
MAT534 Fall 2022 Final Exam
Review Sheet

The final exam will be cumulative, but there will be extra emphasis on ma-
terial not already covered on Midterms 1 and 2, Chapters 7, 8, 9 (excluding
Gröbner bases), 10, 11, and 12. Wedderburn’s Theorem, Section 18.2, will
not be covered on the final exam (it will be explained in lecture).

(i) Multiplicative subsets and fraction rings.

(ii) Maximal ideals and prime ideals.

(iii) The Chinese remainder theorem.

(iv) Finitely generated modules and Noetherian rings.

(v) Principal ideal domains.

(vi) Unique factorization domains.

(vii) The structure theorem for finitely generated modules over a principal
ideal domain.

(viii) Gauss’s Lemma.

(ix) Irreducibility criteria including Eisenstein’s criterion.

(x) Hilbert’s Basis Theorem.

Following are some practice problems. More practice problems are in the
textbook as well as on the review sheet and practice midterm for Midterms
1 and 2.
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Problem 1. Show that every nonzero ring with a unique proper ideal is a
field.

Problem 2. Show that every nonzero integral domain with a unique prime
ideal is a field.

Problem 3. Find an example of a nonzero ring that is not a field yet has a
unique prime ideal.

Problem 4. For the integral domains A = Z and A = F [x], show that the
fraction field of A is not finitely generated as an A-algebra.

Problem 5. Find an example of a principal ideal domain A such that the
fraction field of A is finitely generated as an A-algebra.

Problem 6. Find an example of a unique factorization domain that is not
a principal ideal domain.

Problem 7. Find an example of an integral domain that is not a unique
factorization domain yet is integrally closed in its fraction field. (This might
be very challenging if you have never seen such rings before.)

Problem 8. Prove that for every prime p > 1 and every integer e ≥ 0, every
Fp-subalgebra of Fpe is a finite field.

Problem 9. For a field F , is the polynomial F -algebra in countably many
variables a unique factorization domain?

Problem 10. Find an example of a finitely generated F -algebra that is
a unique factorization domain yet that is not isomorphic to a polynomial
F -algebra.

Problem 11. Let R be a commutative ring with 1. Let M be an R-module.
Let M ′ be an R-submodule of M such that both M ′ and M/M ′ are torsion
R-modules whose annihilator ideals are comaximal. Prove that there is an
R-submodule N of M that projects isomorphically to M/M ′.

Problem 12. Let R be a nonzero commutative ring with a unique prime
ideal. Prove that the radical ideal of any proper principal ideal equals this
unique prime ideal. Conclude that for every pair a, b of nonzero nonunits in
R, there exists an integer n ≥ 1 such that a divides bn and b divides an.

Problem 13. In a Noetherian ring, prove that there are at most finitely
many idempotent elements whose pairwise products equal zero.
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Problem 14. Prove that every quotient ring of a Noetherian ring is Noethe-
rian.

Problem 15. Find an example of a non-Noetherian subring of a Noetherian
ring.

Problem 16. For a commutative integral domain R and a multiplicative
subset S ⊂ R \ {0}, prove that if R is Noetherian, respectively a unique
factorization domain, integrally closed in its fraction field, a principal ideal
domain, then the same holds for R[S−1].

Problem 17. Let R be a principal ideal domain. Show that for every R-
module M , not necessariy finitely generated, there exists an R-submodule N
of M such that M is the direct sum of N and the torsion submodule of M .

Problem 18. Let F be a field, and let R be the F -subalgebra of F [x, y]
generated by x2, xy, and y2. Prove that R is not isomorphic to a polynomial
F -algebra. Is R integrally closed in its fraction field? What is the fraction
field, as a subfield of F (x, y)?

Problem 19. Let F be a field, and let R be the F -subalgebra of F [x]
generated by x2 and x3. Prove that R is not isomorphic to a polynomial
F -algebra. Is R integrally closed in its fraction field?

Problem 20. Inside the polynomial F -algebra R = F [x1, . . . , xn], denote
by R1 the F -vector subspace generated by x1, . . . , xn. Let G be a finite sub-
group of AutF (V ) with its natural action on R by F -algebra automorphisms,
(g, f) 7→ g · f . Denote by RG the graded F -subalgebra of all G-invariant el-
ements of R. Assume that the order #G is invertible, so that the following
set map is well-defined,

aG : R→ RG, f 7→ 1

#G

∑
g∈G

g · f.

Prove that this is a homomorphism of RG-modules that determines a direct
sum decomposition of R as an RG-module, R ∼= RG ⊕ (R/RG).

Problem 21. Continuing the previous problem, denote by I ⊂ R the ideal
generated by RG

+, i.e., generated by all G-invariant homogeneous elements of
positive degree. Use Hilbert’s Basis Theorem to prove that there exist finitely
many elements f1, . . . , fm ∈ RG

+ that generate I. Prove that f1, . . . , fm also
generate RG as an F -subalgebra of R. Thus, the problem of finding a finite
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list of generators of RG as an F -algebra is reduced to the problem of finding
a finite list of generators of I as an ideal. (There is a theorem of Emmy
Noether that makes all of this algorithmic.)

Problem 22. Let R be an integral domain. Let f(x) ∈ R[x] be a monic
polynomial of degree n that is irreducible as an element in Frac(R)[x]. Inside
the field extension L = Frac(R)[x]/〈f(x)〉, show that the R-subalgebra S gen-
erated by x is a finite free R-module of rank n with free basis (1, x, . . . , xn−1).

Problem 23. Give an example of a principal ideal domain R and f(x) ∈ R[x]
as in the previous exercises such that the integral closure of R in L is strictly
larger than S. If R is a finite type F -algebra that is integrally closed in
its fraction field (“normal”), then the integral closure of R in L is a finite
R-module. In many cases, Emmy Noether gave an algorithmic construction
of this “normalization” of R in L based on her own Noether Normalization
Theorem.

Problem 24. For every integral domain R, prove that every finite subgroup
of the multiplicative group R× is cyclic.

Problem 25. Find an example of a division ring D and a non-Abelian
subgroup of the multiplicative group D×.

Problem 26. For an associative, unital ring R, prove that every direct sum
of flat left R-modules is again a flat left R-module.

Problem 27. For a commutative ring R that is a finite product of fields (not
necessarily the same field each time), classify all of the ideals. In particular,
prove that every prime ideal is maximal, and the corresponding quotient
rings are just the fields in the product. (This is not correct for an infinite
product of fields, and the amazing properties of ideals in infinite products
of fields are a crucial component in the model-theoretic results of James Ax
and many others.)

Problem 28. Show that in a Noetherian ring R, for every proper ideal
I, there are only finitely many primes containing I that are minimal among
primes containing I, i.e., there are only finitely many minimal primes over
I. By definition, every prime ideal has this property (the unique minimal
prime over that ideal is the prime itself). By the ascending chain condition
for Noetherian rings, if there is any ideal with infinitely many minimal primes
over it, then there is a maximal such ideal I. Since I is not prime, there exist
elements a, b ∈ R\ I such that ab ∈ I. Now prove that the primes containing
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I are precisely those primes that contain at least one of the strictly bigger
ideals (I : a) and (I : b). Since there are only finitely many minimal primes
over each of (I : a) and (I : b), this gives a contradiction.

Problem 29. Show that in an infinite product of fields, the kernels of the
quotient homomorphisms to the factor fields are minimal prime ideals over
〈0〉. Conclude that there are infinitely many minimal prime ideals over 〈0〉.

Problem 30. Show that a finite product of Noetherian rings is again a
Noetherian ring, but this can fail for an infinite product of Noetherian rings.
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