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Representability in non-linear elliptic

Fredholm analysis

John Pardon

Abstract

We summarize current work aimed at showing that moduli spaces of solutions to
non-linear elliptic Fredholm partial differential equations are derived log smooth
manifolds.
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1 Introduction

The motivating question for this research summary is the following:

What sort of mathematical object is the moduli space of solutions
to a non-linear elliptic Fredholm partial differential equation?

At the most basic level, such moduli spaces are topological spaces (equipped with
the topology of uniform convergence in all derivatives). This topological structure
is (in general) insufficient for enumerative questions (such as asking for a ‘signed
count’ of solutions).

It is a classical fact going back to Kuranishi [28] and Atiyah–Hitchin-Singer
[2] that the moduli spaces above may be expressed locally as the zero set of a
smooth map Rn → Rm. Such a chart is called a Kuranishi chart, and captures
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enumerative information locally. The idea of equipping such a moduli space with
an atlas of Kuranishi charts and patching together their enumerative information
globally first appeared in work of Fukaya–Ono [16] and was developed further by
Fukaya–Oh–Ohta–Ono [14, 15] and others. The construction of such atlases, as
well as the axioms they are required to satisfy, remains ad hoc, despite many years
of effort from a number of authors to establish a more canonical approach. A more
canonical approach would be highly desirable, as it could be expected to elimi-
nate the need for explicit prescriptions for, and delicate manipulations of, atlases
of compatible Kuranishi charts, thus enabling ‘operadic’ reasoning about moduli
spaces of pseudo-holomorphic curves to be independent of the foundational dis-
cussion (something which is not possible with current technology). A prerequisite
for such an approach is to understand more intrinsically what structure such an
atlas of charts is really describing.

In algebraic geometry, there is an established approach to the definition and
construction of moduli spaces based on moduli functors (due to Grothendieck,
Artin, Deligne–Mumford, and others). The basic idea (trivial, yet revolutionary)
is that to specify a moduli spaceM, it is equivalent to specify the functor of maps
Z →M from spaces Z, and this is supposed to be ‘families of objects parameter-
ized by Z’ (the term ‘space’ is really a placeholder: we could use any category we
like here, such as topological spaces, smooth manifolds, complex analytic spaces,
etc.). The moduli functor

Z 7→ {families of objects parameterized by Z}

is usually much more straightforward and tautological to define than the moduli
space itself. Of course, one still needs to show that the moduli functor is rep-
resentable (i.e. is of the form Z 7→ Hom(Z,M) for some space M). Crucially,
representability is a property (the space M is automatically unique up to unique
isomorphism, if it exists), and moreover it is a local property. Suddenly we have
gained something for free: local charts glue together automatically! In a similar
vein, building compatible atlases on a collection of related moduli spaces is quite
delicate, whereas the corresponding moduli functors are related tautologically,
hence so are their representing objects.

We may thus ask: what moduli functors can we associate to a non-linear
elliptic Fredholm partial differential equation, and are they representable? It is
fairly straightforward to define a moduli functor on topological spaces and to
show that it is represented by the topological moduli space alluded to above. It
is even easier to define the moduli functor on smooth manifolds, and standard
non-linear elliptic Fredholm analysis shows that this functor is representable over
the open locus where the linearized operator is surjective. It is thus natural to
ask whether there exists a reasonable moduli functor on a suitable category of
‘spaces with an atlas of compatible Kuranishi charts’ and whether this functor
is representable. This was conjectured explicitly by Joyce [21, §5.3], and it is
the differential geometric analogue of the derived approach to algebraic Gromov–
Witten theory proposed by Kontsevich [27], and developed by Ciocan-Fontanine–
Kapranov [12, 13] and Kern–Mann–Manolache–Picciotto [25].

It is already quite nontrivial to define a suitable category of ‘spaces with an
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atlas of compatible Kuranishi charts’. We can take a first hint from the case of
linear elliptic operators. The kernel of an elliptic operator L : E → F on a manifold
M is the fiber product of vector spaces C∞(M,E) ×C∞(M,F ) 0. On the other
hand, if we instead take this same fiber product in the ∞-category K≥0(VectR)
of complexes supported in non-negative cohomological degree, then we obtain the
two-term complex [C∞(M,E) L−→ C∞(M,F )], which is quasi-isomorphic to its
cohomology [kerL 0−→ cokerL]. That is, passing to a ‘derived’ setting exactly
captures the full complex associated to L, rather than just its kernel. Now for
non-linear equations, we need a non-linear generalization of this setup.

The ∞-category of derived smooth manifolds Der is a non-linear analogue of
K≥0(VectR). It may be obtained from the category of smooth manifolds Sm by
formally adjoining finite limits modulo transverse limits, see Definition 3.5 and the
surrounding discussion. Derived smooth manifolds were introduced by Spivak [40,
41], and fall within the rather general framework of derived geometry introduced
by Lurie [29] and Toën–Vezzosi [45, 46]. From the very beginning, one motivation
for this theory was to capture intersection multiplicities using fiber products (the
connection goes all the way back to Serre’s intersection formula [39, V.C.1]). A
derived smooth manifold X has a tangent complex TX ∈ Perf≥0(X) (locally a
finite complex of vector bundles supported in cohomological degrees ≥ 0), and X is
called quasi-smooth when TX is supported in degrees [0 1]. Quasi-smooth derived
smooth manifolds have a reasonable bordism theory, which coincides with that of
ordinary smooth manifolds, by Spivak [41]. In the analytic/algebraic setting, there
is a well developed theory of virtual fundamental classes for quasi-smooth derived
schemes / analytic spaces [3, 38, 26]. The enumerative significance of arbitrary
derived smooth manifolds is less clear (though the enumerative theory does extend
at least somewhat beyond the quasi-smooth setting, see for example Borisov–Joyce
[5]). Atlases of Kuranishi charts and quasi-smooth derived smooth manifolds are
related by work of Joyce [20, 21, 23].

Our ‘main result’ Theorem 5.1 (though we cannot exactly call it a ‘result’
as we only have space for a brief sketch of the proof) is that moduli functors
of pseudo-holomorphic maps from compact smooth Riemann surfaces (or families
thereof) are representable on the ∞-category of derived smooth manifolds (an in-
dependent proof has been announced by Pelle Steffens [42, 43]). Our proof consists
of three main steps and, remarkably, reveals the result to be a formal categorical
consequence of standard Fredholm analysis (the inverse/implicit function theorem
for smooth Banach manifolds). The first step is the ‘standard Fredholm analy-
sis’ to show that the ‘regular locus’ (where the linearized operator is surjective)
is representable as a stack on smooth manifolds. The second step (which is the
heart of the proof) is to deduce, formally, from this fact, that the regular locus
remains representable on all derived smooth manifolds, by the same representing
object (smooth manifold). The third step is a standard (and trivial) transverse
thickening argument to deduce representability from representability of the reg-
ular locus. We should point out that this proof is not particularly specific to
the setting of pseudo-holomorphic curves: similar reasoning should apply to any
non-linear elliptic Fredholm problem with two-term deformation theory. While we
expect Theorem 5.1 to remain valid for problems with elliptic deformation com-
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plex of arbitrary length, the extension of our arguments to treat that case would
be nontrivial.

While enumerative applications were a key motivation for Theorem 5.1, it
does not concern these as such. Rather, it must be combined with a suitable
theory of virtual fundamental cycles (or bordism) for (certain, e.g. quasi-smooth)
derived smooth manifolds (which we view as a separate problem).

For most interesting applications, it is necessary to consider moduli spaces
of pseudo-holomorphic maps from families of degenerating curves (which are not
covered by Theorem 5.1). Joyce [22] has proposed the framework of (what we call)
‘log smooth manifolds’ (with origins in work of Melrose [31, 32, 33]) for formulating
and proving representability of moduli spaces in this setting (there is also closely
related work of Parker [36]). We discuss this briefly at the end.

1.1 Acknowledgements

The author is grateful for comments from the anonymous referee, Kenji Fukaya,
Tobias Ekholm, André Henriques, Pelle Steffens, Dennis Sullivan, and Runjie Hu.

2 Linear elliptic equations

Given an elliptic operator L : E → F on a compact manifold M , the kernel
and cokernel are finite-dimensional. More generally, given an elliptic complex
E0 L0−−→ E1 L1−−→ · · · Ln−1−−−→ En on a compact manifold, its cohomology groups
are finite-dimensional. Rather than taking cohomology, it is somewhat better to
say that these complexes are isomorphic in the ∞-category of complexes to finite
complexes of finite-dimensional vector spaces (though there is little difference in
this simple setting).

Things get more interesting if we consider families of elliptic operators. Let
L : E → F be a vertical elliptic operator on a proper submersion π : Q → B of
smooth manifolds. Suppose L is surjective on the fiber over b ∈ B. It is then
surjective on nearby fibers, and its kernel forms a smooth vector bundle over a
neighborhood of b in the base B. What do we mean by this last statement? The
most straightforward interpretation is that there is a natural way to define local
trivializations and that one can check that the transition maps between these are
smooth. But there is a better approach using representable functors. We ask: what
should a map from a smooth vector bundle V over B to the bundle kerL be? The
answer is obvious: it should be a smooth map π∗V → E annihilated by L. Now we
may ask: is this functor representable? Notice that now representability is a prop-
erty, and it suffices to prove it locally (things glue automatically since representing
objects are unique up to unique isomorphism). So, we never have to compare local
trivializations, rather we just have to construct local charts satisfying a property.
Over the open subset of the base where L is surjective, representability of this
functor follows from standard elliptic analysis, and the fiber of the representing
object at b ∈ B is indeed the kernel of L acting on sections over the fiber of Q→ B
over b.
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Now what happens in general, when L is not assumed surjective? We are now
searching for a two-term complex of smooth vector bundles ‘up to homotopy equiv-
alence’. More precisely, we are looking for an object of the 2-category Perf [0 1](B)
whose objects are two-term complexes of vector bundles [V 0 → V 1] on B, whose
1-morphisms are chain maps, and whose 2-morphisms are chain homotopies, and
there are no higher morphisms for degree reasons (to be completely precise, this

describes a presheaf of 2-categories on B, and Perf [0 1] is its sheafification). We

should now write down a functor on Perf [0 1](B) whose representing object will

be the ‘derived pushforward’ π∗L of L. This functor sends V • ∈ Perf [0 1](B) to
(the groupoid of cycles in) the complex of global sections of Hom(π∗V, [E L−→ F ]),
whose differential is the sum (with appropriate signs) of L and the differential
V 0 → V 1. It can be checked, essentially by reducing to the surjective case, that
this functor is representable and that the fiber of its representing object over a
point b ∈ B is indeed quasi-isomorphic to [C∞(Qb, E) Lb−→ C∞(Qb, F )] (equiva-
lently [kerLb

0−→ cokerLb]). Notice that the local representing objects (two-term
complexes of finite-dimensional vector bundles on B) are only unique up to unique

(up to unique 2-isomorphism) 1-isomorphism in the 2-category Perf [0 1], which
means the gluing data involved in patching them together is quite a bit more com-
plicated than in the fiberwise surjective setting. The formalism of representable
functors is thus a significant advantage in this case, as it allows us to construct
and reason with the derived pushforward π∗L without manipulating the patching
data directly.

This discussion generalizes readily to families of elliptic complexes. There is
an ∞-category Perf≥0 whose objects are described locally as finite complexes of
vector bundles supported in non-negative cohomological degree and whose mor-
phisms are given by the space of cycles in the usual mapping complex. One can
write down the analogous functor, whose representing object is called the derived
pushforward of the elliptic complex.

3 Derived smooth manifolds

The first step in generalizing from linear to non-linear elliptic equations is to find
the non-linear analogue of the ∞-category K≥0(Vect) of complexes of real vector
spaces supported in non-negative cohomological degree. This is the ∞-category
Der of derived smooth manifolds, defined by Spivak [40, 41] following ideas of
Lurie [29] and Toën–Vezzosi [45, 46], and developed further by Borisov–Noel [6],
Behrend–Liao–Xu [4], Carchedi–Steffens [11], Carchedi [10], and Taroyan [44].
Joyce has defined a 2-category of ‘d-manifolds’ [20, 21, 23] which is closely related
(if not literally equivalent) to the full subcategory of Der spanned by quasi-smooth
objects.

In contrast to the aforementioned references, we will take an axiomatic ap-
proach to derived smooth manifolds (see Definition 3.5), which we believe mini-
mizes the amount of technical input needed to get the theory off the ground (in
particular, we do not need the notion of a homotopy C∞-ring). From our perspec-
tive, the∞-category of derived smooth manifolds is obtained from the category of
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smooth manifolds Sm by formally adjoining finite limits modulo preserving finite
transverse limits (within the realm of topological ∞-sites).

Definition 3.1 (Topological ∞-site) A topological ∞-site is an ∞-category C
along with a functor |·| : C → Top, with the property that for every diagram of
solid arrows

∗ C

∆1 Top

1 |·|

opemb

in which the bottom arrow is an open embedding in Top, there exists a dotted lift
which is cartesian in the sense of [30, §2.4.1].

An arrow in a topological ∞-site C which is cartesian over an open embed-
ding in Top is called an open embedding in C. There is an equivalence (C ↓opemb

X) = Open(|X|) for every object X ∈ C. We can thus make sense of the sheaf
property for presheaves on C using this equivalence (namely, require the pullback
to Open(|X|) to be a sheaf in the usual sense for every X ∈ C). A topological
∞-site is called subcanonical when Yoneda presheaves are sheaves (in other words,
when a morphism out of X ∈ C amounts to certain local data on X). A topo-
logical ∞-site is called perfect when it is subcanonical and every sheaf which is
locally representable (has a cover by open substacks which are all representable)
is representable (in other words, C is perfect when the result of gluing together
objects of C along open sets is again an object of C).

Example 3.2 The categories of topological spaces (Top), smooth manifolds (Sm)
(not necessarily paracompact or Hausdorff), complex analytic spaces, and schemes,
are all perfect topological sites. Another example of a topological site is the category
Vect o Top whose objects are pairs (X,V ) where X ∈ Top and V/X is a vector
bundle and in which a morphism (X,V ) → (X ′, V ′) is a continuous map f :
X → X ′ and a linear map V → f∗V ′ (the functor |·| : Vect o Top → Top sends
(X,V ) 7→ X).

Definition 3.3 (Topological functor) Let C and D be topological ∞-sites. A
topological functor C → D is a functor f : C → D preserving open embeddings,
together with a natural transformation π : |f(·)|D → |·|C which sends open embed-
dings to pullbacks. A topological functor (f, π) is called strict when π is a natural
isomorphism.

Example 3.4 The functor Sm→ Sm given by X 7→ TX is a topological functor.
The forgetful functor Sm → Top is a strict topological functor. The forgetful
functor Vect o Top → Top sending (X,V ) 7→ X is a strict topological functor.
There is also a topological functor Vect o Top → Top sending (X,V ) to the total
space of V .

Now we define the ∞-category of derived smooth manifolds by the following
set of axioms.
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Definition 3.5 (Derived smooth manifold) The perfect topological∞-site Der
together with the strict topological functor Sm → Der is defined by the following
axioms:

• The functor Sm→ Der is fully faithful and preserves finite products.

• Der has finite limits, and every object of Der is locally isomorphic to a finite
limit of smooth manifolds.

• The functor |·| : Der→ Top preserves finite limits.

• For any N ∈ Sm, the functor Hom(−, N) : Der → Shv(−)op o Top sends finite
cosifted limits (equivalently, totalizations of truncated cosimplicial objects) to
relative limits over Top.

Note that the axioms determine quite directly the space of morphisms be-
tween any pair of finite limits of smooth manifolds in Der, hence they determine
the entire topological ∞-site Der.

Theorem 3.6 (Universal property of derived smooth manifolds) For any
perfect topological∞-site E with finite limits, the∞-category of topological functors
Der→ E preserving finite limits is equivalent, via restriction, to the ∞-category of
topological functors Sm→ E preserving finite products.

A similar universal property was proven by Carchedi–Steffens [11].

A diagram of vector spaces is called transverse when its limit in Vect is
preserved by the inclusion Vect ↪→ K≥0(Vect). A diagram of smooth manifolds is
called transverse when for every point of its topological limit, the induced diagram
of tangent spaces is transverse.

Lemma 3.7 A topological functor Sm→ E preserves finite transverse limits iff it
preserves finite products.

As an example application of the universal property of Sm → Der, we note
that the tangent functor T : Sm → Sm preserves finite products, hence extends
uniquely to a functor T : Der → Der. This functor is right adjoint to (− × τ) :
Der → Der where τ is the derived zero set (fiber product in Der) of the function
x 7→ x2 (we also call τ the ‘universal tangent vector’). That is, Hom(X × τ, Y ) =
Hom(X,TY ) for derived smooth manifolds X and Y .

The tangent complex of a derived smooth manifold M at a point x ∈ M
is an object of K≥0(VectR) with finite-dimensional cohomology. This cohomology
detects the local structure: TX/Y is supported in degree d precisely when X → Y

is locally modelled on a pullback of the dth diagonal of Rk → ∗ (equivalently,
the (d − 1)th diagonal of ∗ → Rk), and every map of derived smooth manifolds
factors locally into a composition of such maps. A derived smooth manifold whose
tangent complex is supported in degrees [0 1] is called quasi-smooth; for example,
the derived zero set f−1(0) of a smooth function f : Rn → Rm (a Kuranishi chart)
is quasi-smooth.
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4 Moduli stacks of pseudo-holomorphic maps

Let us now make precise what we mean by a pseudo-holomorphic moduli problem ℘
and its associated moduli stack Hol(℘) of solutions. A quick note on terminology:
we use the term ‘C-stack’ to mean any object of the ∞-category Shv(C) of all
sheaves (of spaces, aka ∞-groupoids) on the topological ∞-site C (for example
topological stacks Shv(Top), smooth stacks Shv(Sm), and derived smooth stacks
Shv(Der)).

At the simplest level, we could consider pseudo-holomorphic maps from a
compact Riemann surface C to an almost complex manifold X. The moduli
problem ℘ is the pair (C,X), and its solutions are pseudo-holomorphic maps
u : C → X. In many contexts it is useful to generalize from maps to sections.
This means we fix a pseudo-holomorphic submersion W → C over a compact
Riemann surface C, and we consider solutions to be pseudo-holomorphic sections
u : C →W .

The moduli stack Hol(℘) of solutions to a pseudo-holomorphic moduli prob-
lem ℘ associates to each ‘space’ Z the set of ‘families’ of solutions of ℘ parameter-
ized by Z. There are various sorts of moduli stacks depending on what we allow
Z to be, which we indicate by adorning Hol(℘) with a subscript.

The simplest moduli stack to define is the smooth moduli stack Hol(℘)Sm,
which is when Z is a smooth manifold. A family of solutions of the moduli problem
℘ = (C,X) parameterized by Z is simply a smooth map Z × C → X whose
restriction to each slice z×C is pseudo-holomorphic. When ℘ is a section problem
(W → C), a map Z → Hol(℘)Sm is then a smooth lift

W

Z × C C
πC

whose restriction to each slice z × C is pseudo-holomorphic.
This object Hol(℘)Sm is a smooth stack, by which we mean an object of

Shv(Sm), the category of sheaves on Sm, the category of smooth manifolds. For
a given smooth stack, we can ask whether it is representable, meaning isomorphic
in Shv(Sm) to a functor of the form Hom(−, A) for some smooth manifold A.
Representability of Hol(℘)Sm means, concretely, that there exists a smooth mani-
fold A and a universal family A→ Hol(℘)Sm (i.e. a family of pseudo-holomorphic
maps/sections parameterized by A) such that for every smooth manifold Z, a
family of pseudo-holomorphic maps/sections parameterized by Z is the pullback
of the universal family by a unique map Z → A. It is not hard to check that
such a universal object and universal family is unique up to unique isomorphism
if it exists. If it exists, then it certainly deserves to be called the moduli space of
pseudo-holomorphic maps/sections.

Standard non-linear elliptic Fredholm analysis shows that the smooth moduli
stack is representable over the open set where the linearized operator is surjective
(let us call this the ‘regular locus’ Hol(℘)reg ⊆ Hol(℘), which is an open substack
since surjectivity is an open condition for Fredholm operators). To satisfactorily
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describe the entire moduli space (not just its regular locus), we need to introduce
more complicated moduli stacks.

Let us next explain the topological moduli stack Hol(℘)Top. In other words, we
should explain what it means to have a family of solutions to a pseudo-holomorphic
moduli problem ℘ parameterized by a topological space Z. The answer takes the
same basic form as when Z is a smooth manifold, namely we ask for a map Z×C →
X or to W . At a minimum, we would certainly want this map should be smooth
on the slices z × C and jointly continuous. In fact, we want that all derivatives
in the C direction should exist and be jointly continuous. These conditions can
be stated succinctly by introducing the category TopSm of ‘topological-smooth
spaces’. Given a topological space Z and an integer n, the (formal) product Z×Rn
is an example of a topological-smooth space. A continuous-smooth map Z×Rn →
Z ′ (possibly defined on just an open set) is a continuous map which is locally
constant on every slice z × Rn. A continuous-smooth map Z × Rn → R is a map
whose derivatives to all orders in the Rn direction exist and are jointly continuous.
Now the category TopSm is defined by taking atlases (an object is a topological
space with an atlas of charts from open subsets of various Z×Rn with continuous-
smooth transition maps, and a morphism is a continuous map which in every
chart is continuous-smooth). The topological moduli stack Hol(℘)Top is (under
mild conditions) representable. Concretely, it is the set of pseudo-holomorphic
maps/sections equipped with the topology of smooth convergence on compact
subsets of the domain.

Now the moduli space which gives a truly satisfactory answer to our motivat-
ing question is the derived smooth moduli stack Hol(℘)Der, which classifies families
of pseudo-holomorphic maps parameterized by derived smooth manifolds. To de-
fine this moduli stack, we just need to say when a morphism of derived smooth
manifolds Z × C → X is pseudo-holomorphic in the C direction. The point is
that there is a tangent functor T : Der→ Der, which turns such a map into a map
TZ×TC → TX. We can now restrict it to Z×TC → TX, which is thus a section
of the vector bundle Hom(TC, u∗TX) over Z ×C, and we can take the (0, 1)-part
and require it to vanish (which we should note is extra data, not a property, in
this higher categorical context). Note that this is not a ‘fiberwise’ constraint:
there are functions Z → R which are nonzero yet whose pullback under every map
∗ → Z is zero. For example, a pseudo-holomorphic map τ × C → X (where τ
is the universal tangent vector) is a pseudo-holomorphic map C → X along with
first order deformation preserving pseudo-holomorphicity. We emphasize that the
definition of Hol(℘)Der is entirely ‘synthetic’/‘diagrammatic’: all we need is the
∞-category Der ⊇ Sm and its tangent functor, and some compatibilities with the
notion of tangent space of smooth manifolds (at no point in defining this functor
do we need to describe explicitly a morphism of derived smooth manifolds).

The above discussion generalizes quite easily to parameterized moduli prob-
lems (which is the sort which usually appears in practice). We consider a base
‘parameter’ space B together with submersions W → C → B where TW/B and
TC/B have complex structure, the map W → C is almost complex relative B, and
C → B is proper of relative dimension two. A map from Z to the moduli stack
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HolB(C,W ) is now a diagram

W

C ×B Z C

Z B

where the diagonal map C×BZ →W is pseudo-holomorphic in the TC/B direction.
This ‘diagrammatic’ definition works to define the topological, smooth, and derived
smooth moduli stacks as above. It is important to note here that we may take B
to be any topological, smooth, or derived smooth stack : this generality is needed
to describe most moduli spaces of interest, as in the following examples.

Example 4.1 A parameterized moduli problem over parameter space B = ∗ is the
same as a moduli problem in the initial (unparameterized) sense.

Example 4.2 A parameterized moduli problem over parameter stack B = ∗/G
for a Lie group G is necessarily of the form W/G → C/G → ∗/G where W → C
is a G-equivariant pseudo-holomorphic section problem. The moduli stack of the
parameterized problem Hol∗/G(C/G,W/G) is the quotient Hol(C,W )/G.

Example 4.3 Let C → B be the universal family over the moduli stack B of com-
pact smooth Riemann surfaces. The moduli stack HolB(C,X) classifies (families
of) ‘maps from compact smooth Riemann surfaces to X modulo reparameteriza-
tion’.

It is possible to identify the ‘tangent space’ of a moduli stack of pseudo-
holomorphic curves by formal reasoning at the level of moduli functors. The
tangent functor T : Der → Der induces a sheaf left Kan extension functor T! :
Shv(Der)→ Shv(Der). Now T! is alternatively the pullback (−× τ)∗ : Shv(Der)→
Shv(Der) (indeed, they agree on Der and are both cocontinuous, where τ denotes
the derived zero set of x2 : R → R). Now the result of applying (− × τ)∗ to the
moduli stack Hol(℘)Der of ℘ = (W → C → B) may be identified quite directly
with the moduli stack Hol(T℘)Der associated to a certain ‘tangent moduli problem’
T℘ = (TW/C ×B TB → C ×B TB → TB) depending on a choice of connection on
W → B. Now the map Hol(T℘)→ Hol(℘) is just a ‘relative’ linear elliptic moduli
problem. We have thus shown that, for essentially formal reasons, the tangent
space to the moduli stack of pseudo-holomorphic curves is given by the associated
family of linear elliptic operators obtained by linearizing in the usual way. It is
remarkable that we can formulate and prove this statement before we show that
the moduli stack itself is actually representable!

5 Representability

We can now formulate and sketch the proof of our main ‘result’ (an independent
proof of which has been announced by Pelle Steffens [42, 43]). It depends on two
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key results which we state and discuss afterwards.

Theorem 5.1 (Derived Regularity Theorem) Let W → C → B be a pseudo-
holomorphic section problem over a derived smooth stack B, meaning W → C → B
are submersions in Shv(Der), the map B → C is proper of relative dimension two,
and W → C is pseudo-holomorphic with respect to specified complex structures on
TC/B and TW/B. In this case, the map

HolB(C,W )→ B

is representable, and the tautological comparison map

(Der→ Top)!HolB(C,W )Der → HolB(C,W )Top

is an isomorphism.

Proof: We begin with some formal reasoning to reduce to the case that B is
a smooth manifold. Formation of moduli stacks is compatible with pullback, so
representability of HolB(C,W ) → B reduces immediately to the case that B is
a derived smooth manifold. Given representability, formation of the comparison
map is also compatible with pullback by Lemma 5.3, hence also reduces to the
case B is a derived smooth manifold. Using Proposition 5.2, one can show that
every pseudo-holomorphic moduli problem over a derived smooth manifold B is
locally pulled back from a smooth manifold. It thus suffices to consider the case
B is a smooth manifold.

We first claim that HolB(C,W )regSm is representable and that the compari-
son map (Sm → Top)!HolB(C,W )regSm → HolB(C,W )regTop is an isomorphism (recall
Holreg ⊆ Hol denotes the open substack where the linearized operator is surjec-
tive). This is an application of standard non-linear elliptic Fredholm analysis using
Newton–Picard iteration (formally the same as inverse function theorem). More
precisely, Newton–Picard iteration shows that certain natural ‘linear projections’
λ : HolB(C,W )→ Rk are local isomorphisms on HolB(C,W )regTop. It is not difficult

to show that the local inverse Rk → HolB(C,W )regTop is continuously differentiable,

hence that the linear projection is an isomorphism of stacks on C1-manifolds.
Smoothness may be obtained formally by induction, by considering the ‘tangent
moduli problem’ (which is another elliptic partial differential equation).

Our second (and most significant) step is to show that, as a formal conse-
quence of the first step (representability of HolB(C,W )regSm ), the comparison map
(Sm→ Der)!HolB(C,W )regSm → HolB(C,W )regDer is an isomorphism (that is, families
of regular pseudo-holomorphic sections over derived smooth manifolds are classified
by the same smooth manifold classifying such families over smooth manifolds). The
underlying engine behind this fact is Proposition 5.2, which says that the analogous
assertion holds for the stacks of all sections. To deduce the result for HolB(C,W ),
observe that HolB(C,W ) is a fiber of SecB(C,W ) → Sec(C0, H0) where Sec
(resp. SecB) is the stack of (resp. parameterized) smooth sections (no pseudo-
holomorphicity imposed) and we have smoothly trivialized C = C0 × B → B
via Ehresmann and identified T ∗C ⊗ TW/C with the pullback of a vector bundle
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H0/C0. This map SecB(C,W ) → Sec(C0, H0) is a submersion over its fiberwise
regular locus by the previous paragraph. Now we appeal to the fact that submer-
sive pullbacks are preserved by left Kan extension (Sm → Der)! by Proposition
5.3.

Having proven the result over the regular locus, we can deduce it everywhere
using a standard thickening argument. We already noted in the first paragraph
of the proof that our desired conclusion is preserved under pullback. Thus if
our moduli problem (W → C → B) is the pullback of another moduli problem
(W̃ → C̃ → B̃) under a map B → B̃, then our desired result for HolB(C,W )
holds over the open substack HolB̃(C̃, W̃ )reg ×B̃ B ⊆ HolB(C,W ). Now we just
need to argue that HolB(C,W ) may be covered by open substacks of this form,
which is easy (take product of (W → C → B) with Rk and modify the holomorphic
structure as a function of the Rk-coordinate, keeping it fixed at zero, so as to make
any desired point of HolB(C,W ) = HolB̃(C̃, W̃ )×Rk 0 regular inside HolB̃(C̃, W̃ )).
�

The following result provides a powerful way to reduce statements about
derived smooth manifolds to statements about smooth manifolds.

Proposition 5.2 The comparison map

(Sm→ Der)!SecB(C,W )Sm → SecB(C,W )Der

is an isomorphism for C → B proper.

Proof: We begin this sketch with the case B = ∗.
We claim that a derived smooth stack lies in the essential image of left

Kan extension (Sm → Der)! : Shv(Sm) → Shv(Der) iff its associated functor
Der → Shv(−)op o Top sends finite cosifted limits (equivalently, totalizations of
truncated cosimplicial objects) to relative limits over Top (which involves colimits
of sheaves). The final axiom of the∞-category of derived smooth manifolds (Defi-
nition 3.5) implies Sm ⊆ Shv(Der) satisfies this condition. Satisfaction of the condi-
tion is evidently closed under taking colimits, so everything in Shv(Sm) ⊆ Shv(Der)
satisfies it as well. To prove the converse, it is enough (by the adjunction of
(Sm → Der)! and (Sm → Der)∗) to note that if F,G ∈ Shv(Der) satisfy the con-
dition and a map F → G is an isomorphism over Sm, then it is an isomorphism
(since every derived smooth manifold is locally a finite limit of smooth manifolds).

Now, let us check that Sec(C,W ) satisfies this criterion, i.e. that it sends
finite cosifted limits (equivalently, totalizations of truncated cosimplicial objects)
to relative limits over Top. Let Q = limαQα be a finite cosifted limit in Der. The
final axiom of Definition 3.5 implies that the functor of sections of W sends the
finite cosifted limit Q×C = limαQα×C to a relative limit over Top. The desired
result for Sec(C,W ) and Q = limαQα is the assertion that this relative limit
diagram remains a relative limit diagram after pushing forward to Q = limαQα.
By proper base change [30, 7.3.1.18] (which applies since C is compact Hausdorff),
we reduce to the assertion that pushforward Shv(Q × C) → Shv(Q) preserves a
certain colimit diagram. Proper pushforward preserves filtered colimits by proper
base change. Proper pushforward does not preserve all pushouts, but it does
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in this case since the sheaves in question are soft (have partitions of unity—the
desired result is local, so we may assume wlog that W → C is a vector bundle).
This usage of softness (i.e. the existence of partitions of unity, since we are in the
smooth setting) is essential, as the result in question fails in the analytic setting
(under the same hypothesis that C is compact Hausdorff).

To treat the case of general smooth manifolds B, it is easier to prove a
stronger result, namely that SecB(C,W ) ∈ Shv(Der ↓ B) is in the essential image
of Shv(Sm ↓subm B) (sheaves on smooth manifolds submersive over B). We may
then follow the same strategy. �

The following result is pure category theory, though it is not quite trivial.

Lemma 5.3 Let f : C → D be a functor. Let P and Q be properties of mor-
phisms in C and D (respectively) preserved under pullback. If f sends pullbacks
of P-morphisms to pullbacks of Q-morphisms, then so does the left Kan exten-
sion functor f! : P(C) → P(D). When C and D are perfect topological ∞-sites
and f is topological, the same holds for the sheaf left Kan extension functor
f! : Shv(C)→ Shv(D).

6 Log smooth manifolds

So far, we have only discussed pseudo-holomorphic maps from compact smooth
Riemann surfaces (and families thereof). We now seek to generalize our discussion
to Riemann surfaces with cylindrical ends and degenerating families thereof (as
is necessary for most practical applications of the theory). To do this, we need
to fix a differential geometric context in which we can speak about such objects
and define and prove representability of moduli functors of the same basic form
considered in Section 4.

Joyce [22] has proposed that the formalism of what we shall call log smooth
manifolds provides such a suitable differential geometric context. The beginning of
this theory is the ‘b-differential calculus’ of Melrose [31, 32, 33] and its applications
to linear elliptic equations. The key notion of ‘log smoothness’ seems to have been
formalized first in work of Joyce [22] and, in a somewhat different form, Parker
[36], both of whom noted its applicability to pseudo-holomorphic curve problems.

Let us now define log smooth manifolds. Given a real polyhedral cone P
(an intersection of half-spaces in a finite-dimensional real vector space), there is
a corresponding real affine toric variety XP = Hom((P,+), (R≥0, ·)). This XP is
naturally stratified by the faces of P (associate to a homomorphism f : P → R≥0
the face f−1(R>0) ⊆ P ), and it is known that XP and P are homeomorphic as
stratified topological spaces [34, Theorem 1.4]. A log structure on a topological

space X is a sheaf of monoids O≥0X on X equipped with a map to the sheaf of

monoids C≥0X of R≥0-valued continuous functions under multiplication, with the

property that this map is an isomorphism over the submonoid C>0
X ⊆ C≥0X of non-

vanishing functions. A map of log topological spaces (f, f [) : (X,O≥0X )→ (Y,O≥0Y )

is a continuous map f along with a map of sheaves of monoids f [ : O≥0Y → f∗O≥0X
compatible with pullback of R≥0-valued functions. We equip the space XP with
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the log structure associated to the tautological ‘pre-log structure’ P → C≥0XP
.

When P = R≥0, we denote XP by ′R≥0 = XR≥0
.

Definition 6.1 To any element p ∈ P there is an associated one-form on XP

given by the pullback of dx
x under the ‘evaluate at p’ map XP → R≥0 (dually,

associated to an element of (P gp)∗ is a vector field on XP ). This gives a notion of
C1-functions XP → R, and to each such function there is an associated derivative
map XP → P gp. We can inductively define Ck-functions XP → R for all k,
and so smooth functions as well. A log map XP → XQ is called smooth when it
is locally the product of a monomial map XP → XQ (i.e. induced by a map of
polyhedral cones Q→ P ) and a smooth map XP → X◦Q = (Qgp)∗.

Given this notion of differentiability, a log smooth manifold is a log topo-
logical space equipped with an atlas of charts from open subsets of various XP ,
whose transition maps are log smooth. A log smooth manifold locally modelled on
′R≥0 × Rk may be reasonably called a “manifold with asymptotically cylindrical
ends”, as can be seen from the following example.

Example 6.2 What are the log smooth maps Rn × ′R≥0 → R and Rn × ′R≥0 →
′R≥0? The answer to this question is easiest to grasp if we use log coordinates
′R≥0 = (−∞,∞] identifying s ∈ (−∞,∞] with e−s ∈ ′R≥0. In these coordinates,
the log smooth maps f : Rn× (−∞,∞] = Rn× ′R≥0 → R and g : Rn× (−∞,∞] =
Rn× ′R≥0 → ′R≥0 = (−∞,∞] are precisely those maps with the following behavior
as s→∞:

f(x1, . . . , xn, s) = f∞(x1, . . . , xn) + o(1)C∞

g(x1, . . . , xn, s) = g∞(x1, . . . , xn) + a · s+ o(1)C∞

for smooth f∞, g∞ : Rn → R and constant a ≥ 0, where o(1)C∞ denotes a func-
tion all of whose derivatives ∂`s∂

m1
x1
· · · ∂mn

xn
are o(1) (decay to zero) as s → ∞

(uniformly over compact subsets of Rn).
For applications to elliptic problems, one can impose a stronger exponential

decay condition, namely replace o(1)C∞ with ‘O(e−δs)C∞ for some (unspecified)
δ > 0’ (this is the distinction between ‘roughly smooth’ and ‘analytically smooth’
in Joyce’s terminology).

Remark 6.3 Suppose ϕ : ′R≥0 → R≥0 (often called a ‘gluing profile’) is a homeo-
morphism with the property that for all log smooth F : ′Rk≥0 → ′R≥0 with exponen-

tial decay in the sense of Example 6.2, the conjugation ϕ◦F ◦(ϕk)−1 : Rk≥0 → R≥0
is smooth (in the usual sense). For example, ϕ(t) = (− log t)−1 = s−1 has
this property (for k = 1, this amounts to showing that (r−1 + f(r−1))−1 =
r/(1 + rf(r−1)) is smooth at r = 0 whenever f(s) = O(e−εs)C∞ as s→∞, which
follows from explicit differentiation). Such a function ϕ determines a functor from
the category of log smooth manifolds ‘with exponential decay’ locally isomorphic to
′Rk≥0 and log smooth maps with exponential decay, to the category of smooth mani-

folds with corners (by definition locally isomorphic to Rk≥0) and smooth maps. This
functor does not respect tangent bundles on the nose, rather only ‘up to homotopy’.
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Example 6.4 A punctured Riemann surface has a unique bordification to a log
smooth manifold (since holomorphic maps D2 \ 0→ D2 \ 0, written in cylindrical
coordinates z = es+it for (s, t) ∈ (0,∞)×S1, have the required form from Example
6.2).

Example 6.5 Given a co-oriented contact manifold (Y, ξ), its symplectization SY
is the subspace of positive contact forms inside T ∗Y , and it is equipped with the
restriction of the tautological 1-form on T ∗Y . Given a positive contact form α
on Y , the symplectization SY has coordiates R × Y with the 1-form esα. The
bordification SY = [−∞,∞] × Y is naturally a log smooth manifold, obtained by
gluing s ∈ R to es ∈ ′R≥0 (near s = −∞) and e−s ∈ ′R≥0 (near s = ∞). This
bordification SY is independent of the choice of contact form, since the relevant
coordinate change (s, p) 7→ (s+ α′

α (p), p) : R× Y → R× Y is log smooth (compare
Example 6.2).

Example 6.6 Hofer [17] and Hofer–Wysocki–Zehnder [18] show that for any
cylindrical almost complex structure on SY , every pseudo-holomorphic map u :
D2 \ 0 → SY with finite Hofer energy satisfies exponential decay in cylindrical
coordinates in the sense of sense of Example 6.2, hence extends to a map of log
smooth bordifications from Examples 6.4 and 6.5.

At a point x of a log smooth manifold M , there is a natural short exact
sequence

0→ T ∗xMx → T ∗xM → Z
gp
M,x → 0

where Mx ⊆ M is the local stratum of M containing x, and ZM,x is the sharp
(meaning it contains no non-zero invertible elements) polyhedral cone govering the
local structure of M at x. This short exact sequence is functorial in log smooth
maps f : M → N .

We call a map f : M → N a broken submersion at p ∈ M when T ∗p f :

T ∗f(p)N → T ∗pM is injective and f [[p : ZN,f(p) → ZM,p is locally exact (a map of

polyhedral cones f : Q → P is called exact when (fgp)−1(P ) = Q [24, Definition
(4.6)], and it is called locally exact when for every face F ⊆ P , the localized map
Q+ f−1(F )gp → P +F gp is exact [19, (A.3.2)(iii)][34, Definition 2.1(3)]). Broken
submersions model degenerating families of log smooth manifolds.

Example 6.7 The multiplication map (x, y) 7→ xy is a broken submersion ′R2
≥0 →

′R≥0. We may add circle factors and consider the map (S1 × ′R≥0)2 → S1 ×
′R≥0 given by (θ, φ, x, y) 7→ (θ + φ, xy). This is an ‘oriented real blow-up’ of
the standard complex analytic nodal degeneration C2 → C given by (z, w) 7→ zw
(take z = xeiθ and w = yeiφ). The present context of log smooth manifolds and
broken submersions thereof keeps track of a ‘matching’ of ‘circles at infinity’ of
the two sides of a node (in the present example, the circle S1 × 0 in the base
parameterizes all possible matchings, but this need not be the case in an arbitrary
broken submersion).

It is a nontrivial result that broken submersions are preserved under pullback.
A simply-broken submersion is a broken submersion which is locally (on the source)
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a pullback of the broken submersion ′R2
≥0 × Rk → ′R≥0 given by (x, y, p) 7→ xy.

A strict submersion is locally modelled on a pullback of Rk → ∗.
We may now formulate a precise expectation. We consider a simply-broken

submersion C → B of relative dimension two, with fiberwise complex structure,
and we consider a strict submersion W → C. There is then a moduli stack
HolB(C,W )LogSm on log smooth manifolds defined as in Section 4 (the defini-
tion there is purely ‘diagrammatic’, hence does not care what category we work
with, provided it has the relevant pullbacks and a notion of ‘vertically pseudo-
holomorphic’). Following Joyce, we expect the regular locus HolB(C,W )regLogSm

inside such moduli stacks to be representable (Parker proves a closely related re-
sult [37, Theorem 6.8]). The essential analytic content in this result (beyond that
already contained in the case of families of compact Riemann surfaces) is the
exponential decay of pseudo-holomorphic maps in cylindrical coordinates (in all
derivatives, including derivatives in the base direction, taken in log coordinates) as
in Fukaya–Oh–Ohta–Ono [15, A1.58]. While broken submersions are not locally
trivial, they do always have connections (e.g. the everywhere non-vanishing vector
field 1

2 (x∂x+y∂y) on ′R2
≥0 can be taken as the horizontal distribution of a connec-

tion on the multiplication map ′R2
≥0 → ′R≥0), which allows for an implementation

of the inductive strategy for proving smoothness of moduli spaces given that they
are C1, as discussed in the proof of Theorem 5.1.

The language of log smooth manifolds can also be used to model degenera-
tions of the target as considered in symplectic field theory (using the compactifi-
cations from either [9] or [35]) and to describe the moduli spaces of ‘witch curves’
used to construct A∞-functors associated to Lagrangian correspondences and their
compositions [7, 8, 1].

Finally, one could hope to show the entire moduli stack HolB(C,W ) to be
representable on a suitable ∞-category of ‘derived log smooth manifolds’.
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