
MAT534 Fall 2022 Midterm 2 Review
Sheet

The topics tested on Midterm 2 will be among the following.

(i) Basic properties of fields, e.g., every finite subgroup of the multiplica-
tive group of a field is cyclic.

(ii) Basic properties of vector spaces, e.g., every linearly independent set
extends to a basis, and every generating set contains a basis as a subset.

(iii) Reduced row echelon form, i.e., classification of orbits of the (linear)
left action of GLn on the vector space of n ×m matrices via reduced
row echelon form.

(iv) Computation of bases for the kernel, the image, and the annihilator of
the image of a linear transformation.

(v) Definition and basic properties of the determinant, e.g., polynomial
involving signs of permutations.

(vi) Eigenspaces, generalized eigenspaces, and the Jordan Normal Form of a
matrix whose characteristic polynomial factors into linear polynomials.

(vii) Basics of division for polynomials in one variable over a field: the Di-
vision Algorithm, the Principal Ideal Property, Unique Factorization.

(viii) The Rational Canonical Form for a matrix over a field.

(ix) Real inner product spaces and Hermitian inner product spaces. The
Gram-Schmidt algorithm and the Spectral Theorem.

(x) Basic definitions of rings and modules, including Hom and tensor prod-
uct.
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Following are some practice problems. More practice problems are in the
textbook as well as on the practice midterms.

Problem 1. For q = pe, in the multiplicative group F×q how many elements
are there of order n for each divisor n of q− 1 = pe− 1? How many elements
are there whose order divides pd − 1 for no strict divisor d?

Problem 2. For every commutative (unital, associative) Fp-algebra A, prove
that the set map FA : A → A by a 7→ ap is an Fp-linear Fp-algebra endo-
morphism. This is the (absolute) Frobenius endomorphism. Prove that
this is natural for commutative Fp-algebras. For a field extension E of Fp,
compare the number of roots of xp − x and #Fp to conclude that the fixed
field of FE equals Fp. Thus, also for every commutative Fp-algebra A that is
an integral domain, the fixed Fp-subalgebra of FA equals Fp.
Problem 3. For the field E = Fq, show that FE is a field automorphism
that fixes Fp. Thus, it induces an action of the cyclic group of order e on E
by field automorphisms, with fixed subfield equal to Fp. How many orbits
are there of size e?

Problem 4. For every field E, show that the torsion subgroup of E× is
isomorphic to a subgroup of the (infinite) torsion Abelian group Q/Z, and
such a subgroup is uniquely determined by the data of whether or not there
exists an element of order `m for each prime number ` and each integer m ≥ 0.
What is this subgroup for R? What is this subgroup for C?

Problem 5. For every field E, for every E-vector subspace U of a vector
space V , prove that there exists an E-vector subspace W of V such that
(U,W ) is a direct sum decomposition of V .

Problem 6. For every E-linear transformation between finite dimensional
F -vector spaces of the same dimension, prove that the dimension of the kernel
equals the dimension of the cokernel. Prove that this can fail if the F -vector
spaces have infinite dimension.

Problem 7. For every finite dimensional F -vector space V , for every F -
vector spaceW , prove that the natural F -linear transformation from V ∗⊗FW
to HomF (V,W ) is an isomorphism of F -vector spaces. In particular, for an F -
vector space V , prove that V has finite dimension if and only if the following
F -linear transformation is surjective, V ∗ ⊗F V → HomF (V, V ).

Problem 8. For a finite field Fq, for integers 0 ≤ m ≤ n, how many m-
dimensional Fq-vector subspaces are there in F⊕nq ?
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Problem 9. For every field endomorphism φ : F → F , for every F -vector
space V , consider the F -vector space φV which equals V as an Abelian group,
but with new scalar product c • ~v := φ(c) · ~v. If φ is a field automorphism,
prove that every basis for V is also a basis for φV , hence the two F -vector
spaces are isomorphic.

Problem 10. Continuing the previous problem, show that for two bases of
V , the change of basis matrix for these as bases of φV are typically different
from the change of basis matrix for V . What kind of map does this define
from GLn(F ) to GLn(F )?

Problem 11. Work this out explicitly if F equals C and φ is complex
conjugation, resp. Fq and the absolute Frobenius endomorphism.

Problem 12. Give an example of a field endomorphism φ of a field F such
that the F -vector space F has different dimension from the F -vector space
φF .

Problem 13. For a set I and an indexed collection (Vi)i∈I of F -vector spaces,
define a structure of F -vector space on the Cartesian product set

∏
i∈I Vi by

adding and scaling component-wise. This is the product F -vector space. If
I is a finite set, prove that the dimension equals the sum of the dimensions
of the factors Vi. However, if I is a countably infinite set and each Vi has
dimension 2, prove that the dimension of the product is uncountable (rather
than a countable sum of 2, which is again countably infinite).

Problem 15. Prove that the natural map
∏

i∈I HomF (U, Vi)→ HomF (U,
∏

i∈I Vi)
is an isomorphism of F -vector spaces (this is often taken as the definition of
the product F -vector space, since it is a universal property).

Problem 15. Define
⊕

i∈I Vi to be the subset of
∏

i∈I Vi consisting of el-
ements such that at most finitely many components are different from 0.
Prove that this is an F -vector subspace whose dimension does equal the sum
over all i of the dimension of Vi. This is the direct sum F -vector space.
Also prove that the natural map HomF (

⊕
i Vi, U) →

∏
i HomF (Vi, U) is an

isomorphism of F -vector spaces (this is often taken as the definition of the
direct sum F -vector space, since it is a universal property).

Problem 16. Also show that the natural map
⊕

i(Vi⊗F U)→ (
⊕

i Vi)⊗F U
is an isomorphism of F -vector spaces.

Problem 17. For every integer e ≥ 1, for every λ ∈ F , prove that there
exists a polynomial nλ,e(x) ∈ F [x] (that will depend sensitively on whether or
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not λ is zero) such that for every F -linear operator L on a finite-dimensional
F -vector space V whose minimal polynomial divides (x − λ)e, then the F -
linear operator N := nλ,e(L)◦L is nilpotent, and the difference S := L−N =
(Id−nλ,e(L))◦L is λIdV . In particular, (S,N) is an ordered pair of commuting
F -linear operators commutes, that sums to L and with S a diagonalizable
operator and N a nilpotent operator.

Problem 18. For every F -linear operator L of a finite-dimensional F -vector
space V whose minimal polynomial divides (x−λ1)e1 · · · (x−λr)er , prove that
there exists a polynomial n(x) ∈ F [x] such that N := n(L) ◦ L is nilpotent
and S := L−N = (IdV − n(L)) ◦ L is diagonalizable. In applications to Lie
algebras, it is essential that the constant coefficients of n(x)x and (1−n(x))x
both equal 0.

Problem 19. For a 2× 2 matrix with variable entries, compute the square
of this matrix. What are the conditions on the entries so that the square
of the matrix is the zero matrix? What are the conditions on the entries so
that the characteristic polynomial equals x2.

Problem 20. Repeat the exercise above for a 3 × 3 matrix. Is it easier
to explicitly compute the nth power of an n × n matrix and set all entries
equal to zero, or is it easier to demand that the non-leading coefficients of
the characteristic polynomial all equals zero?

Problem 21. An F -linear operator L on an F -vector space V is idempo-
tent if L ◦ L equals L. Prove that L is idempotent if and only if the kernel
and fixed locus give a direct sum decomposition of V . What is the charac-
teristic polynomial of an idempotent F -linear operator? If an idempotent is
also nilpotent, what can you say about L? If an idempotent is also invertible,
what can you say about L?

Problem 22. For a diagonalizable F -linear operator L on an F -vector space
V , prove that an F -linear operator K commutes with L if and only if it both
K preserves every generalized eigenspace Ker(L−λIdV )e and the restriction
of K to each generalized eigenspace commutes with the nilpotent part N .
In particular, conclude that K commutes with each power Nm, and thus K
preserves the kernel and image of powers of Nm.

Problem 23. Let N be a nilpotent F -linear operator on an e-dimensional F -
vector space V such that N e−1 is nonzero. Prove that for any vector ~v1 in V \
Image(N), there is a basis for V consisting of (~v1, . . . , ~ve), where ~vi+1 := N(~vi)
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for i = 1, . . . , e − 1. For each integer 1 ≤ d ≤ e, show that Ker(N e+1−d) =
Image(Nd−1) equals span(~vd, . . . , ~ve), and thus the dimension equals e+1−d.
For every vector ~w ∈ V , prove that there is a unique F -linear operator K
on V that commutes with N and such that K(~v1) = ~w, and K maps every
subspace Ker(N e+1−d) = Image(Nd−1) back to itself. Conclude that the F -
vector space of F -linear operators on V that commute with N has dimension
e, and thus it has a basis consisting of (IdV , N,N

2, . . . , N e−1). As an F -
algebra under composition, this centralizer of N is F -algebra isomorphic
to F [x]/〈xe〉 via the isomorphism that sends x to N . This is the F -algebra
obtained as the quotient of F [x] by the minimal polynomial of N .

Problem 24. Let N be a nilpotent F -linear operator on an n-dimensional
F -vector space whose Jordan blocks have sizes e = (e1, e2, . . . , es), where e1 ≥
· · · ≥ es ≥ 1 and e1 + · · ·+es equals n, i.e., e is a partition of n into s parts.
Prove that the minimal polynomial of N equals xe1 . Since e determines the
Jordan normal form of N , conclude that e uniquely determines the numerical
function,

k : Z≥0 → Z≥0, m 7→ dimKer(Nm).

Problem 25. Continuing the previous problem, let W be the direct sum of
all cyclic submodules in the Jordan decomposition (of dimensions e2, e3, . . . )
except for the first cyclic submodule of dimension e1. Let NW denote the
restriction of N to W , and let kw : Z≥0 → Z≥0 be the numerical function
kW (m) = Ker(Nm

W ). Prove that the maximum value k(m) of k is k(m) = n,
and the smallest integer m for which k(m) equals n is m = e1. Prove that
e2 is the largest integer ≤ e1 such that n− e1 − 1 + e2 is not in the image of
k. Finally, for every integer d = 2, . . . , e2, prove that kW (e2 + 1 − d) equals
k(e2 + 1− d)− (e2 + 1− d); of course kW (e2) is the maximum value n− e1
of kw. Thus the numerical function kW is uniquely determined by k. By the
induction hypothesis, the partition (e2, . . . , es) of n − e1 into s − 1 parts is
uniquely determined by kW , and thus also by k. Conclude by induction on s
that e is uniquely determined by k.

Problem 26. Continuing the previous problem, for each of cyclic submod-
ule of rank ei, denote a cyclic generator of that submodule by ~vi,1. Prove
that the vectors ~vi,m = Nm−1~vi,1 for i = 1, . . . , s and m = 1, . . . , ei form
a basis for V with respect to which N is in Jordan canonical form. For
each F -linear operator K that commutes with N , prove that each vector
~wi = K(~vi,1) is an element of Ker(N ei), and K is uniquely determined by
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the sequence of vectors (~wi)i=1,...,s with ~wi ∈ Ker(N ei). Conversely, for every
such sequence of vectors, prove that there exists a unique F -linear opera-
tor K of V that commutes with N and such that K(~vi,1) = ~wi for each
i = 1, . . . , s. Thus, the dimension of the centralizer of N as an F -vector
space equals k(e1)k(e2) · · · k(es).

Problem 27. For each of the following matrices, compute an ordered basis of
the kernel, compute an ordered basis of the image of the matrix, compute an
extension of that ordered basis of the image to an ordered basis for the entire
target by adjoining elements of the standard basis, compute the change of
basis matrix between this new ordered basis and the standard ordered basis,
and compute an ordered basis for the annihilator of the image of the matrix.

L1 =

 1
2
3

 , L2 =
[

1 2 3
]
,

L3 =

 1 2
2 4
3 6

 , L4 =

[
1 2 3
2 4 6

]
,

L5 =

 1 2 2
2 4 4
3 6 1

 , L6 =

 1 2 3
2 4 6
2 4 1

 ,

L7 =

 1 1 1
1 2 4
1 4 10

 , L8 =


1 2 0 0 0 0
0 0 3 4 0 0
0 0 0 0 5 6
1 2 3 4 5 6

 .
Problem 28. For each change of basis matrix above, compute the trace and
determinant of the change of basis matrix.

Problem 29. Let a, b, c, d ∈ R be real numbers such that ad− bc is nonzero.
Perform Gram-Schmidt on the following 2× 2 matrix with real entries,[

a c
b d

]
.
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Problem 30. Perform Gram-Schmidt on the following 4 × 4 matrix with
complex entries, 

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
Problem 31. Perform Gram-Schmidt on the following 4 × 4 matrix with
complex entries, 

1 1 1 1
1 2i −2 −i
1 −4 4 −1
1 −8i −8 i

 .
Problem 32. Diagonalize the following 2× 2 matrix with complex entries,[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

For what values of θ is the minimal polynomial over R irreducible? What is
the corresponding field extension of R?

Problem 33. Let F be an algebraically closed field. Let σ : {1, . . . , n} →
{1, . . . , n} be a bijection. Let Lσ be the corresponding permutation matrix,
[δσ(i),j]1≤i,j≤n. Assume that either F has characteristic 0 or the characteristic
of F is prime to the order of each cyclic factor in the cycle decomposition
of σ. Prove that Lσ is diagonalizable, and describe the diagonalization:
what are the eigenvalues, and what are the dimensions of the corresponding
eigenspaces?

Problem 34. Let L : Matn×n(F ) → Matn×n(F ) be the F -linear operator
sending each matrix to its transpose. Diagonalize this F -linear operator.

Problem 35. Assume that the characteristic of F is prime to n. Let L :
Matn×n(F )→ Matn×n(F ) be the F -linear operator that sends each matrix A
to (1/n)Trace(A) · Idn×n, i.e., the unique scalar multiple of the identity that
has the same trace as A. Diagonalize this F -linear operator of the F -vector
space Matn×n(F ). Is this linear operator idempotent? Is the kernel preserved
under taking commutators?

Problem 36. Repeat Problems 27 and 28 over a field of characteristic p.
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Problem 37. Let L be an F -linear operator of a finite dimensional F -vector
space that has a Jordan canonical form, i.e., the characteristic polynomial
factors into a product of linear polynomials. In terms of the Jordan canonical
form of L, what is the Jordan canonical form of g(L) for each g(x) ∈ F [x]?

Problem 38. Find the diagonalization of the R-linear operator on C given
by complex conjugation.

Problem 39. For each diagonal n × n matrix a in GLn(C), for the F -
linear operator conja on Matn×n(C), compute the action on each elementary
matrix Ek,l = (δi,kδj,l)1≤i,j≤n. Use this to diagonalize the operator conja.
Compute the trace and determinant of this operator in terms of the trace
and determinant of a.

Problem 40. Repeat the previous problem when a is the non-diagonalizable
matrix that has 1 in every diagonal entry, and 1 in every entry directly about
the main diagonal (and 0 in every other entry).

Problem 41. Let (V, 〈•, •〉) be a finite dimensional Hermitian inner product
space. For every C-linear operator S of V , define

〈•, •〉S : V × V → C, (~v, ~w) 7→ 〈S~v, ~w〉.

Show that 〈•, •〉S is a conjugate linear, sesquilinear pairing if and only if S
is self-adjoint. In this case, prove that the pairing is positive definite if and
only if the (real) eigenvalues of S are all positive.

Problem 42. Let (V, 〈•, •〉) be a finite dimensional Hermitian inner product
space. For every C-linear operator A, define

〈•, •〉A : V × V → C, (~v, ~w) 7→ 〈A~v,A~w〉.

Show that this is a sequilinear, conjugate linear pairing that is positive
semidefinite. Prove that it is positive definite (i.e., a Hermitian inner prod-
uct) if and only if A is invertible.

Problem 43. Denote by A∗ the adjoint of A with respect to 〈•, •〉. Define
S = A∗ ◦ A. Prove that S is a self-adjoint C-linear operator with real,
nonnegative eigenvalues, and 〈•, •〉A = 〈•, •〉S. In particular, the trace of S
is nonnegative. Prove that the kernel of S equals the kernel of A. Thus, S
has positive real eigenvalues if and only if A is invertible, and the trace of S
is zero only if A is zero.
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Problem 44. For every pair (A,B) of C-linear operators of V , define
〈A,B〉HS to be the trace of B∗ ◦ A. Prove that this R-bilinear pairing on
HomC(V, V ) to C is a conjugate linear, sesquilinear pairing that is positive
definite, i.e., it is a Hermitian inner product. This is the Hilbert-Schmidt
inner product.

Problem 45. For a normal operator A of (V, 〈•, •〉), prove that 〈A,A〉HS

equals the sum of the squares of the complex norms of the eigenvalues of
A. In particular, if A is a unitary operator, the Hilbert-Schmidt norm of
A equals dim(V ). (One could scale the Hilbert-Schmidt norm so that all
unitary operators have norm equal to 1 rather than dim(V ), but this is not
the conventional normalization of this inner product.)

Problem 46. Show that the conjugate linear transformation from HomC(V, V )
to itself sending A to A∗ is an isometry for the Hilbert-Schmidt norm.
Similarly, show that the C-linear operator conja is an isometry for every
a ∈ IsomC(V, V ).

Problem 47. For the standard Hermitian inner product on V = Cn, prove
that the elementary matrices Ek,` = (δi,kδj,`)1≤i,j≤n form an orthonormal
basis for the Hilbert-Schmidt inner product. Conclude that the adjointness
isomorphism,

V ⊗C V
∨ → HomC(V, V ),

is an isometry between Hermitian inner product spaces, where the Hermitian
inner product on the tensor product V ⊗C V

∨ is the one induced by the
standard Hermitian inner product on V and on V ∗ via the isomorphism
V → V ∗ induced by the standard Hermitian inner product. Deduce the
analogous result for every finite dimensional Hermitian inner product space
(V, 〈•, •〉), since all of these have orthonormal bases.

Problem 48. For every invertible C-linear operator A on a finite dimen-
sional Hermitian inner product space (V, 〈•, •〉), for the associated self-adjoint
operator S = A∗ ◦ A with real positive eigenvalues, prove that there exists
a unique self-adjoint operator R with real positive eigenvalues such that S
equals R◦R (same eigenspaces, eigenvalues equal to the positive square roots
of the positive eigenvalues of S). In particular, R commutes with S.

Problem 49. Since ((R∗)−1 ◦A∗)◦ (A◦R−1) equals R−1 ◦S ◦R−1 equals the
identity transformation, conclude that U := A ◦R−1 is an invertible C-linear
operator whose adjoint U∗ = (R∗)−1 ◦ A∗ equals U−1, i.e., U is a unitary
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operator. Thus, A equals U ◦ R where R is a self-adjoint operator with real
positive eigenvalues that commutes with A∗ ◦ A, and where U is a unitary
operator. This is the polar decomposition of A with respect to 〈•, •〉.

Problem 50. Continuing the previous problem, conclude that an invertible
operator A is normal if and only if A commutes with A∗ ◦A if and only if A
commutes with R if and only if A commutes with U . In this case, all of A,
A∗, A∗ ◦A, R and U pairwise commute. Moreover, the eigenvalues of R and
U on each eigenspace gives the usual (complex) polar decomposition of the
eigenvalues of A on that eigenspace.
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