
GROUPS, RINGS, AND IDEALS

1. Groups

1.1. The (very) basics. You should already be familiar with what a group is. In
some sense, you’ve known what a (commutative) group is ever since you learned
how to add! A group is simply a set with an (associative) way (think “addition”) of
combining two elements to get another element. We also require that this “way” has
an identity element (a “zero”) and has inverses (“subtraction”). I say “addition”
and use the symbol +, but for some groups that is misleading. However, for this
course, this will not be the case for the groups we’re interested in.

Definition 1.1. A group is a set G with a map + : G×G → G such that

(1) There is a distinguished element e ∈ G such that e + g = g + e = g for any
g ∈ G.

(2) The operation + is associative. That is, (a + b) + c = a + (b + c).
(3) For each element g ∈ G, there exists an element g′ ∈ G such that g+g′ = e.

In case g +h = h+ g for every g, h ∈ G, then we say that G is a commutative group
(sometimes called an Abelian group).

Here are some easy properties about groups:

(i) The identity element is unique.
(ii) The element guaranteed by part (3) of the definition is unique, and we will

denote it by g−1 or sometimes (−g). We call it the inverse of g.
(iii) The inverse of g satisfies g−1 + g = g + g−1 = e.

Example 1.2. The set of integers, Z form a group under addition. The element 0
is the identity element and −a is the inverse of a. This is a commutative group.

Example 1.3. The set of permutations on n elements, Sn, is a group with com-
position as the operation. This is a (finite) non-commutative group when n ≥ 3.

Example 1.4. The set of m× n matrices with real number entries forms a group
under addition. In fact, every vector space is a (commutative) group.

Example 1.5. The set of 2 × 2 matrices with real entries and with non-zero de-
terminant forms a group under multiplication. This is a non-commutative group.
It is usually denoted by GL(2,R).

Definition 1.6. Let G be a group. A subset H ⊂ G is called a subgroup of G if
whenever h1, h2 ∈ H then h1 + h2 ∈ H and h−1

1 ∈ H.

Here is an easy fact:

Lemma 1.7. A subgroup H of a group G is a group itself.
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Example 1.8. The set of all even numbers is a subgroup of Z. The set of multiples
of a given number m is a subgroup of Z. We often refer to this subgroup as mZ.

Example 1.9. The set of all 2 × 2 matrices with determinant 1 form a subgroup
of the set of all invertible matrices.

1.2. Homomorphisms. Given two sets, we may talk about functions between
them. Given two groups, we study the functions between them. Informally, we
only care about those functions which “remember” the fact that both the source
and the target of the function have some extra structure - that is, they are both
groups.

Definition 1.10. Let G1 and G2 be groups. A function f : G1 → G2 is called a
homomorphism (or sometimes group homomophism) if for each g, h ∈ G1, we have
f(g1 + g2) = f(g1) + f(g2).

Remark 1.11. Notice that the + on the left hand side of the equation means
something different from the + on the right hand side of the equation!

Lemma 1.12. If f : G1 → G2 is a group homomorphism, then f sends the identity
element of G1 to the identity element of G2.

Proof. Let e be the identity element of G1. Then for any g ∈ G1, we have f(e+g) =
f(e) + f(g). But because e + g = g, we see that f(e + g) = f(g). Combining these
we see that f(g) = f(g) + f(e). Now add f(g)−1 to both sides. ¤

Similarly we can prove the following Lemma.

Lemma 1.13. Let f : G1 → G2 be a group homomorphism, then f(g−1) =
(f(g))−1.

Example 1.14. Taking the determinant gives a group homomorphism from GL(2,R)
to the set R∗ = {r ∈ R|r 6= 0}. This latter set is a group with multiplication as the
operation.

Example 1.15. If H is as subgroup of G, then the map H → G which sends an
element of H to the same element but considered inside of G is a group homomor-
phism. Sometimes we call this the inclusion (for obvious reasons).

Example 1.16. The map from G → G which sends each element g ∈ G to itself
is called the identity homomorphism.

Example 1.17. Fix a group G and an element g ∈ G. The map Lg : G → G which
sends x to g + x is NOT a group homomorphism unless g = e.

The following lemma is very easy.

Lemma 1.18. If f1 : G → H and f2 : H → J are group homomorphisms, then
f2 ◦ f1 is a group homomorphism from G to J .

Definition 1.19. Two groups G1 and G2 are isomorphic if there are group homo-
morphisms f1 : G1 → G2 and f2 : G2 → G1 such that f1 ◦ f2 and f2 ◦ f1 are both
the identity homomorphism.
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Definition 1.20. A group homomorphism f : G1 → G2 is called injective if
f(a) = f(b) implies that a = b. The homomorphism f is called surjective if for
every y ∈ G2, there is an x ∈ G1 such that f(x) = y.

Lemma 1.21. A group homomorphism f : G1 → G2 is injective if and only if
f(x) = e (here e denotes the identity in G2) implies that x is the identity in G1.

Proof. The “only if” part is clear. Suppose then that the second condition holds
and f(a) = f(b). Using the properties of a group homomorphism shown above, this
means that f(a + b−1) = e. By the condition then a + b−1 is the identity in G1; in
other words, a = b. ¤

The following lemma is now pretty easy. You just have to define the “reverse” map
and show it is a group homomorphism.

Lemma 1.22. A group homomorphism f : G → H is an isomorphism if and only
if f is both injective and surjective.

Definition 1.23. Let f : G1 → G2 be a group homomorphism. We define the
kernel of f to be the set of elements x ∈ G1 such that f(x) is the identity in G2.
We define the image of f to be the set of elements y ∈ G2 such that there is some
x ∈ G1 with f(x) = y. We denote these Ker(f) and Im(f) respectively.

The following Lemma is now an unwinding of all the definitions and basic properties.

Lemma 1.24. Let f : G1 → G2 be a group homomorphism. Then Ker(f) is a
subgroup of G1 and Im(f) is a subgroup of G2; in particular, both are groups.

Example 1.25. The determinant map from GL(2,R) to R∗ has kernel the set
of two by two matrices with determinant one. These form a group, as already
mentioned.

1.3. Cosets and Quotient Groups. The general mantra of this section is: it
can be useful to consider two elements of a group as “the same” if they differ by a
subgroup. For example, if we are only concerned whether a number is odd or even,
then we consider any two numbers (elements of Z) the same if they differ by an
element of the subgroup 2Z.

Definition 1.26. Let G be a group and H a subgroup. Then given g ∈ G, the
(left) coset g + H is {g + h|h ∈ H}.

This is no longer a subgroup of G usually, but we think of it as H haven been
“translated” inside G. There is also a notion of right coset but we will not have
need to distinguish in this course. The set of all cosets partition G in the following
sense.

Lemma 1.27. Two cosets are either disjoint or equal.

Proof. Suppose g+H and g′+H are not disjoint. Then there are elements h, h′ ∈ H
such that g + h = g′ + h′. This implies g = g′ + h′ − h. Now let g + h′′ ∈ g + H.
Then this element is also equal to g′+h−h′+h′′ and is an element of g′+H. The
same argument shows every element of g′+H is contained in g +H and so the two
are equal. ¤
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We would like to turn the set of cosets (g + H) for each g ∈ G into a group.
How would we do this? Well we would like to say that (g + H) + (g′ + H) is the
coset g + g′ + H. That seems natural enough - but it doesn’t always work! The
problem is that what if g + H = g′′ + H. We saw in the proof above that this
happens if (and only if) g − g′′ ∈ H. Well then we would certainly need to have
(g+H)+(g′+H) = (g′′+H)+(g′+H). This would mean g+g′+H = g′′+g′+H.
This would mean g + g′ − g′′ − g′ would have to be in H! But from what we have
assumed, it isn’t obvious (and it’s not always true) that this holds.

Definition 1.28. A subgroup N of G is called normal if for every g ∈ G, we have
g + N = N + g or equivalently g + N + g−1 = N (as sets).

This is exactly the condition we need to fix the problem above.

Proposition 1.29. Given a normal subgroup N of a group G, the set of cosets of
N do form a group under the above rule.

Proof. With the notation from before, we must show that if g + H = g′′ + N then
(g + g′) + N = (g′′ + g′) + N . The set g + g′ + N is equal to g + N + g′ because N
is normal. This set in turn is equal to g′′ + N + g′ which is equal to g′′ + g′ + N
again by normality. This shows that the operation is well-defined. Proving that
it’s a group now is easy. ¤
Definition 1.30. If N is a normal subgroup of G, we call the group of left cosets
the quotient group of G by N and write it G/N .

To emphasize: two elements of the quotient group a + N and b + N and are equal
if and only if a and b differ by an element of N .

Here are some basic facts about normal subgroups and quotient groups. I won’t go
through the proofs.

Theorem 1.31. (1) Every subgroup of a commutative group is normal. If G
is commutative and N is a subgroup, then G/N is also commutative. This
will be key for us.

(2) If N is normal in G, there is a group homomorphism p : G → G/N . This
map sends g to g + N and is often called the quotient homomorphism. The
kernel of this homomorphism is exactly N .

(3) Conversely (to the point above), the kernel of any group homomorphism f :
G → G′ is a normal subgroup. The image of f is isomorphic to G/Ker(f).
This shows us that the normal subgroups of a given group G in some sense
“control” how G maps to other groups.

This brings us to the most important example of this course.

Example 1.32. Let G be the group of integers Z and N be the normal subgroup nZ
(remember, every subgroup of a commutative group is normal). Then the quotient
group is Z/nZ, and we often say that this is “the group of integers modulo/mod
n”. There is a homomorphism Z→ Z/nZ. It sends an integer to that integer mod
n.

For concreteness, suppose that n = 5. Then the elements of Z/5Z are 0 + Z, 1 +
Z, 2 + Z, 3 + Z, 4 + Z. After a while, we won’t write this all out and just refer to
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the elements as 0, 1, 2, 3, 4. Then we say that, for example, 3+4 ≡ 2 (or sometimes
3 + 4 ≡ 2(mod5) to emphasize that we’re working in the quotient group) because
3 +Z+ 4Z = 7 +Z = 2 +Z. If p : Z→ Z/5Z is the quotient map, then p(a) = p(b)
if and only if a and b differ by a multiple of 5, or what amounts to the same thing,
that 5 divides a− b. Again, we denote this by a ≡ b(mod5).

2. Rings

Informally, a ring is a set with two operations - addition and multiplication - which
interact in the “usual” ways.

Definition 2.1. A set R is called a ring if there are two maps + : R×R → R and
· : R×R → R such that

(1) R is a commutative group with the operation +.
(2) The operation · is associative.
(3) There is an element, 1, which is the identity for multiplication. That is,

1 · r = r · 1 = r for each r ∈ R.
(4) The distributive law holds; that is r · (x + y) = r · x + r · y and (x + y) · r =

x · r + y · r.

If in addition, we have r · s = s · r for each r, s ∈ R, then R is called a commutative
ring. We will now refer to the identity for + in a ring as 0, instead of e. We will
refer to the additive inverse for r ∈ R as −r.

Here are a couple easy properties.

Lemma 2.2. The multiplicative identity is unique. We have the formula 0 · r =
r · 0 = 0 for each r ∈ R. We also have −1 · r = −r.

Proof. Suppose that 1′ was another identity. Then 1′ = 1 · 1′ = 1. For the second,
we have 0 ·r+r = 0 ·r+1 ·r = (0+1) ·r = 1 ·r = r. Adding −r to both sides proves
the formula. For the third, we have −1 ·r+r = −1 ·r+1 ·r = (−1+1) ·r = 0 ·r = 0
by the second formula. This shows that −1 · r = −r. ¤

Example 2.3. The integers Z form a ring. So do the rational numbers, Q, the real
numbers, R, and the complex number, C.

Example 2.4. The groups we talked about in the previous section Z/nZ also form
a ring. Here, as with addition, we use “multiplication mod n”.

Example 2.5. The set of polynomials in one variable with complex coefficients
form a ring, C[x].

Example 2.6. Not every ring is commutative. Consider the set of all 2×2 matrices
with usual addition and multiplication.

Example 2.7. Let Z[i] = {a+bi|a, b ∈ Z}. Here i2 = −1. This is a ring, called the
ring of Gaussian integers. Similarly we have rings like Z[

√−2] = {a + b
√−2|a, b ∈

Z}.
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Notice that an element of a ring need not have an inverse for the operation of
multiplication!

There is a notion of a subring of a ring just like of a subgroup of a group. Instead
we’ll be interested in what are called ideals, which we’ll talk about in the next
section.

There is also the notion of a ring homomorphism.

Definition 2.8. A map between rings f : R → S is a ring homomorphism if
f(1) = 1, f(x + y) = f(x) + f(y), and f(x · y) = f(x) · f(y).

Again the + and · on the left hand side of the equations can be different than their
counterparts on the right hand side of the equation. Notice that a ring homomor-
phism is also a group homomorphism when we forget about the extra structure of
·.
Example 2.9. When is there a ring homomorphism f : Z/nZ→ Z/mZ? (In fact
we’ll also answer when there is a group homomorphism between these two groups).

Well, since we must have f(1) = 1, we must also have f(1) + . . . + f(1) = 0 (sum
taken n times). This implies that m divides n. Think about why this has to be
true.

This shows that, for example, there is no ring (or group) homomorphism from Z/3Z
to Z/5Z or to Z/6Z. But there is one from Z/6Z to Z/3Z.

We can define injective, surjective, isomorphism, kernel, and image just as in the
case of groups. We must warn you though, the kernel of a ring homomorphism will
not usually be a ring! This is because 1 will not map to 0.

3. Ideals

In the setting of groups, we had normal subgroups which allowed us to define
quotient groups. In the setting of rings, the analogues are called ideals. Ideals are
important in both algebra and number theory. After defining them we will finally
directly address some number theory!

Definition 3.1. A subset I ⊂ R of a ring is called an ideal if 0 ∈ I and for every
a, b ∈ I and r, s ∈ R we have r · a + s · b ∈ I also.

Here are some easy to prove properties:

Lemma 3.2. (1) An ideal I is a subgroup of R with respect to addition.
(2) If r ∈ R and i ∈ I then r · i ∈ I.
(3) If r1, . . . , rk ∈ R and i1, . . . , ik ∈ I then r1 · i1 + . . . + rk · ik ∈ I.

Proof. (1) If a, b ∈ I we must show that a + b ∈ I. This follows from the
definition by taking r = s = 1. If a ∈ I we must also show that −a ∈ I.
This follows by taking r = −1 and b = s = 0 in the definition.

(2) This follows by taking a = i, b = 0, r = 1 and s = 0 in the definition of an
ideal.
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(3) Part (2) is the case k = 1. This fact then can easily be proven by induction
on k. I.e., assume it’s true for k − 1, then r1 · i1 + . . . + rk−1 · ik−1 ∈ I
and rk · ik ∈ I by part (2) again. So then by the definition of an ideal,
r1 · i1 + . . . + rk · ik ∈ I also.

¤
Example 3.3. If R is any ring, and a ∈ R. Then the set (a) = {r · a|r ∈ R} is an
ideal of R. Think about this, it’s not hard!

Definition 3.4. An ideal I ⊂ R is called principal if it is of the form (a) for some
a ∈ R.

Example 3.5. The set of all multiples of 7 in Z is a principal ideal. Of course,
this works for any integer n.

Example 3.6. Not every ideal is principal. Here is an example. Let R be the
ring of polynomials with complex coefficients in two variables, x and y. We write
R = C[x, y]. Then the ideal I = {p(x, y) ∈ R|p(0, 0) = 0} is a non-principal ideal.
Think about why!

Finally we come to the first main application of all this theory to the study of
integers.

Theorem 3.7. Every ideal of Z is principal.

Proof. If I = (0), we are finished. So assume that I contains positive integers. Let
a be the smallest integer in I. Then by the ideal properties, we have (a) ⊂ I. So
we just need to show I ⊂ (a). Suppose b ∈ I is a positive number. Since a < b,
by the division algorithm, we can write b = n · a + r with 0 ≤ r < a. But then
r = b − n · a would be in I. Since a is the smallest positive integer in I, we must
have r = 0, and so b is a multiple of a. If b ∈ I is negative, then −b is also in I
and is positive, and by the above argument, also a multiple of a. This shows that
I ⊂ (a). ¤

There are at least two applications of this fact. The first is a combination of
Theorem 1.3 and 1.4 in our book.

Theorem 3.8. Suppose that a, b ∈ Z are two integers. Then there is an integer d
such that d|a and d|b which satisfies the following property. Further, e|a and e|b if
and only if e|d. This integer d may be expressed as m · a + n · b for some integers
m,n. We call d the greatest common divisor of a and b.

Proof. Consider the set I = {m · a + n · b|m,n ∈ Z}. This is an ideal in Z, which
is easy to check. Then I = (d) for some integer d by the previous theorem. Since
a ∈ I, we must have that a is a multiple of d; in other words, d|a. Similarly for b.
By definition we can write d = m · a + n · b for some m,n ∈ Z. Suppose that e|a
and e|b. Then e|m · a + n · b so e divides d also. If e|d then e divides any multiple
of d, so in particular a and b. ¤

The second application is Theorem 1.15 in our book.

Theorem 3.9. Suppose that p is a prime number and p|ab. Then p|a or p|b.
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Proof. Consider the set I = {m · a + n · b|m,n ∈ Z}. This is an ideal, so we may
write I = (c) with c positive. Now, p must be a multiple of c, so either c = 1
or c = p. If c = 1, then we may write 1 = ma + np for some integers, and so
b = mab+npb. Since p divides the right hand side it must also divide the left hand
side, b. If c = p, then because a is a multiple of c have that p divides a. ¤

Now just as promised, let’s just remember that we can take quotients of rings by
ideals just like we could with groups by normal subgroups.

Theorem 3.10. Suppose that R is a ring and I ⊂ R is an ideal. Then there is a
quotient ring R/I, and a surjective ring homomorphism R → R/I. The kernel of
this map is exactly I. If R is commutative, so is R/I.

Proof. Actually we have already almost proved this when we talked about groups.
Since I is a normal subgroup of R with respect to + (every ideal in a ring is a normal
subgroup because rings are required to be commutative groups with respect to +),
then the quotient group R/I makes sense. We simply must make sure multiplication
makes sense on the set of cosets, R/I.

Let a, b ∈ R. We define (a + I) · (b + I) to be a · b + I. Now, does this make sense?
Suppose that a + I = c + I as cosets. This means a − c ∈ I as before. We better
have that a · b + I = c · b + I. Well, a · b − c · b = (a − c) · b which is indeed in
I. So our definition makes sense. The rest of verifying that R/I is a ring is pretty
easy. So is verifying that R → R/I the group homomorphism projection is a ring
homomorphism. It is clear that if R is commutative then so is R/I. ¤
Example 3.11. Our main example, is again, I = (n) ⊂ Z. Then Z/I is the ring
that we already discussed, Z/nZ.
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