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These notes develop the basic definitions and results about rings and modules, but in the special
case that the ring is itself a vector space of a field, and the ring multiplication is bilinear for that
vector space structure. The notes end with a quick proof of existence of the rational canonical
form directly, without explicit mention of the structure theorem for finitely generated modules over
a principal ideal domain (of course the key steps in the proof of rational canonical form are the
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1 Algebras

Let F be a field.

Definition 1.1. An associative, unital ring is commutative if the multiplication law is commutative.
The center of an associative, unital ring A is the subset Z(A) of elements a such that a ⋅ b equals
b ⋅ a for every b in A. This is an associative, unital subring of A that is commutative; in fact, the
center equals the intersection of all maximal commutative subrings of A. An F -central algebra
is a pair (A,φ) of an associative, unital ring A and a homomorphism φ ∶ F → A of associative,
unital rings whose image lies in the center of A (if A is nonzero, then automatically φ is injective).
In particular, multiplication in A by φ(F ) makes A into an F -vector space. The structure of an
F -central algebra on an F -vector space A is equivalent to an F -bilinear map

β ∶ A ×A→ A,

β(a, β(b, c)) = β(β(a, b), c) for every a, b, c ∈ A and such that there exists 1 ∈ A with β(1, a) = a =
β(a,1) for every a ∈ A (then φ(t) ∶= t ⋅1 for every t ∈ F ). For F -central algebras (A,βA) and (B,βB),
there is a unique structure of F -central algebra on A⊗F B such that the two F -linear maps

A→ A⊗F B, a↦ a⊗ 1,

B → A⊗F B, b↦ 1⊗ b,
are both morphisms of F -central algebras, namely,

βA⊗FB ∶ (A⊗F B) × (A⊗F B)↦ A⊗F B, (a⊗ b, a′ ⊗ b′)↦ βA(a, a′)⊗ βB(b, b′).

This F -central algebra is the tensor product of the F -central algebras (A,βA) and (B,βB). The
opposite F -central algebra is obtained from the opposite F -bilinear map,

βopp ∶ A ×A→ A,βopp(a, b) = β(b, a).

A homomorphism between F -central algebras is a homomorphism of the underlying associative,
unital rings that is also an F -linear transformation. The image of such a homomorphism is an
F -central subalgebra of the target. An F -central algebra is commutative if a ⋅ b equals b ⋅ a for
every a, b ∈ A. This is equivalent to the condition that the identity bijection IdA ∶ A → Aopp being
a homomorphism of F -central algebras (in which case it is an isomorphism of F -central algebras).

Lemma 1.2. For every F -central algebra A, the identity map on A is a homomorphism of F -central
algebras. For homomorphisms of F -central algebras, f ∶ A → B and g ∶ B → C, the composition
g ○f ∶ A→ C is a homomorphism of F -central algebras. For a homomorphism of F -central algebras
that is a bijection, the inverse set map is also a homomorphism of F -central algebras, so that a
homomorphism of F -central algebras is invertible if and only if it is bijective.

Proof. Each of these is straightforward, and follows the pattern of the analogous result for group
homomorphisms.
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Altogether, this lemma proves that there is a category whose objects are F -central algebras and
whose morphisms are homomorphisms of F -central algebras.

Example 1.3. For every F -vector space V , the F -vector space HomF (V,V ) is an F -central algebra
under composition, where each c ∈ F is mapped to cIdV ∈ HomF (V,V ). This map is injective if and
only if V is nonzero. Then the isomorphic image of F is precisely the center of HomF (V,V ). If
the dimension of V is > 1, then HomF (V,V ) is not commutative. However, if V has positive finite
dimension, so that there exists a (non-unique) F -linear isomorphism

q ∶ V → V ∗, v ↦ qv

then there is an induced isomorphism of F -central algebras

(−)†
q ∶ HomF (V,V )→ HomF (V,V )opp,

that sends each F -linear transformation a ∶ V → V to the unique F -linear transformation a† ∶ V → V
such that qa(v)(w) = qv(a†w) for every v,w ∈ V . The Skolem-Noether theorem guarantees that every
homomorphism of F -central algebras from HomF (V,V ) to its opposite algebra arises in this way
for an F -linear isomorphism q ∶ V → V ∗ that is unique up to nonzero scalar (this is not the usual
formulation of the Skolem-Noether theorem).

Definition 1.4. An element a of an F -central algebra is a unit or (multiplicatively) invertible if
there exists b ∈ A such that a ⋅ b = b ⋅ a = 1, and otherwise a is a nonunit, i.e., it is noninvertible.
The set of all invertible elements is a group under multiplication with identity element equal to 1
and with the inverse of a equal to b. This group is the multiplicative group of A, denoted A×.
Multiplication on the left, resp. on the right, by elements of A× defines a left action on A, resp. a
right action on A, by A×. Elements in the same orbit of this action are left associate, resp. right
associate. An element a is a left zero divisor if there exists nonzero b such that a ⋅ b = 0. It is a
right zero divisor if there exists nonzero b such that b ⋅a = 0. It is a zero divisor if it is both a left
zero divisor and a right zero divisor, and it is a regular element if it is neither a left zero divisor
nor a right zero divisor. If every nonzero element is a regular element, then the ring is a domain.
An integral domain is a commutative algebra that is a domain. An element a is nilpotent if
there exists a positive integer e such that ae = a⋯a equals 0. The smallest such positive integer is
the nilpotence degree or index. A commutative algebra is reduced if the only nilpotent element
is zero. An element a is idempotent if a ⋅ a equals a, i.e., a ⋅ (1 − a) = 0 = (1 − a) ⋅ a. Thus a = 1
is the unique idempotent that is not a zero divisor. A subset E ⊂ A whose elements are nonzero
idempotents is a set of orthogonal idempotents if for every pair (a, b) of distinct elements of E,
a ⋅ b = b ⋅ a = 0; in this case the sum of any finite collection of elements of E is again an idempotent.
A finite set E of orthogonal idempotents is an orthogonal idempotent decomposition if the
sum of all elements of E equals 1. Equivalently it is a finite subset of E whose elements sum to 1
and such that the product of any ordered pair of distinct elements in the set equals 0. Then the
map from the product F -central algebra to A,

∏
e∈E

F → A, (ce)e∈E ↦ ∑
e∈E

cee,
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is an injective morphism of F -central algebras. A nonzero idempotent is a primitive idempotent
if it cannot be written as a sum of two nonzero orthogonal idempotents. An orthogonal idempotent
decomposition is primitive if every idempotent in the decomposition is primitive.

Example 1.5. For every F -vector space V and for every direct sum decomposition (Vi)i∈I of V into
nonzero subspaces Vi, i.e., a collection of subspaces such that the induced F -linear transformation

⊕i∈I Vi → V is an isomorphism, every projection ei ∶ V = ⊕i∈I Vi ↠ Vi ↪ V is an idempotent with
Image(ei) = Vi and with Ker(ei) equal to a complementary subspace ∑j≠i Vj. In particular, ei is
a primitive idempotent if and only if Vi is a one-dimensional F -vector space. The set {ei∣i ∈ I}
is a set of orthogonal idempotents. Every set of orthogonal idempotents in HomF (V,V ) is of this
form for some direct sum decomposition. In particular, a set of orthogonal primitive idempotents
is equivalent to a direct sum decomposition into one-dimensional subspaces, i.e., the direct sum
decomposition (F ⋅ v⃗i)i∈I for a basis for V , (v⃗i)i∈I , unique up to scaling (λiv⃗i)i∈I , by nonzero elements
λi ∈ F ∖{0}. If (Vi)i∈I is a finite direct sum decomposition, this set of orthogonal idempotents gives
an orthogonal idempotent decomposition. Thus the primitive orthogonal idempotent decomposi-
tions are equivalent to finite bases of V up to scaling by nonzero elements of F as above. The
corresponding commutative F -central subalgebra ∑e∈E F ⋅ e is a maximal commutative F -central
subalgebra of HomF (V,V ).
Example 1.6. An element a in HomF (V,V ) is nilpotent if and only if there exists a finite filtration
by F -vector subspaces, {0} = V e ⊊ ⋅ ⋅ ⋅ ⊊ V 0 = V such that a(V i) = V i+1 for every i = 0, . . . , e − 1. In
this case, e equals the nilpotence degree.

Example 1.7. An element a ∈ HomF (V,V ) is invertible if and only if a is an isomorphism from V to
V , so the multiplicative group of HomF (V,V ) is the group IsomF (V,V ) of F -linear isomorphisms of
V under composition. For V = F⊕n, so that HomF (V,V ) = Matn×n(F ), the multiplicative group is
GLn(F ). The right orbits for the action of GLn(F ) on Matn×n(F ) are precisely the row equivalent
matrices, and every right orbit contains a unique reduced row echelon form matrix. Similarly, the
left orbits are the column equivalent matrices, and each left orbit contains a unique orbit that
is the transpose of a reduced row echelon form matrix. (Transposition is an F -linear involution
of Matn×n(F ) that interchanges the order of multiplication and interchanges left orbits and right
orbits.) If a is not invertible, then either Ker(a) properly contains {0} or Image(a) is properly
contained in V (or both). In the first case, for an idempotent e with image equal to Ker(a), the
product a ⋅ e equals 0, so a is a left zero divisor. In the second case, for an idempotent e whose
kernel equals Image(a), the product e ⋅ a equals 0, so a is a right zero divisor.

2 Modules

Definition 2.1. A pair (V,λ) of an F -vector space V and an F -bilinear map

λ ∶ A × V → V,

respectively a pair (V, ρ) of an F -vector space V and an F -bilinear map

ρ ∶ V ×A→ A,
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is a left A-module, resp. a right A-module, if for every a, b ∈ A and for every v ∈ V , λ(1, v) = v
and λ(a ⋅b, v) = λ(a, λ(b, v)), resp. ρ(v,1) = v and ρ(v, a ⋅b) = ρ(ρ(v, a), b). Via adjointness of tensor
product and Hom, this is equivalent to a homomorphism of F -central algebras,

A→ HomF (V,V ),

via the map sending a to λa,−, resp. sending a to ρ−,a. For F -central algebras A and B, an
A −B-bimodule is an F -trilinear map,

γ ∶ A × V ×B → V,

such that both λ(a, v) = γ(a, v,1) and ρ(v, b) = γ(1, v, b) are structures of left A-module and right
B-module satisfying λ(a, ρ(v, b)) = γ(a, v, b) = ρ(λ(a, v), b) for every a ∈ A, for every v ∈ V , and for
every b ∈ B. A left or right A-module is faithful if the homomorphism from A to HomF (V,V ) is
injective, in which case A is identified with an F -central subalgebra of HomF (V,V ). A morphism
of left A-modules from (V,λ) to (W,µ) is an F -linear transformation L ∶ V →W such that for every
a ∈ A and for every v ∈ V , L(λ(a, v)) = µ(a,L(V )). Similarly for a morphism of right A-modules,
and for a morphism of A−B-bimodules. For an A−B-modules V and for an A−C-module W , the
set of morphisms of left A-modules, HomA−mod(V,W ), has a structure of C −B-bimodule by the
rule that scales each left A-module homomorphism, L ∶ V →W , by c⊗ b ∈ C ⊗F Bopp to get

c ⋅L ⋅ b ∶ V →W, v ↦ L(v ⋅ c) ⋅ b.

Every F -central algebra is a bimodule over itself.

Definition 2.2. For every F -central algebra A, the F -bilinear multiplication map A × A → A
sending (a, b) to a ⋅ b is both a left A-module structure on A and a right A-module structure
on A. This is faithful because A has a multiplicative identity. The associated morphism of F -
central algebras, A → HomF (A,A), is the left regular representation, resp. the right regular
representation. In fact, because of associativity, altogether this is an A −A-bimodule structure
on A, the natural bimodule structure of A on itself.

Left modules are equivalent to right modules for the opposite ring. For every left A-module (V,λ),
define

λopp ∶ V ×Aopp → V, λopp(v, a) ∶= λ(a, v).
For every right B-module, (W,ρ), define

ρopp ∶ Bopp ×W →W, ρopp(b,w) ∶= ρ(w, b).

Lemma 2.3. For every left A-module (V,λ), also (V,λopp is a right Aopp-module, for every right
Aopp-module (W,ρ), also (W,ρopp) is a left A-module, the opposite opposite left A-module (V, (λopp)opp)
equals (V,λ), the opposite opposite right Aopp-module (W, (ρopp)opp) equals (W,ρ), and these oper-
ations define an equivalence between the categories of left A-modules and right A-modules. In par-
ticular, if A is commutative, then every left A-module naturally has a structure of A−A-bimodule,
and this A−A-bimodule structure on the left A-module A agrees with the natural bimodule structure
above.
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Proof. This is straightforward.

Many modules are constructed as submodule of modules that have already been constructed.

Definition 2.4. A left A-submodule of a left A-module (V,λ) is an F -vector subspace U of V
such that λ(a, u) is in U for every a ∈ A and every u ∈ U , so that the restriction λ∣A×U is a left
A-module structure λU on U and the inclusion map from U to V is a morphism of left A-modules.
Similarly for right B-submodules of a right B-module, and for A−B-subbimodules of an A−B-
bimodule. The zero submodule is {0}. A proper submodule of a module is a submodule that
does not equal the entire module. A simple left A-module is a nonzero left A-module such that the
only left A-submodules are {0} and all of A. Similarly for simple right B-modules, and similarly
for simple A − B-bimodules. For a subset F ⊆ V of a left A-module, resp. of a right B-module,
of a A −B-bimodule, the intersection of all left A-submodules, resp. right B-submodules, A −B-
bimodules, that contain F is the left A-submodule, resp. right B-submodule, A−B-bimodule, that
is generated by F , denoted A ⋅F , resp. F ⋅B, A ⋅F ⋅B. When F is a singleton set, resp. a finite
set, the module is cyclic, resp. finitely generated.

Lemma 2.5. For every subset F ⊂ V of a left A-module, resp. a right B-module, an A − B-
bimodule, the submodule AF , resp. FB, AFB, is the subset of V whose elements are 0 and all
linear combinations a1f1+⋅ ⋅ ⋅+anfn, resp. f1b1+⋅ ⋅ ⋅+fnbn, a1f1b1+⋅ ⋅ ⋅+anfnbn, for all integers n ≥ 0,
for all subsets {f1, . . . , fn} ⊂ F , for all (a1, . . . , an) ∈ An, and for all (b1, . . . , bn) ∈ Bn.

Proof. It is straightforward to check that this subset of V is a submodule. It contains F by
construction. Moreover, every submodule of V that contains F must contain every such linear
combination of elements of F . Thus, this is the smallest submodule containing F .

Many submodules are constructed from homomorphisms between modules.

Lemma 2.6. The image, resp. kernel, of any morphism of left A-modules is a left A-submodule.
Similarly for morphisms of right B-modules and for morphisms of A − B-bimodules. The iden-
tity map of a module is a homomorphism of modules. The composition of a pair of composable
homomorphisms of modules is again a homomorphism of modules.

Proof. The proof works just as in the case of F -linear transformations of F -vector spaces.

Lemma 2.7 (Schur’s Lemma). Every nonzero homomorphism between left A-modules is injective,
respectively surjective, an isomorphism, if the domain is simple, resp. if the target is simple, if both
the domain and target are simple. The analogous result holds for homomorphisms between right
B-modules, and for homomorphisms between A −B-bimodules. A nonzero module is simple if and
only if every nonzero element is a cyclic generator of the entire module.

Proof. This follows from the definition of simple and the fact that the kernel and image are left
A-submodules.

Every submodule also gives a quotient module.
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Lemma 2.8. For every left A-submodule U of a left A-module (V,λ), the quotient F -vector space
qV,U ∶ V → V /U has a unique structure of left A-module, λV,U ∶ A × (V /U) → (V /U), such that qV,U
is a morphism of left A-modules, and similarly for right B-submodules of a right B-module, and
for A −B-submodule of an A −B-module.

Proof. The proof is precisely the same as in the proof of the analogous result that the coset space
of a subgroup in a group has a natural action by the group.

Definition 2.9. The module structure in the previous lemma is the quotient module structure.
For a morphism of modules, the cokernel is the quotient module of the target module by the image
of the morphism considered as a submodule of the target module.

3 Limits and Colimits

The category of modules has limits and colimits. Let I be a small category, i.e., a set whose
elements i are objects, together with an association to every ordered pair (i, j) of objects of I of a
set HomI(i, j), and to every ordered triple (i, j, k) of objects of I a binary operation,

○i,j,k ∶ HomI(j, k) ×HomI(i, j)→ HomI(i, k),

that has identity morphisms Idi ∈ HomI(i, i) and that satisfies associativity.

Definition 3.1. A small category I is discrete if the only morphisms are identity morphisms. A
small category I is almost filtered if it satisfies both of the following. For every ordered pair
(i, j) of objects of I, there is an object k of I and morphisms φ ∈ HomI(i, k) and ψ ∈ HomI(j, k).
Also, for every ordered pair (u, v) of elements of HomI(i, j), there exists an object k of I and an
ordered pair (φ,ψ) of elements of HomI(j, k) such that φ ○ u equals ψ ○ v. If there always exists k
and (φ,ψ) as above with φ equal to ψ, then the category is filtered.

Definition 3.2. An I-compatible family of sets, respectively left A-modules M●, right B-
modules, A−B-bimodules, F -central algebras, is a rule (covariant functor) which for each object i
of I associates Mi, a set, resp. left A-module, right B-module, A−B-bimodule, F -central algebra,
and for each morphism φ ∶ i → j in I associates Mφ ∶ Mi → Mj, a morphism of sets, resp. a
morphism of left A-modules, right B-modules, A−B-bimodules, F -central algebras, such that MIdi

equals the identity on Mi for every object i of I, and such that the composition Mψ ○Mφ equals
Mψ○φ for every ordered pair (φ,ψ) of composable morphisms in I. For I-compatible families M●
and N●, a homomorphism a● of I-compatible families is a rule which to every object i of I asso-
ciates ai ∶Mi → Ni, a morphism of sets, resp. left A-modules, right B-modules, A −B-bimodules,
F -central algebras, such that for every morphism φ ∶ i → j in I, the composition aj ○Mφ equals
Nφ ○ ai.

Lemma 3.3. For every morphism a● of I-compatible families of left A-modules, the rule associ-
ating to every object i of I the image of ai, resp. the kernel of ai, is an I-compatible family of
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left A-modules. Similarly, for every morphism of I-compatible families of sets, resp. F -central
algebras, the rule associating to every object i of I the image of ai is an I-compatible family of
sets, resp. F -central algebras. For each I-compatible family M●, the identity maps Mi →Mi form
a homomorphism of I-compatible families of left A-modules. For homomorphisms of I-compatible
families a● ∶M●N● and b● ∶ N● → P●, the composition (bi ○ ai)i is a homomorphism of I-compatible
families of left A-modules.

Proof. This is straightforward.

Altogether, these notions give a category whose objects are I-compatible families and whose mor-
phisms are morphisms of I-compatible families.

Definition 3.4. For every M , a set, respectively a left A-module, right B-module, A−B-bimodule,
F -central algebra, the constant I-compatible family is the I-compatible family constI,M,● such that
every Mi equals M and every Mφ equals IdM . For every a ∶M → N a morphism of sets, resp. left
A-modules, right B-modules, A − B-bimodules, F -central algebras, the constant morphism of
constant I-compatible families,

constI,a,● ∶ constI,M,● → constI,N,●,

associates to every object i of I the morphism a ∶ M → N . For an I-compatible family M●, an
(inverse) limit of M● is a pair (L, p●) of L, a set, resp. left A-module, right B-module, A − B-
bimodule, F -central algebras, and a morphism of I-compatible families,

p● ∶ constI,L,● →M●,

such that for every such pair (K,u●) there exists unique v ∶ K → L a morphism of sets, resp. left
A-modules, right B-modules, A −B-bimodules, with u● equal to the composition p● ○ constv,●. A
limit is unique up to unique isomorphism, and it is denoted L = lim←ÐM●. If I is a discrete category,

this is also called a product and is denoted ∏M●. Similarly, a colimit (or direct limit) of M● is
pair (P, q●) of P , a set, resp. left A-module, right B-module, A −B-bimodule, F -central algebras,
and a morphism of I-compatible families

q● ∶M● → constI,P,●,

such that for every such pair (Q, t●) there exists a unique s ∶ P → Q, a morphism of sets, resp. left
A-modules, right B-modules, A−B-bimodules, F -central algebras, with t● equal to the composition
constf,● ○ q●. A colimit is unique up to unique isomorphism, and it is denoted P = limÐ→M●. If I
is a discrete category, this is also called a coproduct. A coproduct of sets is denoted ⊔M●. A
coproduct of left A-modules, resp. right B-modules, A −B-bimodules is denoted ⊕M●.

Lemma 3.5. Every I-compatible family M● of sets has a limit (lim←ÐM●, p●). For an I-compatible
family M● of left A-modules, respectively right B-modules, A − B-bimodules, F -central algebras,
there is a unique structure of left A-module, resp. right B-module, A−B-bimodule, on lim←ÐM● such
that p● is a morphism of I-compatible families of left A-modules, resp. right B-modules, A − B-
bimodules. With this structure, also (lim←ÐM●, p●) is a limit of the I-compatible family M● of left
A-modules, resp. right B-modules, A −B-bimodules, F -central algebras.
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Proof. By hypothesis, I has a set ObI of objects. By the axioms of set theory, there is a Cartesian
produt ∏M● of all sets Mi indexed by i in ObI. Denote the coordinate projections from this
Cartesian product as

prM●,i ∶∏M● →Mi.

If M● is an I-compatible family of left A-modules, respectively right B-modules, A−B-bimodules,
then also ∏M● has a unique structure of left A-module, resp. right B-module, A − B-bimodule,
F -central algebras, such that every prM●,i is a morphism of left A-modules, resp. right B-modules,
A−B-bimodules, F -central algebras. By the universal property of Cartesian products, a morphism
from K to ∏M● is equivalent to a family of morphisms ui ∶ K →Mi indexed by i ∈ ObI, and this
also holds in the category of left A-modules, resp. right B-modules, A − B-bimodules, F -central
algebras.

Define lim←ÐM● to be those elements m of∏M● such that Mφ○pri and prj map m to the same element
in Mj for every morphism φ ∶ i→ j in I. Inside M●, this is a subset, resp. a left A-submodule, right
B-submodule, A −B-bisubmodule, F -central algebras. For every i in ObI, denote the restriction
of prM●,i to lim←ÐM● by

pi ∶ lim←ÐM● →Mi.

By construction, this gives a pair (lim←ÐM●, p●) as in the definition. The universal property for

(∏M●,pr●) implies the universal property for (lim←ÐM●, p●).
Corollary 3.6. For every strictly small indexing category I, for every morphism of I-compatible
families, a● ∶M● → N●, if every ai ∶Mi → Ni is injective, then also the map of colimits is injective,
lim←Ða● ∶ lim←ÐM● ↪ lim←ÐN●. On the other hand, lim←Ða● is surjective if every ai is surjective and the I-
compatible system of kernels is stationary, i.e., for every object i there exists a morphism φ ∶ j → i
such that for every morphism ψ ∶ k → j, the images of Ker(ak) and Ker(aj) are equal in Ker(ai)
via the maps Mφ○ψ and Mφ.

Proof. Since the limit is, by construction, a subset of the product, injectivity of a map of colimits
reduces to injectivity of a map of coproducts, which is immediate. The result about surjectivity is
more subtle; please search for the keyword “Mittag-Leffler condition” in a more advanced algebra
textbook (such as Lang’s textbook).

Lemma 3.7. Every I-compatible family M● of sets has a colimit set. If I is a filtered category, then
for an I-compatible family M● of left A-modules, respectively right B-modules, A−B-bimodules, F -
central algebras, there is a unique structure of left A-module, resp. right B-module, A−B-bimodule,
F -central algebra, on the colimit set such that it is also a colimit of left A-modules, resp. right B-
modules, A −B-bimodules, F -central algebras. If I is not necessarily prefiltered, then a colimit of
M● still exists in the category of left A-modules, resp. right B-modules, A −B-bimodules, but the
induced map from the colimit set to the underlying set of the colimit module is not necessarily a
bijection.

Proof. The coproduct set is the subset ⊔M● of the Cartesian product ObI × (∪M●) consisting of
ordered pairs (i,mi) such that mi is an element of Mi. The inclusion maps are

incli ∶Mi → ⊔M●, mi ↦ (i,mi).
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The colimit set is the quotient by the smallest equivalence relation such that inclj ○Mφ(mi) is
equivalent to incli(mi) for every morphism φ ∶ i → j in I and for every mi ∈ M . Note that the
colimit set is the union of the images of the maps qi, and elements mi ∈Mi and mj ∈Mj have equal
images under qi and qj if and only if there exist morphisms φ ∶ i → k and ψ ∶ j → k in I such that
Mφ(mi) equals Mψ(mj).

Now assume that I is a filtered category, and let M● be an I-compatible family of Abelian groups,
e.g., the underlying additive group of a left A-module, a right B-module, or an A −B-bimodule.
Then for all objects i, j in ObI, there exist morphisms φ ∶ i → k and ψ ∶ j → k in I. Thus,
qi(mi)+ qj(mj) can be defined as qk(Mφ(mi)+Mψ(mj)). Is this well-defined? For every morphism
φ′ ∶ i→ k, there exists a morphism χ ∶ k → ` in I such that χ ○φ equals χ ○φ′. Thus, Mχ(Mφ(mi)+
Mψ(mj)) equals Mχ(Mφ′(mi)+Mψ(mj)). Thus, the images in the colimit of Mφ(mi)+Mψ(mj) and
Mφ′(mi)+Mψ(mj) are equal. Therefore addition is well-defined. The axioms for an Abelian group
for the colimit set follow from the axioms for the Abelian groups Mi and the axioms for Abelian
group homomorphisms Mφ. By construction, every qi is a homomorphism of Abelian groups. Thus,
the colimit set is a colimit of M● in the category of Abelian groups. The argument is similar if
M● is an I-compatible family of left A-modules, resp. right B-modules, A −B-modules, F -central
algebras.

Finally, assume that M● is an I-compatible family of modules, but do not assume that I is a filtered
category. Inside ∏M●, define ⊕M● to be the submodule of elements m = (mi)i∈ObI such that mi

is zero for all but finitely many i. Define qi to be the morphism sending mi to the unique element
m such that prj(m) = 0 for all j ≠ i and pri(m) equals mi. This is a homomorphism to ⊕M●.
It is straightforward to check that this is a coproduct in the category of modules. The colimit is
constructed in the analogous manner as above: form the quotient by the submodule generated by
the image of qj ○Mφ − qi for every morphism φ ∶ i→ j in I.

[HERE]

Corollary 3.8. For every strictly small category, for every morphism of I-compatible families
a● ∶ M● → N●, if ai is surjective for every object i in I, then also the induced map of colimits is
surjective. For every strictly small, filtered category I, for every morphism of I-compatible families
a● ∶ M● → N●, if ai is injective for every object i in I, then also the induced map of colimits is
surjective.

Proof. For the first statement, since the colimit is a quotient of the direct sum, then it suffices
to prove that the induced map of direct sums is surjective. Since the direct sum of (Ni)i∈ObI is
generated by the images of Ni, and since every Ni is in the image of Mi, then the induced map of
direct sums is surjective.

The second statement uses the fact that every element of limÐ→M● is the image of an element mi ∈Mi

for some object i of I. For ai(mi), if the image in limÐ→N● is zero, then there exists a morphism

φ ∶ i → j such that Nφ maps ai(mi) to zero. Then aj also maps Mφ(mi) to zero. Since aj is
injective, it follows that Mφ(mi) is zero. Since the image of mi in the colimit also equals the image
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of Mφ(mi) in the colimit, it follows that the image of mi in the colimit equals 0. Therefore the
induced map of colimits is injective.

The construction of colimit of F -central algebras requires the tensor product.

4 Exact Sequences of Modules

Definition 4.1. A (Z-graded) cochain complex V ● of left A-modules, resp. right B-modules,
A − B-bimodules, is an ordered pair ((V n)n∈Z, (dnV )n∈Z) of a sequence (Vn)n∈Z of left A-modules,
resp. right B-modules, A −B-bimodules, and a sequence (dnV ∶ V n → V n+1)n∈Z of homomorphisms
of left A-modules, resp. right B-modules, A−B-bimodules, such that the composite dn+1 ○dn is the
zero homomorphism for every n ∈ Z. (Please note that the superscript is an index, not a product
or direct sum.) For cochain complexes V ● and W ● of left A-modules, resp. right B-modules,
A −B-bimodules, a cochain map f ● of left A-modules, resp. right B-modules, A −B-bimodules
from V ● to W ● is a sequence (fn ∶ V n →W n)n∈Z of homomorphisms of left A-modules, resp. right
B-modules, A −B-bimodules, such that the composite fn+1 ○ dnV equals dnW ○ fn for every n ∈ Z. If
every fn is an inclusion of a submodule, then V ● is a cochain subcomplex of W ●; note that then
the differentials on the subcomplex are uniquely determined. For cochain complexes V ● and W ● of
left A-modules, resp. right B-modules, A −B-bimodules, and for cochain maps, f ●, g● ∶ V ● →W ●,
of left A-modules, resp. right B-modules, A −B-bimodules, a cochain homotopy s● from f ● to
g● of left A-modules, resp. right B-modules, A −B-bimodules, is a sequence (sn ∶ V n → W n−1)n∈Z
such that fn−gn equals dn−1W ○sn+sn+1 ○dnV for every n ∈ Z. If there exists such a cochain homotopy,
then f ● is homotopic to g●. A cochain map is nullhomotopic if there exists a cochain homotopy
from the chain map to the zero chain map. Thus, f ● is homotopic to g● if and only if f ● − g● is
nullhomotopic.

Lemma 4.2. For every cochain complex V ●, the sequence (IdV n)n∈Z is a cochain map. A com-
position of cochain maps of left A-modules, resp. right B-modules, A − B-bimodules, is again a
cochain map of left A-modules, resp. right B-modules, A −B-bimodules. Thus, there is a category
of cochain complexes of left A-modules, resp. right B-modules, A − B-bimodules. For a cochain
map, the sequence of kernels, respectively images, forms a cochain subcomplex. Similarly, there is a
unique structure of cochain complex on the sequence of cokernels such that the sequence of quotient
homomorphisms is a cochain map. Finally, for every cochain homotopy s● between cochain maps,
f ●, g● ∶ V ● →W ●, for every cochain map e● ∶ U ● → V ● and for every cochain map h● ∶W ● → Y ●, the
sequence (sn ○ en)n∈Z is a cochain homotopy from f ● ○ e● to g● ○ e●, and the sequence (hn−1 ○ sn)n∈Z
is a cochain homotopy from h● ○ f ● to h● ○ g●. Thus there is also a well-defined category in which
cochain maps are replaced by cochain homotopy classes of cochain maps.

Proof. This is straightforward.

Definition 4.3. For every cochain complex V ●, for every integer n, the cocycle submodule in
degree n, Zn

V = Zn(V ●), is the kernel of dnV as a submodule of V n. The sequence (Zn
V )n∈Z forms
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a cochain subcomplex of V ● in which every differential is the zero homomorphism. This is the
cocycle subcomplex, Z●

V . The coboundary submodule in degree n, Bn
V = Bn(V ●), is the

image of dn−1V . Since dnV ○ dn−1V is zero, Bn
V is a submodule of Zn

V . The sequence (Bn
V )n∈Z is the

coboundary subcomplex, B●
V , of Z●

V . As with Z●
V , each differential is the zero homomorphism.

Finally, the cohomology complex H●
V is the quotient of the cochain complex Z●

V by the cochain
subcomplex B●

V , i.e., Hn
V = Hn(V ●) equals Zn(V ●)/Bn(V ●). As with Z●

V and B●
V , each differential

for H●
V is the zero homomorphism.

Lemma 4.4. For every cochain map f ● ∶ V ● → W ●, each fn maps Zn(V ●) to Zn(W ●) and maps
Bn(V ●) to Bn(W ●). Thus, there are well-defined cochain maps Z●

f ∶ Z●
V → Z●

W and B●
f ∶ B●

V → B●
W .

The cocycle complex is functorial, i.e., Zn
IdV

equals the identity map on Zn
V , and Zn

f ○Zn
e equals Zn

f○e
for cochain maps e● ∶ U ● → V ● and f ● ∶ V ● → W ●. Similarly, the boundary complex is functorial.
Thus, also the cohomology complex H●

V is functorial.

Proof. This is straightforward.

Lemma 4.5. For cochain complexes V ● and W ●, for cochain maps f ●, g● ∶ V ● →W ●, if there exists
a cochain homotopy s● from f ● to g●, then the maps Hn

f ,H
n
g ∶Hn(V ●)→Hn(W ●) are equal.

Proof. Since fn − gn equals dn−1W ○ sn + sn+1 ○ dnV , the restriction to Zn
V satisfies (fn − gn)∣Z equals

dn−1W ○ sn. Thus, the composite of (fn − gn)∣Z with projection to the quotient W n/Bn
W equals 0.

Therefore the induced maps are equal,

fn, gn ∶ Zn
V →W n/Bn

W .

Therefore the induced maps from Hn
V = Zn

V /Bn
V to Hn

W = Zn
W /Bn

W are equal.

Definition 4.6. A cochain map f ● ∶ V ● → W ● is a quasi-isomorphism if the induced map
Hn
f ∶ Hn(V ●) → Hn(W ●) is an isomorphism for every n ∈ Z. A cochain complex V ● is exact

(sometimes also called acyclic) if Hn
V is a zero module for every n ∈ Z. An exact complex is also

called a long exact sequence. A short exact sequence is an exact complex V ● so that there
is an integer n with V m equal to a zero module with the possible exceptions of m = n, m = n + 1
and m = n + 2, i.e., at most three nonzero modules, and they are all consecutive. Explicitly,
a three-term complex is an ordered triple (V n, V n+1, V n+2) of modules, and an ordered pair
(dnV ∶ V n → V n+1, dn+1V ∶ V n+1 → V n+2) of module homomorphisms such that dn+1V ○dnV equals the zero
homomorphism. A three-term complex is right exact, respectively left exact, if dn+1V is surjective,
resp. dnV is injective, and if the image of dnV equals the kernel of dn+1V . This is usually written as

V n dnÐ→ V n+1 dn+1ÐÐ→ V n+2 → 0, resp.

0→ V n dnÐ→ V n+1 dn+1ÐÐ→ V n+2.

A three-term complex is exact if it is both right exact and left exact. In this case, it is equivalent
to a short exact sequence as above, where V m is defined to be a zero module for every m different
from n, n + 1 and n + 2. This is usually written as

0→ V n dnÐ→ V n+1 dn+1ÐÐ→ V n+2 → 0.
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Definition 4.7. A functor to the category of Abelian groups from the category of left A-modules,
resp. right B-modules, A−B-bimodules, is additive if it maps zero modules to zero Abelian groups
and if it maps every product M ×N of modules in the category to a product of the corresponding
Abelian groups. For such a functor, the induced maps of Hom sets are automatically homomor-
phisms of Abelian groups. An additive functor is right exact, respectively left exact, if it maps
every short exact sequence of modules to a three-term complex that is right exact, resp. left exact.
An additive functor is exact if it is both left exact and right exact.

5 Tensor Products

Definition 5.1. For F -central algebras A, B, and C, for an A−B-bimodule U for a B−C-bimodule
V , and for every A −C-bimodule W , a B-balanced A −C-bilinear map from U × V to W is an
F -bilinear map β ∶ U × V →W such that for every a ∈ A, for every b ∈ B, for every c ∈ C, for every
u ∈ U , and for every v ∈ V , β(u ⋅ b, v) equals β(u, b ⋅ v), β(a ⋅ u, v) equals a ⋅ β(u, v), and β(u, v ⋅ c)
equals β(u, v) ⋅ c. Such β is universal if for every A − C-bimodule Y and for every B-balanced
A −C-bilinear map γ from U × V to Y , there exists a unique homomorphism of A −C-bimodules
W → Y such that the composition of β with this homomorphism equals γ.

Lemma 5.2. There exists a universal B-balanced A − C-bilinear map from U × V to an A − C-
bimodule. One construction is the composition of the universal F -bilinear map U × V → U ⊗F V
with the quotient of U ⊗F V by the F -subspace K generated by elements (u ⋅ b)⊗ v − u⊗ (b ⋅ v) for
all b ∈ B, for all u ∈ U , and for all v ∈ V ; this subspace is an A −C-subbimodule.

Proof. The A−C-bimodule structure on U⊗V is the unique structure such that a ⋅(u⊗v) = (a ⋅u)⊗v
and (u⊗ v) ⋅ c = u⊗ (v ⋅ c) for every a ∈ A, for every c ∈ C, for every u ∈ U , and for every v ∈ V . Note
that a⋅((u⋅b)⊗v−u⊗(b⋅v)) equals ((a⋅u)⋅b)⊗v−(a⋅u)⊗(b⋅v), and likewise for ((u⋅b)⊗v−u⊗(b⋅v))⋅c.
Thus, the F -subspace K is already an A − C-subbimodule of U ⊗ V , and the quotient of U ⊗F V
by K is a quotient A −C-bimodule.

A B-balanced F -bilinear map from U×V to an F -vector space W is equivalent to an F -bilinear map
such that the induced F -linear transformation U⊗F V →W maps every (u ⋅b)⊗v−u⊗(b ⋅v) to zero.
This is precisely the same as an F -linear transformation to W from the quotient (U ⊗F V )/K.

Lemma 5.3. For every I-compatible system V● of right B-modules with colimit q● ∶ V● → constI,V ,
for every left B-module U , the induced system IdU ⊗ q● ∶ U ⊗B V● → constI,U⊗BV is a colimit of the
I-compatible system U ⊗B V● of Abelian groups.

Proof. For every Abelian group Q, a morphism of I-compatible systems of Abelian groups,

(ti ∶ U ⊗B Vi → Q)i∈ObI ,

is equivalent to a sequence of B-balanced biadditive maps,

(t̃i ∶ U × Vi → Q)i∈ObI ,
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such that for every morphism φ ∶ i → j in I, also t̃j ○ (IdU × Vφ) equals t̃i. Then, for every u ∈ U ,
the sequence

((t̃i)u,● ∶ Vi → Q)i∈ObI ,

is an I-compatible family of homomorphisms of Abelian groups. By the universal property of the
colimit, there is a unique homomorphism of Abelian groups,

t̃u,● ∶ V → Q,

such that for every object i of I, the composite t̃u,● ○ qi equals (t̃i)u,●. This gives a well-defined
binary operation,

t̃ ∶ U × V → Q, (u, v)↦ t̃u,●(v).

Since eavery t̃i is a biadditive B-balanced map, and since the images of the maps qi generate V ,
it follows that also t̃ is a biadditive B-balanced map. Thus, by the universal property of tensor
products, there is a unique homomorphism of Abelian groups,

t ∶ U ⊗B V → Q,

such that t(u⊗ v) equals t̃(u, v) for every u ∈ U and for every v ∈ V . In particular, for every object
i of I, the composition t ○ (IdU ⊗ qi) equals ti. Therefore the system (IdU ⊗ qi)i∈ObI is a colimit of
the I-compatible family U ⊗B V●.

Lemma 5.4. For every left B-module V , the functor from the category of right B-modules to
Abelian groups that sends each right B-module U to U ⊗B V is a right exact functor.

Proof. It is straightforward to see that tensor product sends zero module to zero Abelian groups
and preserves finite direct sums. Thus, it is an additive functor. For every short exact sequence of
right B-modules,

0→ U ′ qÐ→ U
pÐ→ U ′′ → 0,

every “pure tensor” u′′⊗v ∈ U ′′⊗BV equals the image under p⊗IdV of the pure tensor u⊗v ∈ U⊗BV
for an element u ∈ U with p(u) = u′′. Since the pure tensors generate U ′′⊗B V as an Abelian group,
it follows that p⊗ IdV is surjective.

Since p ○ q is a zero homomorphism, also (p ⊗ IdV ) ○ (q ⊗ IdV ) equals (p ○ q) ⊗ IdV , and this is
a zero homomorphism. Thus, we have a three-term complex. Finally, let r ∶ U ⊗B V → W be a
homomorphism of Abelian groups such that r ○ (q ⊗ IdV ) is the zero homomorphism. Then the
induced B-balanced biadditive map,

r̃ ∶ U × V →W, (u, v)↦ r(u⊗ v),

restricts as zero on q(U ′)× V . Thus, for every u′′ ∈ U and for every v ∈ V , the image r̃(u, v) ∈W is
independent of the choice of u ∈ U with p(u) = u′′. So there is an induced well-defined, B-balanced
biadditive map,

s̃ ∶ U ′′ × V →W, (u′′, v)↦ r(u⊗ v),
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such that r̃ equals s̃ ○ (p× IdV ). In other words, there is an induced well-defined homomorphism of
Abelian groups,

s ∶ U ′′ ⊗B V →W,

such that r equals s ○ (p⊗ IdV ). In particular, the kernel of p⊗ IdV is contained in the kernel of r.
Taking r to be the quotient of U ⊗B V by the image of q⊗ IdV , it follows that the kernel of p⊗ IdV
equals the image of q ⊗ IdV .

Definition 5.5. A left B-module V is flat (as a left B-module) if for every injective homomorphism
of right B-modules, q ∶ U ′ → U , the following homomorphism of Abelian group is injective,

q ⊗B IdV ∶ U ′ ⊗B V → U ⊗B V, u′ ⊗ v ↦ q(u′)⊗ v.

In other words, V is flat if and only if the right exact functor −⊗BV is an exact functor. Similarly, a
right B-module U is flat (as a right B-module) if tensor product with the module preserves injective
homomorphisms of left B-modules; equivalently U ⊗B − is an exact functor. An A−B-bimodule is
flat as an A −B-bimodule if it is both flat as a left A-module and flat as a right B-module.

Lemma 5.6. Every direct summand of a flat module is flat. Every direct sum of flat modules is
flat. Every free module is flat. Every colimit of flat modules over a filtered index category is a flat
module.

Proof. Since tensor product preserves direct sums, and since a summand of an injective homo-
morphism is also injective, it follows that direct summands of flat modules are flat. Since tensor
product is compatible with colimits, in particular it is compatible with direct sums. A direct sum
of injective homomorphisms is injective. Thus, a direct sum of flat modules is flat. In particular,
the ring is flat with its natural bimodule structure, since tensor product of a module with the ring
just returns the module. Thus, every direct sum of modules each isomorphic to the ring is flat,
i.e., every free module is flat. Finally, a filtered colimit of injective morphisms is injective. Thus, a
filtered colimit of flat modules is flat.

The most basic examples arise from composition of homomorphisms of modules, considered as
balanced bilinear maps on modules of homomorphisms (of modules).

Definition 5.7. For F -central algebras A, B, C, and D, for every A − B-bimodule U , for every
A −C-bimodule V , and for every A −D-bimodule W , for every homomorphism of left A-modules,
L ∶ U → V , for every b ∈ A, for every c ∈ C, the scalar multiple b ⋅L ⋅c is the F -linear transformation
U → V defined by u↦ L(u ⋅ b) ⋅ c. Also the opposite composition is the F -bilinear map

HomA−mod(U,V ) ×HomA−mod(V,W )→ HomA−mod(U,W ), (L,M)↦M ○L.

Lemma 5.8. The scalar multiple above is a structure of B − C-bimodule on HomA−mod(U,V ),
and the opposite composition is a C-balanced F -bilinear map. The induced F -linear map is a
homomorphism of B −D-bimodules,

HomA−mod(U,V )⊗C HomA−mod(V,W )→ HomA−mod(U,W ), L⊗M ↦M ○L.
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Proof. Each of these is straightforward to prove.

Definition 5.9. For every F -central algebra A, for every left A-module V , composition defines a
structure of F -central algebra on EndA−mod(V ) = HomA−mod(V,V ), the A-endomorphism algebra
of V . In the usual way, this is a bimodule over itself. For every left A-module U , composition defines
on HomA−mod(U,V ) a structure of left EndA−mod(V )-module and a structure of right EndA−mod(U)-
module, and together these form a bimodule structure, the natural bimodule structure on
HomA−mod(U,V ). For the natural bimodule structures, the opposite composition map above is
balanced and induces a homomorphism of bimodules. The analogous definitions and results also
hold for right modules in place of left modules.

Adjunction gives natural isomorphisms relating tensor and Hom.

Lemma 5.10. For all F -central algebras A, B, and C, for every A − B-bimodule U , for every
B −C-bimodule V , and for every A −C-bimodule W , the adjunction F -linear transformation,

HomA−C−bimod(U ⊗B V,W ) = BilBA−C−bimod(U × V,W )→ HomA−B−bimod(U,Hommod−C(V,W )),

is an isomorphism. These isomorphisms are natural in U and W .

Proof. The proof is the same as in the case for F -vector spaces.

Definition 5.11. For every F -central algebra R, for every R −R-bimodule M , a datum (f ∶ R →
A,L ∶M → A) of a homomorphism of F -central algebras f ∶ R → A algebra A and a homomorphism
of R−R-bimodules, L ∶ V → A, is universal if for every such datum (g ∶ R → B,K ∶M → B), there
exists a unique homomorphism of F -central algebras, eK ∶ A→ B, such that eK ○f equals g and such
that K = eK ○L. A universal datum is unique up to unique isomorphism. If it exists, it is the tensor
R-algebra generated by M . It is denoted by A = T ●

R(M) = R ⊕M ⊕ T 2
R(M) ⊕ ⋅ ⋅ ⋅ ⊕ T nR(M) ⊕ . . . ,

where R is the (isomorphic) image of R in A, where M is the (isomorphic) image of M in A, and
where T nF (V ) is the R−R-submodule of A generated by the image of the n-fold multiplication map
M × ⋅ ⋅ ⋅ ×M → A, so that the multiplication gives an isomorphism of R −R-bimodules,

TmR (M)⊗R T nR(M) ≅Ð→ Tm+nR (M),

for all integers m,n ≥ 0. Thus, sometimes T nR(M) is also denoted M⊗n or ⊗n
RM .

Here is a variant of this universal property: for every R−R-bimodule N , for every R−R-bimodule
homomorphism β ∶ M ⊗R N → N , there exists a unique structure of (left) T ●

R(M)-module on N
whose restriction to T 1

F (M) =M is β.

Example 5.12. For every nonnegative integer n, when M is the free R − R-bimodule R⊕n with
ordered basis (e1, . . . ,en), the associated tensor R-algebra T ●

R(R⊕n) is the free, associative, unital
R-algebra R⟨x1, . . . , xn⟩ in noncommuting variables (x1, . . . , xn), where each xi is the image of
ei in T ●

F (F⊕n). In this case, the universal property is the following: for every R-algebra B, for
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every ordered n-tuple b = (b1, . . . , bn) of elements of B, there exists a unique homomorphism of R-
algebras, eb ∶ R⟨x1, . . . , xn⟩→ B, sending every xi to bi. The image of eb is the smallest R-subalgebra
of B that contains b1, . . . , bn. The image is denoted by R⟨b1, . . . , bn⟩ ⊆ B. Alternatively, for every
R−R-bimodule N , a (left) R⟨x1, . . . , xn⟩-module structure on N is equivalent to an ordered n-tuple
(b1, . . . , bn) of R−R-bimodule endomorphisms of N , namely bi is the linear operator of multiplication
by xi. For nonzero M and (b1, . . . , bn) as above, a left submodule is an R −R-bisubmodule of N
that is mapped back to itself by each of b1, . . . , bn. For an R−R-bimodule P and an ordered n-tuple
(c1, . . . , cn) of R − R-bimodule endomorphisms of P , a morphism of (left) R⟨x1, . . . , xn⟩-modules
from (N, (b1, . . . , bn)) to (P, (c1, . . . , cn)) is an R − R-bimodule homomorphism K ∶ W → V that
intertwines ai and bi, i.e., K ○ ai equals bi ○K for every i = 1, . . . , n.

Tensor algebras give coproducts of commutative F -algebras. Let A be a commutative F -algebra,
and let f ′ ∶ A→ A′ and f ′′ ∶ A→ A′′ be A-central algebras, i.e., morphisms of F -central algebras
whose image is contained in the center. Then both A′ and A′′ have a natural structure of A −A-
bimodule. Thus, the tensor product A′ ⊗A A′′ is naturally an A − A-bimodule. Denote by g′,
respectively g′′, the induced morphism of left A-module, resp. right A-module,

g′ ∶ A′ → A′ ⊗A A′′, a′ ↦ a′ ⊗ 1,

g′′ ∶ A′′ → A′ ⊗A A′′, a′′ ↦ 1⊗ a′′.

By construction, g′ ○ f ′ equals g′′ ○ f ′′, i.e., the pair (g′, g′′) equalizes the pair (f ′, f ′′).

Lemma 5.13. There is a unique structure of F -central algebra on A′ ⊗A A′′ such that g′ and g′′

are homomorphisms of F -central algebras whose images commute. This is the universal pair of
morphisms from (A′,A′′) to an A-central algebra that equalizes (f ′, f ′′) with commuting images.
In particular, if A′ and A′′ are also commutative, then (g′, g′′) is a coproduct of (f ′, f ′′) in the
category of commutative A-algebras.

Proof. Consider the multiadditive map to the Abelian group A′ ⊗A A′′,

(A′ ×A′′) × (A′ ×A′′)→ A′ ⊗A A′′, ((a′, a′′), (b′, b′′))↦ (a′b′)⊗ (a′′b′′).

Because A is commutative, this is simultaneously A-balanced in the first two arguments and in the
last two arguments. Thus there is a well-defined biadditive map,

(A′ ⊗A A′′) × (A′ ⊗A A′′)→ A′ ⊗A A′′.

This defines the multiplication law. By construction, g′(a′)g′′(a′′) = a′ ⊗ a′′ = g′′(a′′)g′(a′) for all
a′ ∈ A′ and all a′′ ∈ A′′. Thus, the images of g′ and g′′ commute with one another. For any pair
(h′, h′′) of morphisms of F -central algebras,

h′ ∶ A′ → B, h′′ ∶ A′′ → B,
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there is an F -balanced pairing,

h̃ ∶ A′ ×A′′ → B, (a′, a′′)↦ h′(a′)h′′(a′′).

If h′ ○ f ′ equals h′′ ○ f ′′, then this pairing is A-balanced,

h′(a′f ′(a))h′′(a′′) = h′(a′)(h′ ○ f ′)(a)h′′(a′′) = h′(a′)(h′′ ○ f ′′)(a)h′′(a′′) = h′(a′) ○ h′′(f ′′(a)a′′),

for all a ∈ A, for all a′ ∈ A′, and for all a′′ ∈ A′′. Thus there is a unique A −A-bimodule homomor-
phism,

h ∶ A′ ⊗A A′′ → B,a′ ⊗ a′′ ↦ h′(a′)h′′(a′′),

extending the A-balanced pairing. Finally, if the images of h′ and h′′ commute, then this is a
morphism of A-central algebras,

h((a′⊗a′′)⋅(b′⊗b′′)) = h((a′b′)⊗(a′′b′′)) = h′(a′b′)h′′(a′′b′′) = h′(a′)h′(b′)h′′(a′′)h′′(b′′) = h′(a′)h′′(a′′)h′(b′)h′′(b′′) = h(a′⊗a′′)h(b′⊗b′′).

Thus, (g′, g′′) is the universal pair of morphisms from (A′,A′′) to an A-central algebra equalizing
(f ′, f ′′) and with commuting images.

As usual, there is a reinterpretation of this A-algebra in terms of modules.

Lemma 5.14. For every commutative F -algebra A and for every left A-module with its induced
natural structure of A−A-bimodule, an A-algebra homomorphism from A′⊗AA′′ to HomA−mod(V,V )
is equivalent both to a structure of left A′ ⊗A A′′-module structure on V extending the left A-
module structure and an A′−(A′′)opp-bimodule structure on V extending the natural A−A-bimodule
structure.

Proof. Since A is commutative and the A − A-bimodule structure on V is the induced natural
bimodule structure, the following natural inclusion is surjective,

HomA−A−bimod(V,V )→ HomA−mod(V,V ).

Thus, HomA−mod(V,V ) is naturally an A-algebra (with composition giving the multiplication, as
usual). Also homomorphisms from A′ ⊗A A′′ to HomA−A−bimod(V,V ) have both interpretations in
terms of left module and bimodule structures.

This implies a universal property for a tensor product of tensor algebras.

Corollary 5.15. For every commutative F -algebra A, for left A-modules U , V , and W with their
induced natural A − A-bimodule structures, a pair (f, g) of an A-module homomorphism f ∶ U →
HomA−mod(V,V ) = HomA−A−bimod(V,V ) and an A-module homomorphism g ∶W → Hommod−A(V,V ) =
HomA−A−bimod(V,V ) whose images commute, is equivalent to an A-algebra homomorphism T ●

A(U)⊗A
T ●
A(W )opp → HomA−mod(V,V ).
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This should be compared to the following.

Lemma 5.16. For every commutative F -algebra A, for left A-modules U , V , and W with their
induced natural A − A-bimodule structures, a pair (f, g) of an A-module homomorphism f ∶ U →
HomA−A−bimod(V,V ) and an A-module homomorphism g ∶ W → HomA−A−bimod(V,V ), is equivalent
to an A-algebra homomorphism T ●

A(U ⊕W ) → HomA−mod(V,V ). Thus, T ●
A(U ⊕W ) is a coproduct

of T ●
A(U) and T ●

A(W ) in the category of A-central algebras

The construction of more general coproducts and colimits in the category of associative algebras
will require quotient algebras, but this does already give coproducts in the category of commutative
algebras.

Proposition 5.17. For a commutative F -algebra A, coproducts exist in the category of commutative
A-algebras.

Proof. The argument above gives finite coproducts. Let S be any set. Denote by I the category
whose objects are finite subsets of S, and whose morphisms are set inclusions among these finite
subsets. This is a filtered category. For every family (As)s∈S of commutative A-algebras, for every
finite subset i of S, define Ai to be the coproduct of As for the finitely many elements s in i. For every
set inclusion i↪ j in I, define Ai → Aj to be the induced morphism of finite coproducts. This is an
I-compatible family of commutative A-algebras. Thus, the colimit set of this I-compatible family
is a commutative A-algebra. Thus, this colimit set is the colimit in the category of commutative
A-algebras, i.e., it is the coproduct of (As)s∈S.

6 Ideals

Let A be an F -central algebra (not necessarily commutative). For the natural (bi)module structure
of A on itself, the submodules are ideals.

Definition 6.1. Let A be an F -central algebra with its natural structure of A − A-bimodule. A
left ideal in A, respectively a right ideal, is a left A-submodule of the A-module A, resp. a right
A-submodule of the A-module A. A left and right ideal is an A−A-subbimodule of A, i.e., a left
ideal that is also a right ideal. The entire module, A, is the unit ideal, and all other ideals are
proper ideals. A proper left ideal is a maximal left ideal if the quotient left A-module A/I is
a simple left A-module, and similarly for a maximal right ideal and a maximal left and right
ideal.

All of the earlier submodule operations also apply to ideals. In particular, for a subset F of A,
there is the left ideal AF generated by F , there is the right ideal FA generated by F , and there is
the left and right ideal generated by F , AFA. As discussed earlier, for a commutative F -algebra A,
because the identity map A→ Aopp is an isomorphism of F -central algebras, every left A-module is
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naturally also a right A-module, and vice versa. Then every left A-module is naturally an A −A-
bimodule. In particular, every left ideal in A is a right ideal in A, and thus a left and right ideal.
Because of this, the ideal in a commutative F -algebra A generated by a subset F is often denoted
by ⟨F⟩ – a notation that equally denotes left ideal and right ideals.

Definition 6.2. A nonzero algebra A is a division algebra if the only proper left ideal is {0} and
the only proper right ideal is {0} (if the F -dimension is finite, these are equivalent). Equivalently,
every nonzero element is invertible. A nonzero algebra A is simple if the only left and right
ideals are {0} and all of A; equivalently, the left and right ideal generated by any nonzero element
is the unit ideal. Thus, division algebras are simple, but not every simple algebra is a division
algebra. In particular, a commutative division algebra over F is precisely a field together with a
field homomorphism (automatically injective) from F to this field; this is called a field extension
of F . A central simple algebra over F is an F -central algebra that is simple and whose center
equals the isomorphic image of F . Please note, that there are many simple F -central algebras
whose center is strictly bigger than F , e.g., the commutative examples are precisely the nontrivial
field extensions of F .

Lemma 6.3. For every collection of left ideals, respectively right ideals, left and right ideals, the
intersection is again a left ideal, resp. right ideal, left and right ideal. Similarly, the sum as an
Abelian group is again a left ideal, resp. right ideal, left and right ideal. For every homomorphism
of F -central algebras, the preimage of every left ideal, resp. right ideal, left and right ideal, is again
a left ideal, resp. right ideal, left and right ideal.

Proof. Each of these is straightforward and follows by the same method to prove the analogous
result for subgroups of a group.

Proposition 6.4. Every increasing union of ideals is an ideal, and if each ideal is proper, so is
the union. Every proper left ideal, resp. right ideal, left and right ideal is contained in a left ideal,
resp. right ideal, left and right ideal, that is maximal.

Proof. For a totally ordered collection of ideals, for every pair of elements of the union, there exists
an ideal in the collection that contains both elements. Thus, the sum of the elements is in that
ideal, hence also in the union. Therefore the union is an ideal. Note that if each ideal in the
collection is proper, so that 1 is in none of these ideals, then also the union does not contain 1.
Thus the union is also proper.

Now let J in A be a left ideal, respectively right ideal, left and right ideal. Let C be the subset of
the power set of A whose elements are left ideals, resp. right ideals, left and right ideals, that are
proper and that contain I. By the previous paragraph, every totally ordered subset of C has a least
upper bound in C. Thus, there exists a maximal element in C by Zorn’s lemma, i.e., J is contained
in a left ideal, resp. right ideal, left and right ideal, that is maximal.

Lemma 6.5. For a left ideal I in A, the induced left A-module structure on A/I, factors through

the quotient A×(A/I)
qA,I×IdA/IÐÐÐÐÐ→ (A/I)×(A/I) if and only if I is also a right ideal. In this case, the
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induced F -bilinear map from (A/I) × (A/I) to A/I is a structure of F -central algebra. This is the
unique structure of F -central algebra on A/I such that qA,I ∶ A → A/I is a morphism of F -central
algebras. In particular, a left and right ideal I is a maximal left and right ideal if and only if A/I
is a simple F -central algebra.

Proof. The proof is very similar to the proof of the analogous result that the left G-action on the
coset space G/H of a subgroup H factors through a group law on G/H if and only if H is a normal
subgroup.

Definition 6.6. For a left and right ideal I ⊂ A, the quotient F -central algebra associated to I
is the unique structure of F -central algebra on A/I such that the quotient map, qA,I ∶ A → A/I, is
a morphism of F -central algebras. Note that a proper left and right ideal I is maximal if and only
if the algebra A/I is simple.

Example 6.7. Let V be a nonzero, finite-dimensional vector space over a field F . The natural
F -bilinear map HomF (V,V )×V → V by (L, v⃗)↦ L(v⃗) is a structure of left F -module on V that is
a simple module. Similarly, the natural F -bilinear map V ∗×HomF (V,V )→ V ∗ by (χ,L)↦ χ○L is
a simple right module structure. The left ideals in HomF (V,V ) are precisely the subsets Ann(U) ≅
HomF (V,V /U) as U ranges over all F -vector subspaces of V . The maximal left ideals are those
ideals such that U is one-dimensional, and then the simple quotient left module is isomorphic to the
simple left module V . The right ideals are precisely the subsets HomF (U,V ) ⊆ HomF (V,V ) as U
ranges over all F -vector subspaces of V . The maximal right ideals are those ideals such that V /U
is one-dimensional, and then the simple quotient right module is isomorphic to the simple right
module V ∗. The only left and right ideals are the zero ideal, HomF ({0}, V ) = Ann(V ), and all of
HomF (V,V ) = Ann({0}). Thus, when V is nonzero, the F -central algebra HomF (V,V ) is a central
simple algebra over F . Of course for many fields, there are central simple algebras over F with
finite dimension that are not isomorphic to one of these, e.g., the quaternion algebra over F = R is
even a central simple F -algebra that is a division algebra over R. Wedderburn’s Theorem, which
we will discuss, is that when F is a finite field, every finite-dimensional, central simple algebra over
F is isomorphic as an F -central algebra to HomF (V,V ) for some finite-dimensional F -vector space
V .

Quotient algebras complete the construction of coproducts and colimits for associative algebras.
Let A be a commutative F -algebra.

Proposition 6.8. Coproducts and colimits exist in the category of A-central associative unital
algebras.

Proposition 6.9. Let A′ and A′′ be A-central, associative, unital algebras. The left regular rep-
resentation of A′ on itself, respectively of A′′ on itself, is equivalent to surjections of A-central
algebras,

q′ ∶ T ●
A(A′)→ A′, q′′ ∶ T ●

A(A′′)→ A′′.
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Denote the kernel ideals by I ′ and I ′′. The inclusion maps of A −A-bimodules into the direct sum,

e′ ∶ A′ → A′ ⊕A′′, e′′ ∶ A′′ → A′ ⊕A′′,

induce A-algebra homomorphisms of tensor algebras,

j′ = T ●
A(e′) ∶ T ●

A(A′)→ T ●
A(A′ ⊕A′′), j′′ = T ●

A(e′′) ∶ T ●
A(A′′)→ T ●

A(A′ ⊕A′′).

Define A′′ to be the quotient A-central algebra of T ●
A(A′⊕A′′) by the left and right ideal generated by

j′(I ′) and j′′(I ′′). Chasing universal properties, for every left A-module V with its natural A −A-
bimodule structure, an A-algebra homomorphism from A′′ to HomA−A−bimod(V,V ) is equivalent to
simultaneous extensions of the A-module structure to both a left A′-module structure and a left
A′′-module structure, but with no requirement that those actions should commute (as arises from
homomorphisms from A′ ⊗A A′′). Rewritten in terms of A-algebras, this implies that A′′ is a
coproduct of A′ and A′′ in the category of A-central associative unital algebras.

Together with induction, this gives finite coproducts. Arbitrary coproducts follow by the same tech-
nique as in the proof of Proposition 5.17. Finally, let B● be an I-compatible family of A-central
associative unital algebras, where I is a strictly small indexing category. Denote by B the coproduct
over all objects i of I of Bi with its natural A-algebra homomorphisms ui ∶ Bi → B. Thus, simulta-
neously B is a Bi −Bi-bimodule for every object i of I. For every morphism φ ∶ i → j of I, there
are Bi −Bi-module homomorphisms, ui ∶ Bi → B and uj ○Bφ ∶ Bi → B, thus there is a difference
Bi −Bi-module homomorphism, uj ○Bφ − ui. Define J to be the left and right ideal in B generated
by the image of uj ○Bφ −ui for every morphism φ ∶ i→ j in I. The colimit is the quotient A-central
algebra B/J .

Note, this same quotient construction also produces colimits of commutative F -algebra homomor-
phisms beginning with the coproduct in the category of commutative F -algebras, proved in Propo-
sition 5.17. Of course coproducts and colimits in the category of commutative F -algebras also
follow from coproducts and colimits in the category of F -central algebras by taking the associated
commutative F -algebra.

Definition 6.10. For every F -central algebra A, the associated commutative F -algebra is the
quotient F -central algebra qA ∶ A ↠ Acomm that is universal among homomorphisms of F -central
algebras from A to commutative F -algebras. In other words, a homomorphism of F -central algebras
from A to B factors through qA if and only if the image of the homomorphism is a commutative
subalgebra of B. The kernel of qA is the commutator ideal denoted [A,A]: the left and right
ideal in A generated by the set of all commutators a ⋅ b − b ⋅ a for a, b ∈ A (the left ideal generated
by all commutators is automatically also a right ideal).

Example 6.11. For HomF (V,V ), if dimF (V ) equals 1, then the commutator ideal is the zero ideal,
and qA is the identity. In all other cases, the commutator ideal equals all of HomF (V,V ), and the
associated commutative F -algebra is just the zero F -vector space.
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Definition 6.12. For every commutative F -algebra A, for every A-moduleM with its natural A−A-
bimodule structure, the symmetric A-algebra generated by M is the associated commutative
F -algebra of the tensor A-algebra of M , q ∶ T ●

A(M) ↠ S●A(M). The direct summand SnA(M) =
q(T nA(M)) is the nth symmetric power of M (relative to A). Thus, the composite A-module
homomorphism,

L ∶M congÐÐ→ T 1
R(M) congÐÐ→ S1

A(M)↪ S●A(M),
is universal among A-module homomorphisms from M to commutative A-algebras. Alternatively,
the universal property is as follows: for every A-central associative algebra B and for every A-
module homomorphism K ∶ M → B such that the smallest A-subalgebra generated by Image(K)
is commutative (this is automatic if B is commutative), there exists a unique homomorphism of
A-algebras, eK ∶ S●A(M) → B such that K equals eK ○ L. Alternatively, the universal property is
as follows: for every left A-module N , for every A-module homomorphism β ∶ M ⊗A N → N that
is commutative in M , i.e., such that βv,− ○ βu,− = βu,− ○ βv,− for all u, v ∈ M , there exists a unique
structure of (left) S●A(M)-module on N whose restriction to S1

A(M) =M is β.

Example 6.13. For V equal to the free A-module A⊕n with basis (e1, . . . ,en), the corresponding
symmetric A-algebra is the polynomial A-algebra in n variables x1, . . . , xn, where xi is the image
of ei in the symmetric F -algebra. This symmetric A-algebra is usually denoted A[x1, . . . , xn]. In
particular, for n equal to 1, this symmetric F -algebra is usually denoted A[x]. For every A-central
algebra B, for every ordered n-tuple b = (b1, . . . , bn) of pairwise commuting elements of B, there
exists a unique homomorphism of A-central algebras, eb ∶ A[x1, . . . , xn] → B, mapping every xi to
bi. The image is the smallest A-central subalgebra of B that contains b1, . . . , bn, and this A-central
subalgebra is commutative. It is denoted by A[b1, . . . , bn] ⊆ B. Alternatively, for every A-module
W , a (left) A[x1, . . . , xn]-module structure on W is equivalent to an ordered n-tuple b = (b1, . . . , bn)
of pairwise commutating A-module endomorphisms of W , namely bi is the A-module endomor-
phism of multiplication by xi. For an A-module U and an ordered n-tuple c = (c1, . . . , cn) of pair-
wise commuting A-module endomorphisms of U , a morphism of (left) A[x1, . . . , xn]-modules from
(W, (b1, . . . , bn)) to (U, (c1, . . . , cn)) is an A-module homomorphism L ∶ W → V that intertwines
bi and ci, i.e., L ○ bi equals ci ○L for every i.

7 Fractions

Let A be a nonzero F -central associative unital algebra.

Definition 7.1. A subset S ⊂ Z(A) is a multiplicative subset if 1 is in S and Σ × Σ maps to
Σ under multiplication. A multiplicative subset is regular if every element in the multiplicative
subset is a regular element. For a multiplicative subset S, the saturation of S is the set of all
elements u ∈ Z(A) such that there exist s, t ∈ S with su = t.

Lemma 7.2. The subset of Z(A) consisting of all regular elements is a regular multiplicative
subset. The saturation of a multiplicative subset, respectively a regular multiplicative subset, is a
multiplicative subset, resp. a regular multiplicative subset.

23

http://www.math.stonybrook.edu/~jstarr/M534f22/index.html
mailto:jstarr@math.stonybrook.edu


MAT 534 Algebra I
Stony Brook University

Jason Starr
Fall 2022

Proof. The element 1 is a regular element in Z(A). Let s and t be regular elements in Z(A). For
every nonzero a ∈ A, since s is regular, as is nonzero. Since t is regular, also (as)t is nonzero. By
associativity, also a(st) is nonzero. Thus the element st ∈ Z(A) is again a regular element.

Let s, t, s′, t′ be elements of S, and let u,u′ be elements of Z(A) such that su = t and s′u′ = t′. Then
(ss′)(uu′) = (su)(s′u′) = tt′. Since S is a multiplicative subset, both ss′ and tt′ are in S. Thus uu′

is in the saturation of S. If s and t are regular, then for every nonzero a, also ta = s(ua) is nonzero.
Thus also ua is nonzero. So every element in the saturation of a regular multiplicative subset is a
regular element.

Definition 7.3. For a left A-module M , for every m ∈M , the annihilator of m in M is the subset
AnnM(m) ∶= {a ∈ A ∶ am = 0} of A. For a subset S of M , the annihilator AnnM(S) of S in M
is the intersection in A of AnnM(m) for every m in S. An element a ∈ A is M -regular if a is
contained in AnnM(m) only for the zero element m = 0, otherwise a is M -nonregular. In other
words, a is M -regular if multiplication by a is injective on M . More generally, for a subset T of
M , an element a ∈ A is (M,T )-regular if for every t ∈ T , the element a is not in AnnM(t), and
otherwise a is (M,T )-nonregular. In particular, (M,M ∖ {0})-regular is the same as M -regular.
An element a is M -invertible if multiplication by a is a bijection on M . For a multiplicative
subset S of Z(A), the left A-modules is S-inverting if s is M -invertible for every s ∈ S. For a
right A-module, respectively A −A-bimodule, these notions are defined in an analogous way. For
every A −A-bimodule M , the center of M , Z(M), is the set of all elements m ∈M such that for
every a ∈ A, am equals ma.

Lemma 7.4. For every left A-module M , respectively for every right A-module M , for every m ∈M ,
the annihilator AnnM(m) in A is a left ideal, resp. a right ideal. For every A−A-bimodule M and
for every element m in the center of M , this ideal is a left and right ideal.

Proof. If am equals 0, then (ba)m = b(am) also equals 0 for every b ∈ A. If m is in the center of
an A −A-bimodule, and if am equals 0, then (ab)m = a(bm) = a(mb) = (am)b is also 0. Thus, the
annihilator is a left and right ideal.

Lemma 7.5. For an F -central algebra A, for every multiplicative subset S of Z(A), the set I of
(A,S)-nonregular elements in A is a left and right ideal in A. The image of S in the quotient ring
A/I is a regular multiplicative subset.

Proof. Clearly the set of (M,S)-nonregular elements is nonempty, since it contains 0, and it is
stable for multiplication on the right and on the left by elements of A. It remains to prove that it
is stable under addition.

Let s, t be elements of S. Let a, b be elements of A such that as and bt equal 0. Since S is a
multiplicative subset, also st is in S. Since s and t are in the center, both a(st) = (as)t and
b(st) = s(bt) are zero. Thus, also (a+ b)(st) equals 0. So also a+ b is (M,S)-nonregular. Therefore
I is a left and right ideal.

For s ∈ S and a ∈ A, if as is in I, then there exists t ∈ S with (as)t equal to 0. Since S is
multiplicatively closed, also st is in S. Therefore a is already in I. Therefore the image of S in A/I
is a regular multiplicatively closed subset.
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Definition 7.6. Let A be an F -central algebra, let S be a multiplicative subset of Z(A), and let
M be a left A-module. A homomorphism of left A-modules, f ∶ M → N , is S-inverting if N
is S-inverting. An S-inverting homomorphism f ∶ M → N is universal if for every S-inverting
homomorphism h ∶ M → P , there exists a unique homomorphism of left A-modules, g ∶ N → P ,
such that g ○ f equals h. For a right A-module, respectively, an A −A-bimodule, these notions are
defined in the analogous way.

Lemma 7.7. For every S-inverting left A-module, the action of A factors through the quotient
A/I by the ideal I of (A,S)-nonregular elements. Every S-inverting homomorphism also inverts
the saturation of S. Thus, a universal S-inverting homomorphism out of M as a left A-module
exists if and only if there exists a universal inverting homomorphism out of M/IM as a left A/I-
module, and where S is replaced by the saturation of the image of S in A/I, which is a saturated,
regular multiplicative system in A/I. The analogous result holds for right A-modules and for A−A-
bimodules.

Proof. Let N be an S-inverting left A-module. Let s be an element of S, and let a be an element
of A such that as equals 0. Then multiplication by as on N is the constant map with image 0.
Since multiplication by s on N is a bijection, multiplication by a on M is the constant map with
image 0. Thus, for every a ∈ I, the action of a on M is zero. Therefore the action of A on N factors
uniquely through an action of A/I on N .

Let u be an element of Z(A) such that su equals t for elements s, t in S. Since multiplication by t
on N is a bijection, multiplication by su on N is a bijection. Since also multiplication by s on N
is a bijection, multiplication by u on N is a bijection. Thus, N inverts the saturations of S.

By the lemma, to construct a universal S-inverting homomorphism out of M as a left A-module,
it suffices to construct a universal inverting homomorphism out of M/IM as a left A/I-module for
the saturation of the image of S in A/I.

Definition 7.8. For an F -central algebra A, for a multiplicative system S ⊂ Z(A), for a left
A-module M , the set of S-fractions, M[S−1], is the set of equivalence classes of ordered pairs
(m,s) ∈M ×S for the equivalence relation ∼ on M ×S defined by (m,s) ∼ (n, t) if and only if there
exists u ∈ S with utm equal to usn. The equivalence class of (m,s) is denoted m/s. For every
a ∈ A, the fraction product of a on m/s is defined to be (am)/s.

Proposition 7.9. The fraction product is well-defined, and product by any element t ∈ S is a
bijection on M[S−1]. For the natural function f ∶ M → M[S−1] by m ↦ m/1, there is a unique
addition law on M[S−1] such that, together with the fraction product, M[S−1] is a left A-module
and f is a homomorphism of left A-modules. The homomorphism f is a universal S-inverting
homomorphism.

Proof. For (m,s) and (m′, s′) in M ×S, if (m,s) is equivalent to (m′, s′), then there exists u with
us′m equal to usm′. Thus, for a in A, also us′(am) = a(us′m) equals us(am′) = a(usm′), i.e.,
(am, s) is equivalent to (am′, s′). Therefore the fraction product is well-defined. For every t in
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S, if (ta, s) ∼ (ta′, s′), then there exists u in S with us′ta equal to usta′. Since ut is in S, also
(a, s) ∼ (a′, s′). Thus multiplication by t is injective. Also, t⋅a/(st) equals a/s, so that multiplication
by t is surjective.

For any addition law on M[S−1] that, together with fraction product, makes M[S−1] into a left
A-module and makes f into a homomorphism of left A-modules,

st ⋅ ((a/s) + (b/t)) = h(ta + sb).

Thus, (a/s) + (b/t) must be the inverse image of h(ta + sb) under multiplication by st, i.e., h(ta +
sb)/(st) = (ta + sb)/(st). It is straightforward to check that this is a well-defined addition law
that, together with fraction product, makes M[S−1] into a left A-module and makes f into a
homomorphism of left A-modules. Since multiplication by t is a bijection on M[S−1] for every t in
S, this homomorphism of left A-modules is S-inverting.

Let h ∶M → P be any S-inverting homomorphism. Then the function,

g ∶M × S → C, (m,s)↦ s−1h(m),

factors through the equivalence relation: if us′m equals usm′, then s−1h(m) = u−1(s′)−1s−1h(us′m),
which in turn equals u−1(s′)−1s−1h(usm′) = (s′)−1h(m′). Thus, there is a unique set map,

g ∶ A[S−1]→ C,

such that g maps fraction products in A[S−1] to products in C and such that g ○ f equals h. Then
also g((m/s) + (m′/s′)) = g((s′m + sm′)/(ss′)) equals (ss′)−1h(s′m + sm′). By distributivity, this
equals s−1h(m)+ (s′)−1h(m′) = g(m/s)+ g(m′/s′). Thus g respects addition as well. Therefore g is
the unique homomorphism of left A-modules such that g ○ f equals h.

The analogous result holds for right A-modules, and for A −A-bimodules.

Proposition 7.10. For every A−A-bimodule M with (associating) left and right module structures,
λ ∶ A ×M → M and ρ ∶ M × A → A, there is a universal S-inverting A − A-bimodule homomor-
phism M → M[S−1], and this is also the universal S-inverting left A-module homomorphism and
the universal S-inverting right A-module structure. The induced A − A-bimodule structures on
HomA−mod(M[S−1],M[S−1]) and on Hommod−A(M[S−1],M[S−1]) are both S-inverting. Both the
left A-module homomorphism of left multiplication and the right A-module homomorphism of right
multiplication are S-inverting homomorphisms,

λ̃ ∶ A→ Hommod−A(M[S−1],M[S−1]), a↦ λa,●,

ρ̃ ∶ A→ HomA−mod(M[S−1],M[S−1]), a↦ ρ●,a,

factor through A→ A[S−1], and the induced A-balanced biadditive maps,

λ[S−1] ∶ A[S−1] ×M[S−1]→M[S−1],
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ρ[S−1] ∶M[S−1] ×A[S−1]→M[S−1],
define a unique structure of A[S−1] − A[S−1]-bimodule structure on M[S−1] compatible with the
given A −A-bimodule structure. In particular, there is a unique structure of F -central algebra on
A[S−1] compatible with the A−A-bimodule structure and such that A→ A[S−1] is a homomorphism
of F -central algebras.

Proof. The statement of the proposition contains its own proof. The construction of the fraction set
M[S−1] is independent of whether we use the left module structure or the right module structure,
since every denominator s is in the center of A. Thus, the map M →M[S−1] is simultaneously the
universal S-inverting left A-module homomorphism and the universal S-inverting right A-module
homomorphism. Therefore it is the universal S-inverting A −A-bimodule homomorphism.

Since the A − A-bimodule M[S−1] is S-inverting, also the Hom A − A-bimodules are S-inverting.
Therefore the homomorphisms λ̃ and ρ̃ factor through A → A[S−1]. This defines biadditive maps
λ[S−1] and ρ[S−1]. In particular, when M equals A with its natural A−A-bimodule structure, these
biadditive maps agree as an A-balanced biadditive map on A[S−1] ×A[S−1] → A[S−1]. Of course
this is the fraction product defined earlier. Biadditivity gives distributivity, so this defines a ring
structure on A[S−1], the unique ring structure compatible with the A −A-bimodule structure and
such that A→ A[S−1] is a ring homomorphism. Finally, for an arbitrary A−A-bimodule M , it then
follows that the biadditive maps above give an A[S−1]−A[S−1]-bimodule structure on M[S−1].

There is another construction of the fraction module that implies a flatness result.

Definition 7.11. For every F -central algebra A and for every saturated multiplicative subset S of
Z(A), the associated category is the category I whose objects are elements s of S, whose Hom
set from s to t for each ordered pair (s, t) ∈ S ×S is the set of elements u ∈ S such that us equals t,
and whose composition of v ∶ r → s and u ∶ s→ t is uv ∶ r → t.

Lemma 7.12. This is a category, i.e., composition is associative and identity morphisms exist.
Moreover, it is a filtered category.

Proof. Let w ∶ q → r, v ∶ r → s, and u ∶ s → t be morphisms in I. The product (uv)w equals
u(vw) since multiplication in A is associative. Thus, the composition of these three morphisms is
associative. Also, for every s in S, the morphism 1 ∶ s → s is an identity morphism for s as an
object of I.

For every pair of elements s and t of S, there are morphisms, t ∶ s→ st and s ∶ t→ st to a common
object st of S. Finally, for every pair of morphisms u, v ∶ s→ t with common source and target, the
compositions of these morphisms with s ∶ t → st both equal the morphism t ∶ s → st. Therefore the
category I is a filtered category.

Definition 7.13. Let S be a saturated multiplicative subset in Z(A) for an F -central algebra A.
For every left A-module M , define the fraction I-compatible family M● associated to I to be
Ms =M for every s, and Mu ∶Ms →Mt to be u ⋅ − ∶M →M for every morphism u ∶ s → t in I. For
every s in S, the fraction homomorphism is

cs ∶M →M[S−1], cs(m) =m/s.
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Proposition 7.14. The fraction I-compatible family M● of a left A-module is an I-compatible fam-
ily of left A-modules. The collection (cs)s∈S defines a homomorphism of left A-modules, limÐ→M● →
M[S−1]. This is an isomorphism of left A-modules.

Proof. It is straightforward to check that this is an I-compatible family of left A-modules, and that
(cs)s∈S is a homomorphism of I-compatible families. Let s be an element of S, and let m be an
element of M such that m/s equals 0/1. Then there exists u ∈ S with um equal to 0. Thus, the
image of m ∈Ms under Mu is zero in Mus. It follows that the homomorphism limÐ→M● →M[S−1] is

injective. It is also surjective, since every element m/s of M[S−1] is in the image of cs. Thus, the
homomorphism is an isomorphism.

Corollary 7.15. With notations as above, the following natural homomorphism of left A[S−1]-
modules is an isomorphism,

A[S−1]⊗AM →M[S−1].
The A −A-bimodule A[S−1] is flat both as a left A-module and as a right A-module. For every left
A-module M that is flat, also M[S−1] is flat as a left A-module, and similarly for right A-modules.

Proof. If M is flat, then every module in the I-compatible family M● is flat, since Ms just equals
M . Since tensor product preserves colimits, and since filtered colimits preserve injections, it follows
that the filtered colimit of the flat left A-modules M● is also a flat left A-module. The analogous
result holds for right A-modules. In particular, when M equals A with its natural A −A-bimodule
structure, the fraction ring A[S−1] is flat as both a left A-module and as a right A-module. Finally,
the natural map of I-compatible families, A● ⊗AM →M● is an isomorphism, term-by-term. Thus,
the induced map of colimits is an isomorphism, A[S−1]⊗AM →M[S−1].

8 Polynomial division

Definition 8.1. For a nonzero element of S●F (V ), the degree of the element is the minimal integer
d such that the element is contained in the F -vector subspace S0

F (V )⊕ S1
F (V )⊕ ⋅ ⋅ ⋅ ⊕ SdF (V ). For

every integer e = 0, . . . , d, the homogeneous part of the element of degree e is the summand of
the element in SeF (V ).

Lemma 8.2. For V a nonzero F -vector space, the commutative F -algebra S●F (V ) is an integral
domain. Moreover, the product of two nonzero elements of degrees d and e is a nonzero element of
degree d + e. If the two factors are homogeneous, so is the product.

Proof. Any element of S●F (V ), and thus any finite collection of such elements, is contained in
the commutative F -subalgebra S●F (U) for a finite dimensional F -subspace U of V . Thus, this
lemma reduces to the case of the polynomial ring F [x1, . . . , xn], where it is straightforward by
multiplying together pairs of elements of the F -basis (xd11 ⋯x

dn
n ) ⋅ (xe11 ⋯x

en
n ) = xd1+e11 ⋯xdn+enn and

using F -bilinearity of multiplication.

For multiplication of polynomials in a single variable, much more is true.
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Proposition 8.3 (Polynomial Division). For every nonzero element g ∈ F [x], for every element f
in F [x], there exists a unique pair (q, r) of elements of F [x] such that f = g ⋅ q + r and either r is
zero or the degree of r is strictly less than the degree of g.

Proof. Every nonzero multiple of g has degree ≥ deg(g), by the lemma. Since the ring is an integral
domain, it follows that (q, r) is unique, when they exist.

If f is a multiple of g, say f = qg, then the pair (q,0) satisfies the proposition. Thus, assume that
f is not a multiple of g, i.e., for every q ∈ F [X] the difference f − qg is nonzero.

Consider an element r of F [x] of the form f − qg that has minimal degree among all choices of
q in F [x]. If the degree of r is at least deg(g), then some multiple of g has the same degree
and leading coefficient as r, say cxmg for some nonzero c ∈ F and some integer m ≥ 0. But then
r−cxmg = f −(q+cxm)g has strictly smaller degree than r, contradicting the hypothesis on r. Thus,
the degree of r is strictly smaller than the degree of g, so (q, r) satisfies the proposition.

Theorem 8.4 (Division Algorithm). For every pair (f, g) of elements of F [x] that is not (0,0),
there exists (s, t) in F [x] × F [x] such that both f and g are multiples of h = sf + tg, i.e., the ideal
⟨f, g⟩ generated by f and g equals the ideal ⟨h⟩ generated by h.

Proof. Consider the subset I = ⟨f, g⟩ ∶= {sf + tg ∈ F [x]∣s, t ∈ F [x]}. This contains both f = 1f + 0g
and g = 0f + 1g, thus I contains nonzero elements by hypothesis. Let h = sf + tg be a nonzero
element in I that has minimal degree among all nonzero elements.

By the proposition, there exists (q, r) such that f = qh + r and either r equals 0 or the degree of r
is strictly less than the degree of h. In the second case, r = (1 − qs)f + (−qt)g is a nonzero element
of I that has strictly smaller degree than h, contradicting the hypothesis on h. Thus r equals 0,
i.e., h divides f . By the same argument, also h divides g.

Corollary 8.5 (Principal Ideal Domain Property). For every nonempty subset F ⊂ F [x] and the
ideal I = ⟨F⟩ it generates, there exists h ∈ I that generates I, i.e., ⟨F⟩ equals ⟨h⟩ for some h in ⟨F⟩.
If ⟨F⟩ is nonzero, then this holds for any nonzero element h of minimal degree in ⟨F⟩.

Proof. If F equals {h}, this is tautological. If F has two elements, it is the previous result. For
every finite, nonempty subset of F [x] this follows from the previous result and induction on the
size of F .

For an infinite subset F , let h be a nonzero element of I that has minimal degree. In other words, h
is a nonzero element of minimal degree of the form s1f1+ ⋅ ⋅ ⋅+snfn for some positive integer n, for a
finite subset {f1, . . . , fn} of F , and for elements s1, . . . , sn of F [x]. By the result for finite subsets,
h is the greatest common divisor of all elements f1, . . . , fn. Now, for every f ∈ F ∖ {f1, . . . , fn},
setting fn+1 = f and setting sn+1 = 0, also h = s1f1 + ⋅ ⋅ ⋅ + snfn + sn+1fn+1. So the same argument
again implies that also h is a divisor of fn+1 = f . Therefore h is a common divisor of all elements
of F . Thus every element f of F is contained in ⟨h⟩. So the ideal ⟨F⟩ is a subset of ⟨h⟩. Since h is
an element of ⟨F⟩, also ⟨h⟩ is a subset of ⟨F⟩, i.e., ⟨h⟩ equals ⟨F⟩.
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Corollary 8.6 (Irreducibles are prime). For every nonzero, noninvertible element f ∈ F [x] that
is irreducible and for every element g ∈ F [x] that is not in ⟨f⟩, the ideal ⟨f, g⟩ equals all of F [x].
More generally, for every pair of positive integers e and d, also ⟨f e, gd⟩ equals all of F [x]. Thus
⟨f⟩ is a maximal ideal in F [x]. Also, for q ∈ F [x], the product gq is in ⟨f⟩ if and only if q is in
⟨f⟩.

Proof. By the previous result, ⟨f, g⟩ equals ⟨h⟩ for some h that divides both f and g. Since f is
irreducible and h divides f , either h is associate to f or h is invertible, i.e., either ⟨f, g⟩ equals ⟨f⟩
or it equals all of F [x]. By hypothesis, g is not in ⟨f⟩, so ⟨f, g⟩ is not even contained in ⟨f⟩, much
less equal. Therefore ⟨f, g⟩ equals F [x]. In particular, there exists s, t ∈ F [X] such that 1 = sf + tg.
Therefore also 1 = 1d+e−1 = (sf + tg)d+e−1. Using the Binomial Theorem, this equals s′fd + t′ge for
elements s′, t′ ∈ F [x]. Thus, ⟨fd, ge⟩ equals all of F [x].

In particular, every ideal I that strictly contains ⟨f⟩ contains some element g that is not in ⟨f⟩.
Since I contains the minimal ideal ⟨f, g⟩ containing f and g, and since ⟨f, g⟩ equals all of F [x], it
follows that I equals all of F [x]. Thus ⟨f⟩ is a maximal ideal.

Since ⟨f⟩ is a maximal ideal, the quotient commutative F -algebra F [x]/⟨f⟩ is a field. Since g is
not in ⟨f⟩, the image element g in F [x]/⟨f⟩ is nonzero, and hence invertible. Thus, if gq is zero in
this field, then (multiplying by the inverse of g), also q is zero in this field, i.e., q is in ⟨f⟩.

Corollary 8.7 (Noetherian Property). Every nonempty collection of ideals in F [x] that is to-
tally ordered for set inclusion has a maximal element under set inclusion. In particular, every
nonzero, noninvertible element of F [x] is divisible by at least one irreducible element, the number
of irreducible divisors (up to associates) is finite, and for each irreducible divisor there is a max-
imal exponent such that the corresponding power of the divisor divides the nonzero, noninvertible
element.

Proof. For a nonempty collection of ideals in F [x] that is totally ordered for set inclusion, the union
of all the ideals is again an ideal. By the Principal Ideal Property, this union ideal is principal.
The generator is contained in one of the ideals in the collection. Thus that ideal in the collection
is already a maximal element of the collection of ideals.

Since every nonempty totally ordered collection of ideals has a maximal element, every nonempty
collection of ideals has a maximal element by Zorn’s Lemma. In particular, for every nonzero,
noninvertible element f of F [x], the collection of ideals containing ⟨f⟩ that are not equal to all of
F [x] is such a nonempty collection. Thus there exists a maximal element ⟨f1⟩ in this collection.
Since ⟨f1⟩ is not all of F [x], the element f1 is noninvertible. Since the nonzero element f is in
⟨f1⟩, also f1 is nonzero. Finally, if f1 is reducible, say f1 = gq for nonzero, noninvertible elements
g and q, then ⟨f1⟩ is strictly contained in ⟨g⟩, and ⟨g⟩ is also in the collection of ideals containing
⟨f⟩ and strictly contained in F [x]. This contradicts the hypothesis that ⟨f1⟩ was maximal among
such ideals. Therefore f1 is irreducible, and f is a multiple of f1.

By way of contradiction, assume that f is divisible by each of f `1 for every positive integer `. Then
the collection of ideals (⟨f/f `1⟩)`=1,2,... is an ascending chain of ideals. By the argument above, it
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has a maximal element ⟨f/f `1⟩. But ⟨f/f `+11 ⟩ is a bigger element of this collection, contradicting
maximality. Thus, there exists a largest positive integer e1 such that f is divisible by f e11 .

Finally, by way of contradiction, assume that f is divisible by some countably infinite collection
of pairwise nonassociate irreducible elements (f1, f2, . . . , f`, . . . ). Since irreducibles are prime, also
f is divisible by every product f1⋯f`. Then the collection of ideals (f/(f1⋯f`))`=1,2,... is a totally
ordered collection of ideals. By the argument above, it has a maximal element f/(f1⋯f`). But
f/(f1⋯f` ⋅ f`+1) is a bigger element in this collection. This contradiction proves that f can be
divisible by only finitely many

Corollary 8.8 (Unique Factorization of Polynomials). Every nonzero, noninvertible element f in
F [x] has a factorization cf e11 ⋯f e`` , where c is a nonzero invertible element of F (i.e., a constant)
where (f1, . . . , f`) is a finite collection of pairwise non-associate, irreducible elements of F [x] (we
can normalize these so that they are monic), and where every ei is a positive integer. This fac-
torization is unique up to permuting the factors f eii and multiplying through by nonzero invertible
elements of F [x] (i.e., nonzero scalars in F ).

Proof. First of all, for an irreducible f2, and for a nonzero, noninvertible element g1 that is not
in ⟨f2⟩, for a positive integer e2, using that irreducibles are primes, there exist s1, s2 ∈ F [x] such
that 1 = s1g1 + s2f e22 . Let f be an element that is simultaneously divisible by g1 and by f e22 . Then
f = f ⋅ 1 = s2(g1f) + s2(f e22 f). Since f is divisible by g1, also s2(f e22 f) is divisible by g1f

e2
2 . Since f

is divisible by f e12 , also s1(g1f) is divisible by g1f
e2
2 . As a sum of two multiples of g1f

e2
2 , also f is

divisible by g1f
e2
2 . Combined with a straightforward induction argument, for a list (f1, . . . , f`) of

pairwise nonassociate irreducible factors and for positive integers (e1, . . . , e`), if f is divisible by each
f eii , then f is divisible by the product f e11 ⋯f e`` . By the previous result, there is a finite, nonempty
list (f1, . . . , f`) of irreducible divisors of f that are pairwise nonassociate, and for every i there is
a maximal positive integer ei such that f is divisible by f eii . By this induction proof, f is divisible
by f e11 ⋯f e`` . Then the factor c = f/(f e11 ⋯f e`` ) is nonzero and divisible by no irreducible factor. By
the previous result, c is invertible. Therefore f has an irreducible factorization f = cf e11 ⋯f e`` .

Because irreducible elements are prime, for any irreducible factorization of f , the irreducible poly-
nomials that divide f are precisely those associate to one of the irreducible factors in the factoriza-
tion. So the list of factors occuring in any irreducible factorization is precisely the list (f1, . . . , f`)
of pairwise nonassociate irreducible factors of f (up to associates and permutation). Similarly,
the exponent of fi in any irreducible factorization with these pairwise nonassociate factors is the
maximal power of fi that divides f , since by primeness of irreducibles, a positive integer power of
fi cannot divisor a product of positive integer powers of irreducibles that are not associate to fi. So
also the exponent of fi in every irreducible factorization of f is precisely the largest positive integer
ei such that f eii divides f . Therefore the irreducible factorization of f is unique up to associates
and permutation.

Corollary 8.9. For every nonzero F -central algebra A, for every element a of A (possibly 0), the
kernel of the homomorphism of F -central algebras ea ∶ F [x] → A equals ⟨f⟩ for some noninvertible
f ∈ F [x], typically normalized to be monic if it is nonzero, and called the minimal polynomial of a
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in the F -central algebra A. The minimal polynomial is nonzero if and only if the subalgebra F [a] ⊂ A
has finite dimension as an F -vector space, and then the degree of f equals the dimension of F [a] as
an F -vector space. In this case, for an irreducible factorization of f , say f = cf e11 ⋯f e`` , there exists
an orthogonal idempotent decomposition in F [a], (ε1, . . . , ε`), such that the minimal polynomial of
each ai ∶= a ⋅ εi equals f eii . Each F [a] ⋅ εi equals F [ai], and the subspaces (F [a1], . . . , F [a`]) give a
direct sum decomposition of F [a] into F [x]-submodules that are also quotient algebras of F [x], i.e.,
F [a] is isomorphic to the direct product commutative F -algebra F [a1] × ⋯ × F [a`]. The elements
ai satisfy ai ⋅ aj = δi,jai = δi,jaj = aj ⋅ ai for all 1 ≤ i, j ≤ ` and a = a1 + ⋅ ⋅ ⋅ + a`.

Proof. This is a collection of straightforward consequences of the previous results. When F [a] has
finite dimension and ` ≥ 2, then the greatest common divisor of (f/f e11 , . . . , f/f

e`
` ) is 1. Thus, there

exist elements (s1, . . . , s`) in F [x] such that 1 = s1f/f e11 + ⋅ ⋅ ⋅ + s`f/f e`` . The image εi of sif/f eii
satisfies the conditions.

Definition 8.10. An element a in a nonzero F -central algebra A is integral if the subalgebra
F [a] ⊂ A has finite dimension as an F -vector space. For an irreducible monic polynomial fi in
F [x], an integral element a is fi-primary if the minimal polynomial of a equals f eii for some
positive integer ei. Thus, every integral element a equals a1 + ⋅ ⋅ ⋅ +a` for integral elements ai ∈ F [a]
such that ai ⋅aj = δi,jai = δi,jaj = aj ⋅ai and such that every ai is fi-primary for the distinct irreducible
monic polynomials (f1, . . . , f`) that are divisors of the minimal polynomial of a.

9 Decomposition into primary subspaces

Let V be a nonzero, finite dimensional F -vector space, and let a be an element in HomF (V,V ).

Definition 9.1. An a-stable subspace of V is an F -vector subspace U of V such that a(U) is
contained in U , i.e., U is an F [a]-submodule of V . If a∣U ∈ HomF (U,U) is fi-primary for a monic
irreducible fi ∈ F [x], then U is an fi-primary a-stable subspace.

Corollary 9.2. There exists a direct sum decomposition of V by a-stable subspaces (E1, . . . ,E`)
such that each Ei is fi-primary, where (f1, . . . , f`) are the monic irreducible factors of the minimal
polynomial f of a.

Proof. If f equals f e11 , then already E1 = V is f1-primary. Thus, assume that the number ` of monic
irreducible factors of f is > 1. Then by the previous corollary, there exist orthogonal idempotents
(ε1, . . . , ε`) ∈ F [a] with 1 = ε1 + ⋅ ⋅ ⋅ + ε` such that each ai ∶= a ⋅ εi has minimal polynomial f eii . Define
Ei to be the image of εi. Thus, εj ∣Ei

is the identity on Ei for j = i, and equals 0 for j ≠ i. For every
v ∈ V , there is a unique decomposition v = v1 + ⋅ ⋅ ⋅ + v` with each vi ∈ Ei, namely vi = εi(v) so that
v = IdV (v) = (ε1 + ⋅ ⋅ ⋅ + ε`)(v) = v1 + ⋅ ⋅ ⋅ + v`. Therefore the subspaces (E1, . . . ,E`) give a direct sum
decomposition.

Moreover, the image of a∣Ei
equals the image of a ⋅ εi = εi ⋅ a (since εi is in F [a] thus commutes

with a). Thus the image of a∣Ei
is contained in Ei = Image(εi). Therefore each Ei is an a-stable

subspace.
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Finally, since a∣Ei
equals the restriction of ai = a ⋅ εi, the minimal polynomial of a∣Ei

equals the
minimal polynomial of ai, namely f eii . Therefore each Ei is fi-primary.

10 Decomposition into cyclic primary subspaces

Definition 10.1. For an a-stable subspace U of V , an element u ∈ U is a cyclic generator if the
smallest a-stable subspace of U containing u is all of U . If there exists a cyclic generator, then U
is a cyclic a-stable subspace.

For every nonzero u in V , the cyclic a-stable subspace U = F [a]u of V generated by u equals the
span of all elements (aiu)i≥0. Since V has finite dimension, so does U . The minimal polynomial
of a∣U has some finite degree m. Then a basis of U consists of (aiu)0≤i<m since c0a0u + ⋅ ⋅ ⋅ + cnanu
equals 0 if and only if (c0a0 + ⋅ ⋅ ⋅ + cnan)(aru) equals 0 for every r ≥ 0 if and only if c0a0 + ⋅ ⋅ ⋅ + cnan
restricts to 0 on U . Thus the dimension of U equals the degree of the minimal polynomial of a∣U .

Proposition 10.2. A nonzero a-stable subspace U is cyclic if and only if the dimension m of U
equals the degree of the minimal polynomial of a∣U . In this case, for every cyclic generator u, one
basis for U consists of (aiu)0≤i<m.

Proof. If U is cyclic, this follows from the previous paragraph. For the other direction, let U be
an a-stable subspace whose dimension equals the degree of the minimal polynomial f = f e11 ⋯f e`` of
a∣U . By the previous corollary, there exists a direct sum decomposition of U into a-stable subspaces
(E1, . . . ,E`) such that the minimal polynomial of a∣Ei

equals f eii . In particular, the dimension of
Ei is at least the degree of f eii . Since the sum of the dimensions of Ei equals the dimension of U ,
since the sum of the degrees of f eii equals the degree of f , and since the dimension of U equals the
degree of f , the dimension of every Ei equals the degree of f eii .

For every u ∈ Ei, the minimal polynomial of the restriction of a to the cyclic a-stable subspace F [a]u
divides the minimal polynomial f eii of the restriction of a to Ei. Thus, the minimal polynomial of
the restriction to F [a]u of a equals f ei for some integer 0 ≤ e ≤ ei. Thus, for the maximum value
of e that occurs for all elements u ∈ Ei, the operator fi(a)e annihilates every element u ∈ Ei. Thus
f ei is divisible by the minimal polynomial f eii , i.e., e ≥ ei. Since also e ≤ ei, it follows that e equals
ei. Thus, there exists an element ui ∈ Ei such that the minimal polynomial of the restriction of a
to F [a]ui equals f eii . Then the dimension of F [a]ui is at least as large as the degree of f eii . Since
this degree equals the dimension of Ei, it follows that F [a]ui equals Ei, i.e., Ei is cyclic.

Finally, take u to equal u1 + ⋅ ⋅ ⋅ + u` where each ui is a cyclic generator of Ei. Then F [a]u contains
εi(u) = ui, hence it contains F [a]ui = Ei. Since the subspaces (E1, . . . ,E`) give a direct sum
decomposition of U , it follows that F [a]u equals U , i.e., U is cyclic.

Proposition 10.3. Every nonzero, a-stable, fi-primary subspace U is a direct sum of a-stable,
fi-primary subspaces that are cyclic.
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Proof. The result is proved by induction on the dimension of U . If the dimension of U is at most
the degree of fi, then the dimension equals the degree of fi since the minimal polynomial is f ei
for some positive integer e, so that the dimension of U is at least edegree(fi) ≥ degree(fi). Since
the dimension of U equals the degree of the minimal polynomial f ei = fi, the previous proposition
implies that U is cyclic. Thus, by way of induction, assume that the dimension of U is strictly larger
than the degree of fi, and assume that the result is proved for all nonzero, a-stable, fi-primary
spaces that have strictly smaller dimension.

If U is cyclic, we are done. Thus assume that U is not cyclic. As above, the minimal polynomial
of the restriction of a to U equals f ei , where e is the maximum of the exponents that occur for the
minimal polynomial of a on a cyclic a-stable subspace F [a]u ⊂ U . Thus, there exists u in U such
that the minimal polynomial of a on F [a]u equals f ei (in particular, u is nonzero). Denote by au
the restriction of a to F [a]u. Denote the quotient F -vector space by

q ∶ U ↠ U/F [a]u = U

Since F [a]u is a-stable, there exists a unique F -linear transformation a ∶ U → U such that a ○ q
equals q ○ a∣U . The minimal polynomial of a on U divides the minimal polynomial of a∣U , i.e., it is
of the form fdi for some integer 1 ≤ d ≤ e, i.e., U is fi-primary. Since the dimension of U is strictly
smaller than the dimension of U , by the induction hypothesis, U is a direct sum of cyclic subspace
F [a]uj.

Denote the minimal polynomial of a on F [a]uj by f
dj
i for an integer 1 ≤ dj ≤ d. Thus, for every

element uj ∈ U with q(uj) = uj, the minimal polynomial of a on F [a]uj equals f
bj
i for an integer

bj with dj ≤ bj ≤ e. To complete the proof, it suffices to show that there exists a choice of uj in
the q-fiber over uj such that bj equals dj, i.e., such that fi(a)djuj equals 0. For then F [a]uj maps
isomorphically to F [a]uj under q, i.e., we lift the direct summand F [a]uj from U to U . These
cyclic subspaces, together with F [a]u, then give a direct sum decomposition of U .

Let uj be an element in the q-fiber over uj. Since uj is annihilated by fi(a)dj , it follows that
fi(a)djuj is an element in F [a]u. Moreover, fi(a)e−dj applied to this element in F [a]u is zero, since
the minimal polynomial of a on U equals f ei . Since the minimal polynomial of au on F [a]u also
equals f ei , the kernel of fi(au)e−dj equals the image of fi(au)dj . Thus, fi(a)djuj equals fi(au)djvj
for some vj ∈ F [a]u. Thus the difference uj − vj is an element in the q-fiber over uj such that
fi(a)dj(uj − vj) equals 0.

Altogether this gives the rational canonical form.

Theorem 10.4 (Rational Canonical Form). Let V be a nonzero F -vector space with finite dimen-
sion. Let a be an element in HomF (V,V ). For the minimal polynomial f = f ei1 ⋯f

e`
` of a, there

exists a direct sum decomposition of V into cyclic, a-stable subspace, each of which is fi-primary
for some monic irreducible factor fi of f .
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For a cyclic a-stable subspace F [a]u whose minimal polynomial has degree m, say xm−(cm−1xm−1+
⋅ ⋅ ⋅ + c1x + c0), the ordered basis B = (u, au, a2u, . . . , am−1u) gives a particularly simple matrix rep-
resentative of the restriction au of a to F [a]u, namely [au]BB is the m ×m matrix,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 c0
1 0 0 . . . 0 c1
0 1 0 . . . 0 c2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 . . . 0 cm−2
0 0 0 . . . 1 cm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This the companion matrix to the minimal polynomial. Thus, the rational canonical form
guarantees that there is an ordered basis for V with respect to which the matrix of a is in block
diagonal form, where each block is the companion matrix of f ei for some monic irreducible factor
of the minimal polynomial f of a, and where e is some positive integer.

For each fi-primary, cyclic a-stable subspace F [a]u, there is another good choice of basis, the
primary basis. The minimal polynomial of au equals f ei for some nonnegative integer e. Denote
the degree of fi by mi. Consider the following ordered basis,

C = (u, au, . . . , ami−1u, fi(a)u, fi(a)au, . . . , fi(a)ami−1u, . . . , fi(a)e−1u, fi(a)e−1au, . . . , fi(a)e−1umi−1u).

With respect to this basis, the matrix of au has e diagonal mi ×mi blocks equal to the companion
matrix of fi, and the mi × mi block immediately below each of these diagonal mi × mi blocks
has a single nonzero entry, namely the entry 1 in the extreme upper right corner. This is the
primary rational canonical form. In particular, when each mi equals 1, i.e., when the minimal
polynomial of a is a product of linear factors (automatic if the field F is algebraically closed), the
matrix representative with respect to C is precisely Jordan canonical form.

11 Jordan-Chevalley decomposition

This is another name for the “semisimple-nilpotent” decomposition discussed in lecture. In positive
characteristic, the decomposition only exists (with its good properties) if every irreducible divisor
of the minimal polynomial is separable.

Definition 11.1. A homomorphism of rings, f ∶ A → B, is separable if the following surjective
homomorphism of B −B-bimodules has a right inverse homomorphism of B −B-bimodules,

βB/A ∶ B ⊗A B → B, b′ ⊗ b′′ ↦ b′ ⋅ b′′.

Right inverse homomorphisms of B − B-bimodules are uniquely determined by the images of 1,
precisely those idempotent elements ε in the fiber of βB/A over 1 such that (b⊗1) ⋅ ε equals ε ⋅(1⊗b)
for every b ∈ B. Such an element is a separable idempotent.
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Note that if A and B are commutative, then the kernel of βB/A is precisely the ideal generated by
all differences b⊗ 1− 1⊗ b. Thus, an idempotent in the fiber over 1 of βB/A is a central idempotent
if and only if the idempotent is a (left and right) annihilator of the kernel of βB/A.

Let F be a field, and let f ∈ F [x] be a nonconstant, irreducible element. Let E be the corresponding
primitive extension field F [x]/⟨f(x)⟩.

Lemma 11.2. If the formal derivative f ′(x) is relatively prime to f(x), then there exists a separable
idempotent element for E/F .

Proof. There exist elements s(x), t(t) ∈ F [x] such that

1 = s(x)f(x) + t(x)f ′(x).

Inside F [x, y], note that f(x)−f(y) = (x−y)(f ′(x)+(x−y)h(x, y)) for some unique h(x, y) ∈ F [x, y].
Thus, in the F -algebra E⊗FE = F [x, y]/⟨f(x), f(y), the element e(x, y) = t(x)f ′(x)+(x−y)h(x, y)
is an element that annihilates the kernel ⟨x − y⟩ of the multiplication map,

βF,g(x) ∶ F [x, y]/⟨f(x), f(y)⟩↦ F [z]/⟨f(z)⟩, x↦ z, y ↦ z,

and the ring homomorphism βF,f(x) maps e(x, y) to 1. In particular, e2 and e both map to 1.
Thus the difference e2 − e is of the form (x − y)k(x, y), which is annihilated by e. Therefore, for
every integer r ≥ 2, we have er+1 equals er. Setting ε = e2, then ε is a separable idempotent in
F [x]/⟨g(x)⟩.

Next assume that f ∈ F [x] is an irreducible element, so that E = F [x]/⟨f⟩ is a finite field extension
of F . There is a unique g(x) ∈ F [x] such that g′(x) is nonzero and f(x) = g(xpr) for some
nonnegative integer r.

Proposition 11.3. Let F be a field, let f ∈ F [x] be an irreducible element, and let E = F [x]/⟨f(x)⟩
be the corresponding field extension. Then E is a separable field extension of F if and only if the
F -algebra E ⊗F E has only the zero nilpotent element if and only if the integer r above equals zero
if and only if the formal derivative f ′i(x) is nonzero if and only if the formal derivative f ′i(x) is
relatively prime to fi(x).

Proof. By straightforward computation, f ′i(x) equals zero if and only if Ifi(x) equals g(xpr) for
positive r. Since fi(x) is irreducible, f ′i(x) and fi(x) have a common factor if and only if f ′i(x) is
zero.

If f ′i(x) equals 0, then in the usual Taylor expansion for fi(x)−fi(y), which exists as a polynomial
identity, we have,

fi(x) − fi(x) = (x − y)ph(x, y).

It follows that in the ring E⊗F E = F [x, y]/⟨fi(x), fi(y)⟩, the element x−y becomes nilpotent after
multiplying by a nonzero idempotent. Thus, E ⊗F E has nonzero nilpotent elements.
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