully faithful. In particular, for the group completion, conclude that the group completion
of the monoid underlying a group is naturally isomorphic to that group.

Free Abelian Groups Exercise. Denote by

® :7Z -mod - Groups

the full subcategory of Groups whose objects are Abelian groups. For every group (G, -, e), denote
by [G,G] the normal subgroup of G generated by all commutators

l9,h)=g-h-g7" R

for pairs g, h € G. Denote by
O :G - L(G),

the group quotient associated to the normal subgroup [G,G] of G. Prove that L(G) is an Abelian
group. Moreover, for every Abelian group (A, -, e), prove that the set map

HE : Homy poq(L(G), A) - Homgroups (G5 ®(A)), v vobg,
is a bijection. In particular, for every group homomorphism,
u:G->G,

the composition fgrou : G - L(G") is a group homomorphism, and thus there exists a unique group
homomorphism,

L(u) : L(G) = L(G'),
such that HL(L(u)) o g equals O o u. Prove that the rule G » L(G), u ~ L(u) defines a functor,

L : Groups — Z — mod.
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This functor is called Abelianization. Prove that G — 65 is a natural transformation,
0 : Idgroups = ® o L.

For every Abelian group A, prove that [A, A] is the identity subgroup, and thus the quotient
homomorphism,
Oaa) : D(A) > D(L(D(A))),
is an isomorphism. Thus there exists a unique group homomorphism, just the inverse isomorphism
of Og(a),
na: L(®(A)) ~ A,

such that 04y 0 ®(n4) equals the Idg(ay. Prove that A~ 74 is a natural isomorphism,
n: Lo®d — IdZ—mod'

Prove that (L, ®,0,n) is an adjoint pair.

Factorization Exercise. Let A, B, and C be categories. Let
R:B-A R":C-B,
be fully faithful functors. Denote the composition R’ o R" by

R:C— A

i) If there exist extensions to reflective adjoint pairs L’,R’,@’, ! s L”,R”,@”, " , prove that
there is also an extension to a reflective adj()int pair (L, R, 0,7])

(ii) If there exists an extension of R to a reflective adjoint pair (L, R, 0,7), prove that there exists an
extension (L”  R" 0" n'"). Give an example demonstrating that R’ need not extend to a reflective
adjoint pair (for instance, consider the full subcategory of Abelian groups in the full subcategory
of solvable groups in the category of all groups).

(iii) A monoid (G, e) is called left cancellative, resp. right cancellative, if for every f, g, h in
G, if f-gequals f-h, resp. if g- f equals h- f, then g equals h. A monoid is cancellative if it is
both left cancellative and right cancellative. A monoid is commutative if for every f,ge G, f-g¢
equals ¢g- f. A commutative monoid is left cancellative if and only if it is right cancellative if and
only if it is cancellative. Denote by

LCanMonoids, RCanMonoids, CanMonoids, CommMonoids, CommCanMonoids € Monoids

the full subcategories of the category of all monoids whose objects are left cancellative monoids,
resp. right cancellative monoids, cancellative monoids, commutative monoids, commutative can-
cellative monoids. In each of these cases, prove that the fully faithful inclusion functor R extends
to a reflective adjoint pair. Use (ii) to conclude that for every inclusion functor among the full
subcategories listed above, there is an extension of the inclusion functor to a reflective adjoint pair.
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(iv) In particular, prove that the group completion adjoint pair
(L : Monoids - Groups, R : Groups -~ Monoids, 6, )
factors as the composition of the reflective adjoint pair
(L' : Monoids -~ CanMonoids, R’ : CanMonoids -~ Monoids, §',7'),
and the restriction to CanMonoids of the group completion adjoint pair
(L"=LoR' /R",0" n").

Similarly, prove that the composition of the Abelianization functor and the group completion
functor
(L : Monoids — Z — mod, R : Z - mod - Monoids, 0, ),

factors through the reflection to the full subcategory of commutative, cancellative monoids,

(L' : Monoids - CommCanMonoids, R’ : CommCanMonoids - Monoids, 0',7").

Adjointness of Tensor and Hom Exercise. Let A and B be unital, associative rings, and let
¢ : A - B be a morphism of unital, associative rings.

(i) For every left B-module,
(N,mpy:BxN - N),

prove that the composition
oxIdn

Ax N2 px N 22N N

makes the datum
(N,mpno(pxIldy): Ax N - N),

an R-module. For every morphism of left B-modules,
u: (N, mB,N) - (N',mB,N'),

prove that also
u: (N, mB,N o) (¢ X IdN)) d (Nl,mBer @) (¢ X Ile))

is a morphism of left A-modules. Altogether, prove that the association (N,mpn) ~ (N,mpn o
(¢ xIdy)) and u = w is a faithful functor

R4 : B -mod - A -mod.

In particular, in the usual manner, for every unital, associative ring C' and for every B-C-bimodule
N, prove that R,(N) is naturally an A — C-bimodule.
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(ii) Formulate and prove the analogous results for right modules, giving a faithful functor
R? :mod - B - mod — A.

For every C' — B-bimodule N, prove that R?(N) is naturally a C' — A-bimodule. In particular for
the B — B-bimodule N = B, R?(B) is naturally a B — A-bimodule.

For every left A-module M, denote L,(M) = R?(B)®4 M. For every morphism of left A-modules,
w: M — M,

denote by Lg(u) = Idgsp) ®u,
Lg(u): Lg(M) — Ly (M),

the associated morphism of left B-modules. Prove that the associations M +~ L,(M) and u — Ly(u)
define a functor
Ly:A-mod - B -mod.

(iv) Denote by 1p the multiplicative unit in B. For every left A-module M, prove that the

composition
1B XId]\{

M2 o PP, B M,

is a morphism of left A-modules,

Onr = M > Ry(Ly(M)),
i.e., for every a € A and for every me M,
Bem(lp,a-m)=Bpy(lp-¢(a),m) =B m(o(a)- 1p,m).
Prove that the association M ~ 60;; defines a natural transformation

0 : IdA—mod = ng o L¢.

(v) For every left B-module (N,mp x), for the induced right A-module structure on R?(B) and
left A-module structure on N, prove that

mpnN:BxN-—>N
is A-bilinear, i.e., for every a € A, for every b e B, and for every n e N,
mpn(b,¢(a)-n) =mpn(b-¢(a),n).
Thus, by the universal property of tensor product, there exists a unique homomorphism of Abelian

groups,
my:B®s N - N,
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such that my o Bp n equals mp n. Prove that my is a morphism of left B-modules, i.e., for every
b,b’ € B and for every ne N,

mN(b : 5B,N(b'7n)) = mN(/BB,N(b b, n)) = mB,N(b b, n) = mB,N(ba mB,N(blan))-
Prove that the association N — my defines a natural transformation

m: Ry o Ly = Idp_mod-

(vi) Prove that (Lg, Rs,0,m) is an adjoint pair of functors. In particular, even though Ry is
faithful, the natural transformation m is typically not a natural isomorphism. Conclude that one
cannot weaken the definition of reflective adjoint pair from “fully faithful” to “faithful”.

(vii) Prove the analogues of the above for right modules. Also, taking A to be Z, and taking
¢ :Z — B to be the unique ring homomorphism, obtain an adjoint pair
(L":Z-mod - B-mod, R": B-—mod - Z -mod, §",n")
whose composition with the adjoint pair
(L' : CommCanMonoids - Z — mod, R’ : Z - mod - CommCanMonoids, ¢, ")
is an adjoint pair (L, R,6,n) extending the forgetful functor
R: B -mod - CommCanMonoids.

Composing this adjoint pair further with the other adjoint pairs above gives, in particular, an
adjoint pair (F,®,i,7n) extending the forgetful functor

® : B-mod — Sets.

The functor F': Set - B — mod and the natural transformation i is called the “free B-module”.
Use the usual functorial properties to conclude that F' naturally maps to the category of B — B-
bimodules.

Free Central A-algebras and Free Commutative Central A-algebras Exercise. Let A be
an associative, unital ring that is commutative. Recall that a central A-algebra is a pair (B, ¢)
of an associative, unital ring B and a morphism of associative, unital rings, ¢ : A - B, such that
for every a € A and every b e B, ¢(a)-b equals b- ¢(a), i.e., p(A) is contained in the center of B.
In particular, the identity map

Idp : R?(B) - Ry(B),

is an isomorphism of A — A-bimodules making B into a left-right A-module.

For central A-algebras (B,¢) and (B’,¢’), a morphism of central A-algebras is a morphism of
associative, unital rings, ¢ : B — B’, such that 1 o ¢ equals ¢’. In particular, ¥ is a morphism of
left-right A-modules.
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(i) Prove that the usual composition and the usual identity maps define a faithful (but not full!)

subcategory
R: A-algebra - A -mod

whose objects are central A-algebras and whose morphisms are morphisms of central A-algebras.
The rest of this problem extends this to an adjoint pair that is a composition of two other (more
elementary) adjoint pairs.

(ii) Let n > 2 be an integer. Let M, ..., M, be (left-right) A-modules. For every A-module U, a
map
Y My X x My, — U,

is an n-A-multilinear map if for every 1 =1,...,n, for every choice of
M= (M, . My, Mg, -, M) € My x oo X Mg x Mg x -+ x M,
the induced map
Yt My = Uy my e y(ma, .o mg, my, Mg, - M),

is a morphism of A-modules. Prove that there exists a pair (T (M, ..., M,),Bu,....m,,) of an A-

module T'(M;, ..., M,) and an n-A-multilinear map

-----

Baty,onay = My x oo x My - T (M, ..., M,),
such that for every n- A-multilinear map ~ as above, there exists a unique A-module homomorphism,
w:T(M,...,M,) - U,

such that wo By, . am, equals 7. For n =3, prove that Sus, a, a, factors through

Bty vy * Idag, + My x My x M3 — (My ® 4 My) x M.
Prove that the induced map
Banemy s - (My ®a M) x Mz — T(My, My, M),
is A-bilinear. Conclude that there exists a unique A-module homomorphism,

u: (M1 ® 4 MQ) ®a M3 d T(Ml,MQ,Mg).

Prove that this is an isomorphism of A-modules. Similarly, prove that there is a natural isomorphism

of A-modules,
M, ®4 (M2 ®4 Mg) - T(Ml, MQ,Mg).

Conclude that there is a natural isomorphism of A-modules,

(M1 ® 4 MQ) ® 4 M3 ~ M, ®4y (MQ ® 4 Mg),
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i.e., tensor product is associative for A-modules. Iterate this to conclude that there are natural
isomorphisms between all the different interpretations of M; ® 4 --- ® 4 M,,, and each of these is
naturally isomorphic to T'(Mj, ..., M,). (All of this is also true in the case of M; that are A;_; - A;-
bimodules with n-(A;);-multilinearity defined appropriately.)

(iii) Let B be an A-algebra. A Z,-grading of B is a direct sum decomposition as an A-module,
B = ®nZOBn7

such that for every pair of integers n,p > 0, the restriction to the summands B, and B, of the
multiplication map,
mp: B, x B, > B

factors through B,,,. The induced A-bilinear map is denoted
MBnp - Bn x Bp - Bm—p‘

In particular, notice that this means that By is an A-subalgebra of B, and every direct summand
B, is a By — By-bimodule. Finally, for every triple of integers n,p,r > 0, the following diagram

commutes,
mB,n,pXIdBT

B, x B, x B, By.p x B,
ldg, XmB,p,rl JmByntpm
Bn x Bp+r — Bn+p+r

MmpB n,p+r

Prove that a Z.-graded A-algebra is equivalent to the data ((B,)nez, , (MBnp) (np)ez, <z, ) satisfying
the conditions above.

(iv) For Z,-graded A-algebras ((Bn)nez., (MBnyp)mp)ez.xz.) and ((B})nez,, (MB np) (np)ezoxz, )s &
morphism of Z,-graded A-algebras is a morphism of A-algebras,

¢:B - B,
such that for every integer n >0, ¢)(B,,) is contained in B/. The induced A-linear map is denoted
Uy B, > BY.

In particular, 1y is a morphism of A-algebras. Relative to vy, every map 1, is a morphism of
By — Bp-bimodules. Finally, for every pair of integers n,p > 0, the following diagram commutes,

B, x B, 2% B x By

mB,n,p‘[ lmB’m,P

/
Bn+p w—) Bn+p
n+p
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Prove that a morphism of Z,-graded A-algebras is equivalent to the data (v, ).z, satisfying the
conditions above. Prove that composition of morphisms of Z,-graded A-algebras is a morphism of
Z,-graded A-algebras. Prove that identity maps are morphisms of Z,-graded A-algebras. Conclude
that there is a faithful (but not full!) subcategory,

L":7Z,—- A-algebra -~ A - algebra,

whose objects are Z,=graded A-algebras and whose morphisms are morphisms of Z,-graded A-
algebras. Prove that this extends to an adjoint pair (L, R",0" . n") where

R": A-algebra —» Z, - A - algebra,
associates to an associative, unital A-algebra (C,m¢) the Z,-graded A-algebra,

((Cr)nez, (mn,p)(n,p)€Z+xZ+) = ((C)nez, , (m)(mp))'

Thus Cy equals C' as an A-algebra, and the Cy-algebra @,,C), is equivalent as a Z,-graded C-algebra
to C[t] = C ®z Z[t], where Z[t] is graded in the usual way.

(v) Let M be an A-module. For every integer n > 1, denote
TH(M)=T(My,...,.M,)=M®"=M®4--®4 M,
with the universal n-A-multilinear map,
By M™ > T3(M).

Similarly, denote TQ(M) = A. For every pair of integers n,p > 0, the composition,

M x MP = Mwe 22 ey,

is n-A-multilinear, resp. p-A-multilinear in the two arguments separately. Thus the composition
factors as
BrrxBhy

M x MP 2550 u gy s () 25 e,

where )7 is A-bilinear. Finally, for every triple of integers n,p,r > 0, associativity of tensor

products implies that the following diagram commutes,

paf Mdenony
T4(M) < TH(M) = T5(M) TEP(M) x T3(M)
IdTX(M)XN;)/}T j{ luzgp,r
TN TITO) T
M

Thus, the data ((T5(M))mez,, (W3] (np)ez.xz, ) defines a Z,-graded A-algebra, denoted T4 (M) and
called the tensor algebra associated to M. For every Z,-graded A-algebra

B = ((B’VZ)HGZ+7 (mB,n,p)(n,p)eZ+><Z+)7
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for every integer n, inductively define the A-module morphism
Mg Th(B1) = Bn,

by 1+ A = Bo is the usual A-algebra structure map ¢, 7y : T}(By) — By is the usual identity
morphism on By, and for every n >0, assuming that np , is defined,

77,B,n+1 : TXH(Bl) = B1®a TX(B) — By,
is the unique A-module homomorphism whose composition with the universal A-bilinear map,
By By xTh(B) » Ba®aTi(B),

equals the A-bilinear composition

IdBl XMNB,n MmpB1,n
By x T(B;) ——2% B, x B, —" By,1.

Use associativity of tensor product (and induction) to prove that for every pair of integers n, p > 0,
the following diagram commutes,

’ ’
nB,anB,p

T (By) xT%(Bh1) B, x B,

n,p
HBy l JmBﬂ,l,p

T, (By) —— By

n’B,n+p
Conclude that (7}, )nez, is a morphism of Z,-graded A-algebras,

N Ta(By) = B.

(vi) Denote by
R :7Z, - A-algebra - A -mod

the functor that associates to a Z,-graded A-algebra ((By)nez. (MBnp)(np)ez,xz,) the A-module
B; and that associates to a morphism (t,)nez, of Z,-graded A-algebras the A-module ;. For
every A-module M, denote by

Or : M~ R'(Ta(M))

the identity morphism M — T;(M). Prove that this defines an adjoint pair (T4, R’,0’,n"). Com-
posing with the adjoint pair (L”, R",0"”,n") gives an adjoint pair (L” o T, R,0,7n) extending the
faithful (but not full!) forgetful functor

R:A-algebra—- A-mod, B~ B.
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10 Adjoint Pairs for Lawvere Theories

Definition 10.1. For a concrete category A with its forgetful functor R : A - Sets, for a category
B, an A-object of B is a triple (b, F',#) of an object b of B, a contravariant functor F': B°PP - A and
a natural equivalence of set-valued contravariant functors on B, 0 : h, = R o F'. The contravariant
functor I is the Yoneda contravariant functor associated to the A-object of B. For A-objects of
B, (b,F,0) and (b, F',0"), a morphism of A-objects of B from the first triple to the second triple
is a pair (u:b— 0 ,v: F' = F) of a B-morphism u and a natural transformation of contravariant
functors v such that (Fov)of’ equals foh, as natural transformations from hy to RoF'. Composition
is defined in the evident way, and the identity of (b, F,0) is (Idy, Idr).

Remark 10.2. Because R is faithful, for every B-morphism u : b — b, there is at most one morphism
(u,v) from the A-object (b, F,0) to the morphism (b, F’,0"). Thus, the rule associating to each
morphism (u,v) of A-objects of B the B-morphism u gives an identification of the morphisms
(u,v) with a subset of the set of B-morphisms; in particular, the morphisms (u,v) from (b, F,0)
to (b', F’,6") form a set. Using axioms on inaccessible cardinals or Grothendieck universes, one
can also deal with the foundational issues around the objects. Altogether, this gives a category
of A-objects of B, denoted A — B, together with a covariant, faithful functor, L -B: A-B - B,
sending (b, F,6) to b and sending (u,v) to wu.

The Yoneda Functor of an A-Object. Formulate and prove the analogue of Problem [fpor the
Yoneda contravariant functors associated to A-objects of B.

Definition 10.3. Assume now that A has a terminal object and all finite products. A Lawvere
theory for A is a category T" with a terminal object and all finite products together with an A-object
(z7, Fr,07) in T such that for every category B having a terminal object and all finite products,
every A-object of B is equivalent to the A-object of B associated to (br, Fr,07) for a functor
G@o,rp) T — B that is unique up to natural equivalence and satisfying the following minimality
condition: every object of T" equals the n-fold self product of x7, 27., for some nonnegative integer
n.

Lawvere Theory for a Concrete Category with a Free Functor. If there exists a left adjoint
L : Sets - A of R, then show that there is a Lawvere theory whose underlying category T equals
the opposite category of the full subcategory of A obtained by evaluating L on the sets [1,n]
from Notation In particular, conclude that there exists a Lawvere theory for monoids, for
semigroups, for groups, for Abelian groups, for central A-algebras, and for commutative central A-
algebras. When a Lawvere theory exists, use this to give another solution of the previous problem.

11 Adjoint Pairs of Limits and Colimits

Limits and Colimits Exercise. Mostly we use the special cases of products and coproducts. The
notation here is meant to emphasize the connection with operations on presheaves and sheaves such
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as formation of global sections, stalks, pushforward and inverse image. Let 7 be a small category.
Let C be a category. A 7-family in C is a (covariant) functor,

F:17-C.

Precisely, for every object U of 7, F(U) is a specified object of C. For every morphism of objects
of 7,r:U—-V,F(r): F(U) - F(V) is a morphism of C. Also, F(Idy) equals Idz(;y. Finally, for
every pair of morphisms of 7, 7:U -V and s: V - W, F(s) o F(r) equals F(sor).

For every pair F, G of r-families in C, a morphism of 7-families from F to G is a natural transfor-
mation of functors, ¢ : F = G. For every object a of C, denote by

a :7—->C

the functor that sends every object to a and that sends every morphism to Id,. For every morphism
in C, p:a — b, denote by

the natural transformation that assigns to every object U of 7 the morphism p:a — b. Finally, for
every object U of 7, denote

'U,F)=FU), I'(U,0)=6(U),

and for every morphism r: U — V of 7, denote

L(r,F)=F(r).

(i) (Functor Categories and Section Functors) For 7-families F, G and H, and for morphisms of
r-families, 8 : F - G and n: G — H, define the composition of # and 1 to be the composite natural
transformation no @ : F - H. Prove that with this notion, there is a category Fun(7,C) whose
objects are T-families F and whose morphisms are natural transformations. Prove that

*,:C>Fun(r,C), ama., pp,

is a functor that preserves monomorphisms, epimorphisms and isomorphisms. For every object U
of 7, prove that
I'U,-) :Fun(7,C) - C, F~»T(U,F), 6 »T(U,0),

is a functor. For every morphism r: U - V of 7, prove that I'(r,-) is a natural transformation

rU,-)=T(V,-).

(ii) (Adjointness of Constant / Diagonal Functors and the Global Sections Functor) If C has an
initial object X, prove that (+ ,I'(X,-)) extends to an adjoint pair of functors. More generally,
a limit of a T-family F (if it exists) is a natural transformation n: @ = F that is final among all
such natural transformations, i.e., for every natural transformation 6 : b_ = F, there exists a unique
morphism ¢ : b — a in C such that 6 equals not_. For a morphism ¢ : F - G, for limits n:a_= F
and 0 :b_= G, prove that there exists a unique morphism f:a — b such that o P equals ¢ o).
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In particular, prove that if a limit of F exists, then it is unique up to unique isomorphism. In
particular, for every object a of C, prove that the identity transformation 6, :a_— a_is a limit of
a

(iii) (Adjointness of Constant / Diagonal Functors and Limits) For this part, assume that every
r-family has a limit; a category C is said to have all limits if for every small category 7 and for
every 7-family F, there is a limit. Assume further that there is a rule I'; that assigns to every F
an object T';(F) and a natural transformation 7z : T',(F) — F that is a limit. (Typically such a
rule follows from the “construction” of limits, but such a rule also follows from some form of the
Axiom of Choice.) Prove that this extends uniquely to a functor,

I, :Fun(7,C) - C,
and a natural transformation of functors

n:*_o0 I' = IdFun(T,C)~

Moreover, prove that the rule sending every object a of C to the identity natural transformation
6, is a natural transformation 0 : Ide = I'; o x . Prove that (x_,I',0,n) is an adjoint pair of
functors. In particular, the limit functor I', preserves monomorphisms and sends injective objects
of Fun(r,C) to injective objects of C.

(iiii) (Adjointness of Colimits and Constant / Diagonal Functors) If C has a final object O, prove
that (I'(O, —), *.) extends to an adjoint pair of functors. More generally, a colimit of a T-family F (if
it exists) is a natural transformation 6 : F = a_ that is final among all such natural transformations,
i.e., for every natural transformation 7 : F = b_, there exists a unique morphism ~:a — b in C
such that h_o 6 equals . For a morphism ¢ : 7 — G, for colimits  : F = a_ and n: G = b,
prove that there exists a unique morphism f : a - b such that iT o equals o ¢. In particular,
prove that if a colimit of F exists, then it is unique up to unique isomorphism. In particular, for
every object a of C, prove that the identity transformation 6, :a_— a_ is a colimit of a_. Finally,
repeat the previous part for colimits in place of limits. Deduce that colimits (if they exist) preserve
epimorphisms and projective objects.

(v)(Functoriality in the Source) Let = : 0 — 7 be a functor of small categories. For every 7-family
F, define F, to be the composite functor F o z, which is a o-family. For every morphism of 7-
families, ¢ : F — G, define ¢, : F, — G, to be ¢ oz, which is a morphism of o-families. Prove that
this defines a functor

*, : Fun(7,C) - Fun(o,C).
For the identity functor Id, : 7 — 7, prove that *jq_ is the identity functor. For y : p o a functor

of small categories, prove that *,,, is the composite *, o *,. In this sense, deduce that *, is a
contravariant functor in x.

For two functors, x,z; : 0 - 7 and for a natural transformation n : z = x;, define F,, : F,, = F,,
to be F(n(V)) : F(x(V)) - F(x1(V)) for every object V of o. Prove that F, is a morphism
of o-families. For every morphism of 7-families, ¢ : 7 — G, prove that ¢,, o F,, equals G, o ¢,.
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In this sense, conclude that %, is a natural transformation *, = =,.. For the identity natural
transformation Id, : x = x, prove that %14, is the identity natural transformation of *,. For a
second natural transformation m : z; = z1, prove that F,,., equals F,, o F,. In this sense, deduce
that =, is also compatible with natural transformations. In particular, if (x,y,6,7n) is an adjoint
pair of functors, prove that (x,, *,, *g, *,) is an adjoint pair of functors.

(vi)(Fiber Categories) The following notion of fiber category is a special case of the notion of 2-
fiber product of functors of categories. Let x : 0 — 7 be a functor; this is also called a category
over 1. For every object U of 7, a o, y-object is a pair (V,r : z(V) — U) of an object V of o
and a 7-isomorphism r : (V) - U. For two objects o, y-objects (V,r) and (V',7") of o, v, a
oz u-morphism from (V,r) to (V',r') is a morphism of o, s : V' — V', such that r’ o z(s) equals
r. Prove that Idy is a o, y-morphism from (V,r) to itself; more generally, the o, y-morphisms
from (V,r) to (V,r) are precisely the o-morphisms s : V — V such that x(s) equals Id, . For
every pair of o, y-morphisms, s: (V,r) - (V',7") and s’ : (V',r") - (V",r"), prove that s’ o s is
a 0, p-morphism from (V,r) to (V”,r"). Conclude that these rules form a category, denoted o, y.
Prove that the rule (V,r) » V and s~ s defines a faithful functor,

CI)J:,U *O0gz,Uu — 0,

and 7 : (V) - U defines a natural isomorphism 6, : x o0 ®, y = Q%,U. Finally, for every category
o', for every functor ®’: 0’ - o, and for every natural isomorphism 6" : x o &’ = U_,, prove that
there exists a unique functor F': 0’ - 0,y such that ®" equals &,y o F' and ¢’ equals 0,0 F. In
this sense, (P, v, 0, ) is final among pairs (¥,60") as above.

For every pair of functors x,x; : ¢ - 7, and for every natural isomorphism n : x = w1, for every
0z, v-object (Viry:x1(V) - U), prove that (V,r ony : (V) - U) is an object of 0, ;. For every
morphism in o,, i, s: (V,r1) - (V',7]), prove that s is also a morphism (V,r1ony) - (V' 7 ony/).
Conclude that these rules define a functor,

OnU Oz, U = OzU-

Prove that this functor is a strict equivalence of categories: it is a bijection on Hom sets (as for all
equivalences), but it is also a bijection on objects (rather than merely being essentially surjective).
Prove that o, is functorial in n, i.e., for a second natural isomorphism m : x; = x4, prove that
Omon,u €qUAlS 0y, 17 0 Oy 17

For every pair of functors, x : ¢ - 7 and y : p - 7, and for every functor z : ¢ - p such that x
equals y o z equals z, for every o, y-object (V,r), prove that (2(V'),r) is a p, y-object. For every
o, p-morphism s : (V,r) - (V’',r’), prove that z(s) is a p, y-morphism (z(V'),r) = (2(V’),r’).
Prove that z(Idy) equals Id,(y), and prove that z preserves composition. Conclude that these
rules define a functor,

RU 0z U = Py,U-

Prove that this is functorial in z: (Id,)y equals Id,, ,, and for a third functor w : 7 — 7 and
functor 2’ : p - 7 such that y equals w o 2/, then (2’0 2)y equals zJ; o zy. For an object (W,ry)
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of py v, for each object ((V,rv),q: Z(V) = W) of (020): (W), define the associated object of
o.w to be (V,q). For an object ((V',ry+),q' : Z(V') = W) of (04,0):,W,rw), for every morphism
s:(V,ry) = (V' ry/) such that g equals ¢’ o z(s), define the associated morphism of o, y to be s.
Prove that this defines a functor

20, Wrw) * (02,0) 20, (Worw) = Tz

Prove that this functor is a strict equivalence of categories. Prove that this equivalence is func-
torial in z. Finally, for two functors z,2; : ¢ - p such that x equals both y oz and y o 2z, and
for a natural transformation m : z = z, for every object (V,r : (V) - U) of 0,1, prove that
my is a morphism in p,y from (z(V'),r) to (21(V),r). Moreover, for every morphism in o, p,
s: (V,r) = (V',r"), prove that my o z(s) equals z;(s) o my. Conclude that this rule is a natural
transformation my : zy = (21)y. Prove that this is functorial in m. If m is a natural isomorphism,
prove that also my is a natural isomorphism, and the strict equivalence (my)w,r,) is compatible
with the strict equivalence my,. Finally, prove that m — my is compatible with precomposition
and postcomposition of m with functors of categories over 7.

(vii)(Colimits and Limits along an Essentially Surjective Functor) Let x : ¢ - 7 be a functor of
small categories. Prove that every fiber category o, ;s is small. Next, assume that z is essentially
surjective, i.e., for every object U of T, there exists a o, y-object (V,r). Let y: 7 — ¢ be a functor,
and let o : Id, = y o x be a natural transformation. Prove that this extends to an adjoint pair of
functors (z,y, a, §) if and only if for every object V' of g, the morphism z(ay ) : 2(V) = z(y(x(V)))
is an isomorphism and (y(z(V')),z(ay)™!) is a final object of the fiber category o, ;). (Conversely,
up to some form of the Axiom of Choice, there exists y and o extending to an adjoint pair if
and only if every fiber category o,y has a final object.) For every adjoint pair (z,y,«, ), also
(*y, *2, *a, *3) 1s an adjoint pair. More generally, no longer assume that there exists y and «, yet
let L, be a rule that assigns to every object F of Fun(c,C) an object L,(F) of Fun(7,C) and a
natural transformation,

O : F - %, 0 L, (F),
of objects in Fun(o,C). For every object U of 7, this defines a natural transformation

Hf,w,U :Fo (I)a:,U = Lr(f) OQ%,U’

of objects in Fun(o, ,C). Assume that each (L, (F)(U),0r.v) is a colimit of F o @, . Prove
that this extends uniquely to a functor,

L, :Fun(o,C) - Fun(7,C),

and a natural transformation
ez : IdFun(a,C) = *z 0 Lx

Moreover, for every G in Fun(7,C), the identity morphism,

Idg:Goxod,y>GolU, ,
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factors uniquely through a C-morphism L,(Gox)(U) - G(U). Prove that this defines a morphism
ng : L:(Gox)— G in Fun(7,C). Prove that is a natural transformation,

n: L:B O %y = IdFun('r,C)-
Prove that (L., *,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o ®, ; admits a colimit, then there exists a I'* and # as above.)

Next, as above, let x : ¢ - 7 be a functor of small catgories that is essentially surjective. Let
y : 7 = sigma be a functor, and let J : y ox = Id, be a natural transformation. Prove that
this extends to an adjoint pair of functors (z,y,«, ) if and only if for every object V of o, the
morphism z(5,) : x(y(x(V))) — x(V) is an isomorphism and (y(z(V')),z(5,)) is an initial object
of the fiber category o, »(v). (Conversely, up to some form of the Axiom of Choice, there exists y
and [ extending to an adjoint pair if and only if every fiber category o, s has an initial object.) For
every adjoint pair (y,x,a,beta) also (%4, %y, *q, *g) is an adjoint pair. More generally, no longer
assume that there exists y and 3, yet let R, be a rule that assigns to every object F of Fun(co,C)
an object R,(F) of Fun(7,C) and a natural transformation,

Ng %z 0 Re(F) = F,
of objects in Fun(o,C). For every object U of 7, this defines a natural transformation
NF.zU : Rac(f) OQUI U =Fo q)ar,U7

of objects in Fun(o, 7,C). Assume that each (R,(F)(U),nFv) is a limit of Fo®, ;. Prove that
this extends uniquely to a functor,

R, : Fun(o,C) —» Fun(r,C),
and a natural transformation,
- *g0 Rx = IdFun(o’,C)'

Moreover, for every G in Fun(7,C), the identity morphism,
IdgigOQULU :>goxoq>x7U7

factors uniquely through a G(U) - C-morphism R,(Goxz)(U). Prove that this defines a morphism
Og:G - R.(Gox) in Fun(7,C). Prove that this is a natural transformation,

0: IdF‘un(’r,C) = Ry 0 #,.

Prove that (*,, R,,0,n) is an adjoint pair of functors. (Using some version of the Axiom of Choice,
if every F o @,y admits a colimit, then there exists a R, and 7 as above.)

(viii) (Adjoints Relative to a Full, Upper Subcategory) In a complementary direction to the previous
case, let z : 0 - 7 be an embedding of a full subcategory (thus, z is essentially surjective if and
only if x is an equivalence of categories). In this case, the functor

*, : Fun(7,C) - Fun(o,C)
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is called restriction. Assume further that o is upper (a la the theory of partially ordered sets) in
the sense that every morphism of 7 whose source is an object of o also has target an object of o.
Assume that C has an initial object, ®. Let G be a o-family of objects of C. Also, let ¢ : G - H
be a morphism of o-families. For every object U of 7, if U is an object of o, then define ,G(U) to
be G(U), and define ,¢(U) to be ¢(U). For every object U of 7 that is not an object of o, define
+G(U) to be ®, and define , ¢(U) to be Idg. For every morphism r: U - V| if U is an object of
o, then r is a morphism of ¢. In this case, define , G(r) to be G(r). On the other hand, if U is
not an object of o, then G(U) is the initial object ®. In this case, define , G(r) to be the unique
morphism ,G(U) - ,G(V). Prove that ,G is a 7-family of objects, i.e., the definitions above are
compatible with composition of morphisms in 7 and with identity morphisms. Also prove that
« ¢ is a morphism of 7-families. Prove that , Idg equals Id_g. Also, for a second morphism of
o-families, ¢ : H — Z, prove that (¢ o ¢) equals 10 ,¢. Conclude that these rules form a functor,

«* :Fun(o,C) - Fun(7,C).

Prove that (,*, *,) extends to an adjoint pair of functors. In particular, conclude that *, preserves
epimorphisms and ,* preserves monomorphisms.

Next assume that C is an Abelian category that satisfies (AB3). For every 7-family F, for every
object U of 7, define 0x(U) : F(U) - *F(U) to be the cokernel of F(U) by the direct sum of the
images of

F(s): F(T) = F(U),

for all morphisms s: 7T — U with V' not in o (possibly empty, in which case 0£(U) is the identity
on F(U)). In particular, if U is not in o, then # F(U) is zero. For every morphism r:U -V in T,
prove that the composition 8£(V') o F(r) equals *F(r) o £(U) for a unique morphism

TF(@r):TFU) >*F(V).

Prove that * F(Idy) is the identity morphism of # F(U). Prove that r — * F(r) is compatible
with composition in 7. Conclude that # F is a 7-family, and 6z is a morphism of 7-families. For
every morphism ¢ : F — & of 7-families, for every object U of 7, prove that 0¢(U) o ¢(U) equals
(U)o 0£(U) for a unique morphism

To(U):*F(U) ->"EU).

Prove that the rule U —» ¢(U) is a morphism of 7-families. Prove that #Idz is the identity on
zF. Also prove that ¢ — % ¢ is compatible with composition. Conclude that these rules define a
functor

% : Fun(7,C) - Fun(r,C).

Prove that the rule F ~ 0 is a natural transformation Idpyn(-cy = **. Prove that the natural
morphism of 7-families,
TF =2 ((F)),
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is an isomorphism. Conclude that there exists a unique functor,
+* : Fun(7,C) - Fun(o,(C),

and a natural isomorphism #* = ,(*%). Prove that (*%, ., ) extends to an adjoint pair of functors.
In particular, conclude that , * preserves epimorphisms and ** preserves monomorphisms.

Finally, drop the assumption that C has an initial object, but assume that o is upper, assume that
o has an initial object, W,, and assume that there is a functor

y!T—>0‘

and a natural transformation 6 : Id, = zoy, such that for every object U of 7, the unique morphism
W, - y(U) and the morphism 6y : U - y(U) make y(U) into a coproduct of W, and U in 7. For
simplicity, for every object U of o, assume that 0y : U - y(U) is the identity Idy (rather than
merely being an isomorphism), and for every morphism r: U — V in o, assume that y(r) equals .
Thus, for every object V' of o, the identity morphism y(V') — V defines a natural transformation
n:yox =1d,. Prove that (y,z,60,n) is an adjoint pair of functors. Conclude that (%, *,, *g, *,)
is an adjoint pair of functors. In particular, conclude that *, preserves monomorphisms and x,
preserves epimorphisms.

(ix)(Compatibility of Limits and Colimits with Functors) Denote by 0 the “singleton category” 0
with a single object and a single morphism. Prove that I'(0, —) is an equivalence of categories. For
an arbitrary category 7, for the unique natural transformation 7 :7 — 0, prove that *; equals the
composite *_oI'(0,-) so that *_is an example of this construction. In particular, for every functor
x:0 — 7, prove that (a ), equals a_. If n:a, = F is a limit of a 7-family F, and if 6 : b, = F,
is a limit of the associated o-family F,, then prove that there is a unique morphism h:a — b in
C such that 7, equals o p_- If there are right adjoints I'; of *_and I', of *_, conclude that there
exists a unique natural transformation

I',:I,=1T,0x%,

so that ng, o I',(F) equals (nF).. Repeat this construction for colimits.

(x)(Limits / Colimits of a Concrete Category) Let o be a small category in which the only mor-
phisms are identity morphisms: identify o with the underlying set of objects. Let C be the category
Sets. For every o-family F, prove that the rule

[y (F) := H (U, F)

Uex

together with the morphism
n]—':]-—‘a(]:)gﬁfa

nr(V)=pry: [[T(U,F) > T(V, F),

Uex
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is a limit of F. Next, for every small category 7, define o to be the category with the same objects
as 7, but with the only morphisms being identity morphisms. Define z : ¢ — 7 to be the unique
functor that sends every object to itself. Define I';(F) to be the subobject of I',(F,) of data
(fu)ves such that for every morphism r : U — V| F(r) maps fy to fy. Prove that with this
definition, there exists a unique natural transformation nz : I'.(F )T = JF such that the natural

transformation I';(F) = I';(F,) = F, equals (nr),. Prove that nr is a limit of . Conclude
that Sets has all small limits. Similarly, for associative, unital rings R and S, prove that the
forgetful functor

®: R-S5—-mod— Sets

sends products to products. Let F be a 7-family of R — S-modules. Prove that the defining
relations for I';(® o F) as a subset of I',(® o F) are the simultaneous kernels of R - S-module
homomorphisms. Conclude that there is a natural R — S-module structure on I';(® o F), and use
this to prove that R —S-mod has all limits.

(xi)(Functoriality in the Target) For every functor of categories,
H:C-D,

for every T-family F in C, prove that H o F is a 7-family in D. For every morphism of 7-families in
C, ¢: F =G, prove that H o ¢ is a morphism of 7-families in D. Prove that this defines a functor

H, :Fun(7,C) - Fun(7,D).

For the identity functor Ide, prove that (Idc), is the identity functor. For I : D — £ a functor of
categories, prove that (I o H), is the composite I, o H,. In this sense, deduce that H, is functorial
in H.

For two functors, H,I : C - D, and for a natural transformation N : H = I, for every 7-family F
in C, define N, (F) to be
NoF:HoF =1oF.

Prove that N,(F) is a morphism of 7-families in D. For every morphism of 7-families in C,
¢ : F - G, prove that N (G) o H.(¢) equals I.(¢) o N.(F). In this sense, conclude that N, is
a natural transformation H, = I,. For the identity natural transformation Idy : H = H, prove
that (Idg), is the identity natural transformation of H,. For a second natural transformation
M : I = J, prove that (Mo N), equals M, o N,. In this sense, deduce that (=), is also compatible
with natural transformations.

(xii) (Reductions of Limits to Finite Systems for Concrete Categories) A category is cofiltering if
for every pair of objects U and V there exists a pair of morphisms, r: W - U and s : W - V|
and for every pair of morphisms, r,s:V — U, there exists a morphism ¢ : W — V such that r ot
equals sot (both of these are automatic if the category has an initial object X'). Assume that the
category C has limits for all categories 7 with finitely many objects, and also for all small cofiltering
categories. For an arbitrary small category 7, define 7 to be the small category whose objects are
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finite full subcategories o of 7, and whose morphisms are inclusions of subcategories, p c o, of 7.
Prove that 7 is cofiltering. Let F be a 7-family in C. For every finite full subcategory o c 7, denote
by F, the restriction as in (f) above. By hypothesis, there is a limit n, : (o) = F,. Moreover, by

(g), for every inclusion of full subcategories p c o, there is a natural morphism in C, F(p) - F(o),
and this is functorial. Conclude that F is a 7-family in C. Since 7 is filtering, there is a limit

—_

0= F.

7

Prove that this defines a limit nra_ = F.

Finally, use this to prove that limits exist in each of the following categories: the category of (not
necessarily Abelian) groups, the category of Abelian groups, the category of associative, unital
(not necessarily commutative) rings, the category of commutative rings, and the category of R—.S-
bimodules (where R and S are associative, unital rings).

(xiii)(bis, Colimits) Repeat the steps above for colimits in place of limits. Use this to prove that
colimits exist in each of the following categories: the category of (not necessarily Abelian) groups,
the category of Abelian groups, the category of associative, unital (not necessarily commutative)
rings, the category of commutative rings, and the category of R - S-bimodules (where R and S are
associative, unital rings).

Practice with Limits and Colimits Exercise. In each of the following cases, say whether the
given category (a) has an initial object, (b) has a final object, (c) has a zero object, (d) has finite
products, (e) has finite coproducts, (f) has arbitrary products, (g) has arbitrary coproducts, (h)
has arbitrary limits (sometimes called inverse limits), (i) has arbitrary colimits (sometimes called
direct limits), (j) coproducts / filtering colimits preserve monomorphisms, (k) products / cofiltering
limits preserve epimorphisms.

(i) The category Sets whose objects are sets, whose morphisms are set maps, whose composition
is usual composition, and whose identity morphisms are usual identity maps.

(ii) The opposite category Sets°PP.

(iii) For a given set S, the category whose objects are elements of the set, and where the only
morphisms are the identity morphisms from an element to that same element. What if the set is
the empty set? What if the set is a singleton set?

(iv) For a partially ordered set (S, <), the category whose objects are elements of S, and where
the Hom set between two elements x, y of S is a singleton set if x <y and empty otherwise. What
if the partially ordered set (5,<) is a lattice, i.e., every finite subset (resp. arbitrary subset) has
a least upper bound and has a greatest lower bound?

(v) For a monoid (M,-, 1), the category with only one object whose Hom set, with its natural
composition and identity, is (M,-,1). What is M equals {1}?

(vi) For a monoid (M,-,1) and an action of that monoid on a set, p: M xS - S, the category
whose objects are the elements of S, and where the Hom set from x to y is the subset M, , = {m €
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M|m-x = y}. What if the action is both transitive and faithful, i.e., S equals M with its left regular
representation?

(vii) The category PtdSets whose objects are pairs (5, sg) of a set S and a specified element s
of S, i.e., pointed sets, whose morphisms are set maps that send the specified point of the domain
to the specified point of the target, whose composition is usual composition, and whose identity
morphisms are usual identity maps.

(viii) The category Monoids whose objects are monoids, whose morphisms are homomorphisms of
monoids, whose composition is sual composition, and whose identity morphisms are usual identity
maps.

(ix) For a specified monoid (M,-,1), the category whose objects are pairs (5, p) of a set S and an
action p: M xS — S of M on S, whose morphisms are set maps compatible with the action, whose
composition is usual composition, and whose identity morphisms are usual identity maps.

(x) The full subcategory Groups of Monoids whose objects are groups. Does the inclusion functor
preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms, resp.
epimorphisms?

(xi) The full subcategory Z—-mod of Groups whose objects are Abelian groups. Does the inclusion
functor preserve coproducts, resp. products? Does the inclusion functor preserve monomorphisms,
resp. epimorphisms?

(xii) The full subcategory FiniteGroups of Groups whose objects are finite groups. Are coprod-
ucts, resp. products, in the subcategory also coproducts, resp. products, in the larger category
Groups? Does the inclusion functor preserve monomorphisms, resp. epimorphisms?

(xiii) The full subcategory Z — mody,, of Z - mod consisting of torsion Abelian groups, i.e., every
element has finite order (allowed to vary from element to element). Are coproducts, resp. products,
preserved by the inclusion functor? Are monomorphisms, resp. epimorphisms preserved?

(xiv) The category Rings whose objects are associative, unital rings, whose morphisms are ho-
momorphisms of rings (preserving the multiplicative identity), whose composition is the usual
composition, and whose identity morphisms are the usual identity maps. Hint. For the coproduct
of two associative, unital rings (R’,+,0,-,1’) and (R",+,0,-",1"), first form the coproduct R’ & R"
of (R',+,0) and (R",+,0) as a Z-module, then form the total tensor product ring 77 (R'® R") as in
the previous problem set. For the two natural maps ¢': R’ < T (R'@R") and ¢" : R" - T}(R'@R")
form the left-right ideal I c T (R’ ® R") generated by ¢'(1') -1, ¢"(1") =1, ¢'(r""s") = ¢' (") - ¢' ('),
and ¢"(r" " ") = q"(r") - q"(s") for all elements 1/, s’ € R" and r”,s" € R". Define

p:TH (R ®R") > R,

to be the quotient by I. Prove that poq¢’: R" - R and po¢” : R” - R are ring homomorphisms
that make R into a coproduct of R’ and R".

(xv) The full subcategory CommRings of Rings whose objects are commutative, unital rings.
Does the inclusion functor preserve coproducts, resp. products? Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?
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(xvi) The full subcategory NilCommRings of CommRings whose objects are commutative,
unital rings such that every noninvertible element is nilpotent. Does the inclusion functor preserve
coproducts, resp. products? (Be careful about products!) Does the inclusion functor preserve
monomorphisms, resp. epimorphisms?

(xvii) Let R and S be associative, unital rings. Let R —mod, resp. mod -5, R—.S —mod, be the
category of left R-modules, resp. right S-modules, R — S-bimodules. Does the inclusion functor
from R - S -mod to R - mod, resp. to mod - .5, preserve coproduct, products, monomorphisms
and epimorphisms?

(xviii) Let (I,<) be a partially ordered set. Let C be a category. An (I, <)-system in C is a datum

c=((c)ier, (fig)ijyerx,i<i)

where every ¢; is an object of C, where for every pair (i,7) € I x I with ¢ < j, ¢;; is an element of
Home(¢;, ¢;), and satisfying the following conditions: (a) for every i € I, ¢;; equals Id,,, and (b) for
every triple (4,7,k) € [ with i < j and j <k, ¢jj o ¢;j equals ¢; ;. For every pair of (I, <)-systems
in C, c=((ci)ier, (¢ij)ixj) and ¢’ = ((¢})ier, (¢} ;)i<j), @ morphism g : ¢ — ¢’ is defined to be a datum
(9i)ier of morphisms g; € Home(¢;, ¢;) such that for every (i,5) € I x I with @ < j, g; o ¢;; equals
¢; j09i- Composition of morphisms g and ¢’ is componentwise g;og;, and identities are Id. = (Ide, )ier-
This category is Fun((7,<),C), and is sometimes referred to as the category of (I,<)-presheaves.
Assuming C has finite coproducts, resp. finite products, arbitrary coproducts, arbitrary products,
a zero object, kernels, cokernels, etc., what can you say about Fun((7,<),C)?

(xix) Let C be a category that has arbitrary products. Let (I, <) be a partially ordered set whose
associated category as in (iv) has finite coproducts and has arbitrary products. The main example
is when [ = {1 is the collection of all open subsets U of a topology on a set X, and where U <V if
U 2 V. Then coproduct is intersection and product is union. Motivated by this case, an covering
of an element i of I is a collection j = (Ju)aca of elements j, of I such that for every a, i < j,, and
such that i is the product of (ja)aea in the sense of (iv). In this case, for every (o, 3) € A x A,
define j, 3 to be the element of I such that j, < j, 3, such that jg < j, g, and such that j, s is a
coprodcut of (ja,jz). An (I,=)-presheaf ¢ = ((¢;)ier, (¢i)i<j) is an (I, <)-sheaf if for every element
i of I and for every covering j = (ja)aca, the following diagram in C is ezact in a sense to be made
precise,

7
4q L
a=le. 30" T1 ¢,
acA (e,B)eAx A

For every a € A, the factor of ¢,
Pry,©q: ¢ = Cj,,
is defined to be ¢; ;. For every (a, 3) € A x A, the factor of p/,

/ . . .
Pragop’ s Tl es = ciup
vyeA

is defined to be ¢;, j, , o pr,. Similarly, pr, 5o p” is defined to be ¢, ;. , o prg. The diagram above
is exact in the sense that ¢ is a monomorphism in C and ¢ is a fiber product in C of the pair of
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morphisms (p’, p”). The category of (I, <) is the full subcategoryof the category of (I, <)-presheaves
whose objects are (I, <)-sheaves. Does this subcategory have coproducts, products, etc.? Does the
inclusion functor preserve coproducts, resp. products, monomorphisms, epimorphisms? Before
considering the general case, it is probably best to first consider the case that C is Z — mod, and
then consider the case that C is Sets.

12 Adjoint Pairs and Yoneda Functors

Adjoint Pairs and Representable Functors. Let A be a category, and let B be a strictly small
category. Let L : A — B be a covariant functor. For every object b of B, assume that the following
contravariant functor from A to Sets is representable,

Hompg(L(-),b) : A°P? — Sets.

Prove that there exists an adjoint pair (L, R, 6,7). Using the opposite adjoint pair ( R°PP, LOPP 7°PP_(oPP),
formulate and prove the analogous result for a contravariant functor R from a category A to a
strictly small category B.

The Yoneda Functor as an Adjoint Functor. Let A be a strictly small category, so that there is
a well-defined category Sets™ of set-valued covariant functors from A with natural transformations
as morphisms (independent of axioms on inaccessible cardinals or Grothendieck universes). As
in Example || for every ordered pair (a,a’) of objects of A, composition in A enriches the set
H¢, := Hom 4 (a,a’) with an H% — Ho-action. For every set S together with a right H-action, define
Hf,’a to be the set of right HZ-equivariant maps from S to HZ,,

Hf,’a = Homset,Hg(S, ng).

This is compatible with postcomposition by A-morphisms in H g,', Altogether, this defines a co-
variant, set-valued functor,
h%e: A - Sets, h%(a') = H5",

the Yoneda functor of a and S. Prove that the rule that associates to a set with right Hg-action
the covariant functor A5 is itself a functor,

h—%: Sets — H* - Sets™.

Conversely, for every set-valued functor F' on A, the set F'(a) is enriched with a right H2-action.
Prove that the rule associating to each set-valued functor F' on A the set F'(a) with its right
Hg-action is itself a functor,

—(a) : Sets™ - Sets — H”.

Prove that these two functors are adjoint, i.e., there is a binatural bijection

Homsgets_ 2 (S, F(a)) 2 Homg 4 (B57, F).
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In particular, when S equals H¢ with its right regular action this gives the usual Yoneda bijection,
F(a) 2 Homg (R, F).

Specializing further, when F' equals the Yoneda functor h¢’, this gives a binatural bijection,
HY = Homg,, 4 (h®, h7).

Deduce that the rule,
h:A- Sets?, aw~ h?,

is an equivalence of the category A with a full subcategory of the functor category Sets™. Formulate
and prove the analogous result for the contravariant Yoneda functors. Finally, if you know the
axioms about inaccessible cardinals or the notion of Grothendieck universes, formulate a version of
this for categories that are not necessarily strictly small.

13 Preservation of Exactness by Adjoint Additive Functors

Exactness and adjoint pairs. Let 4 and B be Abelian categories. Let (L, R,0,n) be an adjoint
pair of additive functors

L:A-B, R:B—- A.
(a) For every short exact sequence in A,
S: 0 A s 4 s A 0,
for every object B in B, prove that the induced morphism of Abelian groups,
Hom4(pa, R(B)) : Homy(A”, R(B)) - Hom4(A, R(B)),
is a monomorphism. Conclude that also the associated morphism of Abelian groups,
Homp(L(pa), B) : Homp(L(A"), B) -~ Homp(L(A), B),

is a monomorphism. In the special case that B equals Coker(L(p4)), use this to conclude that B
must be a zero object. Conclude that R preserves epimorphisms.

(b) Prove that the following induced diagram of Abelian groups is exact,

Hom (A", R(B)) ELEIN Hom (A, R(B)) 4, Hom4(A', R(B))-

Conclude that also the following associated diagram of Abelian groups is exact,

Homs(L(A"), B) —~ Homp(L(A), B) — Homs(L(4'), B):
In the special case that B equals Coker(L(gq4)), conclude that the induced epimorphism B — L(A")
is split. Conclude that L is half-exact, hence right exact.

(c) Use similar arguments, or opposite categories, to conclude that also R is left exact.

(d) In case R is exact (not just left exact), prove that for every projective object P of A, also
L(P) is a projective object of B. Similarly, if L is exact (not just right exact), prove that for every
injective object I of A, also R([I) is an injective object of A.
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14 Derived Functors as Adjoint Pairs

Problem 0.(The Cochain Functor of an Additive Functor) Let A and B be Abelian categories.
Denote by Ch(A), respectively Ch(B), the associated Abelian category of cochain complexes of
objects of A, resp. of objects of B.

Let
F-A-B

be an additive functor. There is an induced additive functor,
Ch(F'): Ch(A) - Ch(B)
that associates to a cochain complex
A® = ((A")ez, () A" > A™ ) ez),
in A the cochain complex

F(A®) = (F(A"))nez, (F(d3) : F(A") > F(A™))uez).-

(a) Prove that F is half-exact, resp. left exact, right exact, exact, if and only if Ch(F") is half-exact,
resp. left exact, right exact, exact.

(b) Prove that the functor Ch(F') induces natural transformations,
0% i B"oCh(F) = Fo B, 07.,: FoZ" = Z"o Ch(F).
Thus, for the functor A" = A® /B"(A*®), there is also an induced natural transformation,

. :" o Ch(F) = Fo.

(c) Assume now that F' is right exact (half-exact and preserves epimorphisms). Denote by

the usual natural transformation of functors Ch(A) - A. Conclude the existence of a unique
natural transformation

Opp:FoH"= H"oCh(F),
such that for every A® in Ch(A), the following diagram commutes,

F(zn(A%) =5 p(HR(A%)

92,Z<A'>J le’;,HM') .
ZM(Ch(F)(A%)) —— H"(Ch(F)(A*))
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Finally, for every short exact sequence in Ch(A),

A

u

X: 0 K*

0,

such that also F'(X) is a short exact sequence in Ch(B) (this holds, for instance, if ¥ is term-by-term
split), prove that the following diagram commutes,

FHMQY) —25 (v (K*))
@) |esh,
HI(P(Q) s > B (F()

(d) Assume now that F is left exact (half-exact and preserves monomorphisms). Denote by
q": H"(A*) = A" = A"/B"(A"*),

the usual natural transformation of functors Ch(A) - A. Conclude the existence of a unique
natural transformation

Oy p:H"oCh(F)= FoH",
such that for every A® in Ch(A), the following diagram commutes,

H"(Ch(F)(A*)) —— Ch(F)(4%)"
ez,F(Avl leﬁFm')_

ChR)(A)  ——  F(A)

Finally, for every short exact sequence in Ch(A),

S0 Ke 2, g 2

0,

such that also F'(X) is a short exact sequence in Ch(B) (this holds, for instance, if ¥ is term-by-term
split), prove that the following diagram commutes,

Op(x)

HM(F(Q7) —=> H™I(F(K"))
9Z,F(Q')l l%f%(Ki)

F(H™Q*)) o F(H™(K®))

Preservation of Direct Sums Exercise. Let A be an additive category. Let A; and Ay be
objects of A. Let (¢ : Ay = A, g2 : Ay > A) be a coproduct (direct sum) in A. Define p; : A > A,
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to be the unique morphism in A such that p; o ¢; equals Id4, and p; o ¢o is zero. Similarly define
p2: A - Aj to be the unique morphism in A such that ps o ¢y is zero and py o g2 equals Id 4,. Prove
that gy op; + g9 0 ps equals Id 4 both compose with ¢; to equal ¢;, and thus both are equal. Conclude
that (p1: A — Ay, py: A— As) is a product in A.

Now let B be a second additive category, and let
F:A-B

be an additive functor. Define B; = F/(4;) and B = F(A). Prove that F(p;) o F(g;) equals Idp, if
j =1 and equals 0 otherwise. Also prove that Idg equals F'(q;)o F'(p1)+F(g2)oF (p2). Conclude that
both (F(q): By = B,F(q2) : By > B) is a coproduct in B and (F(p1) : B - By, F(p2) : B — Bs)
is a product in B. Hence, additive functors preserve direct sums. In particular, additive functors
send split exact sequences to split exact sequences.

Preservation of Homotopies Exercise. Let A be an Abelian category. Let A® and C*® be
cochain complexes in Ch(A). Let f*: A* - C* be a cochain morphism. A homotopy from f* to 0
is a sequence (s™: A" - C"1),,z such that for every n € Z,

fr=dytos™+s"ody.
In this case, f* is called homotopic to 0 or null homotopic. Cochain morphisms g°®, h*: A® - C* are
homotopic if f* = g*— h* is homotopic to 0.

(a) Prove that the null homotopic cochain morphisms form an Abelian subgroup of Homey 4y (A®, C*).
Moreover, prove that the precomposition or postcomposition of a null homotopic cochain morphism
with an arbitrary cochain morphism is again null homotopic (the null homotopic cochain morphisms
form a “left-right ideal” with respect to composition).

(b) If f* is homotopic to 0, prove that for every n € Z, the induced morphism,
H"(f*): H"(A®) > H"(C*),

is the zero morphism. In particular, if Id 4« is homotopic to 0, conclude that every H"(A*®) is a zero
object.

(c) For a short exact sequence in A

i 0 K—21-4-2,0 0,
considered as a cochain complex A® in A concentrated in degrees —1, 0, 1, prove that a homotopy
from Id 4. to O is the same thing as a splitting of the short exact sequence.

(d) Let B be an Abelian category. Let F': A — B be an additive functor. This induces an additive
functor

Ch(F) : Ch(A) - Ch(B).
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If F is half-exact, resp. left exact, right exact, exact, prove that also Ch(F') is half-exact, resp. left
exact, right exact, exact. Prove that Ch(F') preserves homotopies. In particular, if g* and h*® are
homotopic in Ch(A), then for every integer n € Z, H*(Ch(F)(g*)) equals H"(Ch(F")(h*)).

Preservation of Translation Exercise. Let A be an Abelian category. For every integer m, for
every cochain complex A® in Ch(A), define T™(A*) = A*[m] to be the cochain complex such that
Tm(A*)r = Am*nand with differential

d?”m(AO) Tm(Ao)n _ Tm(Ao)nJrl
equal to (-1)™d7u ™. For every cochain morphism
f. : A. N O.,
define
T (fe)r=Tm (A" > Tm(C*)"
to be fm*. Finally, for every homotopy s* from ¢g® — h® to 0, define

Tm(s*)" = (~1)ms™*n,

(a) Prove that 7™ : Ch(A) — Ch(A) is an additive functor that is exact. Prove that 70 is the
identity functor. Also prove that T oT* equals T™*¢. Prove that not only are 7™ and T-™ inverse
functors, but also (7™,7-™) is an adjoint pair of functors (which implies that also (7-™,7™) is
an adjoint pair). Finally, if s* is a homotopy from ¢* — h* to 0, prove that 7™(s*) is a homotopy
from T™(g*) —=T™(h*) to 0.

(b) Via the identification T™(A*)" = A™*"_ prove that the subfunctor Zm(T™(A*)) is naturally
identified with Z™*"(A*). Similarly, prove that the subfunctor B*(7™(A*)) is naturally identified
with Bm*n(A*). Thus, show that the epimorphism (7™(A*))" — T™(A*) is identified with the
epimorphism A™" — A, Finally, use these natural equivalences to deduce a natural equivalence
of half-exact, additive functors Ch(A) — A,

Lm,n : Hm+n = HTL o Tm

(c) For a short exact sequence in Ch(A),

YK 1 A 2 —— 0,

for the associated short exact sequence,

T(q%) T(p*)

S[+1]=T(2): T(K*) —2% 74y —2% 17(Q*) —— 0,
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prove that the following diagram commutes,

_sn+l

Hn+1(@o) 5_53) H”+1(K')

L"(Q')l JL”“(K')
H(T(@D) S — HI(T(K)

Iterate this to prove that for every m € Z, 63, . is identified with (=1)mogtm.

(d) For every integer m, define
esm : Ch™™(A) - Ch(A)

to be the full additive subcategory whose objects are complexes A® such that for every n < m, A®
is a zero object. (From here on, writing A = 0 for an object A means “A is a zero object”.) Check
that Ch®™(A) is an Abelian category, and es,, is an exact functor. For every integer m, define the
“brutal truncation”

Osm i Ch(A) - Ch*™(A),
to be the additive functor such that for every object A*

(02 A%) _{ 0, n<m

and for every morphism u®: A* - C*,

(un )" = { fr, m2m,

, n<m
Check that oy, is exact and is right adjoint to es,,. For the natural transformation,

Mom * €>m © O>m = IdCh(.A)7

check that the induced natural transformation,

Nem (A*)" 1 (02m(A))" — F;

is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,
A™ > Am
Check that the induced natural transformation
2" (1om(A®)) : Z™(05m(A%)) > Z" (A7),
is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,

B (1:m(A%)) : B"(0:m(A%)) > B"(A%),
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is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,
H" (11:m (A%)) : H"(05m (A®)) > H"(A%),
is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,

Zm(A%) > H"(A*).

Check that for every integer ¢, there is a unique (exact) equivalence of categories,
T/, - Ch*™ () » Ch™ (A),

such that TY, o 0y, equals 0sp,m 0 T, and TY. Check that (T%,, T, ) is an adjoint pair of functors,

l+m
so that also (T ,T7) is an adjoint pair of functors.

(d)bis Similarly, define the “good truncation”
Tom : Ch(A) > Ch™™(A),

to be the additive functor such that for every object A®

A" n>m,
(TZmA.)n = ﬁu n=m,
0, n<m
and for every morphism u®: A* - C*,
fn7 n > m?
(Tme.)n = fﬂ’b7 n=m,
0, n<m

Check that 7, is right exact and is left adjoint to es,,. For the natural transformation
Om = Idcnca)y = €m © Tom,
check that the induced morphism,
ZM(0a) : 2" (A) > 2" (1:m (A7),
is zero for n < m, is the identity for n > m, and for n = m it is the epimorphism,
Z"(A®%) - H"(A*).
Check that the induced natural transformation,
B"(0as) : B"(A*) = B"(12m(A%)),
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is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,

—n

0A0 . A —> TZm(A.)
is zero for n < m, and it is the identity for n > m. Check that the induced natural transformation,
H"(040) : H'(A%) = H" (7 (A%)),

is zero for n < m, and it is the identity for n > m.

Finally, e.g., using the opposite category, formulate and prove the corresponding results for the full
embedding,
eem : Ch*"(A) — Ch(A),

whose objects are complexes A® such that A" is a zero object for all n > m. In particular, note that
although the sequence of brutal truncations,

nZTVL(A.) GSmfl(A.)

0 — UZm(A.) A. Ugm_l(A.) — 0

is exact, the corresponding morphisms of good truncations,
Ker(0.,(A%)) = 7am(A*), Tem(A®) - Coker(nen(A%)),

are not isomorphisms; in the first case the cokernel is H™(A*)[m], and in the second case the kernel
is H™(A*)[m]. However, check that the natural morphisms,

Tem-1(A*) =22 Ker(Bym (A*),

Coker(nem-1(A%)) — 7, (A%):

are quasi-isomorphisms. (One reference slightly misstates this, claiming that the morphisms are
isomorphisms, which is “morally” correct after passing to the derived category.)

(e) Beginning with the cohomological §-functor (in all degrees) Ch(A) — A,
H* = ((Hn)nﬁza (511)”62)7
the associated cohomological é-functor,
H*oT" = ((H" 0T )ne, (6" 0 T*)nez),

the cohomological d-functor
Ho+£ — ((Hn+€)neZ7 ((5n+f)n€Z)7

and the equivalence,
L£70 . HE - HO OTK,
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prove that there exists a unique natural transformation of cohomological -functors,
92 . H.+£ - H'OTE, (9? . Hn+€ = HnOTZ)neZ,

and that 0} = (-1)"0n.

(e)bis The truncation 7, H* in degrees > m is obtained by replacing H™ by the subfunctor Z™.
Check that 6, restricts to a natural transformation v, ,, H**¢ - 75, H* o T*. Assuming that 7, H*
is a universal cohomological d-functor in degrees > m, conclude that also 7w, H® is a universal
cohomological d-functor in degrees > ¢+ m. Also, formulate and prove the corresponding result for
the universal d-functors 7. H*® and 7, H®.

(f) Let B be an Abelian category. Let F': A — B be an additive functor. This induces an additive
functor
Ch(F') : Ch(A) - Ch(B).
Prove that Ch(F") o T4 equals Tz o Ch(F').
Compatibility with Automorphisms Exercise. Let A be an Abelian category. Let

$: 0 Ko 25 A 25 Q0 — 0

be a short exact sequence in Ch(A). Let
u.:K.ﬁK., U':Q‘%Q.

be isomorphisms in Ch(.A).
(a) Prove that the following sequence is a short exact sequence,

v®op
Ao

q*ou

Zu‘ﬂ}‘ : 0 K Q. 0-

(b) Prove that the following diagrams are commutative diagrams.

Swtdg: 0 —— K* " A* 5 Q° 0

aJ J JIdA JmQ ,

Stagidg : 0 — K* —— A* —— Q* 0

Suetdg : 0 N 0
S

Spee: 0 Ko I qe 2 (e 0

o6
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(c) Use the commutative diagram of long exact sequences associated to a commutative diagrams
of short exact sequences to prove that

5§ — HTHl('LL.) Od” OH”(U'),

u®,v®
for every integer n.

Compatibility with Natural Transformations of Additive Functors. Let A and B be
Abelian categories.

(a) For additive functors,
F.G:A-B,

let
a:F=3G,

be a natural transformation. For every cochain complex A® in Ch(A), prove that
(aan : F(A™) = G(A™) ) nez
is a morphism of cochain complexes in Ch(B),

Ch(a)(A*) : Ch(F)(A*) - Ch(G)(A%).

(b) Prove that the rule A* —» Ch(a)(A*®) is a natural transformation
Ch(a) : Ch(F) = Ch(G).

Moreover, for every morphism u® : C* - A* in Ch(A), and for every homotopy (s": C™ - A1),z
from u® to 0, prove that also Ch(a)(A®) o Ch(F")(s*) equals Ch(G)(s*) o Ch(a)(C"*).

(c) For the identity natural transformation Idg : F' = F, prove that Ch(Idr) is the identity
natural transformation Ch(F') = Ch(F"). Also, for every pair of natural transformations of additive
functors A - B,

a: =G, f:E=F,

for the composite natural transformation a o 3, prove that Ch(ao ) equals Ch(«) o Ch(8). In this
sense, Ch is a “functor” from the “2-category” of Abelian categories to the “2-category” of Abelian
categories.

Derived Functors as Adjoint Pairs Exercise. Let A and B be Abelian categories. Let F :
A — B be an additive functor. Assume that A has enough injective objects. Thus, every object A
admits an injective resolution in Ch(.A),

A[0] - 0 A 0
| Lo
I 0 p A,
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which is functorial up to null homotopies (in particular, any two injective resolutions are homotopy
equivalent). Moreover, for every short exact sequence in A,

Y: 0 K—2154-2,0 0,
there exists a diagram of injective resolutions with rows being short exact sequences in Ch(.A),

q[0] p[0]

x[0]: 0 —— KI0] A[0] Q0] —— 0

N R

q p

Is: 0 — I}, —— I} —— [ é —> 0
whose associated short exact sequences in A,
In: 0 Ip —— Iy —— I 0,

are automatically split. Moreover, this diagram of injective resolutions is functorial up to homotopy,
i.e., for every commutative diagram of short exact sequences in A,

i 0 K—21-4-250Q 0
I
S0 R 41-7.0 0

there exists a commutative diagram in Ch(A),

q

[E: 0 [K [A IQ —> 0
[g: 0 [I? T [Z ” I@ — 0

compatible with the morphisms e_, and the cochain morphisms »* making all diagrams commute
are unique up to homotopy.

As proved in lecture, there is an associated cohomological d-functor in degrees >0, R*F, with
R'F:A—- B, R'F(A)=H"(Ch(F)(A®)).

For every short exact sequence in A,

2: 0 K15 A4-"5Q 0,
the corresponding complex in B, Ch(B5),

Ch(F)(Is): 0 — Ch(F)(I}) —27% en(ry(ry) =22 en(F)(1g) — 0.

o8
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has associated complexes in B,

Ch(F)(Is)": 0 — F(I3) —2% p(r7) Z22% p(13) —— 0,

being split exact sequences (since the additive functor F' preserves split exact sequences), and hence
Ch(F)(Ix) is a short exact sequence in B. The maps 0%, . are the connecting maps determined
by the Snake Lemma for this short exact sequence,

0n(ry(rey - H"(C(F)(13)) » H™ ™ (Ch(F)(I}))-
Associated to €, there are morphisms in B

F(eq): F(A) > R°F(A).

(a) Let G: A — B be an additive functor. Let
a:F =3,

be a natural transformation. For every object A of A and for every injective resolution € : A[0] — I,
there is an induced morphism in Ch(B),

Ch()(I3) : Ch(F)(I3) - Ch(G)(13)-

This induces morphisms,
R"a(A): R"F(A) - R"G(A),

given by,
H™(Ch() (%)) : H"(Ch(F)(I})) - H"(Ch(G)(I3})).

For every n, prove that A~ R"a(A) defines a natural transformation
R"a: R"F = R"G.

Moreover, prove that this natural transformation is a morphism of d-functors, i.e., for every short
exact sequence,

i 0 K—21-4-2,0 0,

for every integer n, the following diagram commutes,

0%
R"F(Q) _feE R™IF(K)

R"a(Q)l lR”“a.(K)
R'G(Q) —— R™G(K)
.

(b) Prove that the morphisms F'(e4) form a natural transformation, pp : F' — ROF.
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(c) Prove that ROF is a left-exact functor. Assuming that F' is left-exact, prove that pr is a natural
equivalence of funcors. In particular, conclude that prop : ROF - R°(RYF’) is a natural equivalence
of functors.

(d) For every half-exact functor,

G:A-B,

and for every natural transformation,
v: F =@,

prove that the two natural transformations,
R%yopp,pgoy: F = RG,

are equal. In particular, if G is left-exact, so that pg is a natural equivalence, conclude that there
exists a unique natural transformation,

7:RF =G,

such that v equals 7 o pp.

(e) Now assume that A and B are small Abelian categories. Thus, functors from A to B are well-
defined in the usual axiomatization of set theory. Let Fun(A,B) be the category whose objects
are functors from A to B and whose morphisms are natural transformations of functors. Let
AddFun(A, B) be the full subcategory of additive functors. Let

e : LExactFun(A, B) —» AddFun(A, B),

be the full subcategory whose objects are left-exact additive functors from A to B. Prove that the
rule associating to F' the left-exact functor ROF and associating to every natural transformation
a: "= @ the natural transformation R%x: ROF = RYG is a left adjoint to e.

(f) With the same hypotheses as above, denote by Fun;"(A,B) the category whose objects are
cohomological -functors from A to B concentrated in degrees > 0,

T. = ((Tn : A g B)neZ, (551“)7&2),
and whose morphisms are natural transformations of d-functors,
a®: S =T (a":S"=T") ez

Denote by
(-)°: Funz(A, B) - LExactFun(A, B),

the functor that associates to every cohomological -functor, T, the functor, 7°, and that as-
sociates to every natural transformation of cohomological d-functors, u® : S* — T, the natural
transformation u° : S° - T°. Denote by

R : LExactFun(A, B) - Fun3" (A, B),

60


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

the functor that associates to every left-exact functor, F', the cohomological d-functor, R*F, and
that associates to the natural transformation, o : F' = (G, the natural transformation of cohomo-
logical d-functors, R*«: R*F = R*G. Prove that R is left adjoint to (-)°.

(g) In particular, for n > 0, prove that RY(R"F) is the zero functor. Thus, for every m > n,
R™(R"F) is the zero functor.

Right Derived Functors and Filtering Colimits Exercise. Let B be a cocomplete Abelian
category satisfying Grothendieck’s condition (AB5). Let I be a small filtering category. Let C* :
I - Ch*(B) be a functor.

(a) For every n € Z, prove that the natural B-morphism,
colim H"(C*(i)) - H™(colim C*(1)),
iel iel
is an isomorphism. Prove that this extends to a natural isomorphism of cohomological §-functors.

This is “commutation of cohomology with filtered colimits”.

(b) Let A be an Abelian category with enough injective objects. Let F': I x A — B be a bifunctor
such that for every object i of I, the functor F; : A — B is additive and left-exact. Prove that
Foo(=) = colims F;(-) also forms an additive functor that is left-exact. Also prove that the
natural map

colim R"(F;) - R"(Fu)

is an isomorphism. This is “commutation of right derived functors with filtered colimits”.

15 Constructing Injectives via Adjoint Pairs

Projective / Injective Objects and Adjoint Pairs Exercise. Recall that for a category C,
for every object X of C, there is a covariant Yoneda functor,

h* :C - Sets, B+~ Hom¢(X,B),
and for every object Y of C, there is a contravariant Yoneda functor,
hy : C°P? — Sets, A+~ Hom¢(A,Y).

An object X of C is projective if the Yoneda functor h* sends epimorphisms to epimorphisms.
An object Y of C is injective if the Yoneda functor hy sends monomorphisms to epimorphisms.
The category has enough projectives if for every object B there exists a projective object X and
an epimorphism X — B. The category has enough injectives if for every object A there exists
an injective object Y and a monomorphism from A to Y.

(a) Check that this notion agrees with the usual definition of projective and injective for objects
in an Abelian category.
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(b) For the category Sets, assuming the Axioms of Choice, prove that every object is both projec-
tive and injective. Deduce the same for the opposite category, Sets’’.

(c) Let C and D be categories. Let (L, R,6,n) be an adjoint pair of covariant functors,
L:C-D, R:D-C.
For every object d of D, prove that
n(d) : L(R(d)) - d,
is an epimorphism. For every object ¢ of C, prove that
0:c— R(L(c)),

is a monomorphism. Thus, if every L(R(d)) is a projective object, then C has enough projective
objects. Similarly, if every R(L(c)) is an injective object, then C has enough injective objects.

(d) Assuming that R sends epimorphisms to epimorphisms, prove that L sends projective objects
of C to projective objects of D. Thus, if every object of C is projective, conclude that D has
enough projective objects. More generally, assume further that R is faithful, i.e., R sends distinct
morphisms to distinct morphisms. Then conclude for every epimorphism X — R(D) in C, the
associated morphism L(X) — D in D is an epimorphism. Thus, if C has enough projective objects,
also D has enough projective objects.

Similarly, assuming that L sends monomorphisms to monomorphisms, prove that R sends injective
objects of D to injective objects of C. Thus, if every object of D is injective, conclude that there are
enough injective objects of C. More generally, assume further that L is faithful. Then conclude for
every monomorphism L(C) - Y in D, the associated morphism C' - R(Y") in C is a monomorphism.
Thus, if D has enough injective objects, also C has enough injective objects.

(e) Let S and T be associative, unital algebras. Let C be the category Sets. Let D be the category
S —T -mod of S —T-bimodules. Let

R:5-T -mod — Sets

be the forgetful functor that sends every S — T-bimodule to the underlying set of elements of the
bimodule. Prove that R sends epimorphisms to epimorphisms and R is faithful. Prove that there

exists a left adjoint functor,
L:Sets > S —-T —mod,

that sends every set 3 to the corresponding S —T-bimodule, L(X) of functions f: 3 - S®; T that
are zero except on finitely many elements of ¥. Since Sets has enough projective objects (in fact
every object is projective), conclude that S —7T — mod has enough projective objects.

(f) Let S, T and U be associative, unital rings. Let B be a T'— U-bimodule. Let C be the Abelian
category of S —T-bimodules, let D be the Abelian category of S —U-bimodules, let L be the exact,

additive functor,
L:S-T-mod—S-U-mod, L(A)=A®r B,
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and let R be the right adjoint functor,
R:S-U-mod—S-T-mod, R(C)=Hompeqy(B,C).

Prove that if B is a flat (left) T-module, resp. a faithfully flat (left) 7T-module, then L sends
monomorphisms to monomorphisms, resp. L sends monomorphism to monomorphisms and is
faithful. Conclude, then, that R sends injective objects of S — U — mod to injective objects of
S =T —mod, resp. if S—U —mod has enough injective objects then also S — T — mod has enough
injective objects.

(g) Continuing as above, for every ring homomorphism U — T, prove that the induced T - U-
module structure on T is faithfully flat as a left T-module. Thus, given rings A and II, define
S = A, define T' =11, and define U to be Z with its unique ring homomorphism to 7. Conclude
that if there exist enough injective objects in A —mod, then there exist enough injective objects in

A =TI - mod.

(h) For the next step, define 7' and U to be A, define B to be A as a left-right T-module, and
define S to be Z. Conclude that if there are enough injective Z-modules, then there are enough
injective A-modules, and hence there are enough injective A — II-bimodules. Thus, to prove that
there are enough A — II-bimodules, it is enough to prove that there are enough Z-modules.

Enough Injective Modules Exercise. Let A be an Abelian category that has all small products.
An object Y of A is an injective cogenerator if Y is injective and for every pair of distinct
morphisms,

u,v: A" —> A,
in A, there exists a morphism w: A — Y such that wowu and w o v are also distinct.

(a) Let C be the category Sets™®. For an object Y of A, define L to be the Yoneda functor
hy : A— Sets™, hy(A) =Hom4(A,Y).
Similarly, define the functor,
R:Sets™ - A, L(Y)="Homgets(%,Y)”,

that sends every set ¥ to the object R(X) in A that is the direct product of copies of YV indexed
by elements of . Prove that L and R are an adjoint pair of functors.

(b) Assuming that A has an injective cogenerator Y, prove that L sends monomorphisms to
monomorphisms, and prove that L is faithful. Conclude that A has enough injective objects.

(c) Now let S be an associative, unital ring (it suffices to consider the special case that S is Z). Let
A be mod - S. Use the Axiom of Choice to prove Baer’s criterion: a right S-module Y is injective
if and only if for every right ideal J of S, the induced set map

Hommod_S(S, Y) —> Hommod_S(J, Y)
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is surjective. In particular, if S is a principal ideal domain, conclude that Y is injective if and only
if Y is divisible.

(d) Finally, defining S to be Z, conclude that Y = Q/Z is injective, since it is divisible. Finally,
for every Abelian group A and for every nonzero element a of A, conclude that there is a nonzero
Z-module homomorphism Z -a — Q/Z. Thus, for every pair of elements a’,a” € A such that
a = a’ - a" is nonzero, conclude that there exists a Z-module homomorphisms w : A - Q/Z such
that w(a’) —w(a’) is nonzero. Conclude that Q/Z is an injective cogenerator of Z. Thus mod - Z
has enough injective objects. Thus, for every pair of associative, unital rings A, II, the Abelian
category A —IT —mod has enough injective objects.

Enough Injectives / Projectives in the Cochain Category Exercise. Let S be an associa-
tive, unital ring. Prove that Ch*°(S) has enough injective objects, and prove that Ch**(S) has
enough projective objects.

16 The Koszul Complex via Adjoint Pairs

Exterior Algebra CDGA as an Adjoint Pair Exercise. Let R be a commutative, unital ring.
An associative, unital, graded commutative R-algebra (with homological indexing) is a triple

A = ((An)nez; (Mmypq : Ap x Ag = Apig)pgez, (€1 R > Ag))

of a sequence (A, )nez of R-modules, of a sequence (my 4)p4ez 0f R-bilinear maps, and an R-module
morphism e such that the following hold.

(i) For the associated R-module A = @,z A, and the induced morphism m : A x A - A whose
restriction to each A, x A, equals m,,, (A4,m,e(1)) is an associative, unital, R-algebra.

(ii) Forevery p,q € Z, for every a, € A, and for every a, € A,, my,(aq, a,) equals (=1)P4m,, ,(a,, a,).
(a) Prove that the R-submodules of A,

AzO = @An, ASO = @Am

n>0 n<0

are both associative, unital R-subalgebras. Moreover, prove that the R-submodule,

Ao = @Am resp. A = @Am

n>0 n<0
is a left-right ideal in A,q, resp. in Ag.

(b) For associative, unital, graded commutative R-algebras A, and B,, a graded homomorphism
of R-algebras is a collection

f- = (fn : An - Bn)nzﬂ
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such that for the unique R-module homomorphism f: A - B whose restriction to every A, equals
fn, f 18 an R-algebra homomorphism. Prove that such f, is uniquely reconstructed from the
homomorphism f. Prove that Id4 comes from a unique graded homomorphism Id4,. Prove that
for a graded homomorphism of R-algebras, g, : B, - C,, the composition go f arises from a unique
graded homomorphism of R-algebras, A, = C,. Using this to define composition of homomorphisms
of graded R-algebras, prove that composition is associative and the identity morphisms abe are
left-right identities for composition. Conclude that these notions form a category R — GrComm of
associative, unital, graded commutative R-algebras. Prove that the rule A, = A, f, — f defines a
faithful functor
R - GrComm — R - Algebra.

Give an example showing that this functor is not typically full.

(c) Let A, be an associative, unital, graded commutative R-algebra. Prove that R is commutative
(in the usual sense) if and only if A, is a zero module for every even integer n. Denote by R—Comm
the category of associative, unital R-algebras S that are commutative. Denote by Z — R — Comm
the faithful (but not full) subcategory whose objects are triples,

Se = ((Sn)nez, (Mg : Sp x Sg = Speg)pgez, (€ : R > So))

as above, but such that the multiplication is commutative rather than graded commutative, i.e.,
My p(Sqs Sp) =My q(Sp, Sq). Prove that there is a functor,

Veven : B — GrComm — Z — R — Comm,

((An)nez, (Mpg : ApxAg > Apiq)pgez, (€1 R = Ag)) = ((Azn)nez, (Map,2q + Aopx Asg > As(prg))pgez: (€1 B > Ag =
and f,: Ay > B, maps to vey (f) = (fon)nez- Also prove that there is a left adjoint to veyen,

Weven : Z— R — Comm — R — GrComm,
where Weven (Se )2, equals S, where weyen (), is the zero module for every odd p, where
Agp x Asgg = Ao(prg)

is my, 4 for S,, and where R - Ay is € : R - Sy. For a morphism f, : S¢ = T, in Z - R — Comm,
Wevyen (fo) is the unique morphism whose component in degree 2n equals f,, for every n € Z.

(d) Let e be an odd integer. For every associative, unital, graded commutative R-algebra A, define
ve(As) to be the collection

((Ane)neZ7 (mpe,qe : Ape X Aqe - A(p+q)e)p,q€Z» €:R— AO = AOe)-

Prove that v.(A.) is again an associative, unital, graded commutative R-algebra. For every mor-
phism of associative, unital, graded commutative R-algebras, f, : A. - B,, the collection v.(f.) =
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(fne)nez is @ morphism of associative, unival, graded commutative R-algebras, v.(As) = v.(B.).
Prove that this defines a functor,

Ve : R — GrComm — R — GrComm.

This is sometimes called the Veronese functor (it is closely related to the Veronese morphism of
projective spaces). If e is positive, prove that the induced morphism v.(Asg) = v.(As), resp.
Ve(Ago) = ve(As), is an isomorphism to (ve(As))so, resp. to (ve(As))<o. Similarly, if e is negative
(e.g., if e equals 1), this defines an isomorphism to (v.(A.))<o, resp. to (ve(A.))so. Prove that vy
is the identity functor. For odd integers d and e, construct a natural isomorphism of functors,

Ud,e + Ud © Ve = Ude,

prove that v4; and v;. are identity natural transformations, and prove that these natural iso-
morphisms are associative: vge r © (Vge © v5) equals vger o (vg 0 vep) for all odd integers d, e and

f.

(e) For every associative, unital, graded commutative R-algebra A,, for every odd integer e, define
w, : R = GrComm — R - GrComm,

where w,(As)ne equals A, for every integer n, and where w,(A., ), is a zero module if e does not m.
For every morphism f, : A, = B., define w.(f.) to the be the unique morphism whose component
in degree en equals f, for every n € Z. Prove that w, is a functor. For the natural isomorphism,

GB(AO) : AO - UE(we(AO))a (An i) An)neZ
and the natural monomorphisms
ne(B°) : we(ve(B.)) - BM (Bne ; Bne)neZa

prove that (we,ve,0.,7.) is an adjoint pair.
(f) For every integer n > 0, recall from Problem 5(iv) of Problem Set 1, that there is a functor,

A : R-mod - R-mod, M+~ A\(M).
R R

In particular, there is a natural isomorphism
0
e(M): R~ \(M),
R
and there is a natural isomorphism,
1
O(M): M - \(M).
R

66


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

By convention, for every integer n < 0, define A,(M) to be the zero module. For every pair of
integers ¢, > 0, prove that the natural R-bilinear map
7

®: M® x M® — M®@) ((my®--@my,),(m)®--em.)»m &..m,em, e - &m!

factors uniquely through an R-bilinear map,

q+r

n s AT < A(M) > A(M).
R R R

Prove that AL(M) is an associative, unital, graded commutative R-algebra. For every R-module
homomorphism ¢ : M — N, prove that the associated R-module homomorphisms,

A(@): A(M) = A(N),
R R R
define a morpism of associative, unital, graded commutative R-algebras,
A(@) : N(M) = A(N).
R R R

Prove that for every R-module homomorphism ¢ : N - P, AL (¢ o ¢) equals AR(¢) o AR(¢). Also
prove that AR (Idys) is the identity morphism of A%L(M).

(g) An associative, unital, graded commutative R-algebra A, is (strictly) 0-connected, resp. weakly
0-connected, if the inclusion A,y — A is an isomorphism and the R-module homorphism € is an
isomorphism, resp. an epimorphism. If R is a field, prove that every weakly 0-connected algebra is
strictly 0-connected. Denote by

R - GrCommyg, resp. R - GrComm,,

the full subcategory of R — GrComm whose objects are the 0-connected algebras, resp. the weakly
0-connected algebras. Prove that ve.e, restricts to a functor,

R - GrCommsg - Z, - R — Comm,

where Z, — R — Comm is the full subcategory of Z — R — Comm of algebras graded in nonnegative
degrees such that R — Sy is an isomorphism. For e an odd positive integer, prove that v, and w,
restrict to an adjoint pair of functors,

Ve : R — GrCommsg - R — GrCommsy,

we : R — GrCommsg - R — GrCommyy.

For every odd positive integer e, define a functor

®, : R - GrCommsy - R —mod,
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that sends A, to A. and sends f, to f.. Of course, for every odd positive integer d, ®. o vy is
naturally isomorphic to @4 and P4, o wy is P.. By the previous part, there is a functor

/\ : R—mod - R - GrCommy
R

that sends every module M to the O-connected, associative, unital, graded commutative R-algebra
(AR(M))nso. Moreover, there is a natural transformation,

0: IdR—mod = (I)l o /\
R

Prove that this extends uniquely to an adjoint pair of functors

(/.\7 (1)17 ‘97 77)‘
R

Using the natural isomorphisms ®, o vy = @4 and P4, 0 wy = ., prove that there is also an adjoint
pair of functors

(we o /1‘\}7 P, 0, 776)'

The Koszul Complex CDGA as an Adjoint Pair. Let R be a commutative, unital ring. A
(homological, unital, associative, graded commutative) differential graded R-algebra is a pair

((Cn)n627 (/\ : C’p X Cq - p+q)p,q€Z7 (E : R - C0)7 (dn : On - n—l)neZ)a

of an associative, unital, graded commutative R-algebra C, together with R-linear morphisms
(dy)nez such that d,,_1 o d,, equals 0 for every n € Z, and that satisfies the graded Leibniz identity,

dprg(Cp A cq) = dp(cp) A eg+ (=1)Pep, Ady(cy),

for every p,q € Z, for every c, € C,, and for every ¢, € C,. A morphism of differential graded
R-algebras,
¢o : Co - Ao7

is a morphism ¢, = (¢, )nez that is simultaneously a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras.

(a) For morphisms of differential graded R-algebras, ¢, : Co = A,, s : Dy — C,, prove that the
composition of 1, o ¢, of graded R-modules is both a morphism of chain complexes of R-modules
and a morphism of associative, unital, graded commutative R-algebras. Thus, it is a composition
of morphisms of differential graded R-algebras. With this composition, prove that this defines a
category R — CDGA of differential graded R-algebras.

(b) For every associative, unital, graded commutative R-algebra A,, for every integer n, define
dp(ay,n : An =~ An_1 to be the zero morphism. Prove that this gives a differential graded R-algebra,
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denoted F(A,). For every morphism f, : A, » B, of associative, unital, graded commutative R-
algebras, prove that f, : E(A.) » E(B,) is a morphism of differential graded R-algebras, denoted
E(f.). Prove that this defines a functor

E:R-GrComm - R-CDGA.

For every differential graded R-algebra C,, prove that the subcomplex Z,(C,) is a differential
graded R-subalgebra with zero differential, and the inclusion,

n(C.) : E(Z.(C.)) - C,

is a morphism of differential graded R-algebras. Also, for every morphism ¢, : Cy - D, of differential
graded R-algebras, prove that the induced morphism Z,(f,) : Z,(C,) - Z,(D,) is a morphism of
associative, unital, graded commutative R-algebras. Prove that this defines a functor

Ze: R— CDGA — R - GrComun.

For every associative, unital, graded commutative R-algebra A.,, the inclusion Z,(E(A.)) - E(A.)
is just the identity map, whose inverse,

0(A,): As — Z(E(AS)),

is an isomorphism. Prove that (E, Z,,0,n) is an adjoint pair of functors. Finally, prove that the
subcomplex B,(C,.) c Z,(C,) is a left-right ideal in the associative, unital, graded commutative
R-algebra Z,(C,). Conclude that there is a unique structure of associative, unital, graded commu-
tative R-algebra on the cokernel H,(C,) such that the quotient morphism Z,(C,) - H.(C,) is a
morphism of differential graded R-algebras. Prove that altogether this defines a functor,

H:R-CDGA - R -GrComm.

(c) A differential graded R-algebra C, is (strictly) 0-connected, resp. weakly 0-connected, if the
underlying associative, unital, graded commutative R-algebra is 0-connected, resp. weakly 0-
connected. Denote by R — CDGA,g, resp. R— CDGAL, the full subcategory of R — CDGA whose
objects are the 0-connected differential graded R-algebras, resp. those that are weakly 0-connected.
Prove that the functors above restrict to functors,

E: R-GrCommsy - R - CDGA,,,

Ze: R—CDGA,y - R - GrComms,
such that (E, Z,0,n) is still an adjoint pair. Similarly, show that H restricts to a functor

H:R-CDGA,y - R - GrComml,,.

(d) Denote by R - CDGA[g ] the full subcategory of R - CDGA, whose objects are 0-connected
differential graded R-algebras C, such that C), is a zero object for n > 1. Prove that every such
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object is uniquely determined by the data of an R-module C; and an R-module homomorphism
dc, : C1 —» Cp = R, and conversely such data uniquely determine an object of R—CDGA[g ;. Prove
that for such algebras C, and D,, every morphism ¢, : Cy — D, of differential graded R-algebras is
uniquely determined by an R-module homomorphism ¢, : ¢y = D; such that dp; o ¢; equals d¢ 1,
and conversely, such an R-module homomorphism uniquely determines a morphism of differential
graded R-algebras. Conclude that there is a functor

O0l0,1] * R - CDGAZ() - R - CDGA[OJ],

that associates to every 0-connected differential graded R-algebra C, the algebra o7g17(C,) uniquely
determined by the R-module homomorphism d¢; @ C; - Cp = R and that associates to every
morphism ¢, : Cs - D, of O-connected differential graded R-algebras the morphism,

0[0,1](¢-) : 0[0,1](0-) - 0[0,1](D.),

uniquely determined by the morphism ¢, : C} - D;y.

(e) For every R-module M and for every R-module homomorphism ¢ : M — R, prove that there
exists a unique sequence of R-module homomorphisms,

n n—1

(dargn s NM) = N\ (M))nso,
R R

such that d; equals ¢ and such that (AR(M),dne) is a 0-connected differential graded R-algebra.
It may be convenient to begin with the case of a free R-module P and a morphism ¢ : P - R, in
which case every AR(P) is also free and the R-module homomorphisms d,, is uniquely determined
by its restriction to a convenient basis. Given a presentation M = P/K such that ¢ factors uniquely
through ¢ : M — R, prove that the associative, unital, graded commutative R-algebra A%L(M) is the
quotient of A%(P) by the left-right ideal generated by K c P = Ai(P). Also prove that dp, maps
this ideal to itself, i.e., the ideal is differentially-closed. Conclude that there is a unique structure
of differential graded algebra on the quotient A%(M) such that the quotient map is a morphism of
differential graded R-algebras.

(f) Prove that the construction of the previous part defines a functor,

/\ R - CDGA[OJ] - R- CDGAzo
R

Prove that for every object (¢: M — R) of R—CDGA(g 1], the morphism
1
0(M,¢): M — \(M)
R

is a natural isomorphism

0 :1dr-cpcag,; = o110 /\-
R
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Similarly, for every object O-connected differential graded R-algebra C,, prove that the natural
transformation from Problem 10(g),

n(C) /;;(cn oA

is compatible with the differential on A%(C}) induced by d¢; : Cy — Cp = R, i.e., n(C,) is a natural
transformation,

n: N\ °op1] = Idr-cpGas,-
R

Conclude that (A%, 70,17,6,7) is an adjoint pair of functors. For every ¢ : M — R in R—CDGA[ 13,
the associated 0-complete differential graded R-algebra structure on AR(M) is called the Koszul
algebra of ¢ : M - R and denoted K,(M, ¢).

(g) For every R-module M, and for every R-submodule M’ of M, denote by F*' c AR(M) the
left-right ideal generated by M’ c M = AL(M). For every integer n < 0, denote by F'™ c AL(M)
the entire algebra. For every integer n > 1, denote by F™ the left-right ideal of A%(M) generated
by the n-fold self-product F'!----- F'l. For every pair of nonnegative integers p, ¢, prove that the
ideal FP - F4 equals FP*4. In particular, prove that there is a natural epimorphism,

>

(F1) ®R§<M) > Fly,

Denote the quotient M /M’ by M", and denote by ¥ the short exact sequence,

u v

: 0 —— M’ M M" —— 0.

For every nonnegative integer ¢, prove that the R-module morphism,
q q q ”
A@) : A(M) > A(M"),
R R R
is an epimorphism whose kernel equals F ql. Conclude that the composite epimorphism
s / A P P p+1
/};(M ) ®r /’}(M) > Fpig = Fpig/ Fig
factors uniquely through an R-module epimorphism
R I A ” +1
cspat NM") @r N(M") = Fo| Fy -
R R

In case there exists a splitting of 3, prove that every epimorphism cs, ,, , is an isomorphism. On the
other hand, find an example where ¥ is not split and some morphism cy, , , is not a monomorphism
(there exist such examples for R = C[z,y]).
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(h) Continuing the previous problem, assume that M” is isomorphic to R as an R-module (or,
more generally, projective of constant rank 1), so that 3 is split. For every nonnegative integer p,
conclude that there exists a short exact sequence,

/\%‘#1 (u)

71

Yoo 0 — /\pH(M’) p+1(M) %(M’) R M — 0’

p,1°

that is split. Check that this is compatible with the product structure and, thus, defines a short
exact sequence of graded (left) A%(M )-modules,

/\R( u) -

AR(D): 0 —— AR(M') S5 AR(M) —— AR(M') @5 M"[+1] —— 0.

(i) Now, let ¢ : M - R be an R-module homomorphism. Denote by ¢’ : M’ - R the restriction
¢ ou. These morphisms define structures of differential graded R-algebra, K.(M,¢) on AR(M),
and K,(M’',¢") on AR(M'). Moreover, the morphism A%(u) above is a morphism of differential

graded R-modules,
K(u): KJ(M',¢") = KJ(M, ).

Prove that the induced morphism
cst Ko (M, ¢) - K (M, ¢') @ M"[+1]

is a morphism of cochain complexes. Moreover, for a choice of splitting s : M — M, for the induced
morphism ¢” : M" - R, ¢"" = ¢ o s, for the induced morphism of cochain complexes,

IdK.(M’,d)’) ® ¢" : K'(M,7 ¢,) ®R M" - KO(M,7 d),)?
prove that there is a unique commutative diagram of short exact sequences,

q1d®¢> P1d®¢

Tieer: 0 —— Ko(M',¢') —2 Cone(Id® ¢") —=s K,(M,¢/) ® M"[+1] — 0

T : :

K(®) 0 — K(M,¢) = K(M¢) —2o  K(M,¢)opM" — 0.

(j) With the same hypotheses as above, conclude that there is an exact sequence of homology
(remember the shift [+1] above is cohomological),

Ho(Ko(M',6)) @5 M" 222 Ho(Ko (M, ¢')) 22 Hy(KL (M, 6)) >

e, Hy(KJ(M,p)) 2 Hy(K (M, 9))[o(M") - Hy(K.(M,$)) as a quotient algebra of R. Also, for
every n > 0, conclude the existence of a short exact sequence of Koszul homologies,

0~ K, (M',¢") @5 RII(") > K,(M.6) > Kot (M, M Y1y 0,
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where for every R-module N, Ny, 4y denotes the submodule of elements that are annihilated by the
ideal Im(¢") c R. As graded modules over the associative, unital, graded commutative R-algebra
K.(M' ¢") = H (KM’ ¢")), this is a short exact sequence,

0— K*(M/7 Qb,) ®r R/Im(d}”) w—”) K*(M7 (b) - K*—l(Mla ¢,7 M,,)Im(¢”) - 07
As a special case, if K,(M’,¢") is acyclic, and if the morphism

Id®¢"”

Ho(K(M',¢")) @ M" —— Ho(K.(M',¢'))

is injective, conclude that also K,(M, ¢) is acyclic.
(k) Repeat this exercise for the cohomological Koszul complexes K*(M, ¢).

17 Adjoint Pairs of Simplicial and Cosimplicial Objects

Constant Cosimplicial Objects and the Right Adjoint. Please read the basic definitions of
cosimplicial objects in a category C. In particular, for the small category A of totally ordered finite
sets with nondecreasing morphisms, read the equivalent characterization of a (covariant) functor

C:A>C,

via the specification for every integer r > 0 of an object C" of C, the specification for every integer
r >0 and every integer ¢ =0,...,r + 1, of a morphism,

81‘ . Cvr N Cr+1

r- )

and the specification for every integer r > 0 and every integer ¢ = 0,...,r, of a morphism,
0-71;+1 : CT+1 e CT?

satisfying the cosimplicial identities: for every r >0, for every 0<i<j<r+2,

i _ o -1
a7j“+1 °© 87" - a?"+1 °© ar ’
for every 0<i<j<r, ' .
ol o0l,=0" 000")
r+1 r+2 7 Yr+l r+27

and for every 0<i<r+1land 0<j<r,

. j-1 . .
‘ O o0y, 1<,
‘7 '_ ._ . ._ .
0),400, = Ider, i=j,i=7+1,
i1 o 4 S
0~} ooy, i>j+1
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Moreover, for cosimplicial objects C* = (C, 0%, 0%,,) and C* = (C", i, ,), read about the equiv-
alent specification of a natural transformation a® : C* - C* as the specification for every integer
r >0 of a C-morphism a” : C™ - C" such that for every r and i,

% T % ~1 r+1
(‘3rooz oar? Orp1 00 =a’ c)0-7"+1

Finally, for every pair of morphisms of cosimplicial objects, a®, 5*: C* - C*, a cosimplicial homo-
topy is a specification for every integer r > 0 and for every integer ¢ = 0,...,r of a C-morphism,

gf’+1 : CT+1 - a’r"
satisfying the following cosimplicial homotopy identities: for every r >0,
gg+1 ° 67(") = aT7 g;-#l ° a;+1 = 6T7

. Ji_og, 0<i<j<r,
gﬁ+1oa;i‘: g7‘+1oal 0<Z':j§7“’
Jlogl 1<j+l<i<r+l.

1 . .

I aogiil, 0<i<j<r-1,

Gy ©0p41 = ~i—1 0< i <
girlogl, ., <g<1Lr.

(a)(Constant Cosimplicial Objects) For every object C' of C, define const(C') to be the rule that
associates to every integer r > 0 the object C' of C, and that associates to (r,i) the morphisms
ot =1dg, oty = = Idc. Prove that const(C') is a cosimplicial object of C. For every morphism of
objects a: C'— C, prove that the specification for every integer r > 0 of the morphism a : C' - C
defines a morphism of cosimplicial objects,

const(a) : const(C) — const(C).

Prove that const(Id¢) is the identity morphism of const(C). For a pair of morphisms, «: C' — C
and 3 : C - C, prove that const( o @) equals const(S) o const(a). Conclude that these rules
define a functor

const : C -~ Fun(A,C).

Prove that this is functorial in C, i.e., given a functor F': C — D, for the associated functor,

Fun(A, F) : Fun(A,C) - Fun(A, D), (C", 0! Y= (F(CT), F(0),F(at,))),

T r+1

Fun(A, F) o conste strictly equals constp o F.

(b)(Morphisms from a Constant Cosimplicial Object) For every integer r > 1 and for every pair
of distinct morphisms [0] — [r], prove that there exists a unique A-morphism F': [1] - [r] such
that the two morphisms are Fod) and Fod}. Let C* = (C",0%,0°,,) be a cosimplicial object in C.
For every object A of C and for every morphism, a* : const(A) - C*, of cosimplicial objects, prove
that a®: A — C° is a morphism such that 9 o a® equals 9} o a®. Prove that the morphism «o* is
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uniquely determined by a?, i.e., for every r > 0, and for every morphism f:[0] —= [r], " : A > C"
equals C'(f)eal. Conversely, for every morphism a? : A - C such that 9§ oca? equals 9jca?, prove
that the morphisms o := C(f) o a® are well-defined and define a morphism «* : const(A) - C* of
cosimplicial objects. Conclude that the set map,

Hompyn(a c)(const(A), C*) - {a” e Home (A4, C°)|0) 0 a® = 95 0 o'}, a® = a?,

is a bijection. Prove that this bijection is natural in both A and in C*®. In particular, conclude
that the functor,
const : C - Fun(A,C),

is fully faithful. Finally, for every pair of morphisms, a?, 5% : A - C? equalizing 9] and 93, prove
that there exists a cosimplicial homotopy ¢%,, : A » C" from «a* to 8* if and only if 5% equals af,
and in this case there is a unique cosimplicial homotopy given by ¢’,, = a" = 5.

(c)(Equalizers in Cartesian Categories) Let A be the category of totally ordered sets of cardinality
< 1. Prove that a functor C*: A, — C is equivalent to the data of a pair of objects C°, C1, a pair
of morphisms 99,9} : C° - C', and a morphism 69 : C' - C° such that 0{ 093 = 6909} = Idco. Let,

Z%:Fun(A,C) - C,

be a functor and let,
n:const o Z° = Idpun(a )

be a natural transformation such that (const, Z°, n) extends to an adjoint pair of functors (const, Z°, 6, 7).
Prove that the natural transformation # is a natural isomorphism. Prove that for every object
C* of Fun(A,C), the morphism ne. : Z°(C*) - C? satisfies 9 o e = 9} o nes and is final among
all such morphisms. Prove that if a®, 3* : C* - C* are two morphisms of cosimplicial objects, and
if (gt,,:C™! > Cr) is a cosimplicial homotopy from a® to 8°, then Z%(a*) equals Z°(5*).
Assume that C has finite products. For every pair of objects N? and N' of C and for every pair
of morphisms d3,d} : N® - N1, define C° = N°, define C'' = N x N1, define 9 = (Idco,d)), define
0} = (Idco,d}), and define of = pryo. Prove that C* is an object of Fun(A.,C), and prove that
nee : Z9(C*) - CY is an equalizer of dj,d}: N° - N'. In particular, if C has both finite products
and Z°, prove that C has all equalizers of a pair of morphisms. For every pair of morphisms
fQ: M - NVand f3: MY - N'in C, for N° = MQ x MY, and for df = fSOpng and dj = fo © PI'yp0,
prove that the equalizer of dJ,d} : N® - N is a fiber product of f and fi. Conclude that C has
all finite fiber products, i.e., C is a Cartesian category. Conversely, assuming that C is a Cartesian
category, then, up to some form of the Axiom of Choice, prove that there exists a functor Z° and
a natural transformation 7 such that (const, Z° n) extends to an adjoint pair of functors.

(d)(The Right Adjoint to the Constant Cosimplicial Object) Assume now that there exists a functor
Z% :Fun(A.,C) - C,

and a natural transformation,
n:const o Z° = Idpun(a )

I0)
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such that (const, Z% n) extends to an adjoint pair of functors. For every cosimplicial object C* :
A — C, for the equalizer n: Z°(C*) - C° of 93 and 9], use (b) above to prove that there exists a
unique extension 7* : const(Z°%) - C* of  to a morphism of cosimplicial objects of C. Prove that

this defines a functor,
Z°:Fun(A,C) - C,

and a natural transformation,
n°® : const o Z° = [dFun(ac)s

such that (const, Z% n°) extends uniquely to an adjoint pair of functors, (const, Z°% 7*,6). Prove
that ¢ is a natural isomorphism. Prove that if o*, *: C* - C* are two morphisms of cosimplicial
objects, and if (g¢,, : C™*' - C") is a cosimplicial homotopy from a® to 8°*, then Z°(a*) equals

Z°(B*).
18 Topology Adjoint Pairs

Categories of Topologies on a Fixed Set Exercise. Recall from Problem 1(iv) on Problem
Set 3, for every partially ordered set there is an associated category. For a set P, form the partially
ordered set P(P) of subsets S of P. Then for objects S, S’ of the category P(P), i.e., for subsets
of P, the Hom set Homp(p)(S,S) is nonempty if and only if S” c S, in which case the Hom set
is a singleton set. In particular, this category has arbitrary (inverse) limits, namely unions, and it
has arbitrary colimits (direct limits), namely intersections. Moreover, it has a final object, @, and
it has an initial object, P.

Now let X be a set, and let P be P(X), so that P is a lattice. Denote by Powery the category
from the previous paragraph. Thus, objects are subsets S ¢ P(X), and there exists a morphism
from S to S’ if and only if S’ ¢ S, and then the morphism is unique. We say that S refines S’.
There is a covariant functor

u:P(P) > P,uS={zreX|IpeS,xep},
and a contravariant functor
N:P(P)? - P.nS ={zeX|VpeS,zep}.

By convention, ug = @ and ng = X.

A topology on X is a subset 7 ¢ P(X) such that (i) @ € 7 and X € 7, (ii) for every finite subset
S cr,alsonSisin 7, and (iii) for every S c 7 (possibly infinite), the set uS is in 7. Denote by
Topy the full subcategory of Powery whose objects are topologies on X. A topological basis on
X is a subset B ¢ P(X) such that for every finite subset S of B, the set V' = nS equals uBy,
where By = {U € B:U c V}. Denote by Basisy the full subcategory of Powery whose objects are
topological bases on X.
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(a) Prove that Topy is stable under colimits, i.e., for every collection of topologies, there is a
topology that is refined by every topology in the collection and that refines every topology that is
refined by every topology in the collection. Prove that Topy is a full subcategory of Basisx. For
every topological basis B on X, define 7 (B) to consist of all elements uS for S ¢ B. Prove that
T(B) is a topology on X. Prove that this uniquely extends to a functor

T : Basisxy — Topy,

and prove that 7T is a right adjoint of the full embedding. Moreover, for every subset S c P(X),
define B(S) to consist of all elements NR for R ¢ S a finite subset. In particular, n@ = X is an
element of B(S). Prove that B(.S) is topological basis on X. Prove that this uniquely extends to
a functor

B : Powerx — Basisy,

and prove that 7 o B is a right adjoint to the full embedding of Basisy in Powerx.

(b) Prove that for every adjoint pair of functors, the left adjoint functor preserves colimits (direct
limits), and the right adjoint functor preserves limits (inverse limits). Conclude that Topy is stable
under limits, i.e., for every collection of topologies, there is a topology that refines every topology
in the collection and that is refined by every topology that refines every topology in the collection.

(c) Let f:Y - X be a set map. Denote by
PIP(X) - P(Y)

the functor that associates to every subset S of X the preimage subset f~1(.S) of Y, and denote by
PriP(Y) = P(X)

the functor that associates to every subset T of Y the image subset f(7") of X. Prove that (P/,P;)
extends uniquely to an adjoint pair of functors. In particular, define

Power : Power x — Powery

to be Pps, i.e., for every subset S c P(X), Power(S) c P(Y) is the set of all subsets f1(U)cY
for subsets U c X that are in S. Similarly, define

Power” : Powery — Powery,

to be PP’ i.e., for every subset T'c P(Y), Power/ (Y) c P(X) is the set of all subsets U c X such
that the subset f~1(U) c Y is in T. Prove that (Power’, Power;) extends uniquely to an adjoint
pair of functors. Prove that Power; and Power’ restrict to functors Top x = Topy. For a given
topology o on Y and 7 on X, f is continuous with respect to o and 7 if o refines Power(7), i.e.,
for every T-open subset U of X, also f~1(U) is o-open in Y. For a given topology 7 on X, for
every topology o on Y, o refines Power;(7) if and only if f is continuous with respect to o and 7.

7


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

Similarly, for a given topology o on Y, for every topology 7 on X, Power! (¢) refines 7 if and only
if f is continuous with respect to o and 7.

Adjoint Pair for the Category of Topological Spaces Exercise. A topological space is a pair
(X,7) of a set X and a topology 7 on X. For topological spaces (X,7) and (Y,0), a continuous
map is a function f : X — Y such that for every subset V' of Y that is in o, the inverse image
subset f~1(V) of X is in 7, i.e., o refines Power;(7) and 7 is refined by Power’ (o).

(a) Prove that for every topological space (X, ), the identity function Idy : X - X is a continuous
map from (X,7) to (X, 7). For every pair of continuous maps f: (X,7) - (Y,0) and ¢g: (Y,0) >
(Z,p), prove that the composition go f: (X,7) - (Z,p) is a continuous map. With this notion
of composition of continuous map, check that the topological spaces and continuous maps form a
category, Top.

(b) For every topological space (X, 7), define ®(X) to be the set X. For every continuous map of
topological spaces, f: (X,7) = (Y,0), define ®(f) : (X) - &(Y) to be f: X - Y. Prove that
this defines a covariant functor,

® : Top — Sets.

(c) For every set X, define L(X) = (X,P(X)), i.e., every subset of X is open. Prove that P(X)
satisfies the axioms for a topology on X. This is called the discrete topology on X. For every
set map, f: X — Y, prove that f: (X,P(X)) - (Y,P(Y)) is a continuous map, denoted L(f).
Prove that this defines a functor,

L : Sets - Top.

For every set X, define fx : X — ®(L(X)) to be the identity map on X. Prove that 6 is a natural
equivalence Idgets = ® o L. For every topological space (X, 7), prove that Idy is a continuous
map (X,P(X)) - (X,7), denoted 7x ). Prove that n is a natural transformation L o ® = Idpp.
Prove that (L, ®,6,n) is an adjoint pair of functors. In particular, ® preserves monomorphisms
and limits (inverse limits).

(d) For every set X, define R(X) = (X,{@,X}). Prove that {@, X} satisfies the axioms for a
topology on X. This is called the indiscrete topology on X. For every set map f: X — Y, prove
that f: R(X) - R(Y') is a continuous map, denoted R(f). Prove that this defines a functor,

R : Sets — Top.

For every set topological space (X, 7), prove that Idx is a continous map (X,7) - R(®(X,7)),
denoted a(x ). Prove that « is a natural transformation Idypep, = Ro®. For every set S, denote by
Bx : P(R(X)) - X the identity morphism. Prove that J is a natural equivalence ® o R = Idgets.
Prove that (®, R, «, ) is an adjoint pair of functors. In particular, ® preserves epimorphisms and
colimits (direct limits).

(e) Use the method of Problem 0 to prove that Top has (small) limits and colimits. Finally, prove
that the projective objects in Top are precisely the discrete topological spaces, and the injective
objects in Top are precisely the nonempty indiscrete topological spaces.
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Adjoint Pair of Direct Image and Inverse Image Presheaves. Let (X, 7x) be a topological
space. As above, consider Tx as a category whose objects are open sets U of the topology, and
where for open sets U and V, there is a unique morphism from U to V if U 2 V, and otherwise
there is no morphism. Let C be a category. A presheaf on (X, 7x) of objects of C is a functor,

A:mx > C,

i.e., a Tx-family as in Problem 0. By Problem 0, the 7-families form a category Fun(7x,C), called
the category of presheaves of objects of C. For every continuous map f: (Y, 7y) - (X, 7x), define

fhimx =1y,
as in Problem 1(c), i.e., U — f~1(U). The corresponding functor
%1 : Fun(1y,C) - Fun(7x,C)
is called the direct image functor and is denoted f,, i.e., for every presheaf F on (Y,7y), f.F is a

presheaf on (X, 7x) given by (f.F)(U) = F(f~1(U)).

(a) Denote by o the category whose objects are pairs (U, V') of an object U of 7x and an object
V of 7 such that V' is contained in f~1(U). For objects (U, V) and (U’, V'), there is a morphism
from (U,V) to (U’, V') if and only if there is a morphism U 2 U’ in 7y and a morphism V' 2V’ in
Ty, and in this case the morphism for (U, V) to (U’, V') is unique. Prove that this is a category.

Prove that the map on objects,
riop—>1x, (UV)~U,

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following maps on objects,

lx T™x > 0y, Ur (U7 f_l(U))u

re:Tx > of, U (U @)

extend uniquely to functors, and prove that (¢z,z) and (z,rz) extend uniquely to adjoint functors,
ie., (U, f1(U)), resp. (U,@), is the initial object, resp. final object, in the fiber category (o)..u-
Prove that the map on objects

y:or =1y, (UV)=V

extends uniquely to a functor that is essentially surjective (in fact strictly surjective on objects).
Prove that the following map on objects,

ly:my =05, Vi (X,V),

extends uniquely to a functor, and prove that (fy,y) extends uniquely to an adjoint functor, i.e.,
(X, V) is the initial object in the fiber category (o), v. Prove that yol, is the functor f~!:7x - 7y
from above. Find an example where y does not admit a right adjoint.
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Assume now that C has colimits. Apply Problem 0(g) to conclude that there are adjoint pairs
of functors (%4, *pz), (*ra, *2), (%4, %ey), and (L, *,). Compose these adjoint pairs to obtain an
adjoint pair (Ly o, %4 0 %, ). Also, by functoriality of %, in z, %, 0%, equals *,0s,, and this equals
% r-1. Thus, this is an adjoint pair (L, o #,, fx). Unwind the defintions from Problem 0(g) to check
that for every presheaf A on X and for every V' an object of 7y, L, o %,(A) on V is the colimit over
the fiber category (o), of all U an object of 7x with V ¢ f~1(U) of A(U). The functor L, o %,
is the inverse image functor for presheaves,

f:Fun(rx,C) - Fun(1y,C).

Cech Cosimplicial Object of a Covering Exercise. Let (X, 7x) be a topological space. For
every object U of Ty, prove that the topology 7y on U associated to i : U - X via Problem 1(c)
is a full, upper subcategory of 7x that has an initial object ® = U. For every U, an open covering
of U is a set 4 and a set map g : 4 - 7y such that ulmage(ry) equals U. Define o to be the
category whose objects are pairs (U, 4l) of an open U in 7x and an open covering tg : 4 — 7¢;. For
objects (U,4l) and (V,0), a o-morphism from (U, 4l) to (V,0) is a pair U 2 V' of a morphism in
Tx and a refinement ¢ : 4 > Y, i.e., a set function ¢ : Y — U such that for every Vg in B, vy (p(Vp))
contains ty(Vp). In particular, for every object (U, 1y : 4 - 77) of o, define U = Image(ty) with its
natural inclusion ¢y : U < 7y . Up to the Axiom of Choice, prove that there exists a refinement
¢ (U,) > (U,2). Thus, the open coverings with ¢ a monomorphism are cofinal in the category o.
(a)(Category of Open Coverings) For every pair of refinements, ¢ : (U, ) > (V,0) and ¢ : (V, ) >
(W,20), prove that the composition ¢ o1 : 20 — 4l is a refinement, ¢ o ¢ : (U, U) - (W, 20). Also
prove that Idy : 4l - l is a refinement (U, ) - (U, ). Conclude that these rules define a category
o whose objects are open coverings (U, 4l) of opens U in 7x and whose morphisms are refinements.
Define z : 0 — 7x to be the rule that associates to every (U, ) the open U and that associates to
every refinement ¢ : (U, 4) > (V,0) the inclusion U 2 V. Prove that this is a strictly surjective
functor. Prove that the map on objects,

lx:1x >0, U~ (U{U}),

extends uniquely to a functor, and prove that ({z,x) extends uniquely to an adjoint pair of
functors, i.e., (U,{U}) is the initial object in the fiber category o, . Typically x does not admit
a right adjoint.

For every open covering vy : 4 - 7/, for every integer r > 0, define the following set map,

Lgr+1 Zﬂﬂ—l - TU, (U(), Ul, .. ~7U7“) = Lu(Uo) n Lu(Ul) NN Lu(UT).

Let C be a category, and let A be an C-presheaf on (X, 7x). Let (U,4l) be an object of o. Recall
that for every object T of C, there is a Yoneda functor,

hy : C°P? — Sets, S~ Hom¢(S,T),
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and this is covariant in T". For every integer r > 0, define

has, 1 CP? — Sets, S+~ I hoaqs,...u (S),
(Uoseo Uy )etlr+1

together with the projections,

(o, Un)  Pagr = haqws,...u0))-

For every integer r > 0, and for every integer ¢ =0,...,r + 1, define

Oy hasy = hasr,

to be the unique natural transformation such that for every (Uy,...,Ur1) € U2, Ty, v,,0) © OF
equals the composition of the projection,

T (U, Ui1,Uis1 s Ups1) has,r = hA(L(UO,...7U1-_1,Ui+1n7nUr+1))7
with the natural transformation of Yoneda functors arising from the restriction morphism
A((Ug) n---ne(Uisy) ne(Uipr) N ne(Upir)) = A((Uo) 00 e(Upyr)).
Similarly, for every ¢ =0,...,r, define

) .
Opy1 - h/A,LI,r+1 - hA,L[,r

to be the unique natural transformation such that for every (Uy,...,U,) € U1, (o, Unsr) © ofurl
equals the projection m, . v, 1 .Ui,UUssr,Un)-

(b)(Cosimplicial Identities) Prove that these natural transformations satisfy the cosimplicial iden-
tities: for every r > 0, for every 0 <7< j <7+ 2,

o

i _ 9 j—1
r+1oar_ r+1oar )

for every 0 <e<j<r,

J i _ i j+1
Ur+1 ©0p42 =0p41° Ur+27

and for every 0<i<r+1land 0<j<r,

. i1 . .
i . 871'—100-7]“ ) Z<]7
ol 00 = Id, i=ji=j+1,
di-tooi i>j+1

In the case that C is an additive category, define
r+l
A" hagy > hager, d =) 0L

1=0
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Prove that d"*! o d" equals 0.

(c)(Refinements and Cosimplicial Homotopies) For every refinement, ¢ : (U, ) > (V,0), for every
integer r > 0, define
hA,qS,r : hA,)J,r - hA,Q],r

to be the unique natural transformation such that for every (V4,...,V,) € U7+, the composition
T(Vo,...i) © Pagr equals the composition of projection

TG0t (V) * Reattr = Ra((vo)nno(12))
with the natural transformation of Yoneda functors arising from the restriction morphism
A(p(Vo) n---nep(Vr)) > A((Vo) n---ne(V7)).

Prove that the natural transformations (h4 4., )r>0 are compatible with the natural transformations
Ji and o',,. For every pair of refinements, ¢ : (U,4) > (V,0) and ¢ : (V,0) > (W,20), for the
composition refinement ¢ o1 : (U, L) = (W,20), prove that hy gy, equals ha .y, 0 ha g, and also
prove that hayq,, equals Idy, . Thus ha g, is functorial in ¢.

Let ¢ : (U, U) = (V,0) and ¢ : (U, ) > (V,0) be refinements. For every integer r > 0, for every
integer ¢ =0,...,r, define ‘
gf4,¢7¢7r+1 : hA,U.,rH - hA,‘B,r

to be the unique natural transformation such that for every (Vo,..., V) € U, 7y, v Ogil,qb,zb,ﬂl
equals the composition of the projection,

T (Vo) (Vi) (Vi) (Vi) * A sr41 = RAG( (Vo) (Vi) 6(Vi) (Vi)

with the natural transformation of Yoneda functors arising from the restriction morphism
A(p(Vo) n---np(Vi) neg(Vi) n---nep(Ve)) > A((Vo) 0= (Vi) -0 u(V7)).
Prove the following identities (cosimplicial homotopy identities),

0 0 — r r+l
gA7¢’w’T+1 °© 8A7u7r - hA’(b’T’ gA»¢7’¢)77“+1 °© aAyuyr - h’A,iﬁ,T‘)

i1 .
8A‘Hr ng4,¢wyr, 0<i<g<r,
J i _ 1 .
gA7¢7¢77’+1 © 81147u’r - gA ¢ 'w r+1 °© aALlr? 0 < Z - j S r?
D hr1 © Thpuprr LSTH1I<i<r+1,
J+1

gil,(]ﬁﬂpvr ° 0?4,5.1,7%1 - { UAZA‘IBT ) gAQ57,ZJT+17 0 : 2 : ]S T - 1’

UAQ?rogA,¢¢r+1> 0<g<esr.
For the identity refinement Idy : 4 > 44, prove that ¢’ IdId 1 equals o’ At Also prove that for
refinements x : 0 - W and §: T >4 ¢y 40 0o 0y equals hayp0g) 40, and 7, oscoppnr CCUALS

gA,(]S,w,T-Fl ° hA7§7T+1
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(d)(Functoriality in A) For every morphism of C-presheaves, a: A - A’ define

ha,u,r : hA,U.,T - hB,Ll,m

to be the unique natural transformation whose postcomposition with each projection g (r,,...,)
equals the composition of 74 (1, ) With the natural transformation induced by the morphism

aL(Uo,...,Ur) : A(L(U(), SN Ur)) g A,(L(U(), ey Ur))

Prove that these maps are compatible with the cosimplicial operations 9! and ¢’,,, as well as the
operations h g 4, associated to a refinement ¢ : 4l > 20, and the cosimplicial homotopies gi" babiril
associated to a pair of refinements, ¢, : 4 > 0. Prove that this is functorial in a. Conclude that
(up to serious set-theoretic issues), for every open cover 4, morally these rules define a functor
from the category of C-presheaves to the “category” of cosimplicial objects in the category of con-
travariant functors from C to Sets. Stated differently, to every open cover 4l there is an associated
cosimplicial object in the category Fun(C — Presh, Fun(C, Sets)) of covariant functors from the
category of C-presheaves to the category of contravariant functors C — Sets. This rule is covariant
for refinement of open covers. Moreover, up to simplicial homotopy, it is independent of the choice

of refinement.

(e)(Coadjunction of Sections) As a particular case, for the left adjoint ¢z of =, observe that there
is a canonical refinement

nuy : lxox(U,U) > (UN), ie., (UA{U}) = (U,U).

Prove that h, (y), is the constant / diagonal cosimplicial object that for every r associates hu )
and with 9 and o equal to the identity morphism. Conclude that for every cover (U, ) in o, there
is a natural coaugmentation,

Gag:hawy = hayr,
that is functorial in A, functorial in (U,4l) with respect to refinements, and that equalizes the
simplicial homotopies associated to a pair of refinements in the sense that

J r+l _ 7
Ia,ppr+1°944 = Gaw ° hAg'

Define the functor
const : Fun(o,C) - Fun(A x 0,C)

that associates to a functor B : 0 - C the functor constg : 0 — Fun(A,C) whose value on every
(U, L) is the constant / diagonal cosimplicial object r » B(U, ) for every r with every 9 and o*
defined to be the identity morphism. Conclude that the rule U + (r = ha()) above is the Yoneda
functor associated to const o *,(A).

(f)(Cech cosimplicial object) Assume now that C has all finite products. Thus, for every open
covering (U,4l) and for every integer r > 0, there exists an object

Crw,A) = [ AWon--nl,),

(U(),...,UT)ELL
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such that ha gy, equals her gy 4). Use the Yoneda Lemma to prove that there are associated mor-
phisms in C,

aiw : Cw(il, A) — O”l(il, A),
Tl CLTH(A) = CL(A),
Cm(p,A): C"(U,A) - C"(T, A),
C’T+1’i(¢,’(/},A) . C«r+1(u’A) N ér(m’A)’
C (L) : C7 (8, A) - C" (4, A"),

whose associated morphisms of Yoneda functors equal the morphisms defined above. Thus, in this
case, C* (4, A) is a cosimplicial object in C. Prove that this defines a covariant functor

C(44,-) : Fun(rx,C) - Fun(A,C).
Incorporating the role of i, prove that this defines a functor
C : Fun(7x,C) - Fun(A x 0,C).
Prove that this is, typically, not equivalent to the composite functor,
const o *, : Fun(7x,C) - Fun(o,C) - Fun(A x 0,C).
However, prove that the coadjunction in the last part does give rise to a natural transformation,

g :const o *, = C.

(g) Assume now that there exists a functor,
Z%: Fun(A,C) - C,

and a natural transformation,
n: const o Z° = Idpun(a )

such that (const, Z% n) extends to an adjoint pair of functors, i.e., assume that C is a Cartesian
category. Use Problem 4(d) to conclude that there exists a functor,

Z° :Fun(A x 0,C) - Fun(o,C),

and a natural transformation,
n: const o ZO = IdFun(Axa,C)u

such that (const, Z% n) extends to an adjoint pair of functors, (const,Z% n,0) such that 6 is a
natural isomorphism. Moreover, for every A* : A x ¢ — C, for every object (U,4) of o, prove
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that n: Z0(A*(U) - A%(U)) is an equalizer of 97,0 : A°(Ll) - AY(Y). Finally, the composition of
natural transformations, (Z%o g) o (6 o ), is a natural transformation

Z%(g) i %y = Z%0constox, = Z°0 C.

In particular, conclude that for a refinement ¢ : (U, 1) > (V,0), the induced morphism Z 0(Ce(4, A))
Z9(C*(0, A)) is independent of the choice of refinement.

(h) Let (U,¢: 4 - 77) be an object of 0. Let ¢ : (U, ) > (U,{U}) be a refinement, i.e., * = ¢p(U) is
an element of l such that ¢(*) equals U. Thus, (U, ) admits both the identity refinement of (U, 1)
and also the composite of ¢ with the canonical refinment from (e), nygcircg. Using (c), prove that
the identity on C*(4, ) is homotopy equivalent to C'(nyy, —) o C(¢,~). On the other hand, the
refinement ¢ o 9y of (U, {U}) is the identity refinement. Thus the composite C(¢,~) o C(ny.y, )
equals the identity on C*({U},~). Prove that C*(4, A) is homotopy equivalent to the constant
simplicial object const 4y, and these homotopy equivalences are natural in A and open coverings

(U, L) that refine to (U,{U}).

Sheaves Exercise. Let (X, 7x) be a topological space. Let C be a category. A C-sheaf on (X, 7x)
is a C-presheaf A such that for every open subset U in Ty, for every open covering ¢ : 4 - 77 of U,
the associated sequence of Yoneda functors,
9A I
hawy — hago = hasu,
is exact, where the two arrows are 99 o and % o Stated more concretely, for every object .S of

C, for every collection (sy, : S - AL (U())))eru of C-morphisms such that for every (Up, Uy) € 42,
the following two compositions are equal,

«(Up) «(U1)

§ = A(u(Up)) == AU nu(U), S = A(u(U)) ==

there exists a unique morphism s : S — A(U) such that for every Uy € 4, sy, equals AY

A(e(Up) ne(Uh)),

«(Uo) ©
(a) (Sheaf Axiom via Cech Objects) For simplicity, assume that C is a Cartesian category that has

all small products. In particular, assume that the functors C' and Z° of the previous exercise are
defined. Prove that a C-presheaf on (X, 7y) is a sheaf if and only if the morphism

Z°(g) : *:(A) > Z°(C(A))
of objects in Fun(o,C) is an isomorphism.

(b)(Associated Sheaf / Sheafification Functor) Now assume that C has all small colimits. In
particular, assume that there exists a functor

L, :Fun(o,C) - Fun(7x,C),

such that (L,, *,) extends to an adjoint pair of functors. Using Exercise 0(g), prove that for every
open U in 7x and for every functor,
B:o-C,
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L,(B)(U) is the colimit of the restriction of B to the fiber category o, ;7. In particular, since open
coverings (U,¢: 4 - U) such that ¢ is a monomorphism are cofinal in the category o, , it suffices
to compute the colimit over such open coverings. For every functor,

AZTX—>C,

prove that L, o *,(A) - A is a natural isomorphism. Denote by Sh : Fun(7x,C) - Fun(7y,C)
the composite functor, )
L,0Z"0C:Fun(rx,C) - Fun(r,,C).

Prove that there exists a unique natural transformation,

sh : Idpun(r,,c) = Sh,

whose composition with the natural isomorphism above equals L,(Z%(g)). For every sheaf A,

prove that
sh: A — Sh(A)

is an isomorphism.
(c)(The Associated Sheaf is a Sheaf) Let (U,¢: 4 — 77) an object of o, and let,
(L(Uo), Ry, * mUo - TL(U()))?

be a collection of open coverings of each «(Uy). For every pair (U, Uy) € U2, let

(L(UO7 U1)7 KU(),Ul : mUo,Ul - TL(U(),U1))7

be an open covering together with refinements

o0 (L(Uo), Bu,) = ((Uo, U1), Bugin ), &6 : (L(U1),Buy) = ((Uo, Ur), B0 )-
Define
U := (UyeeuVu, ) U ('—'(Uo,Ul)euQ’BUo,Ul) )

define
k0 - 1y,

to be the unique set map whose restriction to every Uy, equals ky, and whose restriction to every
Uy, v, equals Ky, r,. For every Uy € 4L, define

du, (U, k28 = 117) = (1(Uh), K * By = TL(UQ))7

to be the obvious refinement. For every Uy € i, define Z(Uy, A) = Z9(C*(Vy,, A)). For every
(Uo, Ur) € U2, define Z°(Uy, Uy, A) = Z°(C*(Vy,v,,A)). Define

2O A) =TT Z2°(Us, A),

Uo esl
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Zl(u7A) = H ZO(U(]?Ul;A)a
(Uo,Ul)ELl2

0 = 2°(4, A) = Z (U, A), 94 (zu,) = (Agia, (20))vp,01 -
Prove that the restriction morphism,
Z%(¢*) - 2°(B, A) > 2°(Z* (4, A)),
is a €-isomorphism. Conclude that Sh(A) is a sheaf. Denote by,
¢ : C - Sh(x ry) = C - Presh(x +y),
the full embedding of the category of sheaves in the category of presheaves. Thus, Sh is a functor,
Sh:C - Presh(x ) = C = Sh(x ),

and sh is a natural transformation Id¢_presn, = ® o Sh. Conclude that (Sh,®,sh) extends to an
adjoint pair of functors.

(d)(Pushforward and Inverse Image) For a continuous map f: (X,7x) - (Y, 7y ), prove that the
composite functor,

C- Sh(X,TX) i C- PI‘eSh(X,.,-X) & C- Presh(yw),
factors uniquely through ® : C - Sh¢y,, ) = C = Presh(y ), i.e., there is a functor

f* :C - Sh(X,TX) -C- Sh(Y,Ty)a

such that f, o ® equals ® o f,. On the other hand, prove by example that the composite

-1
C = Shiy.ry) = C - Preshy.,, ) 2 C - Preshx )
need not factor through ®. Define
f1:C=Shyry) ~ C—=Shxry),

to be the composite of the previous functor with Sh : C — Presh(x -,y = C = Sh(x ). Prove that
the functors (f~!, f«) extend to an adjoint pair of functors between C — Sh(x -,y and C = Sh(y,~).

Espace Etalé Exercise. Let (X,7x) be a topological space. A space over X is a continuous
map of topological spaces, f : (Y,7y) — (X, 7x). For spaces over X, f: (Y,7y) - (X,7x) and
g:(Z,77) > (X, 7x), a morphism of spaces over X from f to g is a continuous map u : (Y, 7y ) -
(Z,7x) such that g owu equals f.

(a)(The Category of Spaces over X) For every space over X, f: (Y,7v) — (X,7x), prove that
Idy : (Y,7y) — (Y,7y) is a morphism from f to f. For spaces over X, f: (Y,7y) - (X,7x),
g:(Z,77) - (X,7x) and h: (W,ny) - (X, 7x), for every morphism from f to g, u: (Y,7v) -
(Z,72), and for every morphism from g to h, v : (Z,77) = (W, 7w ), prove that the composition
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vou: (Y, 7y) = (W, my) is a morphism from f to h. Conclude that these notions form a category,
denoted Top x .-

(b)(The Sheaf of Sections) For every space over X, f: (Y, 7y) — (X, 7x), for every open U of 7y,
define Secy(U) to be the set of continuous functions s : (U,7y) - (Y,7y) such that fos is the
inclusion morphism (U, 7y) - (X, 7x). For every inclusion of 7x-open subsets, U 2 V, for every s
in Secs(U), define s|y to be the restriction of s to the open subset V. Prove that s|y is an element
of Secy(V'). Prove that these rules define a functor

Secy: Tx = Sets.

Prove that this functor is a sheaf of sets on (X, 7x).

(c)(The Sections Functor) For spaces over X, f(Y,7y) - (X,7x) and ¢ : (Z,77) — (X,7x), for
every morphism from f to g, u: (Y,7y) = (Z,72), for every 7x-open set U, for every s in Secs(U),
prove that wo s is an element of Sec,(U). For every inclusion of 7x-open sets, U 2 V, prove that
uo (sly) equals (uo s)|y. Conclude that these rules define a morphism of sheaves of sets,

Sec,, : Secy = Sec,.

Prove that Seciq, is the identity morphism of Secy. For spaces over X, f: (Y, 7y) - (X,7x), ¢
(Z,72) = (X,7x) and h: (W, 1w ) = (X, Tx), for every morphism from f to g, u: (Y, 7y) = (Z,72),
and for every morphism from g to h, v: (Z,77) - (W, 7), prove that Sec,., equals Sec, o Sec,.
Conclude that these rules define a functor,

Sec: Top(y ;) = Sets — Sh(x ).

(d)(The Espace Etalé) For every presheaf of sets over X, F, define Esp, to be the set of pairs
(z,¢.) of an element x of X and an element ¢, of the stalk F, = colim,y F(U); such an element
is called a germ of F at z. Denote by

mr:Espr = X,

the set map sending (x, ¢,) to x. For every open subset U of X and for every element ¢ of F(U),
define B(U, ¢) c Esps to be the image of the morphism,

¢:U > Espy, > ¢,

Let (U,v) and (V,x) be two such pairs. Let (z,¢,) be an element of both B(U, 1) and B(V, ).
Prove that there exists an open subset W of UnV containing = such that ¢|y equals x|y. Denote
this common restriction by ¢ € F(W). Conclude that (z,¢,) is contained in B(W,¢), and this
is contained in B(U, ) n B(V,x). Conclude that the collection of all subset B(U, ¢) of Espy is
a topological basis. Denote by 7x the associated topology on Esp,. Prove that 7 is the finest
topology on Espx such that for every 7x-open set U and for every ¢ € F(U), the set map 25 is a
continuous map (U, 7y) - (Espz, 7). In particular, since every composition 7o is the continuous
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inclusion of (U, 7y) in (X,7x), conclude that every ¢ is continuous for the topology 7 (7x) on
Espz. Since 7x refines this topology, prove that

r: (Espg,77) = (X, 7x)

is a continuous map, i.e., 7 is a space over X.

(€)(The Espace Functor) For every morphism of presheaves of sets over X, a: F — G, for every
(z,¢,) in Espy, define Esp, (2, ¢,) to be (z,a,(¢,)), where a,, : F,, - G, is the induced morphism
of stalks. For every Tx-open set U and every ¢ € F(U), prove tht the composition Esp,, o 5 equals
om as set maps U — Espg. By construction, om is continuous for the topology 75. Conclude
that ¢ is continuous for the topology (Esp,)~'(7g) on Esp,. Conclude that 7+ refines this topology,
and thus Esp,, is a continuous function,

Esp,, : (Espg, 77) = (Espg, 7g).

Prove that Espyy, equals the identity map on Espz. For morphisms of presheaves of sets over X,
a:F -G and §:G — H, prove that Espg,, equals Espg o Esp,. Conclude that these rules define
a functor,

Esp : Sets — Presh(x ) > Top(x ;)

(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, F, for every 7x-
open set U, for every ¢ € F(U), prove that ¢ is an element of Sec,,(U). For every Tx-open subset
U2V, prove that $|V equals ¢|y. Conclude that ¢ — ;5 is a morphism of presheaves of sets over
X,

0r : F - Sec o Esp(F).

For every morphism of presheaves of sets over X, o : F - G, for every 7x-open set U, for every
¢ € F(U), prove that Esp, o8z (¢) equals ay(¢), and this in turn equals g 7 o ay(¢). Conclude
that Sec o Esp(«) o 0 equals g o . Therefore 6 is a natural transformation of functors,

0 : IdSets—Presh(Xﬂ_X) = Seco ESp

(g) (Alternative Description of Sheafification) Since SecoEsp(F) is a sheaf, prove that there exists
a unique morphism

0 : Sh(F) - Sec o Esp(F)

factoring 0. For every element t € Sec o Esp(F)(U), a t-pair is a pair (Up, s9) of a Tx-open subset
U 2 Uy and an element sy € F(Up) such that t-1(B(Uy, sg)) equals Uy. Define i to be the set of
t-pairs, and define ¢ : 31 - 717 to be the set map (Uy, sg) = Uy. Prove that (U, : U - 77) is an
open covering. For every pair of t-pairs, (Uy, sg) and (Uy,sy), for every x € Uy n Uy, prove that
there exists a 7x-open subset Uy, ¢ Uy n U, containing x such that sqly,, equals s1|y,,. Prove
that this data gives rise to a section s € Sh(F)(U) such that 0x(s) equals t. Conclude that  is
an epimorphism. On the other hand, for every r,s € F(U), if 0 ,(r;) equals 05 ,(s,), prove that
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7(x) equals 5(x), i.e., 7, equals s,. Conclude that every morphism 0, is a monomorphism, and
hence 6§ is a monomorphism of sheaves. Thus, finally prove that 0 is an isomorphism of sheaves.
Conclude that # is a natural isomorphism of functors,

6 :Sh = Seco Esp.

(h) For every space over X, f: (Y, 7y) — (X, 7x), for every 7x-open U, for every s € Secs(U), and
for every x € U, define a set map,

NpueSec(U) =Y, s s(x).

Prove that for every 7x-open subset U 2 V' that contains x, n7,v.,(s|v) equals 17y,(s). Conclude
that the morphisms 7y, factor through set maps,

Nfwt (Secy) =Y, sy s(x).
Define a set map,

nf : ESpSecf - Y7 (x75$) = nf,x(sa:)-

Prove that 7y o5 equals s as set maps U — Y. Since s is continuous for 7y, conclude that 5 is
continuous for the inverse image topology (ny)~'(7v) on Espg.,. Conclude that 7s, refines this
topology, and thus 7y is a continuous map,

ny: (ESpSecfvTSeCf) - (}/7 7—Y)~

Also prove that fon; equals mge.,. Conclude that 7y is a morphism of spaces over X. Finally, for
spaces over X, f:(Y,7v) = (X,7x) and ¢g: (Z,77) = (X, 7x), and for every morphism from f to
g, u: (Y, 7v) = (Z,7z), prove that uon; equals 1, o Esp o Sec(u). Conclude that f ~ 7, defines a
natural transformation of functors,

1 : Esp o Sec = IdTOP(x,TXy

(i)(The Adjoint Pair) Prove that (Esp,Sec, #,7) is an adjoint pair of functors.

Alternative Description of Inverse Image Exercise. Let f: (Y, 7y) = (X, 7x) be a continuous
function of topological spaces. Since the category of topological spaces is a Cartesian category (by
Problem 2(e) on Problem Set 8), for every space over X, g : (Z,77) - (X,7x), there is a fiber
product diagram in Top,

*f
(Z,TZ) (X, 7x) (Y7TY) SN (Z,Tz)

| |

(Y7TY) T) (XvTX)
Denote the fiber product by f*(Z,7z).
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(a) For spaces over X, g: (Z,77) - (X,7x) and h : (W, 1) - (X, 7x), for every morphism of
spaces over X, u: (Z,77) - (W, 1), prove that there is a unique morphism of topological spaces,

fru: f*(Z,mz) > f*(W,mw),

such that f*ho f*u equals f*g and h*f o f*u equals uo g*f. Prove that f*Id; is the identity
morphism of f*(Z,77). For spaces over X, g : (Z,77) - (X,7x), h : (W,7w) - (X,7x) and
i (M,7y) - (X,7x), for every morphism from g to h, u : (Z,77) - (W, 7w ), and for every
morphism from h to i, v : (W, mw) = (M, 7)), prove that f*(vou) equals f*v o f*u. Conclude
that these rules define a functor,

f§p : TOP(X,TX) - TOp(Y,’Ty)'

Prove that this functor is contravariant in f. In particular, there is a composite functor,
Jsp o ESp(x -y s Sets = Shx - ) = Topy ;.-

(b) Consider the composite functor,
JeoSec(yry) : Top(y,, ) = Sets - Sh(y,r,,) = Sets — Sh(x ).

Prove directly (without using the inverse image functor on sheaves) that ( Jép © ESPixreys fx 0
Sec(y,ry)) extends to an adjoint pair of functors. Use this to conclude that the composite Sec(y,, o
fép © Espx ry) 18 naturally isomorphic to the inverse image functor on sheaves of sets.

19 The Adjoint Pair of Discontinuous Sections (Godement
Resolution)

Flasque Sheaves Exercise. Let (X,7x) be a topological space, and let C be a category. A
C-presheaf F' on (X,7y) is flasque (or flabby) if for every inclusion of 7x-open sets, U 2 V, the
restriction morphism AY : A(U) - A(V) is an epimorphism.

(a)(Pushforward Preserves Flasque Sheaves) For every continuous function f: (X, 7x) = (Y, 7v),
for every flasque C-presheaf F' on (X, 7y), prove that f,F' is a flasque C-presheaf on (Y, 7y ).

(b)(Restriction to Opens Preserves Flasque Sheaves) For every 7x-open subset U, for the continuous
inclusion i : (U,7y) - (X, 7x), for every flasque C-presheaf F' on (X, 7x), prove that i-'F is a
flasque C-presheaf. Also, for every C-sheaf F' on (X,7y), prove that the presheaf inverse image
i~'F is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H!'-Acyclicity of Flasque Sheaves) Let A be an Abelian category realized as a full subcategory
of the category of left R-modules (via the embedding theorem). Let

0 —— A 25 4 2, gr 0
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be a short exact sequence of A-sheaves on (X, 7x). Let U be a 7x-open set. Let t: A”(U) - T be
a morphism in A such that ¢ o p(U) is the zero morphism. Assume that A’ is flasque. Prove that
t is the zero morphism as follows. Let a” € A”(U) be any element. Let S be the set of pairs (V,a)
of a Tx-open subset V ¢ U and an element a € A(V') such that p(V)(a) equals a”|,. For elements
(V,a) and (V,a) of S, define (V,a) < (V,@) if V ¢ V' and @y equals a. Prove that this defines
a partial order on §. Use the sheaf axiom for A to prove that every totally ordered subset of S
has a least upper bound in §. Use Zorn’s Lemma to conclude that there exists a maximal element
(V,a) in §. For every z in U, since p is an epimorphism of sheaves, prove that there exists (W,b)
in § such that x € W. Conclude that on V n W a|yaw — bly~w is in the kernel of p(V nW). Since
the sequence above is exact, prove that there exists unique a’ € A’(V nW) such that ¢(V nW)(a')
equals alyaw — blyaw. Since A’ is flasque, prove that there exists aj, € A’(W) such that afy|vaw
equals a’. Define ay =b+q(W)(ay,). Prove that (W,aw) is in S and alyaw equals aw|vaw. Use
the sheaf axiom for A once more to prove that there exists unique (VnW,ay~y ) in S with ayaw|v
equals a and ayw|w equals ay . Since (V,a) is maximal, conclude that W c V., and thus x is in V.
Conclude that V' equals U. Thus, a” equals p(U)(a). Conclude that ¢(a”) equals 0, and thus ¢ is
the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding
theorem.)

(d)(H"-Acyclicity of Flasque Sheaves) Let C* = (C4,d{,) 0 be a complex of A-sheaves on (X, 7x).
Assume that every C1 is flasque. Let r > 0 be an integer, and assume that the cohomology sheaves
ha(C*) are zero for ¢ =0,...,7. Use (c¢) and induction on r to prove that for the associated complex

in C,

C*(U) = (C1(U),de(U))g20
also h1(C*(U)) is zero for ¢ =0,...,7.
Enough Injective A —Il-modules Exercise. Let (X, 7yx) be a topological space. Let A and II
be presheaves of associative, unital rings on (X, 7y ). The most common case is to take both A and
IT to be the constant presheaf with values Z. Assume, for simplicity, that A(@) and II(@) are the
zero ring. A presheaf of A —I1-bimodules on (X, 7y) is a presheaf M of Abelian groups on (X, 7x)
together with a structure of A(U) - II(U)-bimodule on every Abelian group M (U) such that for
every open subset U 2 V| relative to the restriction homomorphisms of associative, unital rings,

AV A(U) - A(V), Ty II(U) - I(V),
every restriction homomorphism of Abelian groups,
My = M(U) - M(V),

is a homomorphism of A(U) - II(U)-bimodules. For presheaves of A — II-bimodules on (X, 7x),
M and N, a morphism of presheaves of A — Pi-bimodules is a morphism of presheaves of Abelian
groups « : M — N such that for every open U, the Abelian group homomorphism,

a(U): M(U) - N(U),
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is a homomorphism of A(U) — ITI(U)-bimodules.

(a)(The Category of Presheaves of A —II-Bimodules) Prove that these notions form a category
A —II - Presh(x ;,). Prove that this is an Abelian category that satisfies Grothendieck’s axioms
(AB1), (AB2), (AB3), (AB3*), (AB4) and (ABS5).

(b)(Discontinuous A —II-Bimodules) A discontinuous A —II-bimodule is a specification K for every
nonempty 7x-open U of a A(U)-II(U)-bimodule K (U), but without any specification of restriction
morphisms. For discontinuous A — II-bimodules K and L, a morphism of discontinuous A — II-
bimodules «: K — L is a specification for every nonempty 7y-open U of a homomorphism «(U) :
K(U) - L(U) of A(U) - II(U)-bimodules. Prove that with these notions, there is a category
A - 1I - Disc(x +) of discontinuous A - II-bimodules. Prove that this is an Abelian category that
satisfies Grothendieck’s axioms (AB1), (AB2), (AB3), (AB3*), (AB4), (AB4*) and (AB5).

(c)(The Presheaf Associated to a Discontinuous A — II-Bimodule) For every discontinuous A — II-
bimodule K, for every nonempty 7x-open subset U, define

K@) =T] KW)

weU

as a A(U)-TII(U)-bimodule, where the product is over nonempty open subsets W ¢ U (in particular
also W = U is allowed), together with its natural projections 75, : K(U) - K(W). Also define
K (@) to be a zero object. For every inclusion of 7x-open subsets U 2 V', define

Ky [T KW)— TT K(W),
wecU Wwecv

to be the unique morphism of A(U) - TI(U)-bimodules such that for every W c V, nl/, o KU equals
mg,. Prove that K is a presheaf of A - II-bimodules. For discontinuous A — II-bimodules K and L,
for every morphism of discontinuous A — II-bimodules, o : K — L, for every 7x-open set U, define

a(U): [T K(W) - T L)

wcU wcU

to be the unique morphism of A(U) - II(U)-bimodules such that for every W ¢ U, 7{ ,, o @(U)
equals W%’W. Prove that @ is a morphism of presheaves of A — II-bimodules. Prove that these
notions define a functor,

*: A =TI -Discix, ) = A =1 = Presh(x -).

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Cech Object of a Discontinuous A — II-Bimodule is Acyclic) For every open covering
(Uyv: 4 - 1p), define

Tu= U Tuwy) = {W e 7p|30o e U, W c 1(Up) }.
er}.l
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For every discontinuous A — Il-bimodule K, define

KW= ] K(W)

Wery
together with its projections my : K (84) » K (W). In particular, define
rd K(UW) - K ()
to be the unique A(U) - II(U)-morphism such that for every W e 7y, my o n{] equals myy .

For every nonempty W e 7y, define
UV = {Uy e UW < o(Up) }-

Prove that

CwK)y= I [1 &W)

.....

if (U, ..., U,) is empty, the corresponding factor is a zero object. For every integer r > 0, for every
1=0,...,7+ 1, prove that the morphism

0O (U, K) - ¢ (U, K),

is the unique A(U)-II(U)-morphism such that for every nonempty W e 7y and for every (Uy,...,U,,U.1) €
U Upisw © 0L equals Ty, v, | Ui Unesw - FOU every integer r > 0 and for every

777777777

0'11;+1 : OT+1(M7K) - CVW(L[’ }?)’

is the unique A(U)-II(U)-morphism such that for every nonempty W e 7 and for every (U, ...,U,) €

,,,,, U.w © oty equals equals Ty, Uiy U, Ui Ui .U FOI every integer r > 0, prove

that the morphism B ) _
gy K8 » (4, R)

is the unique A(U)-II(U)-morphism such that for every nonempty W e 7 and for every (U, ..., U, ) €

(V)L g, o, 0 g7 equals Ty

Cr (U, )W == [ K(W),
(U, Ur ) e(UW )1
with its projections

77777

Define ) B ) B
L C"(U, K) - C"(4, K)W
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equals 7, .
unique A(U) —II(U)-morphism

arz‘ . Cfr(u,[?)w N C«r+1(u’ [?)W’

such that 9% o ™ equals T4 © Oi, and prove that for every (Uy,...,U;,Upy) € (UWV)72
g, Up Ursa [W © O equals Ty, vy Uiy, U,..jw- For every integer r > 0 and for every i = 0,...,r,
prove that there exists a unique A(U) — II(U)-morphism

0-71‘“+1 : ér+l(u,K)W e Cv'r(u’ }?)Wu

such that o’,, 07"} equals 7" ;.00?,,, and prove that for every (Up,...,U,) € ({W)™*1 my  ywo

ol,, equals equals Ty, v, 1 UU U, Uraw- For every integer r > 0, prove that there exists a
unique A(U) - II(U)-morphism N
g K(W) - C (W K)Y

such that 77y, o g" equals g" o Ty, and prove that for every (Uy,...,U,) € VY g, ow o g”
equals Idg ). Conclude that

ma C* (8L ) — C* (81, )W

is a morphism of cosimplicial A(U)-II(U)-bimodules that is compatible with the coaugmentations
g*. Prove that these morphisms realize C*(4, K) in the category S*A(U) - II(U) - Bimod as a
product,
C*(LK)= ] C*(4, K)"W.
Wery

Using the Axiom of Choice, prove that there exists a set map
p:my~{z} >uU
such that for every nonempty W e 1y, ¢(W) is an element in U". For every integer r > 0, define

Cr (¢, K)V : C" (U, K)V - K (W)

77777

equals C:”"(gb, l?lw Prove that for every integer r > 0 and for every i = 0,...,r, C™(¢, K)V o ol
equals C™1 (¢, K)W. Conclude that

C*(o, [~()W - const g ()

is a morphism of cosimplicial A(U) - II(U)-bimodules. Prove that C*(¢, X)W o g* equals the
identity morphism of constg ). For every nonempty W e 7y, for every integer r > 0, for every
integer ¢ =0,...,r, define

Gpar O WL )Y > (U, )Y
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-----

91000 =g 0 CT (¢, ), gh i 000 = 1dgr iy eyw

. j_l . .
. 8}4_1og¢7r, 0<i<j<r,
j - - . o
Gpr+1 © 0= Ypra® 872“7 O<i=j<m,
-1 o 4 ; :
010Gy, 1<j+l<i<r+1.
j i 070 G4y, 0Si<g<r—1,
gd)yroo-r_"l_ i—1 .] 0< y <
o7t o gy s <j<i<r.

Conclude that ¢* and C*(¢, K)V are homotopy equivalences between C*(4, K)" and const K(W)-
Conclude that C*(4, K) is homotopy equivalent to const R@- In particular, prove that the associ-
ated cochain complex of C*(4, K)W is acyclic with HO(4, K)W equal to K (W). Similarly, prove
that the associated cochain complex of C*(4, K) is acyclic with HO(8(, K) equal to K (s1).
(e)(The Forgetful Functor to Discontinuous A —II-Bimodules; Preservation of Injectives) For every
presheaf M of A —II-bimodules on (X, 7x), define ®(M) to be the discontinuous A — II-bimodule
Uwr M(U). For presheaves of A —II-bimodules, M and N, for every morphism of presheaves of
A -TI-bimodules, o : M - N, define ®(«) : (M) — ®(N) to be the assignment U — a(U). Prove
that these rules define a functor

®: A -II-Presh(x ) = A~II-Discixry)-

Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For
every presheaf M of A —II-bimodules, for every 7x-open U, define

QM,UZM(U) %WQUM(W)

to be the unique homomorphism of A(U) - II(U)-bimodules such that for every 7x-open subset
W c U, nY,00)u equals M§,. Prove that U ~ 6y is a morphism of presheaves of A-II-bimodules,

—_—

Orr: M — S(M).

For every morphism of presheaves of A —II-bimodules, a: M — N, for every 7x-open set U, prove
that ®(«) o 0y equals Oy o a. Conclude that # is a natural transformation of functors,

0 : lda-n-presh(x ., = ¥ 0 P
For every discontinuous A — II-bimodule K, for every 7x-open U, define

ko [[ K(W) - K(U)
wcu

96


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 534 Algebra I Jason Starr
Stony Brook University Fall 2022

to be wlj,. Prove that U ~ 1k is a morphism of discontinuous A — II-bimodules. For every pair
of discontinuous A —II-bimodules, K and L, for every morphism of discontinuous A —II-bimodules,
B : K — L, prove that n o @(5) equals fonp. Conclude that n is a natural transformation of
functors,

nN:Po¥ = IdA—H—Disc(X,TX)-

Prove that (®,%,6,7n) is an adjoint pair of functors. Since ® preserves monomorphisms, use
Problem 3(d), Problem Set 5 to prove that ¥ sends injective objects to injective objects. Since
the forgetful morphism from sheaves to presheaves preserves monomorphisms, prove that the
sheafification functor Sh sends injective objects to injective objects. Conclude that Sh o % sends
injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every 7x-open
set U, there are enough injective A(U) - II(U)-bimodules. Using the Axiom of Choice, conclude
that A —II - Disc(x,r,) has enough injective objects. In particular, for every presheaf M of A —1I-
bimodules, for every open set U, let there be given a monomorphism of A(U) - II(U)-bimodules,

EUM(U)—>](U),

with I(U) an injective A(U) - II(U)-bimodule. Conclude that I is an injective presheaf of A — II-
bimodules, and the composition

M2 EN ST
is a monomorphism of presheaves of A — II-bimodules. If M is a sheaf, conclude that Sh(T) is an
injective sheaf of A - II-bimodules. Also, use (d) to prove that the composition

M2 S0 ST sw()

is a monomorphism of sheaves of A —II-bimodules. (Hint: Since o, 1 is a filtering small category,
use Problem 0 to reduce to the statement that for every open covering (U, ), the morphism
M(U) - M (4l) is a monomorphism. Realize this a part of the Sheaf Axiom for M.) Conclude that
both the category A-II-Preshx ;) and A~II-Shx ;) have enough injective objects. In particular,
for an additive, left-exact functor F', resp. G, on the category of presheaves of A — II-bimodules,
resp. the category of sheaves of A —II-bimodules, there are right derived functors ((R"F),, (6"),),
resp. ((R"G)y, (0™),). Finally, since ¥ is exact and sends injective objects to injective objects, use
the Grothendieck Spectral Sequence (or universality of the cohomological d-functor) to prove that
(R"F)o%is R*(F o¥).

(g) (Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous A - II-bimodule on
X. For every 7x-open set U, prove that K(U) - Sh(K)(U) is the colimit over all open coverings
il c 7y (ordered by refinement as usual) of the morphism

K (U) - K().
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In particular, since every morphism K (U) - K (4) is surjective (by the Axiom of Choice), conclude
that also _ B
sh(U): K(U) - Sh(K)(U)

is surjective. Use this to prove that Sh(l?) is a flasque sheaf.

For every injective A —II-sheaf I, for the monomorphism 6; : I - Sh(®(I)), there exists a retraction
p:Sh(®(I)) —» 1. Also Sh(®(I)) is flasque. Use this to prove that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every 7y-open set U, prove that the
functor

I'(U,-): A-1I-Preshx,,) = AU) -II(U) - Bimod, M ~ M(U)

is an exact functor. Also prove that the functor
I'(U,-): A-11-Sh(x ) = A(U) - II(U) - Bimod

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of A —II-modules admits
a resolution, € : M — I* by injective sheaves of A — II-modules that are also flasque. Conclude
that I'(U, -) extends to a universal cohomological §-functor formed by the right derived functors,
((H™(U,=))n, (6™),,). Finally, assume that M is flasque. Use Problem 4(d) to prove that I*(U) is
an acyclic complex of A(U) - II(U)-bimodules. Conclude that for every flasque sheaf M of A —1II-
bimodules, for every n > 0, H*(U, M) is zero, i.e., flasque sheaves of A —II-bimodules are acyclic
for the right derived functors of I'(U, -).

(i)(Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Indepen-
dence of A —1II) Use (h) and the hypercohomlogy spectral sequence to prove that for every sheaf
M of A - II-bimodules, for every acyclic resolution €, : M — M®* of M by sheaves of A — II-
bimodules that are flasque, for every integer n > 0, there is a canonical isomorphism of H"(U, M)
with hn(M*(U)). In particular, the functor T= Sh o % o @, the natural transformation 0 : Id =T,
and the natural transformation

Sho%ono®:TT=T,

form a triple on the category A —II-Sh(x ). There is an associated cosimplicial functor,
LT A-T1- Sh(X;,.X) - S°A-1II- Sh(X,TX)
and a functorial coaugmentation,
Oy : consty, — L3 (M).

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution
of M by flasque sheaves of A—II-bimodules, and it is canonical, depending on no choices of injective
resolutions.

Finally, let A — A and TI - II be morphisms of presheaves of associative, unital rings. This induces
a functor,

A=TI=Sh(xry) > A =TT = Sh(xry).
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For every sheaf M of A —II-bimodules, and for every acyclic resolution € : M — M* of M by flasque
sheaves of A — II-bimodules, this is also an acyclic, flasque resolution of M with the associated
structure of sheaves of A - II-bimodules. For the natural map of cohomological d-functors from the
derived functors of I'(U, -) on A-II-Sh(x ;) to the derived functors of I'(U, -) on K—ﬁ—Sh(X,TX),
prove that this natural map is a natural isomorphism of cohomological §-functors. This justifies
the notation H"(U,-) that makes no reference to the underlying presheaves A and II, and yet is
naturally a functor to A(U) —II(U) — Bimod whenever M is a sheaf of A —II-bimodules.

Problem 6.(Flasque Sheaves are Cech-Acyclic) Let (X,7yx) be a topological space. Let M be a
presheaf of A - II-bimodules on (X, 7x). Let U be a 7x-open set. Let (U,.: 4 - 1) be an open
covering. For every Tx-open subset V| define (V1 : 4 - 7v/) to be the open covering ¢, (Up) =
V nu(Up). For simplicity, denote this by (V,4y). For every integer r > 0, define C" (8, M)(V) to
be the A(V) - II(V)-bimodule C7 (&, M). Moreover, define

O M) (V) > CT (U, M)(V),

; =T ~r+1 ;
Oy, C (U M)(V) = C (L M)(V), ov,0

to be the face and degeneracy maps on C*(8y, M). Finally, let 7}, : M(V) - C" (84, M)(V) be the
coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of Tx-open subsets
W nV nU, the identity map Idg is a refinement of open coverings,

o (Viwy : U= 7)) = (Wi« U — 7).
By Problem 5(f) from Problem Set 8, C"(¢V,, M) is an associated morphism of A(V') - II(V)-

bimodules, denoted

CT (8, M)y - C (4, M)(V) = C (8, M)(W).

(a)(The Presheaf of Cech Objects) Prove that the rules V v C" (4, M)(V) and C" (81, M)Y, define
a presheaf el (4, M) of T — A-bimodules on U. Moreover, prove that the rules V' ~ 8V , Tesp.
V= oy,.q, V =y, define morphisms of presheaves of A - II-bimodules,

i C" (4, M) - ¢, M), O WU M) - CT (8L M), g My~ C (U, M).

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

C*ioxA-TI- Presh(x .y = S*A —1II - Preshy -,

compatible with cosimplicial homotopies for pairs of refinements and together with a natural trans-
formation of cosimplicial objects,

n° :consty, — C* (U, M).
(b)(The Cech Resolution Preserves Sheaves and Flasques) For every (Uy, ..., U,) in 4+, denote by

ivo,...v, * (LU, ..., Up), Tyws,...0,)) = (U, 7y) the continuous inclusion map. Prove that C" (4, M)
is isomorphic as a presheaf of A — II-bimodules to
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Use Problem 4(a) and (b) to prove that C' (4, M) is a sheaf whenever M is a sheaf, and it is
flasque whenever M is flasque.

(c)(Localy Acyclicity of the Cech Resolution) Assume now that M is a sheaf. For every 7x-open
subset V' c U such that there exists * € 4 with V' c ¢(*), conclude that (V,4ly) refines to (V,{V}).
Using Problem 5(h), Problem Set 8, prove that

ny : consty )~ C (4, M)(V)

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial
object,

r

d" = Z(_l)za:”

i=0
the coaugmentation

v M(V) > C (4, M)(V)

is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of IT — A-
bimodules,

n: My > C" (4, M)
is an acyclic resolution.

Now assume that M is flasque. Prove that 7 is a flasque resolution of the flasque sheaf M|;. Using
Problem 5(i), prove that the cohomology of the complex of A(U) —II(U)-bimodules,

H™(84, M) := h™(C*(84, M), d*)

equals H*(U, M). Using Problem 5(h), prove that H°(U, M) equals M (U) and H*(U, M) is zero
for every integer n > 0. Conclude that for every flasque sheaf M of A — II-bimodules, for every
open covering (U, ), M(U) — H°(L, M) is an isomorphism and H™ (4, M) is zero for every integer
n>0.

Cech Cohomology as a Derived Functor Exercise. Let (X, 7x) be a topological space. Let U

be a Tx-open set. Let (U, : 44— 717) be an open covering. For every presheaf A of A—II-bimodules,
denote by C*(&, A) the object in Ch*(A - II - Bimod) associated to the cosimplicial object.

(a) (Exactness of the Functor of Cech Complexes; The d-Functor of Cech Cohomologies) Use Prob-
lem 5 of Problem Set 8 to prove that this is an additive functor

C*(4, =) : A = I - Presh(x ry > Ch**(A - II - Bimod).

Prove that for every short exact sequence of presheaves of A — II-bimodules,

q p
0 Al A A" 0,
the associated sequence of cochain complexes,

0 —— Co(st, A7) 8D Geggr 4y S8 Geg amy —— o,
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is a short exact sequence. Use this to prove that the Cech cohomology functor HO(U, A) =
hO(C* (4, A)) is an additive, left-exact functor, and the sequence of Cech cohomologies,

(84, A) = hr (C* (44, A)),

extend to a cohomological d-functor from A —1II - Presh(x ,) to A(U) - II(U) - Bimod.

(b)(Effaceability of Cech Cohomology) For every presheaf A of A —II-bimodules, use Problem 5(e)
and 5(f) to prove that 04 : A > ®(A) is a natural monomorphism of presheaves of A—II-bimodules.

Use Problem 5(d) to prove that for every r > 0, H7(4,®(A)) is zero. Conclude that H" (4, -) is
effaceable. Prove that the cohomological é-functor ((H7 (4, A)),, (67),) is universal. Conclude that
the natural transformation of cohomological d-functors from the right derived functor of HO(4l, -)
to the Cech cohomology d-functor is a natural isomorphism of cohomological d-functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by
U:A-IT- Sh(X,Tx) - A-1I- Presh(X’TX),

the additive, fully faithful embedding (since we are already using ® for the forgetful morphism to
discontinuous A — I[I-bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends
to an adjoint pair of functors (Sh,®). Recall the construction of Sh as a filtering colimit of
Cech cohomologies HO(8,-). Since HO(4,-) is left-exact, and since A - IT — Presh(x ., satisfies
Grothendieck’s condition (AB5), prove that Sh is left-exact. Use Problem 3(d), Problem Set 5
to prove that ¥ sends injective objects to injective objects. Use Problem 5(g) to prove that
every injective sheaf I of A —II-bimodules is flasque. Use Problem 6(c) to prove that W(I) is
acyclic for H*(41, -). Prove that the pair of functors ¥ and HO(4, -) satisfy the hypotheses for the
Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological
spectral sequence,
TERY = [P(U, RIU(A)) = HPY(U, A).

(d)(The Derived Functors of U are the Presheaves of Sheaf Cohomologies) For every sheaf A of
A - TI-bimodules, for every integer r > 0, for every 7x-open set U, denote H"(A)(U) the additive
functor H"(U, A). In particular, H°(A)(U) is canonically isomorphic to A(U). Thus, for all 7x-
open sets, V c U, there is a natural transformation

*|v s HO(=)(U) = HO(=)(V).
Use universality to prove that this uniquely extends to a morphism of cohomological d-functors,
#[V s (K ()U))rs (67)7) = (H(=)(V))r, (7))

Prove that for all 7x-open sets, W c V c U, both the composite morphism of cohomological
d-functors,

*y 0 %[V (R () (@) (87)2) = (H(=)(V))r, (87)r) = (7 (=) (W), (87)),
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and the morphism of cohomological é-functors,

i+ (T (=)0 (87)r) = (- (=) (W))r, (07)s),

extend the functor |}, o #[\ = %|Y, from HO(-)(U) to H°(-)(W). Use the uniqueness in the uni-
versality to conclude that these two morphisms of cohomological d-functors are equal. Prove that
((H"(=))r, (67),) is a cohomological o-functor from A —1II - Shx ;) to A —II - Presh(x ). Use
Problem 5(h) to prove that every flasque sheaf is acyclic for this cohomological é-functor. Com-
bined with Problem 5(i), prove that the higher functors are effaceable, and thus this cohomological
o-functor is universal. Conclude that this the canonical morphism of cohomological -functors from
the right derived functors of ¥ to this cohomological -functor is a natural isomorphism of cohomo-
logical d-functors. In particular, combined with the last part, this gives a convergent, first quadrant

spectral sequence, )
TEYT = HP (U, HI(A)) = HP" (U, A).

This is the Cech-to-Sheaf Cohomology Spectral Sequence. In particular, conclude the existence of
monomorphic abutment maps,

H"(U, A) - H"(U, A).

as well as abutment maps,

HT (U, A) - HO(3, H'(A)).

(e)(The Colimit of Cech Cohomology with Respect to Refinement) Since Cech complexes are
compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy,
the induced refinement maps on Cech cohomology are independent of the choice of refinement. Use
this to define a directed system of Cech cohomologies. Denote the colimit of this direct system as
follows,
H*(U,-) = colim H*(4, -).
eoy v

Prove that this extends uniquely to a cohomological d-functor such that for every open covering
(U, L), the induced sequence of natural transformations,

*|L(§ : ((ﬁr(ua _))r‘7 (5T)r) - ((HT(U7 _))ra ((Sr)r)a

is a natural transformation of cohomological d-functors. Repeat the steps above to deduce the
existence of a unique convergent, first quadrant spectral sequence,

"B = HP(U,HI(A)) = HP™(U, A),
such that for every open covering (U, 4l), the natural maps
iy HP (U HI(A)) > HP (U, HI(A))

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of

monomorphic abutment maps )
H"(U,A) - H (U, A)
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as well as abutment maps )
H"™(U,A) - H(U,H"(A)).

Use the first abutment maps to define subpresheaves H"(A) of H"(A) by V = H(V, A).

(f)(Reduction of the Spectral Sequence; H'(U, A) equals H!(U, A)) For every r > 0, prove that the
associated sheaf of H"(A) is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of
sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude
that HO(U,H"(A)) is zero. In particular, conclude that the natural abutment map,

HY(U,A) - HY(U, A)

is an isomorphism. Thus, also H!(A) - H!(A) is an isomorphism. Use this to produce a “long
exact sequence of low degree terms” of the spectral sequence,

0 H*(U, A) - H*(U, A) » HY (U, H'(A)) > H3(U, A).

(g)(Sheaves that Are Cech-Acyclic for “Enough” Covers are Acyclic for Sheaf Cohomology) Let
B c 7x be a basis that is stable for finite intersection. For every open U in B, let Covy be a
collection of open coverings of U by sets in B such that Covy is cofinal with respect to refinement
in o,y Let A be such that for every U in B, for every (U, ) in Covy, for every r >0, H7 (8, A) is
zero. Prove that H"(U, A) is zero. Use the spectral sequence to inductively prove that for every
r >0, H(A)(U) is zero, H"(U, A) is zero and H"(A)(U) is zero. Conclude that for every open
covering (X, : 0 - B), the Cech-to-Sheaf Cohomology Spectral Sequence relative to 2 degenerates
to isomorphisms

H™(0,A) > H (X, A).

If you are an algebraic geometer, let (X, Ox) be a separated scheme, let A =11 = Oy, let B be the
basis of open affine subsets, let Covy be the collection of basic open affine coverings, and let A be
a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U, 4l) of an affine
scheme, for every quasi-coherent sheaf A, H7 (4, A) is zero for all 7 > 0 (this is essentially exactness
of the Koszul cochain complex for a regular sequence, combined with commutation with colimits).
Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine
scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology
is computed as Cech cohomology of any open affine covering.

103


http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu

	Introduction
	Algebraic Objects
	Categories
	Functors
	Natural Transformations
	Adjoint Pairs of Functors
	Adjoint Pairs of Partially Ordered Sets
	Adjoint Pair between a Category and its Pointed Category
	Adjoint Pairs of Free Objects
	Adjoint Pairs for Lawvere Theories
	Adjoint Pairs of Limits and Colimits
	Adjoint Pairs and Yoneda Functors
	Preservation of Exactness by Adjoint Additive Functors
	Derived Functors as Adjoint Pairs
	Constructing Injectives via Adjoint Pairs
	The Koszul Complex via Adjoint Pairs
	Adjoint Pairs of Simplicial and Cosimplicial Objects
	Topology Adjoint Pairs
	The Adjoint Pair of Discontinuous Sections (Godement Resolution)

