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Abstract

We show that curve enumeration invariants of complex threefolds with nef anti-
canonical bundle are determined by their values on local curves. This statement and
its proof are inspired by the proof of the Gopakumar–Vafa integrality conjecture by
Ionel and Parker. The conjecture of Maulik, Nekrasov, Okounkov, and Pandharipande
relating Gromov–Witten and Donaldson–Pandharipande–Thomas invariants is known
for local curves by work of Bryan, Okounkov, and Pandharipande, hence holds for
all complex threefolds with nef anti-canonical bundle (in particular, all Calabi–Yau
threefolds).

1 Introduction

There are many ways of enumerating curves in complex threefolds [31]. These invariants turn
out to satisfy some surprising relations which appear to have no straightforward explanation.
In fact, according to Pandharipande–Thomas [30], the multitude of existing computations
suggest that all reasonable curve enumeration theories for complex threefolds are equivalent,
despite arising from quite varied geometric origins.

A folk conjecture offers an explanation of this phenomenon: a complex threefold should
be ‘enumeratively equivalent’ to a linear combination of local curves (rank two vector bundles
over smooth proper curves). We provide a precise formulation and proof of this conjecture for
complex threefolds with nef anti-canonical bundle. That is, we define a certain Grothendieck
group of 1-cycles in complex threefolds (with nef anti-canonical bundle), and we show that
this group is freely generated by local curves. The proof is based on generic transversality,
which explains the nef anti-canonical bundle hypothesis (it would be of exceptional interest
to remove this hypothesis).

The main result and its proof are inspired by the proof of the Gopakumar–Vafa integrality
conjecture by Ionel–Parker [13]. They showed that Gromov–Witten invariants of almost com-
plex threefolds are integer linear combinations of Gromov–Witten invariants of local curves,
which were known to satisfy Gopakumar–Vafa integrality by work of Bryan–Pandharipande
[6]. Their argument may be interpreted as a proof that a certain Grothendieck group of
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1-cycles in almost complex threefolds with nef anti-canonical bundle is freely generated by
local curves (after completing by genus, later removed by Doan–Ionel–Walpuski [9]). The
setting of complex threefolds is more rigid, requiring a different Grothendieck group and a
more delicate argument.

The main result opens a path to a number of conjectures relating different enumera-
tive invariants of complex threefolds (under the assumption of nef anti-canonical bundle).
We explain here how to deduce from it the conjecture of Maulik–Nekrasov–Okounkov–
Pandharipande [22, 23] relating Gromov–Witten and Donaldson–Thomas/Pandharipande–
Thomas invariants, in the case of primary insertions, for complex threefolds with nef anti-
canonical bundle (given the calculations for local curves due to Bryan–Pandharipande [6]
and Okounkov–Pandharipande [28]). The MNOP conjecture is interesting because there
is no known or even proposed geometric relation between the moduli spaces giving rise to
Gromov–Witten invariants and Donaldson–Thomas/Pandharipande–Thomas invariants. Of
course, this is unlikely to be the only application. For example, the main result would apply
to the invariants of Maulik–Toda [26] if they are shown to be (higher) deformation invariant.
For another, see the work of Jockers–Mayr [14] and Chou–Lee [7] on quantum K-theory
invariants.

1.1 Universal enumerative invariant

There is a (very tautological) universal curve enumeration invariant of complex threefolds.
This invariant takes values in the group H∗c (Z/Cpx3) (defined in §3.1), which is the homology
of the double complex

C∗(Cpx3, C
∗
c (Z)) =

⊕
X→∆n

C∗c (Z(X/∆n)) (1.1)

in which the direct sum is over all (not necessarily proper) families X → ∆n of complex
threefolds over a simplex, and Z(X/∆n) denotes the space of compact (complex) 1-cycles in
the fibers of X → ∆n (a 1-cycle z ∈ Z(X) is a formal non-negative integer linear combination∑

imiCi of compact irreducible 1-dimensional subvarieties). IfX is a projective threefold and
β ∈ H2(X) is a homology class, then the ‘universal count’ of curves in X in homology class
β in H∗c (Z/Cpx3) is the class of the characteristic function (1β : Z(X) → Z) ∈ H0

c (Z(X))
of the locus of 1-cycles with total homology class β (which is compact since X is projective).
We call this group H∗c (Z/Cpx3) the Grothendieck group of 1-cycles in complex threefolds.
The chain-level dual C∗(Cpx3, C

rel∞
∗ (Z)) of the Grothendieck group of 1-cycles classifies

coherent ‘virtual fundamental’ cycles on each relative cycle space Z(X/∆n). A class in its
homology Hrel∞

∗ (Z/Cpx3) is thus a ‘curve enumeration theory of complex threefolds which is
deformation invariant up to coherent homotopy’. Such a class determines a homomorphism
out of the Grothendieck group. The group H∗c (Z/Cpx3) has a rich algebraic structure (see
§3.2): it is a bi-algebra (product corresponds to disjoint union of cycles, while coproduct
corresponds to sum of cycles). It also has bi-algebra endomorphisms corresponding to the
‘multiply by d’ operation on cycles.

This sort of ‘universal’ discussion is only useful to the extent that one can make nontrivial
computations. Our main result is to compute (in virtual dimension ≤ 0) the Grothendieck
group H∗c (ZsF/Cpx3) whose definition is identical to H∗c (Z/Cpx3) except that it considers
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just the open ‘semi-Fano’ locus ZsF ⊆ Z of 1-cycles z =
∑

imiCi all of whose components
Ci ⊆ X pair non-negatively with c1(TX).

Theorem 1.1. In non-positive virtual dimension, the Grothendieck group H∗c (ZsF/Cpx3) is
freely generated as a ring by the equivariant local curve elements xg,1,k with k ≥ 0 and xg,m,0.

We explain the statement. There is a natural bi-gradingH∗c (Z/Cpx3) =
⊕

i,kH
i
c(Z(−, k)/Cpx3)

by cohomological degree i and chern number k (pairing with c1(TX)), and the ‘total homo-
logical degree’ (or ‘virtual dimension’) is 2k− i. The equivariant local curve elements xg,m,k
(defined in §4.3) have virtual dimension zero and correspond to the C×-equivariant enumer-
ative theory of degree m cycles on the total space of a rank two vector bundle E → C
with c1(E) = k over a curve C of genus g. For example, Theorem 1.1 says that for
any projective Calabi–Yau threefold X and any homology class β ∈ H2(X), the element
(X, β) ∈ H0

c (ZsF/Cpx3) is equal to a unique polynomial in the variables xg,m,0.

Remark 1.2. The Grothendieck group of 1-cycles in complex threefolds H∗c (Z/Cpx3) is the
homology of a naturally defined spectrum (see Remark 3.2). This spectrum thus has E-
homology groups E∗c (Z/Cpx3) for any spectrum E. Recall that a spectrum E is called
connective when E(pt) (homology or cohomology, they are the same) is supported in non-
negative homological degree (that is πiE = 0 for i < 0). It follows from Theorem 1.1 and
the Atiyah–Hirzebruch spectral sequence that for any connective spectrum E, the group
E∗c (ZsF/Cpx3) in non-positive virtual dimension is freely generated as an E0(pt)-algebra by
the same equivariant local curve elements.

Theorem 1.1 is fundamentally a transversality statement, so the semi-Fano hypothesis
appears necessary. We see no reason to expect that the group H∗c (Z/Cpx3) is understand-
able. An analogue of Theorem 1.1 in almost complex geometry was proven by Ionel–Parker
[13]. They showed, in particular, that H0(ACpx3, H

0
c (ZCY)) (one part of the E2 term of the

spectral sequence associated to the double complex whose total homology is H∗c (Z/ACpx3))
is generated by local curve elements xg,m,0 (after completing by genus, later removed by
Doan–Ionel–Walpuski [9]). Due to the rigidy of complex structures, we must work with
the entire complex (1.1). The reason for this is that, while generic almost complex struc-
tures achieve transversality for all simple maps from curves, generic complex structures only
achieve transversality for simple maps ‘locally’ on the space of cycles. Generic transversality
for almost complex structures goes back to Gromov [12], while we are not aware of previous
use of generic transversality in the complex setting. While one could probably prove Theo-
rem 1.1 using a direct geometric argument, we actually only prove surjectivity geometrically
and we deduce injectivity using the bi-algebra structure.

Theorem 1.1 is not the final word on the structure of enumerative invariants of com-
plex threefolds with nef anti-canonical bundle. Specifically, one could ask for the product
expansion of Ionel–Parker [13] in the complex setting (perhaps deducible from their result
by comparing H∗c (ZsF/Cpx3) and H∗c (ZsF/ACpx3) via Theorem 1.1 and an almost complex
analogue thereof), namely the following.

Conjecture 1.3. For any complex projective Calabi–Yau threefold X, the element (X, t[·]) ∈
H0
c (ZsF/Cpx3)[[tH2(X)]] is an infinite product

∏
β

∏
g≥0 fg(t

β)eβ,g(X) for unique integer invari-
ants eβ,g(X) ∈ Z, where fg(t) =

∑
m≥0 xg,m,0t

m.
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In the absence of the semi-Fano hypothesis, calculating the Grothendieck groupH∗c (Z/Cpx3)
appears intractable. Nevertheless, we may venture the following conjecture, which might at
least allow almost complex methods to be used to study invariants of complex threefolds
(whose anti-canonical bundle need not be nef).

Conjecture 1.4. The map H∗c (Z/Cpx3)→ H∗c (Z/ACpx3) is an isomorphism.

We expect the same to be true for ZsF in place of Z, but it is less interesting given
Theorem 1.1, which presumably remains valid for H∗c (ZsF/ACpx3) with a similar (probably
easier) proof.

The most interesting question is probably whether there exists a modification of the group
H∗c (Z/Cpx3) for which an analogue of Theorem 1.1 holds and which can be used to study
enumerative invariants of general (not necessarily having nef anti-canonical bundle) complex
threefolds. It would also be interesting to compute the class in H∗c (ZsF/Cpx3) of specific
complex threefolds (perhaps by lifting known computations of Gromov–Witten invariants).

1.2 MNOP correspondence

Theorem 1.1 implies that a curve enumeration invariant of complex threefolds with nef anti-
canonical bundle is determined uniquely by its values on local curves. We now explain
how this may be used to verify a conjecture of Maulik–Okounkov–Nekrasov–Pandharipande
[22, 23] for such threefolds.

Maulik–Nekrasov–Okounkov–Pandharipande [22, 23] originally conjectured an equiva-
lence between Gromov–Witten and Donaldson–Thomas invariants of projective threefolds. A
similar conjecture relating Gromov–Witten and Pandharipande–Thomas invariants was pro-
posed by Pandharipande–Thomas [30]. Work of Bridgeland [5] relates Donaldson–Thomas
and Pandharipande–Thomas invariants, implying the two conjectures are equivalent. We will
address the latter conjecture here (Pandharipande–Thomas invariants are easier to work with
than Donaldson–Thomas invariants in many respects, and our work here is no exception).

We briefly recall the definition of Gromov–Witten and Pandharipande–Thomas invari-
ants, leaving a more detailed discussion to §3.4. Given a complex projective threefold X,
a homology class β ∈ H2(X), and cohomology classes γ1, . . . , γr ∈ H∗(X), these invariants
have the form

GW(X, β; γ1, . . . , γr) =

∫
[M′(X,β)]vir

r∏
i=1

π! ev∗ γi · u−χ ∈ Q((u)), (1.2)

PT(X, β; γ1, . . . , γr) =

∫
[P (X,β)]vir

r∏
i=1

π!(ch2(F) ∪ π∗Xγi) · qn ∈ Z((q)). (1.3)

For Gromov–Witten invariants,M′(X, β) is the moduli space of stable maps from (not neces-
sarily connected) nodal curves to X, in homology class β, all of whose connected components
are non-constant, and χ denotes the arithmetic Euler characteristic of the domain (locally
constant, proper sublevel sets). For Pandharipande–Thomas invariants, P (X, β) denotes
the moduli space of stable pairs in homology class β, and n denotes the holomorphic Euler
characteristic (locally constant, proper sublevel sets). The integrands are given by push/pull
via the universal families over these moduli spaces.
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Let us say that a pair of formal Laurent series GW ∈ Q((u)) and PT ∈ Z((q)) satisfies
the MNOP correspondence when PT is a rational function of q whose evaluation at q = −eiu
equals GW.

Conjecture 1.5 ([22, 23, 30]). For any projective threefold X, any homology class β ∈
H2(X), and any tuple of cohomology classes γ1, . . . , γr ∈ H∗(X), the invariants

(−iu)〈c1(TX),β〉GW(X, β; γ1, . . . , γr) and (−q)−〈c1(TX),β〉/2PT(X, β; γ1, . . . , γr) (1.4)

satisfy the MNOP correspondence.

Conjecture 1.5 is known in many cases, essentially by computing both sides of the equality.
The case of (equivariant invariants of) local curves holds by deep calculations of Bryan–
Pandharipande [6] (of Gromov–Witten invariants) and Okounkov–Pandharipande [28] (of
Donaldson–Thomas invariants and, by [25, Section 5], Pandharipande–Thomas invariants).
Work of Maulik–Oblomkov–Okounkov–Pandharipande [24] established the conjecture for
toric varieties by direct computation of both sides. Work of Pandharipande–Pixton [29]
showed the result for many threefolds (e.g. complete intersections in products of projective
spaces) by degeneration to the toric case.

Combining Theorem 1.1 with the known case of equivariant local curves [6, 28], we may
conclude the following.

Theorem 1.6. Conjecture 1.5 holds when the anti-canonical bundle of X is nef (that is,
when c1(TX) pairs non-negatively with every curve C ⊆ X).

Indeed, Gromov–Witten invariants and Pandharipande–Thomas invariants define ring
homomorphisms

GW : H∗c (Z/Cpx3)→ Q((u)), (1.5)

PT : H∗c (Z/Cpx3)→ Z((q)), (1.6)

and Conjecture 1.5 amounts to the assertion that the homomorphisms (−iu)kGW and
(−q)−k/2PT satisfy the MNOP correspondence when evaluated on the element

(X, β; γ1, . . . , γr) ∈ H(|γ1|−2)+···+(|γr|−2)
c (Z(−, 〈c1(TX), β〉)/Cpx3). (1.7)

represented by the product of 1β ∈ H0
c (Z(X)) and the classes π!i

∗γi ∈ H |γi|−2(Z(X)). The
results of [6, 28] imply that (−iu)kGW and (−q)−k/2PT satisfy the MNOP correspondence
when evaluated on equivariant local curve elements. By Theorem 1.1, this implies they
satisfy the MNOP correspondence on all of H∗c (ZsF/Cpx3). This approach to Conjecture 1.5
is similar in spirit to [29] in that in essence we are deforming to a simpler situation where
the result is already known (and the strength of Theorem 1.1 allows us to obtain a stronger
result from a weaker input).

The Grothendieck group formalism naturally encodes enumerative invariants of families
of threefolds. The MNOP conjecture hence holds for Gromov–Witten and Pandharipande–
Thomas invariants of families of threefolds with nef anti-canonical bundle. Note that equiv-
ariant invariants are a special case of family invariants (namely of the Borel construc-
tion). By taking arbitrary classes in H∗(Z(X)) (instead of just primary cohomology in-
sertions from X), we can also conclude that the invariants GW ∈ H∗(Z(X, β);Q)((u))
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and PT ∈ H∗(Z(X, β);Q)((q)) satisfy the MNOP correspondence for projective three-
folds X with nef anti-canonical bundle (where rationality of PT means that it lies in
H∗(Z(X, β);Q)[q] after multiplication by some element of Q[q]).

The case of descendent invariants is conspicuously missing from this discussion. It would
suffice to write down natural classes on Z(X) whose pullback toM′ and P are the respective
descendent classes, but it is not clear this is possible.
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2 Spaces of 1-cycles

2.1 Background

A (compact holomorphic) 1-cycle z on a complex analytic manifold X is a formal non-
negative integer linear combination of irreducible compact 1-dimensional subvarieties C ⊆ X.
The set of such 1-cycles is denoted Z(X) (more systematically, this would be denoted Z1(X),
but we will not consider r-cycles Zr(X) for any r other than 1 in this text, so we drop the
subscript from the notation). Such a cycle will usually be written as a finite sum z =

∑
imiCi

where it is implicitly assumed that the Ci ⊆ X are distinct irreducible curves and all mi > 0.
The (total) chern number of a cycle z =

∑
imiCi is the pairing 〈c1(TX), z〉 =

∑
imi〈c1(TX), Ci〉.

A cycle z =
∑

imiCi is called semi-Fano when the pairing of every Ci with c1(TX) is non-
negative (it bears emphasis that this is stronger than having non-negative chern number).
We denote by Z(X, k) ⊆ Z(X) the set of cycles with chern number k, and we denote by
Z(X)sF ⊆ Z(X) the set of semi-Fano cycles. We also denote by Z(X, β) ⊆ Z(X) the set of
cycles in homology class β ∈ H2(X) (which, we should warn, somewhat conflicts with the
notation Z(X, k) for cycles of chern number k).

The set Z(X) has the structure of a separated reduced complex analytic space due to
work of Barlet [2]. By definition, an analytic map A → Z(X) from a reduced complex
analytic space A is a family of 1-cycles {za ∈ Z(X)}a∈A which satisfies a certain analyticity
condition [2, Chapitre 1, §1, Définition fondamentale]. If the family {za ∈ Z(X)}a∈A is
analytic, then the union

⋃
a∈A za ⊆ X × A is a closed analytic subset, proper over A, with

fibers of pure dimension 1 and multiplicities which are constant on its irreducible components
[2, Chapitre 1, §2, Théorème 1] (and the converse holds if A is normal). In particular, there
is a ‘universal family’ U(X) ⊆ X ×Z(X).

The homology class function Z(X) → H2(X) is locally constant; that is, the locus
Z(X, β) ⊆ Z(X) of cycles in homology class β ∈ H2(X) is open. In partcular, the subset
Z(X, k) ⊆ Z(X) of cycles with chern number k is open. The subset Z(X)sF ⊆ Z(X) is also
open.
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This discussion generalizes readily to the relative setting. Given a holomorphic submer-
sion X → B, we define Z(X/B) =

⋃
bZ(Xb) to be the set of cycles in fibers of X → B. It

is an open subset of Z(X), so the basic properties of Z(X) pass easily to Z(X/B).

2.2 Semi-charts

Around each point z =
∑

imiCi ∈ Z(X) is a semi-chart defined as follows. Let C̃i → Ci
denote the normalization of Ci, so C̃i is a compact smooth curve. We consider all local
deformations of C̃ =

⊔
i C̃i → X (including deformations of the complex structure on the

domain), and we associate to such a nearby map C̃ ′ =
⊔
i C̃
′
i → X the cycle

∑
imiC

′
i. We

denote by (Sz, z)→ (Z(X), z) (a germ) the semi-chart around z. The semi-chart Sz → Z(X)
need not be a (germ near z of) open embedding, since it does not take into account the
possibility of the topology changing (as in y2 = x(x− t)(x+ t) near t = 0) or of curves with
multiplicities breaking apart (as in y2 = tx near t = 0). The locus of points z for which the
semi-chart around z is an open embedding is evidently open.

Lemma 2.1. The set of points z ∈ Z(X) whose semi-chart is an open embedding is dense.

Proof. Begin with an arbitrary cycle z =
∑

imiCi ∈ Z(X), and let us produce cycles
arbitrarily close to z whose associated semi-charts are open embeddings.

A nearby cycle z′ determines a partition µi of each mi. Partially order the set Π(m)
of partitions of m by refinement: declare µ ≥ µ′ when µ′ is obtained from µ by replacing
each of its constituents by a partition thereof. The map from a neighborhood of z ∈ Z(X)
to
∏

i Π(mi) has local minima arbitrarily close to z since
∏

i Π(mi) satisfies the descending
chain condition (since it is finite). We may thus assume wlog that z is itself a local minimum
of this map. This means that if we write z =

∑
m≥1mCm (Cm not necessarily irreducible)

then every nearby cycle z′ has the form
∑

m≥1mC
′
m for C ′m nearby Cm. In other words,

there is a factorization (Z(X), z) =
∏

m≥1(Z(X), Cm) of germs. This factorization reduces
us to the case z = C for some not necessarily irreducible curve C.

The Euler characteristic function χ : Z(X)→ Z near z = C is bounded below since the
universal family U(X) ⊆ X × Z(X) is finite type. We may thus assume wlog that z is a
local minimum of χ. Let us argue that this implies that the semi-chart at z surjects onto
a neighborhood of z (hence is an open embedding). A nearby cycle z′ is simply a curve C ′

nearby C. Near smooth points of C, the curve C ′ is a nearby smooth curve, hence may be
(non-canonically) identified with C (as smooth manifolds) with nearby complex structure.
Near a singular point of C (necessarily isolated), choose a ball B around it so that C̃ ∩ B
is a disjoint union of disks. Now a disjoint union of disks is the unique filling of a disjoint
union of circles of maximal Euler characteristic, so since χ(C̃ ′) = χ(C̃), we conclude that
C̃ ′ ∩ B is also a disjoint union of disks. This shows that C̃ ′ → X is a small perturbation of
C̃ → X, as desired.

3 Grothendieck groups of 1-cycles

3.1 Definition

We now define the Grothendieck groups of 1-cycles which we will study.
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We will consider families of complex threefolds over (real) simplices ∆n. Such a family
is, by definition, a submersion of complex manifolds with three-dimensional fibers over a(n
unspecified) open neighborhood of ∆n ⊆ Rn ⊆ Cn, and an isomorphism of families is a germ
of isomorphism defined in a neighborhood of ∆n inside Cn. In particular, if X → B is a
family of complex threefolds over a smooth analytic base B and ∆n → B is any real analytic
map, then the pullback X ×B ∆n → ∆n is a family in the above sense, since ∆n → B, being
real analytic, extends uniquely to a germ near ∆n ⊆ Cn.

Definition 3.1. The group H∗c (Z/Cpx3) is the homology of (the total complex associated
to) the double complex C∗(Cpx3, C

∗
c (Z)), illustrated below.

...
...

...

· · ·
⊕

X→∆2

C2
c (Z(X/∆2))

⊕
X→∆1

C2
c (Z(X/∆1))

⊕
X

C2
c (Z(X))

· · ·
⊕

X→∆2

C1
c (Z(X/∆2))

⊕
X→∆1

C1
c (Z(X/∆1))

⊕
X

C1
c (Z(X))

· · ·
⊕

X→∆2

C0
c (Z(X/∆2))

⊕
X→∆1

C0
c (Z(X/∆1))

⊕
X

C0
c (Z(X))

(3.1)

In this case, ‘total complex’ means we take the direct sum over the anti-diagonals. More
precisely, we are considering here the complex C∗(Cpx3,•, C

∗
c (Z)), where Cpx3,• denotes the

simplicial groupoid (i.e. the simplicial object in the 2-category of groupoids) which assigns to
each [n] ∈∆ the groupoid of all families of complex threefolds X → ∆n (and to a morphism
of simplices the corresponding pullback functor). For more details on this notion, see §B.

The chain-level dual of the Grothendieck group of 1-cycles is C∗(Cpx3, C
rel∞
∗ (Z)), namely

the total complex (in this case the product along the anti-diagonals) of the following double
complex.

...
...

...

· · ·
∏

X→∆2

Crel∞
2 (Z(X/∆2))

∏
X→∆1

Crel∞
2 (Z(X/∆1))

∏
X

Crel∞
2 (Z(X))

· · ·
∏

X→∆2

Crel∞
1 (Z(X/∆2))

∏
X→∆1

Crel∞
1 (Z(X/∆1))

∏
X

Crel∞
1 (Z(X))

· · ·
∏

X→∆2

Crel∞
0 (Z(X/∆2))

∏
X→∆1

Crel∞
0 (Z(X/∆1))

∏
X

Crel∞
0 (Z(X))

(3.2)

A cycle in this complex may reasonably be called a ‘coherent collection of cycles on all
1-cycle spaces of all complex threefolds’. A class in its homology Hrel∞

∗ (Z/Cpx3) will be
called a curve enumeration theory (for complex threefolds). Such a curve enumeration theory
determines, via the tautological pairing, a homomorphism out of the Grothendieck group
H∗c (Z/Cpx3).
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There is a bigrading

H∗c (Z/Cpx3) =
⊕
i,k

H i
c(Z(−, k)/Cpx3) (3.3)

by cohomological degree i (indexing the anti-diagonals of the double complex) and chern
number k of the cycles. The ‘total homological degree’ is 2k − i (that is, k is ‘half a
homological grading’).

Remark 3.2. The group H∗c (Z/Cpx3) is the homology of the spectrum

colim
(
· · · →→→→

∐
X→∆2

D(Z(X/∆2)/∞)→→→
∐

X→∆1

D(Z(X/∆1)/∞)→→
∐
X

D(Z(X)/∞)
)

(3.4)

where by D we mean Spanier–Whitehead dual (more precisely, A/∞ denotes the inverse
system {A/(A\K)}K⊆A compact, and by D(A/∞) we mean the colimit of the directed system
obtained by applying the contravariant Spanier–Whitehead duality functor D).

The definition of the Grothendieck group H∗c (Z/Cpx3) applies without change to the
open set ZsF ⊆ Z in place of Z, producing a group H∗c (ZsF/Cpx3). There is a tautological
pushforward map H∗c (ZsF/Cpx3)→ H∗c (Z/Cpx3), using the fact that C∗c is functorial under
open embeddings. Let us briefly recall one specific model of C∗c with the functoriality which
we will require.

Definition 3.3 (Functoriality of compactly supported cochains C∗c ). We fix here a model of
compactly supported cochains which is functorial under open embeddings and proper maps.
The singular cochains functor C∗sing is a functor on topological spaces, and we consider

its sheafification C#,∗
sing. Concretely, an element of C#,k

sing(X) is a k-cochain on X modulo
equivalence: two k-cochains on X are equivalent when there exists an open covering X =⋃
i Ui such that their restrictions to every Ui coincide. We take C∗c (X) ⊆ C#,∗

sing(X) to be
the subcomplex of compactly supported sections (in the sheaf theoretic sense, namely the
support of γ ∈ C#,∗

sing(X) is the complement of the largest open set U ⊆ X for which γ

maps to zero in C#,∗
sing(U), and a largest such U exists since C#,∗ is a sheaf). Now C∗c is a

contravariant functor on the category whose objects are Hausdorff topological spaces and
whose morphisms X 99K Y are correspondences X ←↩ U → Y where U ↪→ X is an open
embedding and U → Y is proper (composition of correspondences is via fiber product).

Given a simplicial set B and a family of threefolds X → B (equivalently, a map B →
Cpx3,•), there is a tautological map (at least on homology)

C∗(B,C
∗
c (Z(X/−)))→ C∗(Cpx3, C

∗
c (Z)), (3.5)

and every element of H∗c (Z/Cpx3) is in the image of this map for some family X → B over
a finite simplicial set B.

The complex C∗(B,C
∗
c (Z(X/−))) may be described more geometrically as follows. Form

Z(X/B) as the evident gluing of Z(Xσ/σ) over σ ⊆ B. The dualizing complex ωB is given
by ωB =

⊕
σ⊆B Zσ[dimσ], which is the chain group C∗(B;Z−) of B with respect to the

coefficient system σ 7→ Zσ valued in sheaves on B. Pulling back to Z(X/B), we have

π∗ωB = C∗(B;ZZ(X/−)) =
⊕
σ⊆B

ZZ(Xσ/σ)[dimσ], (3.6)
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and taking compactly supported cohomology of this sheaf on B, we arrive at an identification

C∗c (Z(X/B), π∗ωB) = C∗(B,C
∗
c (Z(X/−))). (3.7)

In other words, the complex C∗(B,C
∗
c (Z(X/−))) calculates the group H∗c (Z(X/B)/B) from

Remark 3.4 (at least for finite simplicial sets B where there are no potential unboundedness
issues for ωB). This geometric description makes it clear that the cell decomposition of B is
irrelevant; that is, there is a canonical map

H∗c (Z(X/B)/B) = H∗c (Z(X/B), π∗ωB)→ H∗c (Z/Cpx3) (3.8)

independent of the choice of triangulation ofB. Thus we haveH∗c (Z/Cpx3) = H∗c (Z(Cpx3), π∗ωCpx3
).

In particular, we could consider a single real analytic manifold B as the base. A family
of complex threefolds X → B then determines a map

H∗+dimB
c (Z(X/B); oB)→ H∗c (Z/Cpx3) (3.9)

obtained by triangulating B and summing over all top-dimensional simplices (here oB denotes
the orientation local system of B, placed in degree zero). If we consider the restriction
X ′ → B′ of this family to a submanifold i : B′ ⊆ B, then we have a commuting diagram

H∗+dimB′
c (Z(X ′/B′); oB′) H∗+dimB

c (Z(X/B); oB)

H∗c (Z/Cpx3)

i!

(3.10)

where horizontal map i! is the ‘wrong way’ map (defined, for example, by triangulating B
so that B′ is a subcomplex).

Remark 3.4. Fix a map of spaces π : W → B, and let a : B → ∗. We may consider the groups
H∗c (W/B) = a!π!π

∗a!Z (‘homology of B with coefficients in fiberwise compactly supported
cochains of W → B’) and Hrel∞

∗ (W/B) = a∗π∗π
!a∗Z (‘cohomology of B with coefficients in

fiberwise chains rel infinity of W → B’). These groups are (chain-level) dual since duality
exchanges ∗ and !. A class in Hrel∞

∗ (W/B) is roughly analogous to what is often called a
‘bivariant class’ for the morphism W → B.

Although there is no topological space Cpx3 parameterizing all complex threefolds, this
explains the notation H∗c (Z/Cpx3) and Hrel∞

∗ (Z/Cpx3). The complex (3.2) may be familiar
to those who have tried to write down explicitly the exceptional pullback functor π!.

3.2 Algebraic structure

We now define a product and coproduct on the Grothendieck group H∗c (Z/Cpx3), forming
the structure of a commutative and co-commutative bi-algebra. The product corresponds
to ‘disjoint union of cycles’, while the coproduct corresponds to ‘addition of cycles’. The
Grothendieck group also has ‘division by d’ operations for integers d ≥ 1.

To begin, let us understand the tensor product C∗(Cpx3,•, C
∗
c (Z))⊗2. The product

Cpx3,• × Cpx3,• carries two families of threefolds, obtained by pulling back from the two
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factors, and we consider their disjoint union. The relative cycle space of the disjoint union
(X × ∆m) t (∆n × Y ) → ∆n × ∆m is the product of relative cycle spaces Z(X/∆n) ×
Z(Y/∆m)→ ∆n ×∆m. Taking compactly supported cochains on the relative cycle space of
the disjoint union family defines a coefficient system C∗c (Z) over Cpx3,• × Cpx3,•.

Lemma 3.5. The tensor product C∗(Cpx3, C
∗
c (Z))⊗2 is canonically quasi-isomorphic to

C∗(Cpx3 × Cpx3, C
∗
c (Z)).

Proof. Recalling the discussion of products of simplicial sets and coefficient systems in
§B, the tensor product C∗(Cpx3, C

∗
c (Z))⊗2 is canonically quasi-isomorphic to C∗(Cpx3,• ×

Cpx3,•, C
∗
c (Z)(1)⊗C∗c (Z)(2)), where C∗c (Z)(i) denotes the coefficient system on Cpx3,•×Cpx3,•

given by pulling back the coefficient system C∗c (Z) on Cpx3,• under the projection to the
ith factor. There is a natural ‘cup product and restriction’ map of coefficient systems
C∗c (Z)(1)⊗C∗c (Z)(2) → C∗c (Z) over Cpx3,•×Cpx3,• which is not a quasi-isomorphism. How-
ever, this map does induce an isomorphism on the cohomology of any product of simplices
∆n×∆m ⊆ Cpx3,•×Cpx3,• rel boundary, and this implies (filtration and long exact sequence
argument) that the induced map on cohomology of Cpx3,• × Cpx3,• is also an isomorphism.

Alternatively (and equivalently), viewing C∗(Cpx3, C
∗
c (Z)) as C∗c (Z(Cpx3), ωCpx3

), there
is a Künneth quasi-isomorphism between C∗c (Z(Cpx3), ωCpx3

)⊗2 and

C∗c (Z(Cpx3)×Z(Cpx3), ωCpx3
⊗ ωCpx3

) = C∗c (Z(Cpx3 × Cpx3), ωCpx3×Cpx3
), (3.11)

which is in turn quasi-isomorphic to C∗(Cpx3 × Cpx3, C
∗
c (Z)).

Definition 3.6 (Product on H∗c (Z/Cpx3)). The disjoint union family over Cpx3,• × Cpx3,•
is classifed by a map to Cpx3,•, and the coefficient system C∗c (Z) over Cpx3,•×Cpx3,• is the
pullback of the coefficient system C∗c (Z) over Cpx3,•, so this gives a map

C∗(Cpx3 × Cpx3, C
∗
c (Z))→ C∗(Cpx3, C

∗
c (Z)). (3.12)

Appealing to Lemma 3.5, this defines a map

C∗(Cpx3, C
∗
c (Z))⊗2 → C∗(Cpx3, C

∗
c (Z)), (3.13)

which defines the product on H∗c (Z/Cpx3) upon taking cohomology.

A diagram chase shows that the product is associative and unital (the unit η : Z →
H∗c (Z/Cpx3) is the constant function 1 on Z(∅), which is indeed a cycle in C0(Cpx3, C

0
c (Z))).

The product is also (graded) commutative: while cup product ∪ : C∗(A)⊗2 → C∗(A) is not
commutative on the cochain level, it is commutative up to Steenrod’s ∪1 operation which is
a chain null-homotopy of α⊗ β 7→ α ∪ β − (−1)|α||β|β ∪ α [40, Theorem 5.1].

Definition 3.7 (Coproduct on H∗c (Z/Cpx3)/tors). The addition map Σ : Z(X/∆n) ×∆n

Z(X/∆n) → Z(X/∆n) is a map of (space valued) coefficient systems ∆∗(Z) → Z where
∆ : Cpx3,• → Cpx3,•×Cpx3,• denotes the diagonal embedding. Applying C∗c thus determines
a map of coefficient systems C∗c (Z) → ∆∗C∗c (Z) on Cpx3,• since Σ is proper, hence a map
of complexes

C∗(Cpx3,•, C
∗
c (Z))→ C∗(Cpx3,• × Cpx3,•, C

∗
c (Z)). (3.14)
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Appealing to Lemma 3.5, this defines a map

C∗(Cpx3, C
∗
c (Z))→ C∗(Cpx3, C

∗
c (Z))⊗2, (3.15)

which defines the coproduct on H∗c (Z/Cpx3)/tors upon taking cohomology (note that ho-
mology does not commute with tensor product, but does modulo torsion).

A diagram chase shows that the coproduct is coassociative and counital (the counit
ε : H∗c (Z/Cpx3) → Z acts on C∗(Cpx3,•, C

∗
c (Z)) by summing the ‘evaluate at the empty

cycle’ map over all vertices). The coproduct is trivially cocommutative. A diagram chase
shows that H∗c (Z/Cpx3)/tors is a bi-algebra, recalling that a bi-algebra (R, η, µ, ε,∆) means
that:

• (R, η, µ) is an algebra (satisfies unitality and associativity).
• (R, ε,∆) is a co-algebra (satisfies co-unitality and co-associativity).
• The maps η and ∆ are algebra maps (equivalently, the maps ε and µ are co-algebra

maps).

Definition 3.8 (Division). For any d ≥ 1, the ‘multiply by d map’ Z(X/B) → Z(X/B)
determines, via pullback, a map of coefficient systems C∗c (Z) → C∗c (Z) over Cpx3,•. We
denote by ρd the induced map on the chain group C∗(Cpx3,•, C

∗
c (Z)) and on its homology

H∗c (Z/Cpx3).

The maps ρd are bi-algebra morphisms by inspection.
By dualizing the above constructions, we obtain dual operations on Hrel∞

∗ (Z/Cpx3).
The homomorphism out of H∗c (Z/Cpx3) associated to a curve enumeration theory F ∈
Hrel∞
∗ (Z/Cpx3) is a ring homomorphism if F solves the equation ∆(F ) = F ⊗ F (modulo

torsion). We will call such a curve enumeration theory multiplicative.
All these structures exist, with the same definition, on H∗c (ZsF/Cpx3) (and dually on

Hrel∞
∗ (ZsF/Cpx3)) as well. The tautological map H∗c (ZsF/Cpx3)→ H∗c (Z/Cpx3) is a map of

bi-algebras and commutes with ρd. To check compatibility with the coproduct, we should
note a sum of cycles z + z′ is semi-Fano iff both z and z′ are semi-Fano.

3.3 Virtual fundamental cycles

Let us now recall the practical origin of classes in Hrel∞
∗ (Z/Cpx3) aka curve enumeration

theories.
All known curve enumeration theories arise via proper pushforward Hrel∞

∗ (E/Cpx3) →
Hrel∞
∗ (Z/Cpx3) for some E associating to each family of threefolds X → B over a complex

analytic base B an analytic space (or Deligne–Mumford stack) E(X/B) → B, compatible
with pullback, with a natural transformation E → Z which is proper (hence has pushforward
on homology rel infinity). Fix for now any such E .

If E(X/B) → B is smooth (i.e. submersive) for every X → B, then its relative (i.e.
vertical) fundamental class in Hrel∞

∗ (E/Cpx3) gives a curve enumeration theory. It is almost
never the case that E(X/B) → B is smooth, rather it carries a weaker structure called
a perfect obstruction theory in the sense of Behrend–Fantechi [3] (reviewed in §A). A per-
fect obstruction theory on E(X/B) → B induces a relative ‘virtual’ fundamental class in
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Hrel∞
∗ (E(X/B)/B) (see Definition A.15). To go from a (functorial) perfect obstruction the-

ory on E(X/B)→ B for complex analytic bases B to a relative virtual fundamental class in
Hrel∞
∗ (E/Cpx3) requires some discussion since the base Cpx3,• a simplicial set not a complex

analytic space. In essence, the solution is simply to complexify the base.
Given a finite semi-simplicial set B, we may glue together copies of the complexifications

∆n ⊆ Rn ⊆ Cn = ∆n
C, to obtain the ‘complexified geometric realization’ BC, which is a

complex analytic space. The hypothesis that B is a finite semi-simplicial set guarantees
that this gluing exists as a complex analytic space. A family of complex threefolds X → B
is, essentially by definition, the data of a submersion XC → BC over an open neighborhood
of the (ordinary) geometric realization of B inside BC. Now a perfect obstruction theory on
E(XC/BC) → BC determines a class in Hrel∞

∗ (E(XC/BC)/BC) hence, via pullback, a class
in Hrel∞

∗ (E(X/B)/B). Since the given relative perfect obstruction theory on E is assumed
compatible with pullback, it follows that for any map of finite semi-simplicial sets B′ → B
and X ′ = X ×B B′, the pullback map Hrel∞

∗ (E(X/B)/B)→ Hrel∞
∗ (E(X ′/B′)/B′) sends the

virtual fundamental class to the virtual fundamental class (since virtual fundamental classes
are compatible with pullback, see Lemma A.16). This defines for any (possibly infinite)
semi-simplicial set B, a virtual fundamental class in Hrel∞

∗ (E(X/B)/B)naive for any family
of threefolds X → B (where the subscript naive indicates the inverse limit over finite semi-
simplicial subsets of the base B, which differs from the true Hrel∞

∗ by a lim←−
1-term (B.3)). To

define the virtual fundamental class in Hrel∞
∗ (E(X/B)/B)naive when the base B is a simplicial

set (not a semi-simplicial set), we appeal to the isomorphism between this group and that
for the pullback of B along ∆inj → ∆ (which holds basically because the ‘fat’ realization
and the ‘reduced’ realization have the same (co)homology, see §B). Note that the virtual
fundamental class in Hrel∞

∗ (E(X/B)/B)naive is independent of the choice of triangulation of
the base (consider a concordance of triangulations).

We have thus defined, for any family of threefolds X → B over a simplicial set B a ‘virtual
fundamental’ class in Hrel∞

∗ (E(X/B)/B)naive, compatible with pullback, given a functorial
relative perfect obstruction theory on E . In particular, this defines a virtual fundamental class
in Hrel∞

∗ (E/Cpx3)naive and thus a pushforward [E ]vir ∈ Hrel∞
∗ (Z/Cpx3)naive. While this is not,

strictly speaking, a curve enumeration theory in the sense of having a class inHrel∞
∗ (Z/Cpx3),

this is of little importance to our present work since pairing withH∗c (Z/Cpx3) factors through
Hrel∞
∗ (Z/Cpx3)→ Hrel∞

∗ (Z/Cpx3)naive.
Now suppose E is multiplicative in the sense that for a pair of families of threefolds

X → B ← X ′ over a complex analytic base B, there is a functorial isomorphism E(X t
X ′/B) = E(X/B) ×B E(X ′/B), compatible with perfect obstruction theories. It then fol-
lows from compatibility of virtual fundamental classes with (fiber) product (Lemmas A.16
and A.17) that ∆([E ]vir) = [E ]vir ⊗ [E ]vir for the coproduct ∆ : Hrel∞

∗ (Z/Cpx3)naive →
((Hrel∞

∗ (Z/Cpx3)/tors)⊗2)naive.
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3.4 Enumerative invariants

We now define the Gromov–Witten and Pandharipande–Thomas virtual fundamental classes
in Hrel∞

∗ (Z/Cpx3;Q)((u)) and Hrel∞
∗ (Z/Cpx3)((q)). We denote by

GW : H∗c (Z/Cpx3)→ Q((u)) (3.16)

PT : H∗c (Z/Cpx3)→ Z((q)) (3.17)

the resulting homomorphisms, which are in fact ring homomorphisms since these virtual
fundamental classes solve ∆(ξ) = ξ ⊗ ξ.

Gromov–Witten and Pandharipande–Thomas invariants are defined using moduli spaces
M′(X/B) and P (X/B) (respectively) over B associated to any family of threefolds X → B
over a complex analytic space B. The moduli spaceM′(X/B) is a Deligne–Mumford analytic
stack representing stable maps from compact (not necessarily connected) nodal curves to
fibers of X → B, all of whose connected components are non-constant. The analytic space
P (X/B) parameterizes stable pairs on fibers of X → B (a stable pair is a coherent sheaf F
of proper support of pure relative dimension one along with a section s whose cokernel has
relative dimension zero [30]). There are locally constant maps

χ :M′(X/B)→ Z (3.18)

n : P (X/B)→ Z (3.19)

given by domain arithmetic Euler characteristic and holomorphic Euler characteristic, re-
spectively.

Both M′(X/B) → B and P (X/B) → B carry a natural (relative) perfect obstruction
theory, compatible with pullback. As reviewed in §3.3, there are hence induced virtual
fundamental classes

[M′/Cpx3]vir =
∏

X→∆k

[M′(X/∆k)]vir ∈ Hrel∞
∗ (M′/Cpx3;Q), (3.20)

[P/Cpx3]vir =
∏

X→∆k

[P (X/∆k)]vir ∈ Hrel∞
∗ (P/Cpx3). (3.21)

Now the maps M′ → Z and P → Z are proper when restricted to the sets on which χ
and n are bounded above by a given N < ∞. Pushing forward u−χ · [M′/Cpx3]vir and
qn · [P/Cpx3]vir thus defines classes

GW ∈ Hrel∞
∗ (Z/Cpx3;Q)((u)), (3.22)

PT ∈ Hrel∞
∗ (Z/Cpx3)((q)), (3.23)

which have virtual dimension zero since the virtual fundamental classes of M′ and P lie
in relative virtual dimension 〈c1(TX/B), β〉. This defines the group homomorphisms (3.16)–
(3.17).

The moduli spaces M′ and P are ‘multiplicative’ in the sense that M′((X t Y )/B) =
M′(X/B)×BM′(Y/B) compatibly with perfect obstruction theories (and the same for P ).
As reviewed in §3.3, it follows that the induced virtual fundamental classes [M′]vir and [P ]vir
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are also multiplicative in the sense of satisfying ∆(ξ) = ξ⊗ξ, implying (3.16)–(3.17) are ring
homomorphisms.

Classical Gromov–Witten and Pandharipande–Thomas theory is interested in evaluating
GW and PT on elements of H∗c (Z/Cpx3) coming from projective threefolds. When X is
projective, the space of cycles Z(X, β) in homology class β is compact, hence its characteristic
function defines a class (X, β) ∈ H0

c (Z(−, 〈c1(TX), β〉)/Cpx3), which has virtual dimension
2〈c1(TX), β〉. Thus when 〈c1(TX), β〉 = 0, we may evaluate the homomorphisms GW and
PT on this element to obtain invariants

GW(X, β) =

∫
[M′(X,β)]vir

u−χ ∈ Q((u)), (3.24)

PT(X, β) =

∫
[P (X,β)]vir

qn ∈ Z((q)). (3.25)

More generally, given cohomology classes γ1, . . . , γr ∈ H∗(X) (called ‘insertions’), we may
consider the class

(X, β; γ1, . . . , γr) ∈ H(|γ1|−2)+···+(|γr|−2)
c (Z(−, 〈c1(TX), β〉)/Cpx3) (3.26)

given by the cohomology class 1β
∏r

i=1 π!i
∗γi on Z(X), namely the result of push/pull via

the universal family.

U(X) X

Z(X)

i

π (3.27)

Evaluating GW and PT on this class produces Gromov–Witten invariants and Pandharipande–
Thomas invariants of X in homology class β with insertions γ1, . . . , γr

GW(X, β; γ1, . . . , γr) =

∫
[M′(X,β)]vir

r∏
i=1

π! ev∗ γi · u−χ ∈ Q((u)) (3.28)

PT(X, β; γ1, . . . , γr) =

∫
[P (X,β)]vir

r∏
i=1

π!(ch2(F) ∪ π∗Xγi) · qn ∈ Z((q)) (3.29)

where the integrand involves push/pull for the universal families

U ′(X) X

M′(X)

ev

π

P (X)×X X

P (X)

πX

π (3.30)

and F denotes the universal stable pair on P (X)×X (note that the second chern character
ch2(F) is simply the fundamental cycle of the support of F, a codimension four cohomology
class on P (X, β)×X). These invariants vanish for dimension reasons except when the virtual
dimension 2〈c1(TX), β〉 −

∑
i(|γi| − 2) is zero.
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4 Local curves

In the study of enumerative invariants of complex threefolds, the term local curve refers to
(the total space of) a rank two vector bundle E over a smooth proper (usually connected)
curve C. Given a local curve E → C, one is then interested in enumerating curves supported
on the zero section C ⊆ E; unfortunately, this has no meaning a priori since Z≥0·[C] ⊆ Z(E)
is usually not open. The goal of this section is to recall how to make sense of the enumerative
theory of local curves by working equivariantly, and to show how this enumerative theory
may be realized within the framework of the Grothendieck group H∗c (Z/Cpx3).

Remark 4.1. It is not hard to show that local curves are classified up to deformation by the
pair of integers g = g(C) ≥ 0 and c = c1(E) ∈ Z. The chern number of the zero section is
given by k = c1(TE) = c1(E) + c1(TC) = 2 − 2g + c and is a more convenient index than
c. We write Eg,k for the (unique up to deformation) local curve of genus g ≥ 0 and chern
number k.

4.1 Equivariant homology

The flavor of equivariant homology relevant for our present discussion is called co-Borel
equivariant homology, which measures ‘homotopically S1-invariant cycles’ on an S1-space.
We will employ the following concrete definition of this homology theory.

Definition 4.2 (co-Borel equivariant homology). Let X be an S1-space with reasonable
topology (say Hausdorff, paracompact, and locally homeomorphic to a finite CW-complex
of uniformly bounded dimension). The co-Borel S1-equivariant homology of X is the inverse
limit

HcS1

∗ (X) = lim←−
n

H∗+2N

(
X × S2N+1

S1

)
(4.1)

where S2N+1 ⊆ CN+1 is the unit sphere acted on by the unit circle S1 ⊆ C by multiplication.
The quotient (X × S2N+1)/S1 is a locally trivial fibration over S2N+1/S1 = CPN with fiber
X. The diagram

X × S2N+1

S1

X × S2N+3

S1

CP n CPN+1

(4.2)

thus determines maps H∗+2N+2((X×S2N+3)/S1)→ H∗+2N((X×S2N+1)/S1) (‘intersect with
a hyperplane’), which are the structure maps of the inverse system in (4.1). These structure
maps fit into a long exact sequence with third term H∗+2N+1(X), so the inverse system is
constant in degree d once 2N + 1 > dimX − d. This eventual constancy implies the inverse
limit of homology (4.1) is well behaved (for example, the long exact sequence of the pair
exists and is exact for HcS1

).
Dually, the co-Borel S1-equivariant cohomology of X is the direct limit

H∗cS1(X) = lim−→
N

H∗+2N

(
X × S2N+1

S1

)
(4.3)
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of the ‘wrong way’ maps H∗+2N((X × S2N+1)/S1)→ H∗+2N+2((X × S2N+3)/S1).

It is evident that HcS1

∗ (X) and H∗cS1(X) are supported in degrees ≤ dimX, and they are

typically nontrivial in arbitrarily negative degrees. For example, HcS1

∗ (pt) = lim←−N H∗+2N(CP n) =

lim←−N H
−∗(CPN) = Z[t] (free polynomial algebra) where t is the class of a hyperplane and

lies in homological degree −2 (cohomological degree 2). Intersection of cycles gives HcS1

∗ (pt)
the structure of a ring and gives each HcS1

∗ (X) the structure of a module over it.

Definition 4.3 (Tate equivariant homology). The Tate S1-equivariant homology is the lo-
calization of co-Borel equivariant homology at t ∈ HcS1

−2 (pt), namely it is the direct limit

H tS1

∗ (X) = lim−→
i

HcS1

∗−2i(X) (4.4)

where the transition maps are multiplication by t (compare Greenlees–May [11, Corollary
16.3]).

The key property of Tate equivariant homology is that it vanishes for (almost) free S1-
spaces (with rational coefficients), hence by the long exact sequence and excision, depends
rationally only on the fixed set. This is known as the equivariant localization theorem, which
originates in the work of Smith [37, 38, 39], was reformulated cohomologically by Borel [4],
and was then formalized in its present form by Atiyah–Segal [1, 35] and Quillen [34].

Proposition 4.4. The map H tS1

∗ (XS1
)→ H tS1

∗ (X) is an isomorphism over Q.

Proof. We assume that our spaces have a reasonable S1-equivariant cell decomposition
(which holds in the cases we care about by real analyticity). Precisely speaking, this means
that X is glued out of cells of the form (S1/Γ) × (Dk, ∂Dk) for subgroups Γ ⊆ S1, where
S1 acts by multiplication on the first factor (and trivially on the second factor). Given such
a cell decomposition of X, to show that H tS1

∗ (X,XS1
) = 0, it suffices (by the long exact

sequence and excision) to show that H tS1

∗ ((S1/Γ)× (Dk, ∂Dk)) = 0 for Γ $ S1 a proper sub-
group. We have H tS1

∗ ((S1/Γ)× (Dk, ∂Dk)) = H tS1

∗−k(S
1/Γ), so we are reduced to showing that

H tS1

∗ (S1/Γ) = 0 for Γ $ S1. Since Γ is finite, there is a ‘transfer’ map H tS1

∗ (S1/Γ)→ H tS1

∗ (S1)
whose composition with the pushforward map H tS1

∗ (S1) → H tS1

∗ (S1/Γ) is multiplication by
#Γ on H tS1

∗ (S1/Γ). It thus suffices to show that H tS1

∗ (S1) = 0, which follows from calulating
HcS1

∗ (S1) = Z.

The significance of equivariant localization is the following. Given a class in HcS1,rel∞
∗ (X),

we may push forward to HcS1

∗ (pt) provided X is compact. However, if we are satisfied with
pushing forward to the Tate group H tS1

∗ (pt) (over the rationals), then equivariant localization
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provides such a pushforward map when just the fixed set XS1
is compact.

HcS1,rel∞
∗ (XS1

) H tS1,rel∞
∗ (XS1

;Q)

HcS1,rel∞
∗ (X) H tS1,rel∞

∗ (X;Q)

HcS1

∗ (pt) H tS1

∗ (pt;Q)

XS1 compact

∼

XS1 compact

X compact X compact

(4.5)

4.2 Equivariant enumerative invariants

Curve enumeration theories, namely classes in Hrel∞
∗ (Z/Cpx3), specialize to virtual funda-

mental classes in Hrel∞
∗ (Z(X)) for complex threefolds X. It turns out that a curve enumer-

ation theory also determines S1-equivariant virtual fundamental classes, namely classes in
HcS1,rel∞
∗ (Z(X)) for X with a C×-action. The fact that non-equivariant invariants determine

their equivariant lifts may appear surprising at first, however the mechanism is very simple:
equivariant invariants are non-equivariant family invariants of the Borel construction. Let
us explain this in our particular case of interest C× y X. We have

HcS1,rel∞
∗ (Z(X)) = lim←−

N

Hrel∞
∗+2N

(
Z(X)× (CN+1 − 0)

C− 0

)
, (4.6)

and (Z(X)×(CN+1−0))/C× is the relative cycle space of the family (X×(CN+1−0))/C× →
CPN , so we have

HcS1,rel∞
∗ (Z(X)) = lim←−

N

Hrel∞
∗+2N

(
Z
(X × (CN+1 − 0)

C− 0

/
CPN

))
. (4.7)

A curve enumeration theory gives rise to a coherent system of classes in this inverse system,
hence to an ‘equivariant virtual fundamental’ class in HcS1,rel∞

∗ (Z(X)). In particular, this
defines equivariant Gromov–Witten invariants GW ∈ HcS1,rel∞

∗ (Z(X);Q)((u)) and PT ∈
HcS1,rel∞
∗ (Z(X))((q)). Let us note that by equivariant localization (Proposition 4.4 and

(4.5)), a class in HcS1,rel∞
∗ (Z(X)) determines a class in H tS1,rel∞(Z(X)S

1
;Q).

Now let us specialize to the case of a local curve E = Eg,k equipped with the fiberwise scal-
ing action of C×. An equivariant virtual fundamental class thus lies in HcS1,rel∞

∗ (Z(E)). Re-
stricting to cycles Z(E,m) ⊆ Z(E) of degree m (homology class m[C] for C ⊆ E the zero sec-
tion), this class lies in degree 2km. The fixed locus Z(E)S

1
is just Z≥0× [C] (multiples of the

zero section). In particular, Z(E,m)S
1

is compact, so equivariant localization (Proposition
4.4 and (4.5)) provides a pushforward map HcS1,rel∞

∗ (Z(E,m)) → H tS1

∗ (pt;Q) = Q[t, t−1].
The pushforward of the virtual fundamental class is an equivariant enumerative invariant in
H tS1

2km(pt;Q) = Q ·t−mk which roughly speaking ‘S1-equivariantly count curves of degree m in
Eg,k’. Specializing to the Gromov–Witten and Pandharipande–Thomas virtual fundamental
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classes, we obtain equivariant invariants

GWS1(Eg,k,m) ∈ Q((u)) · t−mk (4.8)

PTS1(Eg,k,m) ∈ Q((q)) · t−mk (4.9)

for any local curve Eg,k → C and integer multiplicity m ≥ 0.

Theorem 4.5 ([6, 28]). The power series (−iu)kGWS1(Eg,k,m) and (−q)−k/2PTS1(Eg,k,m)
satisfy the MNOP correspondence.

We explain the citation: Bryan–Pandharipande [6] compute the S1-equivariant Gromov–
Witten invariants of Eg,k, while Okounkov–Pandharipande [28] compute the S1-equivariant
Donaldson–Thomas invariants of Eg,k. It is explained in [25, Section 5] how to walk through
the arguments of [28] to see that they apply equally well to Pandharipande–Thomas invari-
ants.

4.3 Elements of the Grothendieck group

Let us now express, explicitly, the equivariant enumerative invariants of local curves Eg,m,k →
Cg (defined just above) as the (non-equivariant) enumerative invariants of certain elements
xg,m,k ∈ H2km

c (Z(−, km)/Cpx3) of virtual dimension zero which we call equivariant local
curve elements.

Consider the map

Z(E,m)
∩Ep−−→ SymmEp

Symm λ−−−−→ SymmC βr−→ C (4.10)

associated to a point p ∈ C, a linear map λ : Ep → C, and a homogeneous symmetric
polynomial βr : SymmC → C of degree r ≥ 1. This map is C×-equivariant for the weight
r action on the target C. It thus determines a section f of L⊗r over (Z(E,m) × (CN+1 −
0))/C×, where L denotes (the pullback of) the tautological line bundle on CPN . Let τL⊗r ∈
H2(L⊗r,L⊗r \ 0) denote the Thom class.

Given a tuple f1, . . . , fn of such sections, the product f ∗1 τL⊗r1 ∪ · · ·∪ f ∗nτL⊗rn is supported
inside the common zero locus f−1

1 (0)∩ · · ·∩ f−1
n (0). We may choose such a tuple whose joint

zero set is the single point m[C] ∈ Z(E,m) (in particular, is compact), hence giving us an
element

πN,n =
n∏
i=1

r−1
i f ∗i τL⊗ri ∈ H2n

c

(
Z
(E × (CN+1 − 0)

C− 0

/
CPN ,m

))
. (4.11)

Now each cocycle r−1
i f ∗i τL⊗ri is cohomologous to the hyperplane class (pulled back from

CPN), so if the joint zero set of f1, . . . , fn−1 is compact, then the ‘wrong way map’

i! : H∗+2N−2
c

(
Z
(E × (CN − 0)

C− 0

/
CPN−1

))
→ H∗+2N

c

(
Z
(E × (CN+1 − 0)

C− 0

/
CPN

))
(4.12)
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sends πN−1,n−1 to H ∪ πN,n−1 = πN,n. It follows that πN,n is independent of the choice of
f1, . . . , fn, and the collection of all πN,N+a (fixed integer a) gives rise to a well defined degree
2a element of the direct limit

H∗cS1,c(Z(E,m)) = lim−→
N

H∗+2N
c

(Z(E,m)× S2N+1

S1

)
(4.13)

= lim−→
N

H∗+2N
c

(
Z
(E × (CN+1 − 0)

C− 0

/
CPN ,m

))
. (4.14)

Now each term in this directed system maps to H∗c (Z(−, km)/Cpx3), compatibly with the
maps in the directed system (commutativity of (3.10)), thus determining a well defined
map H∗cS1,c(Z(E,m)) → H∗c (Z(−, km)/Cpx3). The image of the degree 2a element of
H∗cS1,c(Z(E,m)) defined by the set of πN,N+a is denoted

`xg,m,k ∈ H2km+2`
c (Z(−, km)/Cpx3) (4.15)

in terms of the re-indexing a = km+` (which is explained by the fact that `xg,m,k has virtual
dimension−2`); we set xg,m,k = 0xg,m,k. For k ≥ 0, the elements `xg,m,k ∈ H2km+2`

c (Z(−, km)/Cpx3)
evidently lift canonically to H2km+2`

c (Z(−, km)sF/Cpx3) and are well defined there as well.
We have xg,0,k = 1 (take n = N = 0) and `xg,0,k = 0 for ` > 0 (take N = 0 and n = `).

Proposition 4.6. Given any curve enumeration theory (class in Hrel∞
∗ (Z/Cpx3)), the re-

sulting equivariant count of a local curve E in degree m is given by the pairing with xg,m,k ∈
H2km
c (Z(−, km)/Cpx3) times t−km.

Proof. Every class in HcS1

−2d(pt) has the form a · td for some integer a. The coefficient a may
be recovered by realizing the class inside some H2N−2d(S

2N+1/S1) and pairing with HN−d

(power of the hyperplane class), provided N ≥ d so that this makes sense. We can apply the
same recipe to find the image in HcS1

∗ (pt) of a class in HcS1

∗ (X) for any S1-space X. Namely
the image of a class in HcS1

−2d(X) = lim←−N H2N−2d((X × S2N+1)/S1) in H∗(pt) = Z[t] is given

by td times its pairing with HN−d for any N ≥ d.
Now the equivariant enumerative invariants of (Eg,k,m) are defined by pushing for-

ward (after localizing at t) the virtual fundamental class in (the inverse limit wrt N of)
Hrel∞

2km+2N((Z(Eg,k,m) × S2N+1)/S1). This pushforward is only defined in Tate homology,

that is we must multiply by tn and lift to H2km+2N−2n((Z(Eg,k,m)S
1 ×S2N+1)/S1) (which is

guaranteed to be possible for n sufficiently large by Proposition 4.4) before pushing forward.
This multiplication by tn and lift is precisely realized by (r1 · · · · · rn)−1f ∗1 τL⊗r1 ∪ · · ·∪f ∗nτL⊗rn
for f1, . . . , fn with compact common zero locus. After multiplying by tn, the pushforward
to a point lies in degree 2km − 2n, so following the above procedure we should cap with
HN−(n−km) for N ≥ n − km to determine its image in HcS1

2km−2n(pt). We can simply take
N = n− km, so there is no cap with a power of H, and we conclude that the coefficient in
front of tn−km is the evaluation of our curve enumeration theory on xg,m,k as desired.

Corollary 4.7. The power series (−iu)kGW(xg,m,k) and (−q)−k/2PT(xg,m,k) satisfy the
MNOP correspondence.

Proof. Combine Theorem 4.5 with Proposition 4.6.
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Lemma 4.8. We have ρd(xg,m,0) = xg,m/d,0 if d|m.

Proof. Inspection: the pullback of a map fi under the multiplication by d map is another
such map of the same degree.

We now calculate the value of the coproduct ∆ (Definition 3.7) applied to `xg,m,k. First let
us note that `xg,m,k vanishes for ` sufficiently large. Indeed, suppose that xg,m,k is represented
by an expression (4.11) for f1, . . . , fn with compact joint zero locus. Now `xg,m,k is obtained
from this expression by adding ` more sections f , or equivalently by multiplying by the
hyperplane class ` times, which results in zero once ` > N .

Lemma 4.9. We have ∆(`xg,m,k) =
∑

a+b=m
a,b≥0

∑
`1+`2=` `1xg,a,k ⊗ `2xg,b,k.

Proof. Realize `xg,m,k by the expression πN,n (4.11) for a local curve E = Eg,k and some
sections fi of L⊗ri as in (4.10) whose joint zero set f−1

1 (0) ∩ · · · ∩ f−1
n (0) is compact, and

n = N + km+ `. The coproduct ∆(`xg,m,k) (Definition 3.7) is defined via the disjoint union
family(

E × (CN+1 − 0)

C− 0
× CN+1 − 0

C− 0

)
t
(

(CN+1 − 0)

C− 0
× E × (CN+1 − 0)

C− 0

)
→ CPN × CPN , (4.16)

whose relative cycle space is the product of relative cycle spaces

Z
(E × (CN+1 − 0)

C− 0

/
CPN

)
×Z

(
E × (CN+1 − 0)

C− 0

/
CPN

)
→ CPN × CPN . (4.17)

Over the diagonal ∆(CPN) ⊆ CPN×CPN , there is an addition map Σ from this relative cycle
space to the relative cycle space of (E× (CN+1− 0))/C× → CPN . The coproduct ∆(`xg,m,k)
is represented by the disjoint union family (4.16) equipped with the cocycle ∆!Σ

∗πN,n.
Now let us consider the product ∆!Σ

∗πN,n ∪ p∗1πN,p ∪ p∗2πN,q (where πi denotes the pro-
jection to the ith factor), which we note is compactly supported if either the f ’s comprising
πN,n have compact joint zero set or the f ’s comprising πN,p and the f ’s comprising πN,q both
have compact joint zero set. Note that if we multiply this expression by p∗iH, this can be de-
scribed as incrementing p, but it can also be described as incrementing n since (∆!α) ∪ β =
∆!(α ∪ ∆∗β) and ∆∗p∗iH = H. It follows that ∆!Σ

∗πN,n = (∆!Σ
∗1m) ∪ p∗1πN,p ∪ p∗2πN,q

for n = p + q where 1m is the characteristic function of degree m cycles. Expanding
∆!Σ

∗1m =
∑

a+b=m
a,b≥0

∑
c+d=N 1aH

c ⊗ 1bH
d, we can write the right hand side as

∑
a+b=m
a,b≥0

∑
c+d=N

p+c−ka−Nxg,a,k ⊗ q+d−kb−Nxg,b,k. (4.18)

This is the desired result for ∆(`xg,m,k) since [p+ c− ka−N ] + [q+ d− kb−N ] = (p+ q) +
(c+ d)− k(a+ b)− 2N = n+N − km− 2N = `.
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5 Transversality

We prove here a ‘generic transversality’ result, which says that simple (not multiply covered)
maps from smooth curves to complex manifolds with generic (in a certain precise sense)
complex structures are unobstructed (transverse). We derive from this that H∗c (ZsF/Cpx3)
is generated by certain equivariant local curve elements xg,m,k.

5.1 Regularity

The deformation theory of a map u : C → X from a smooth proper curve C to a smooth
complex analytic manifold X is controlled by H∗(C, u∗TX). The deformation theory of C
itself is controlled by H∗(C, TC[1]). The deformation theory of the pair (C, u) is controlled
by H∗(C, [TC[1]→ u∗TX]). A deformation problem (in any of the above flavors) is said to
be unobstructed when H≥1 = 0.

Given a complex analytic submersion X → B, we may also consider the deformation
theory of pairs (b, u : C → Xb), which is an extension of TbB and the deformation theory of
u. Note that this differs from the deformation theory of maps from C to the total space X
(which we will not ever consider). If X → B is a pullback of a submersion X ′ → B′, then a
pair (b, u : C → Xb) in X → B which is unobstructed remains unobstructed when pushed
forward to X ′ → B′.

Definition 5.1 (Regular). Let u : C → X be a holomorphic map from a compact smooth
curve C. A point x ∈ C will be called special (for u) when du(x) = 0 or #u−1(u(x)) > 1.
The set S ⊆ C of special points is finite provided dimCX ≥ 2, which we now assume. We
now consider the deformation theory of the triple (C, S, u) subject to the constraint that the
points S remain special with the same discrete data, meaning that all conditions u(x) = u(x′)
and (Dru)(x) = 0 which hold for u are preserved. We say that the map u is regular when
this deformation problem is unobstructed.

To clarify the meaning of the point constraints (‘remaining special with the same discrete
data’), we note that the addition of the points S and their constraints adds to the (complex)
index the quantity

|S| − dimCX ·
(
|S| − |u(S)|+

∑
p∈S

ordp(du)
)
. (5.1)

When dimCX ≥ 3, this quantity is < 0 unless S = ∅.
Regularity is also defined for curves in fibers of a family X → B, meaning the deformation

problem includes variation in the base parameter. If X → B is a pullback of X ′ → B′, then
regularity in X → B implies regularity of the pushforward to X ′ → B′.

In contrast to curves and maps from curves, it is not so clear whether 1-cycles have a
reasonable deformation theory. We will call a (possibly relative) 1-cycle z =

∑
imiCi semi-

regular when the map
⊔
i C̃i → X is regular in the sense of Definition 5.1. Semi-regularity

evidently measures properties of the semi-chart from §2.2. In particular, if z ∈ Z(X/B) is
semi-regular, then the semi-chart through z is a smooth subvariety of Z(X/B) of dimension
dimB +

∑
i〈c1(TX/B), Ci〉.

We denote by Zsr ⊆ Z the locus of semi-regular cycles, and we call points in its interior
Z◦sr ⊆ Zsr interior semi-regular.
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If z ∈ Z(X/B) is semi-regular, then it evidently remains semi-regular upon pushing
forward to a family X ′ → B′ of which X → B is a pullback. In contrast, interior semi-
regularity need not be so preserved, which is a significant technical trip hazard!

Lemma 5.2. Z(X/B)◦sF,sr has dimension ≤ dimB + 2〈c1(TX), z〉.

Proof. The set of points of Z(X/B)◦sr whose associated semi-chart is an open embedding is
dense by Lemma 2.1. At such a point, the dimension of Z(X/B)◦sr equals the dimension of the
semi-chart. At semi-regular points z =

∑
imiCi, this dimension is dimB+2

∑
i〈c1(TX), Ci〉.

When z is semi-Fano (namely 〈c1(TX), Ci〉 ≥ 0 for all i), this is bounded above by dimB +
2
∑

imi〈c1(TX), Ci〉 = dimB + 2〈c1(TX), z〉.

5.2 Interior semi-regular Grothendieck group

In §5.1, we introduced the notion of semi-regularity for points z ∈ Z(X/B) when B is
smooth. Now for B = ∆n, we define a 1-cycle z ∈ Z(X/∆n) to be semi-regular when it is
semi-regular inside the minimal stratum of ∆n containing it (i.e. consider variations in the
base which are tangent to the stratum containing z). With this definition in hand, we will
now define the Grothendieck group of interior semi-regular 1-cycles, denoted H∗c (Z◦sr/Cpx3).

For any injection [i] ↪→ [n] and any family X → ∆n, we have Z(X ×∆n ∆i/∆i)sr =
Z(X/∆n)sr ×∆n ∆i. There is thus a correspondence

Z(X ×∆n ∆i/∆i)◦sr ←↩ Z(X/∆n)◦sr ×∆n ∆i → Z(X/∆n)◦sr (5.2)

in which the left arrow is an open embedding and the right arrow is a pullback of ∆i → ∆n

(hence a closed embedding, but in particular proper). Beware that interior semi-regularity
is delicate: the left arrow above need not be an isomorphism; this leads to some additional
subtleties when working with Z◦sr instead of Z.

Compactly supported cochains C∗c (Z◦sr) form a coefficient system on Cpx3,• since C∗c is
functorial under both proper maps and open embeddings (see Definition 3.3) as appear
in (5.2) (by inspection, the composition of the correspondences (5.2) associated to [`] ↪→
[k] ↪→ [n] is the correspondence associated the composition [`] ↪→ [n]). The homology of
the resulting chain complex C∗(Cpx3,•, C

∗
c (Z)◦sr) is the Grothendieck group of interior semi-

regular 1-cycles H∗c (Z◦sr/Cpx3). There is an evident map of coefficient systems C∗c (Z◦sr) →
C∗c (Z) on Cpx3,• (functoriality under open embeddings), inducing a map on Grothendieck
groups H∗c (Z◦sr/Cpx3) → H∗c (Z/Cpx3). In contrast to the case of H∗c (Z/Cpx3) discussed
in §3.1, note that due to the delicate nature of interior semi-regularity, we make no claim
that H∗c (Z◦sr/Cpx3) is the relative compactly supported cohomology group of a ‘total space’
Z◦sr → Cpx3,•.

5.3 Generation by local curves

Define a geometric local curve element in H∗c (Z(Cpx3)◦sF,sr) to be the Poincaré dual of a
point of Z(X/B, k)◦sF,sr whose semi-chart is an open embedding of dimension 2k + dimB.
Since the set of points whose semi-chart is an open embedding is dense (Lemma 2.1), the
Poincaré dual of any dimension 2k + dimB smooth point of Z(X/B, k)◦sF,sr is a geometric
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local curve element. The topological type of a point z =
∑

imiCi ∈ Z(X/B, k)◦sF,sr is the
collection of tuples (gi,mi, ki) consisting of the genus gi of Ci, the multiplicity mi, and the
chern number ki = 〈c1(TX/B), Ci〉 ≥ 0 (since we are working with ZsF); this is constant
over any semi-chart. The dimension of the semi-chart at z =

∑
imiCi is dimB + 2

∑
i ki ≤

dimB + 2
∑

imiki = dimB + 2k, so equality only occurs when (mi− 1)ki = 0 for all i (thus
geometric local curve elements only come in such topological types). Every geometric local
curve element has virtual dimension zero (it has chern number

∑
imiki and cohomological

degree (dimB + 2k)− dimB = 2
∑

imiki).

Proposition 5.3. The group
⊕

2k−i≤0H
i
c(Z(−, k)◦sF,sr/Cpx3) is generated by geometric local

curve elements.

Proof. Represent a class in H i
c(Z(−, k)◦sF,sr/Cpx3) by a finite semi-simplicial set B•, a map

B• → Cpx3,• (i.e. a family of complex threefoldsX → B), and a cycle λ ∈ C∗(B•, C∗c (Z(X/−, k)◦sF,sr)).
The components λσ ∈ Ci+dimσ

c (Z(Xσ/σ, k)◦sF,sr) associated to top-dimensional simplices
σ ∈ B• are cocycles. Since i + dimσ ≥ 2k + dimσ = dimZ(Xσ/σ, k)◦sF,sr (Lemma 5.2),
the cohomology class [λσ] ∈ H i+dimσ

c (Z(Xσ/σ, k)◦sF,sr) is a linear combination of Poincaré
duals of smooth points of dimension 2k + dim σ, namely geometric local curve elements
(such smooth points lie over the interior of σ, hence their Poincaré duals are cycles in
C∗(B•, C

∗
c (Z(X/−, k)◦sF,sr))). By subtracting these, we may reduce to the case that [λσ] = 0

in cohomology for top-dimensional simplices σ. Thus by adding a boundary to our cycle,
we may reduce the dimension of B•. Iterating, we have reduced our class to zero by adding
geometric local curve elements.

Conjecture 5.4. Every geometric local curve element coincides with the equivariant local
curve element of the same topological type.

Note that the almost complex version of Conjecture 5.4 is false by the analysis of Ionel–
Parker [13, §7]: two geometric local curve elements of the same topological type need not
coincide, rather they are related by a wall crossing formula. In the present complex analytic
setting, we might expect any ‘walls’ to be of complex codimension one, hence real codimen-
sion two, meaning there is no wall crossing. This is nontrivial to make precise over real
analytic bases B due to the delicate nature of interior semi-regularity.

5.4 Generic transversality

It is a standard result that for generic almost complex structures (on the target), all simple
pseudo-holomorphic maps from closed Riemann surfaces are unobstructed (see [12, 27, 41]
for precise statements). We now derive analogous results for complex structures. Since
complex structures are much more rigid (for example, they have no nontrivial perturbations
supported inside a small ball), these results are weaker than those in the almost complex
setting: they only apply to a small neighborhood of a given compact 1-cycle.

We will describe complex structures and families thereof by gluing. To this end, let us
introduce some notation. For complex manifolds U and V , denote by An(U, V ) the space of
analytic maps U → V with relatively compact image. If V admits an open embedding into
some Cn (which will always be the case for us), then An(U, V ) is a complex analytic Banach
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manifold, locally modelled on the space of n-tuples of bounded holomorphic functions on U .
Given a complex manifold U , letR(U) = An(U−, U) (the space of ‘regluings’), where U− ⊆ U
denotes a(n unspecified) large relatively compact open subset. More formally, R(U) is a pro-
object, namely the inverse system of all neighborhoods of the identity 1U ∈ An(U−, U) over
all relatively compact open sets U− ⊆ U . In all cases of interest to us, U will admit an open
embedding into some Cn, implying that R(U) is a (pro) complex analytic Banach manifold.

Definition 5.5. Given a complex manifold X with an open cover X = A ∪ B, we may
deform X by modifying the identification between open sets A ⊇ A∩B ⊆ B. More formally,
we consider the family X̃ → R(A ∩ B) defined by taking the trivial families A and B over
R(A∩B) and gluing via the base parameter A×R(A∩B) 3 (a, γ) ∼ (γ(a), γ) ∈ B×R(A∩B).
To make this construction precise, and to ensure the result is Hausdorff, we may fix compact
sets A− ⊆ A and B− ⊆ B and glue (A− t B−) × R(A ∩ B) to obtain a proper map
X̃− → R(A ∩B).

We will in fact only need a special case of the above construction, namely when the
regluing takes place in a small neighborhood of a divisor (a closed complex submanifold of
codimension one).

Definition 5.6 (Deforming complex structure near a divisor). Let X be a complex manifold,
and let D ⊆ X be a smooth divisor. Regarding X as the gluing of X \D and NbdD over
their common intersection, Definition 5.5 provides a family X̃ → R(NbdD\D). This family
is smoothly trivial (analytic perturbations of the identity map on NbdD\D extend smoothly
to NbdD), so a choice of smooth trivialization determines a family of complex structures on
X parameterized by R(NbdD \D). We will also denote this base space by JD(X) (complex
structures on X obtained by regluing near D). Of course, this isn’t really a space but rather
a family of spaces depending on choices of neighborhoods, etc. Sometimes we will need to
fix a specific one, but we will do this at the relevant time.

The same construction applies to families X → B of complex manifolds. Given a relative
divisor D ⊆ X → B, meaning a divisor inside the total space which is submersive over
B, we may consider the set JD(X/B) = RB(NbdD \ D) =

⋃
b∈BR(NbdDb \ Db) → B, a

holomorphic section α of which determines a ‘vertical’ (i.e. over B) regluing Xα → B of X.

The tangent space to R(NbdD \D) at the identity is the space of germs of holomorphic
vector fields on NbdD possibly singular along D. We denote this space by H0(D,TX(∞D))
(implicitly restricting the sheaf of holomorphic sections of TX over X to the divisor D).
Such a vector field thus gives a first order deformation of the complex structure on X
modulo gauge, that is an element of H1(X,TX). Concretely, this map H0(D,TX(∞D))→
H1(X,TX) sends a holomorphic vector field v to (the Dolbeaut cohomology class represented
by) ∂̄((1− ϕ) · v) for a smooth function ϕ : X → [0, 1] supported inside an open set U ⊆ X
containing D such that v is defined on U \D and ϕ ≡ 1 in a neighborhood of D. Note that
the choice of ϕ evidently does not matter since ∂̄((1−ϕ) ·v)− ∂̄((1−ϕ′) ·v) = ∂̄((ϕ′−ϕ) ·v)
is exact in the Dolbeat complex since (ϕ′ − ϕ) · v is a smooth vector field on X (in contrast
to ϕ · v, which has singularities along D, or (1−ϕ) · v, which is defined only on U). In terms
of distributions, the map H0(D,TX(∞D)) → H1(X,TX) is simply v 7→ ∂̄v, where ∂̄v is
meant in the distributional sense and is supported on D since v is otherwise holomorphic
(indeed, ∂̄v − ∂̄((1− ϕ) · v) = ∂̄(ϕ · v) is exact in the distributional Dolbeat complex).
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We now identify the sort of maps which can be made transverse by deforming the complex
structure near a divisor. Given a divisor D ⊆ X, a map u : C → X from a smooth
proper curve C will be called D-controlled when u−1(D) ⊆ C is discrete and intersects
every component of C. It is elementary to observe that being D-controlled is an open and
condition on u. A cycle z =

∑
imiCi in X will be called D-controlled when

⊔
i C̃i → X is

D-controlled.

Lemma 5.7. The set of D-controlled cycles in Z(X/B) is open for any relative divisor
D ⊆ X → B.

Proof. Suppose z =
∑

imiCi ∈ Z(X/B) isD-controlled. Since Ci intersectsD geometrically,
the algebraic intersection number Ci · D is positive by positivity of intersection. If z′ =∑

im
′
iC
′
i is close to z, then every C ′i is homologous to a positive linear combination of

some Ci’s, hence also has positive algebraic intersection with D, thus a fortiori intersects it
geometrically.

For any family X → B, the deformation complex of a map u : C → Xb maps to the
deformation complex of the pair (b, u : C → Xb), with cokernel TbB. This induces a map
from TbB to the obstruction space of the map u, whose cokernel is the obstruction space
of the pair (b, u). Explicitly, this map is the Kodaira–Spencer map TbB → H1(Xb, TXb)
followed by restriction (e.g. of Dolbeaut representatives) from H1(Xb, TXb) to H1(C, TXb).

We now come to the key technical result underlying generic transversality, which says
that the space of first order deformations (of a complex structure) associated to a divisor D
by Definition 5.6 surjects onto the obstruction space of any D-controlled simple map u (via
the map defined in the paragraph just above).

Lemma 5.8 (Enough first order deformations). Let u : C → X be a simple map from
a smooth proper curve C to a complex manifold X, and let D ⊆ X be a divisor. If u is
D-controlled, then the map

H0(Nbd(D ∩ u(C)), TX(∞D))→ H1(C, TX) (5.3)

is surjective for every sufficienly small neighborhood of D ∩ u(C) ⊆ D inside X. In fact, it
is surjective onto the obstruction space for the problem of deforming the map u : C → X
subject to any finite number of point constraints (such as those appearing in the notion of
‘regularity’ in Definition 5.1).

Proof. Recall from above that the map in question sends a vector field v to ∂̄((1−ϕ)·v) (note
that the ‘primitive’ (1−ϕ) ·v is not defined globally on X, so does not trivialize this element
in cohomology), for any choice of cutoff function ϕ (supported near D and identically equal to
1 in a neighborhood of it). We will take ϕ to be (a smoothing of) the characteristic function
of a small tubular Nbd(D) of D. Fix a local projection π : X → C (defined near u(C) ∩D)
with D = π−1(0), and let Nbd(D) = π−1(D2

ε). Now π◦u : C → C is a ramified cover near the
origin, so the inverse image u−1(∂ Nbd(D)) is a union of circles, one going around each point
of u−1(D). We will show that by varying v, we can make u∗(∂̄((1 − ϕ) · v)) approximate
the delta function at any point of this union of circles u−1(∂ Nbd(D)). This implies the
desired surjectivity of (5.3) since every nonzero element of H0(C,KC⊗T ∗X) = H1(C, TX)∗
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has nonzero restriction to u−1(∂ Nbd(D)) by holomorphicity and unique continuation (recall
that u−1(∂ Nbd(D)) meets all components of C). Note that adding finitely many point
constraints to the deformation problem of u : C → X (which leads to considering sections of
KC ⊗T ∗X which may have poles at said points) does not affect this argument, since we can
always choose u−1(∂ Nbd(D)) to be disjoint from these finitely many special points (even if
they happen to coincide with u−1(D)).

It remains to prove that we can make ∂̄((1 − ϕ) · v) approximate a delta function at
any point of u−1(∂ Nbd(D)). Fix local coordinates X = Cz × C2

x,y near an (isolated, by
hypothesis) intersection point u(C) ∩D in which π is the z-coordinate, so D = {z = 0} =
0×C2

x,y and Nbd(D) = D2
ε×C2

x,y. Choose ϕ to be a smoothing of the characteristic function
H(ε− zz̄) of the ε-disk in Cz, so that ∂̄(1− ϕ) is a smoothing of δ(ε− zz̄)zdz̄. Writing v in
Laurent series expansion v =

∑
k fk(x, y)zk∂z, we calculate that ∂̄((1−ϕ) · v) = ∂̄(1−ϕ) · v

is a smoothing of δ(ε − zz̄)
∑

k fk(x, y)zk+1dz̄∂z. Now the factor
∑

k fk(x, y)zk+1dz̄∂z can
approximate any continuous function on ∂D2

ε × C2
x,y = ∂ Nbd(D) which is holomorphic on

fibers eiθ × C2
x,y (use approximation by Fourier polynomials in the ∂D2

ε direction). The
pullbacks of such functions to u−1(∂ Nbd(D)) are dense in continuous functions since u is
simple and π is a ramified covering.

Let us now explain how the existence of enough infinitesimal deformations (Lemma 5.8)
implies various flavors of generic transversality. We say that (the complex structure on) X
is D-regular when every D-controlled simple map is regular (Definition 5.1) and hence every
D-controlled cycle is semi-regular.

Lemma 5.9 (Generic transversality). Fix a complex manifold X, a divisor D ⊆ X, and a
finite set A ⊆ D. After possibly removing a closed subset of X contained in D \ A, generic
elements of JD(X) are D-regular.

Proof. This is a typical argument based on Smale’s infinite-dimensional Sard theorem [36].
We begin by fixing a precise space JD(X) to consider. Let D2 ⊆ C denote the unit

disk. Fix coordinates D2 × (D2)n−1 on X near each point a ∈ A with a = (0, 0) and
D = 0 × (D2)n−1, and remove from X the part of D outside the interiors of the charts
0 × (D2)n−1. We let JD(X) consist of holomorphic sections f of the tangent bundle of
(D2 \ 0) × (D2)n−1 with ‖f‖2 < ε for some ε > 0, where the L2-norm is weighted near
0 × (D2)n−1 so that meromorphic sections have finite norm (this space is most naturally
identified with the Lie algebra of R((D2\0)×(D2)n−1), and is subsequently mapped to it via
the exponential map). By smearing the Cauchy Integral Formula and appealing to Cauchy–
Schwarz, we see that ‖f‖∞ over any compact subset of the interior of (D2 \ 0)× (D2)n−1 is
bounded linearly in ε. Thus for sufficiently small ε > 0, the reglued family (Definition 5.6) is
defined over JD(X). Using the L2-norm here guarantees that the space JD(X) is separable.

Now consider a compact smooth (not necessarily connected!) surface C and a smooth
family of almost complex structures on C parameterized by a finite-dimensional smooth
manifold J (C). Now W k,2(C,X) is a smooth Banach manifold for any integer k ≥ 2 (note
that W k,2 ⊆ C0 for such k), whose product with J (C)×JD(X) carries the smooth Banach
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bundle

J (C)×W k,2(C,X)×Wk−1,2(C,X) W
k−1,2(C, TC ⊗C TX)× JD(X)

J (C)×W k,2(C,X)× JD(X)

∂̄
(5.4)

with a section ∂̄ measuring the failure of the map C → X to be holomorphic. Now the
linearization (derivative) of ∂̄ at a triple (u : C → X, j, J) is a map

W k,2(C, u∗TX)⊕ TjJ (C)⊕ TJJD(X)→ W k−1,2(C, TC ⊗C u
∗TX) (5.5)

whose restriction to the first direct summand is the deformation complex of the map u.
Lemma 5.8 guarantees that the restriction to TJJD(X) surjects onto the obstruction space
H1(C, TX) if u is D-controlled. Thus ∂̄ is transverse to zero at every D-controlled holomor-
phic triple (u, j, J) with u simple.

Now restrict to the clopen subset of W k,2(C,X) consisting of those maps whose restriction
to every component of C has positive algebraic intersection with D (thus a holomorphic map
is D-controlled iff it lies in this set). Over this clopen set, the section ∂̄ is transverse to zero at
simple, hence its zero set ∂̄−1(0)simple (the open simple locus) is a smooth Banach manifold,
and the projection map

∂̄−1(0)simple → JD(X) (5.6)

is Fredholm by ellipticity of the deformation complex of the map u. Now Sard–Smale [36]
implies that the fibers of this map over generic elements of JD(X) are regular. We can cover
all curves using countably many pairs (C,J (C)), so we conclude that for generic elements
of JD(X), all D-controlled simple maps are unobstructed.

Now regularity is stronger than unobstructedness, since it involves a deformation problem
with point constraints. To prove regularity of D-controlled simple maps with respect to
generic elements of JD(X), it suffices to apply the above argument to triples (C,J (C), γ)
where γ is a finite set of point constraints (again, countably many such triples suffice to
cover all possible situations).

Lemma 5.10 (Generic transversality in a family). Fix a family of complex threefolds X → B
over a finite semi-simplicial set B, a relative divisor D ⊆ X → B, and a set A ⊆ D whose
map to B is proper with finite fibers. After subdividing B and removing a closed subset of
X contained in D \ A, generic (simplex-wise) analytic sections of JD(X/B) → B are D-
regular. More generally, for any semi-simplicial subset B′ ⊆ B, generic analytic sections of
JD(X/B)→ B vanishing on B′ are D-regular over B \B′.

Proof. The proof is parallel to that of Lemma 5.9. The main new task is to specify precisely
the Banach space of sections of JD(X/B)→ B we would like to consider.

Given a point b ∈ B, we may fix coordinates D2× (D2)n−1 on Xb near each of the finitely
many points a ∈ Ab, just as in the proof of Lemma 5.9. Furthermore, we may extend these
to simplex-wise analytic coordinates D2 × (D2)n−1 ×M on X over a neighborhood M of
b ∈ B so that D = 0 × (D2)n−1 ×M and A ×B M is contained in 0 × (D2

1/2)n−1 ×M (this

uses properness of A → B). Fix a finite collection of points b ∈ B and associated charts
whose loci 0 × (D2

1/2)n−1 × M◦ ⊆ X cover all of A. Subdivide B and shrink each chart
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so that M ⊆ B is a finite collection of simplices (maintaining the property that the loci
0× (D2

1/2)n−1 ×M◦ together cover A).

Now on each chart D2 × (D2)n−1 ×M , we consider the space of complex/real analytic
sections of TX/B over (D2 \ 0) × (D2)n−1 × M which vanish over ∂M = M \ M◦ (and
over B′, if present). We consider the L2-norm on this space which integrates over a small
neighborhood inside the complexification (D2 \ 0)× (D2)n−1×MC, with exponential weight
near the puncture 0× (D2)n−1 ×MC so that poles of arbitrary orders there are allowed.

Now we take our Banach space of (simplex-wise) analytic sections of JD(X/B) → B to
be the direct sum of all these spaces. Any such sum of sections of TX/B can be exponentiated
to reglue X \ (D − NbdD(A)).

We can now follow the argument in the proof of Lemma 5.9 to show that generic elements
of this Banach space of simplex-wise analytic sections of JD(X/B)→ B are D-regular.

To get any mileage out of the above generic transversality results, we need a sufficiently
rich collection of divisors. Given a 1-cycle z in a threefold X, it is trivial to observe that,
after replacing X with a small neighborhood of z, there exists a divisor D ⊆ X controlling
z (namely, D is a union of transverse disks at a finite collection of smooth points on z). We
now generalize this assertion to families, where a more subtle argument is required to keep
the divisors disjoint.

Proposition 5.11 (Enough divisors). Let X → B be a family of complex threefolds over a
finite semi-simplicial set, and let K ⊆ Z(X/B) be a compact analytic set whose projection
map K → |B| is injective. After possibly removing a closed subset from X disjoint from K,
there exists a finite collection of disjoint relative divisors Di ⊆ X ×B Ui → Ui (Ui ⊆ |B|
open) such that every z ∈ K is Di-controlled for some i.

Proof. First, let us discuss how to construct (germs of) relative divisors D ⊆ X → B
locally near a given point x ∈ X. Suppose x lies over the interior of a simplex σ ⊆ B.
Define Dσ ⊆ Xσ as the transverse zero set Dσ = π−1

σ (0) of a (germ of) holomorphic map
πσ : (Xσ, x) → (C, 0) defined near x. To explain the term ‘holomorphic’ for πσ, recall that
Xσ → σ is the restriction of a given family XC

σ → σC ∼= Cdimσ over the complexification,
so it makes sense to require that πσ be the restriction to Xσ of a (necessarily unique)
holomorphic function on XC

σ . For Dσ to be a relative divisor, we need it to be submersive
over σ, which in terms of πσ is the condition that dπσ|TX/B is surjective. To extend Dσ

to a neighborhood of x in the total space X, it suffices to extend πσ to a (simplexwise)
holomorphic map π (note that surjectivity of dπ|TX/B is an open condition). Proceeding by
induction on simplices, it suffices to address the question of extending (near the origin) an
analytic function from ∂Rn

≥0 × Cn to Rn
≥0 × Cn. This extension problem is solved by the

standard formula f(y1, . . . , yn, z) =
∑

∅6=S⊆{1,...,n}(−1)|S|−1f({yi}i/∈S, {0}i∈S, z). Note that
there is extra freedom to add any analytic function times y1 · · · yn, which will be important
below when we want to ‘choose divisors generically’. We note that the resulting germ of
relative divisor D ⊆ X → B can be promoted to a true (not germ) relative divisor over an
open neighborhood of the image of x in B, by removing a suitable closed subset of X.

Given the local existence of relative divisors, compactness of K immediately produces a
finite collection of relative divisors Di ⊆ X ×B Ui → Ui (Ui ⊆ |B| open) such that every
z ∈ K is Di-controlled for some i. These divisors, however, need not be disjoint. Note that
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it suffices to ensure that Di ∩Dj ∩ z = ∅ for all z ∈ K, as then
⋃
i<j Di ∩Dj ⊆ X is closed

and disjoint from K so we can simply remove it. To produce divisors with this property, we
use an inductive argument, the key being that intersections D ∩D′ ∩ z generically happen
over a codimension two (dim(U/Z)− codimD − codimD′ = −2) subset of K.

Consider the following more general problem. In addition to the data of X → B and
K ⊆ Z(X/B), fix a relative singular divisor Dprev ⊆ X → B (by ‘singular divisor’, we simply
mean a not necessarily disjoint union of not necessarily mutually transverse divisors) whose
intersection with every cycle in K is discrete. We then ask for a finite collection of divisors
Di which together control all z ∈ K and which are disjoint from each other and from Dprev.
Our original problem is the special case Dprev = ∅.

We now show how to reduce the problem for a given (Dprev, K) to that of another pair
(Dprev′, K ′). Consider any choice of relative divisors Di (not necessarily disjoint) controlling
all z ∈ K. We claim that if the problem associated to

(Dprev′, K ′) =

(
Dprev ∪

⋃
i

Di,

πK

((
U(X/B)×Z(X/B) K

)
∩
⋃
i

(
Di ∩

(
Dprev ∪

⋃
j 6=i

Dj

))))
(5.7)

has a solution, then our original problem (Dprev, K) has a solution. Consider divisors D′i
solving the modified problem; they are disjoint from Dprev and from every Di, and they
control all z ∈ K ′, hence all z in a neighborhood of this set (Lemma 5.7). For z ∈ K\NbdK ′,
we use some Di to control z. The intersections of these divisors with each other and with
Dprev will be disjoint from U(X/B) ×Z(X/B) K by definition of K ′ hence can simply be
removed from X.

We now claim that the more general problem has a solution. We argue by induction
on dimK, the case K = ∅ being trivial. For the inductive step, we simply note that
in the construction above, the set K ′ will have at most complex codimension one inside
K provided the Di are chosen generically (this uses the fact that Dprev has only discrete
intersection with cycles in K), which also ensures that Dprev′ has only discrete intersection
with cycles in K.

We now use generic transversality to argue that the Grothendieck group of interior semi-
regular 1-cycles coincides with that of all 1-cycles.

Proposition 5.12. The map H∗c (Z◦sr/Cpx3) → H∗c (Z/Cpx3) is an isomorphism (and the
same with ZsF ⊆ Z in place of Z).

Proof. Fix a class in H∗c (Z/Cpx3), and let us show it is in the image of H∗c (Z◦sr/Cpx3).
Represent our class by a finite semi-simplicial set B•, a family of threefolds X → B (i.e. a
map B• → Cpx3,• in the sense of §3.1), and a cycle λ ∈ C∗(B•, C∗c (Z(X/−)) consisting of
cochains λσ ∈ C∗c (Z(Xσ/σ)) indexed by the simplices σ ∈ B•.

The pair (B, λ) is equivalent in H∗c (Z/Cpx3) to its stabilization (B ×RN , π∗Bλ ∪ π∗RN [0])
(we will leave the choice of triangulation of B × RN implicit). It is also equivalent to the
modified stabilization (B × RN , λ ∪ (πRN − i)∗[0]) for any map i : Z(X/B)→ RN . Now the
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product λ ∪ (πRN − i)∗[0] is supported along the graph of i denoted Γi ⊆ Z(X/B) × RN =
Z((X×RN)/(B×RN)). Taking i to be a (simplexwise) analytic embedding, we may ensure
that Γi is analytic and the projection Γi → RN (hence a fortiori the projection Γi → B×RN)
is injective.

We have thus shown that (B, λ) is equivalent in H∗c (Z/Cpx3) to another pair, which we
now rename as (B, λ), which comes with a compact analytic set K ⊆ Z(X/B) for which
K → B is injective and with a lift of λ to a cycle

λ ∈ C∗(B•, C∗K(Z(X/−)) (5.8)

where C∗Z(A) = C∗(A,A \ Z).
Now the fact that K → B is injective allows us to appeal to Proposition 5.11 to fix

disjoint relative divisors Di ⊆ X×B Ui → Ui for constructible closed sets Ui ⊆ B (i.e. unions
of closed simplices) whose restrictions to the respective U◦i = Ui \ ∂Ui together control K
(this requires deleting a closed subset of X disjoint from K and subdividing B, neither of
which change the class of (B, λ) in H∗c (Z/Cpx3)).

Now finally we are in a situation which can be deformed to a semi-regular situation using
generic transversality. Consider the family X̃ = X × R → B × R = B̃, and apply Lemma
5.10 (or rather its generalization to multiple divisors) to X̃ → B̃ to produce a collection Φ of
analytic sections ϕi : B̃ → JD̃i(X̃/B̃) = JDi(X/B)×R supported inside Ui×R and vanishing

on B × 0 for which the resulting reglued family X̃Φ → B̃ (Definition 5.6) is (
⊔
iDi)-regular

over B × (R \ 0).
Choose a local retraction ρ : Z(X̃/B̃)→ Z(X/B) near K. Let B̃t denote the fiber of B̃

over t ∈ R. For sufficiently small t > 0, the restriction ρt : Z(X̃t, B̃t) → Z(X/B) may be
used to define a pullback cycle

ρ∗tλ ∈ C∗(B̃t, C
∗
ρ−1
t (K)

(Z(X̃Φ,t/−))) (5.9)

which, by regularity of Φ, determines a class in H∗c (Z◦sr/Cpx3) for generic t. Now ρ∗tλ is
homologous to λ by consideration of the pullback ρ∗λ paired with the chain [0, t], which is
a chain in C∗(B̃, C

∗
ρ−1(K)(Z(X̃Φ/−))) with boundary ρ∗tλ− λ. This shows surjectivity of the

map H∗c (Z◦sr/Cpx3)→ H∗c (Z/Cpx3).
To prove injectivity of the map H∗c (Z◦sr/Cpx3) → H∗c (Z/Cpx3), we just need a relative

version of the same argument. Fix a class in H∗c (Z◦sr/Cpx3), and suppose it is sent to zero
in H∗c (Z/Cpx3). This means we have a finite semi-simplicial set B, a family of threefolds
X → B, a cycle λ ∈ C∗(B,C∗c (Z◦sr(X/−))), and a chain σ ∈ C∗(B,C∗c (Z(X/−)) such that
dσ = λ. We would like to show that λ represents zero in H∗c (Z◦sr/Cpx3). By a mapping
cylinder construction, we may assume that λ is supported on a subcomplex B0 ⊆ B over
which σ vanishes.

The stabilization argument from above shows that we may fix wlog a compact analytic
set K ⊆ Z(X/B) for which K → B is injective along with lifts of λ and σ to cochains
supported inside K. Disjoint relative divisors Di ⊆ X ×B Ui → Ui as above exist again by
Proposition 5.11.

Now choose Φ trivial over B× 0 and B0×R and (
⊔
iDi)-regular over (B \B0)× (R \ 0).

Choose retraction ρ which over B0×R is simply projection to B0 and over (B \B0)×R maps
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inside B \B0. Now the pullback ρ∗tλ equals λ, and the pullback ρ∗tσ is interior semi-regular
and satisfies d(ρ∗tσ) = ρ∗tλ. We have thus shown that λ represents zero in H∗c (Z◦sr/Cpx3),
and hence that H∗c (Z◦sr/Cpx3)→ H∗c (Z/Cpx3) is injective.

The same argument applies to ZsF ⊆ Z.

Lemma 5.13. ρd(xg,m,k) = 0 in H∗c (ZsF/Cpx3) for k > 0, m > 0, and d > 1.

Proof. Combining Proposition 5.12 with Proposition 5.3, we see that H∗c (ZsF/Cpx3) vanishes
in negative virtual dimension. The virtual dimension of

ρd(xg,m,k) ∈ H2km
c (Z(−,mk/d)sF/Cpx3) (5.10)

is 2km/d− 2km, which is negative for k > 0, m > 0, and d > 1.

5.5 Filtration

We now compute generators for the virtual dimension ≤ 0 part of H∗c (Z◦sF,sr/Cpx3) using a
filtration argument.

The first step is to argue that to understand the virtual dimension ≤ 0 part of the group
H∗c (Z◦sF,sr/Cpx3), we can replace Z◦sF,sr with the interior of the subset consisting of cycles
with smooth support (say z =

∑
imiCi has smooth support when

⋃
iCi ⊆ X is smooth,

equivalently when
⊔
i C̃i → X is a smooth embedding). The point will be that having

non-smooth support is a codimension two phenomenon.
We indicate cycles with smooth support using the subscript Zsm.

Lemma 5.14. Zsm ⊆ Z is an analytic constructible subset.

Proof. The set of points p ∈ U in the universal family at which the fiber of U → Z is smooth
is an analytic constructible subset. Since U → Z is proper, the image of a constructible
subset is constructible.

The Grothendieck group H∗c (Z◦sr,sm/Cpx3) is defined just like H∗c (Z◦sr/Cpx3) in §5.2.
Functoriality of C∗c under open embeddings gives a homomorphism H∗c (Z◦sr,sm/Cpx3) →
H∗c (Z◦sr/Cpx3).

Z(X ×∆n ∆k/∆k)◦sr,sm Z(X/∆n)◦sr,sm ×∆n ∆k Z(X/∆n)◦sr,sm

Z(X ×∆n ∆k/∆k)◦sr Z(X/∆n)◦sr ×∆n ∆k Z(X/∆n)◦sr

(5.11)

Here we use ↪→ to indicate and open embedding and� to indicate a proper map. Note that
the right square is a fiber product, so it is commutative in the category of correspondences
on which C∗c is a functor (see Definition 3.3) hence remains commutative upon applying C∗c .

The homomorphism H∗c (Z◦sr,sm/Cpx3) → H∗c (Z◦sr/Cpx3) fits into a long exact sequence
with third term H∗c ((Z◦sr \ Z◦sr,sm)/Cpx3), defined by the following diagram (rotated by π/2
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for typesetting purposes).

Z(X/∆n)◦sr Z(X/∆n)◦sr \ Z(X/∆n)◦sr,sm

Z(X/∆n)◦sr ×∆n ∆k
(
Z(X/∆n)◦sr ×∆n ∆k

)
\ Z(X ×∆n ∆k/∆k)◦sr,sm

Z(X ×∆n ∆k/∆k)◦sr Z(X ×∆n ∆k/∆k)◦sr \ Z(X ×∆n ∆k/∆k)◦sr,sm

(5.12)

Note that the bottom square is a fiber square, hence remains commutative upon applying
C∗c . Also note that the right column correspondence respects compositions [`] ↪→ [k] ↪→ [n],
ensuring that C∗c (Z◦sr \ Z◦sr,sm) is indeed a coefficient system on Cpx3,•.

The same considerations apply to ZsF ⊆ Z in place of Z.

Lemma 5.15. The map

H∗c (Z◦sF,sr,sm/Cpx3)→ H∗c (Z◦sF,sr/Cpx3) (5.13)

is an isomorphism in virtual dimension ≤ 0 and surjective in virtual dimension 1.

Proof. In view of the aforementioned long exact sequence, it suffices (and is in fact equivalent)
to show that H∗c ((Z◦sF,sr \ Z◦sF,sr,sm)/Cpx3) is supported in virtual dimension ≥ 2.

While Z(X/B, k)◦sF,sr has dimension ≤ 2k + dimB by Lemma 5.2, the same argument
shows that the complement of its subset Z(X/B, k)◦sF,sr,sm has dimension at most this quan-
tity minus two, since singularities impose codimension two constraints, by the definition of
regularity (Definition 5.1). It follows that H∗c ((Z◦sF,sr\Z◦sF,sr,sm)/Cpx3) is supported in virtual
dimension ≥ 2.

Having restricted to smooth cycles, we may now consider the following filtration.

Definition 5.16 (Multiplicity filtration). Let M =
⊔
n≥0 Zn≥1/Sn be the set of finite multi-

sets of positive integers. There is a map Z →M associating to each cycle z =
∑

imiCi the
multi-set m of multiplicities mi. Partially order M by declaring that m′ ≤ m whenever m
may be obtained from m′ by grouping together the multiplicities and replacing each group
with some positive integer linear combination thereof. The map Z → M is not in general
upper semi-continuous, however it is so at every point

∑
imiCi with all Ci disjoint. In

particular, it is upper semi-continuous on Zsm. Thus the loci

(Z(−)sm)≤m ⊆ Z(−)sm (5.14)

are open.

We thus have groups H∗c ((Z◦sr,sm)≤m/Cpx3) (and similarly with < m in place of ≤ m).
The tautological map

H∗c ((Z◦sr,sm)<m/Cpx3)→ H∗c ((Z◦sr,sm)≤m/Cpx3) (5.15)

fits into a long exact sequence with third term H∗c ((Z◦sr,sm)=m/Cpx3).
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Proposition 5.17. The virtual dimension ≤ 0 part of H∗c ((Z◦sF,sr,sm)=m/Cpx3) is generated
by Poincaré duals of points in (Z(X/B)◦sF,sr,sm)=m (smooth B) whose combinatorial type (a
multi-set of triples (g,m, k) of genus, multiplicity, and non-negative chern number, with total
multiplicity m) is non-deficient (meaning each triple (g,m, k) satisfies (m− 1)k = 0). The
class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) of such a Poincaré dual depends only on its combinatorial
type.

Proof. The space (Z(X/B)◦sF,sr,sm)=m consists of cycles
∑

imiCi for (m1, . . . ,mn) = m and⊔
iCi → X a smooth embedded curve unobstructed relativeB. It is thus a manifold of dimen-

sion dimB+2
∑

i ki, hence has cohomology up to this degree. The map to the Grothendieck
group reduces cohomological degree by dimB, and the chern number is

∑
i kimi. Hence it

contributes cohomology in virtual dimension ≥ 2
∑

i(mi − 1)ki ≥ 0. Thus classes of virtual
dimension ≤ 0 only exist when (mi − 1)ki = 0 for all i (i.e. non-deficient), and in this case
they are generated by Poincaré duals of points.

To show that the class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) represented by the Poincaré dual of
a non-deficient point of (Z(X/B)◦sF,sr,sm)=m depends only on the combinatorial type of this
point, we would like to use a deformation argument. Smooth cycles of multiplicity m in
threefolds are certainly classified up to deformation by their combinatorial type (deform
to the normal cone and appeal to Remark 4.1). However, this deformation need not be
everywhere semi-regular (let alone everywhere interior semi-regular smooth). To overcome
this difficulty, what we will do is associate a class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) to every non-
deficient multiplicity m smooth semi-Fano cycle z (not necessarily semi-regular) in a threefold
X0 (regarded as a germ around z), and show that this class is invariant under deformation of
(X0, z). The construction appears somewhat redundant and circuitious, but it is the simplest
we have been able to come up with.

As a first step, let us associate a class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) to every semi-regular
smooth point z ∈ Z(X/B)sF (real analytic base B) of non-deficient multiplicity m (invariant
under deformation of X → B and z). Fix a relative divisor D ⊆ X → B controlling z
(possibly replacing X with a neighborhood of z), and fix an analytic section Φ : B × R →
JD(X/B) vanishing on B × 0 which is D-regular over B × (R \ 0) (which exists by generic
transversality, namely the argument of Lemma 5.10). Since z ∈ Z(X/B) is semi-regular,
its semi-chart in Z((X × R)Φ/B × R) is smooth and submersive over R and has dimension
dim(B × R) + 2

∑
i ki = dim(B × R) + 2

∑
imiki. Over R \ 0, this semi-chart is (near z)

contained within the interior semi-regular locus since here Φ is D-regular. The closure of
the non-smooth locus thus intersects it in (real) codimension at least two (see the dimension
count in Lemma 5.15). Thus ‘the Poincaré dual of a point of the semi-chart not in the closure
of the non-smooth locus’ is a well defined class in

Hdim(B×R)+2
∑
imiki

c ((Z((X × R)Φ/B × R)◦sF,sr,sm)=m), (5.16)

hence its image in H
2
∑
imiki

c ((Z◦sF,sr,sm)=m/Cpx3) is also well defined. We claim that this

class is independent of the choice of Φ. Given Φ1 and Φ2, we may choose analytic Φ on
B × R × R whose restrictions to B × R × 0 and B × 0 × R are Φ1 and Φ2 and which is
D-regular over B × (R \ 0) × (R \ 0) (Lemma 5.10). Now an interior smooth point of the
relative cycle space over B × (R \ 0)× 0 need not remain interior smooth inside the relative
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cycle space over B×R×R, since it could be the limit of a sequence of non-smooth points over
B× (R\0)× (R\0). However, we have added only one more dimension, so the closure of the
non-smooth locus in B × (R \ 0)× (R \ 0) still has strictly smaller dimension than the semi-
chart in B× (R\0)×0, so a generic point of the semi-chart of z inside B× (R\0)×0 will be
interior smooth in B× (R\0)× (R\0), hence we have the desired identity between Poincaré
duals. Independence of D is simple: if D′ ⊇ D is a larger divisor (add disjoint components)
then we can extend Φ by zero on D′ \D to conclude that the invariants associated to D and
D′ are the same. Now given D1 and D2 (not necessarily disjoint), there exists D3 controlling
z which is disjoint from both D1 and D2, which allows us to relate the invariants associated
to D1, D1 tD3, D3, D3 tD2, and D2.

We have thus associated a class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) to every semi-regular smooth
point z ∈ Z(X/B)sF (real analytic base B) of non-deficient multiplicity m. We now claim
that if B ⊆ B′ is a submanifold and X is the restriction of X ′ → B′, then the class associated
to such z ∈ Z(X/B)sF coincides with the class associated to its image in Z(X ′/B′)sF (note
that this implies deformation invariance of the class associated to X → B and z). It suffices
to consider the case that the inclusion B ⊆ B′ is codimension one. Now we choose D′ for
X ′ → B′ (let D ⊆ X be its restriction) and we choose Φ on B × R and extend to Φ′ on
B′ × R. Since the codimension of B inside B′ equals one, the argument from the previous
paragraph (the closure of the non-smooth locus over B′ × (R \ 0) having codimension one
inside the semi-chart of z inside B × R) gives the desired result.

Now finally let us associate a class in H∗c ((Z◦sF,sr,sm)=m/Cpx3) to a non-deficient multiplic-
ity m smooth semi-Fano cycle z (not necessarily semi-regular) in a threefoldX0 (regarded as a
germ around z). In view of the above constructions, it suffices to show that we can exhibit X0

as a fiber of a family X → B for which the image of z in Z(X/B) is semi-regular, and to show
that any two such families can be related by a zig-zag of inclusions. Given a family X → B
in which z ∈ Z(X0) ⊆ Z(X/B) is semi-regular, we can choose a relative divisor D ⊆ X → B
controlling z and a finite-dimensional vector space V → H0(D,TX/B(∞D)) which surjective
onto the cokernel of the relevant linearized operator (Lemma 5.8) to ensure that the image
of z in the relative cycle space of (X0)V → V (the reguling via the exponential of V as in
Definition 5.6) is semi-regular. Now the families X → B, XV → B×V , and (X0)V → V are
related by inclusions, hence induce the same element of H∗c ((Z◦sF,sr,sm)=m/Cpx3). Any two
such finite-dimensional vector spaces mapping to H0(D0, TX0(∞D0)) can be related to their
direct sum, so the resulting invariant depends at most on the divisor D0 ⊆ X0 controlling z.
Independence of the divisor may be argued as earlier.

Lemma 5.15 and Proposition 5.12 show that the maps

H∗c (Z◦sF,sr,sm/Cpx3)→ H∗c (Z◦sF,sr/Cpx3)→ H∗c (ZsF/Cpx3) (5.17)

are bijective in virtual dimension ≤ 0 and bijective, respectively. The equivariant local
curve elements xg,m,k ∈ H∗c (ZsF/Cpx3) for k ≥ 0 have degree zero, hence lift uniquely
to H∗c (Z◦sF,sr,sm/Cpx3). We now follow the proofs of Proposition 5.12 and Lemma 5.15 to
obtain an explicit description of these lifts and, moreover, define canonical lifts x̃g,m,k ∈
H∗c ((Z◦sF,sr,sm)≤(m)/Cpx3).

Represent xg,m,k via its definition (4.11), and use (the trace of) a fiber of E → C as
relative divisor D (which controls all cycles in E). Use generic transversality Lemma 5.10 to
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produce a piecewise real analytic section Φ : CPN ×R→ JD(((E× (CN+1− 0))/C×)/CPN)
which is trivial over CPN × 0 and D-regular over CPN × (R \ 0). Pulling back the cocycle
(4.11) under a local retraction from the relative cycle space over CPN × R to that over
CPN × 0 and restricting to that over CP n× t for some generic small t > 0 defines a class in

H2n
c

(
Z
((E × (CN+1 − 0)

C− 0

)
Φt

/
CPN ,m

)◦
sF,sr

)
(5.18)

whose image inH2km
c (Z(−, km)◦sF,sr/Cpx3) lifts xg,m,k. This element ofH2km

c (Z(−, km)◦sF,sr/Cpx3)
is unique by Proposition 5.12; concretely, it can be seen to be independent of the choice of
fiber D and section Φ by considering sections Φ′′ over CPN × R2. Now by the long exact
sequence and dimension count in Lemma 5.15, the class in (5.18) lifts uniquely to

H2n
c

(
Z
((E × (CN+1 − 0)

C− 0

)
Φt

/
CPN ,m

)◦
sF,sr,sm

)
, (5.19)

which maps to H∗c ((Z◦sF,sr,sm)≤(m)/Cpx3) since all cycles on E of total degree m have mul-
tiplicity tuple ≤ (m). This defines the lift x̃g,m,k ∈ H∗c ((Z◦sF,sr,sm)≤(m)/Cpx3), which is well
defined for the same reason as above (consider sections over CPN × R2).

Lemma 5.18. For k ≥ 0 and (m− 1)k = 0, the lift x̃g,m,k ∈ H∗c ((Z◦sF,sr,sm)≤(m)/Cpx3) maps
to the generator of H∗c ((Z◦sF,sr,sm)=m/Cpx3) from Proposition 5.17 associated to the topological
type (g,m, k).

Proof. Recall that xg,m,k ∈ H∗c (ZsF/Cpx3) (4.11) is given by

n∏
i=1

r−1
i f ∗i τL⊗ri ∈ H2n

c

(
Z
(E × (CN+1 − 0)

C− 0

/
CPN ,m

))
→ H2km

c (Z/Cpx3) (5.20)

where n = N + km. The lift x̃g,m,k ∈ H∗c ((Z◦sF,sr,sm)≤(m)/Cpx3) is defined by perturbation as
detailed just above.

Now the cycles on E of degree m all have multiplicity ≤ (m), and the multiplicity
= (m) locus inside Z(E,m) is canonically identified with Z(E, 1) = H0(C,E). Let us take
E = L ⊕ L′ for generic line bundles L and L′ of degrees g − 1 and g − 1 + k, respectively,
which ensures that h0(C,L) = 0, h0(C,L′) = k, and h1(C,L) = h1(C,L′) = 0. In particular,
the multiplicity m locus inside Z(E,m) is semi-regular and smooth.

Now let us consider the restriction of the cocycle (5.20) to the multiplicity = (m) locus,
which is thus a class in

H2n
c

(H0(C,E)× (CN+1 − 0)

C− 0

)
. (5.21)

Note that (m−1)k = 0 implies mk = k, so we have n = N+k. The restriction of a degree ri
function fi : Z(E,m)→ C of the form (4.10) to the multiplicity m locus identified as Z(E, 1)
has the same form (4.10) of the same degree ri. The restriction of (5.20) to the multiplicity
= (m) locus is thus a cocycle of precisely the same form, just with m replaced with 1. The
argument used to show well definedness of `xg,m,k shows that this class in H2k

cS1,c(H
0(C,E)) is

independent of the choice of functions fi. Taking k linear functions fi which together define
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an isomorphism Z(E, 1) = H0(C,E)
∼−→ Ck, we see that this restricted class in (5.21) is the

Poincaré dual of a point.
Now we are interested in the image of the lift x̃g,m,k in H∗c ((Z◦sF,sr,sm)=m/Cpx3). The lift

x̃g,m,k is defined by perturbing the cocycle representing xg,m,k. Since the multiplicity m locus
is semi-regular and smooth, it remains so after the perturbation, and the point class remains
the point class. It may not be interior smooth or interior semi-regular, but the loci where
these fail are codimension two, and the point class lifts uniquely to the point class.

A product of lifts x̃gi,mi,ki ∈ H∗c ((Z◦sF,sr,sm)≤(mi)/Cpx3) is an element ofH∗c ((Z◦sF,sr,sm)≤(mi)i/Cpx3).
Lemma 5.18 implies that its image in H∗c ((Z◦sF,sr,sm)=(mi)i/Cpx3) is the generator associated
to the topological type of the set of triples (gi,mi, ki)i (it is evident from the definition that
products of generators from Proposition 5.17 are again such generators, with topological
type the disjoint union of the topological types of the factors).

Corollary 5.19. The group H∗c (Z◦sF,sr,sm/Cpx3) is generated in virtual dimension ≤ 0 by
monomials in the equivariant local curve elements xg,m,k with k ≥ 0 and (m− 1)k = 0.

Proof. By a direct limit argument, it suffices to show that H∗c ((Z◦sF,sr,sm)≤m/Cpx3) is gener-
ated in virtual dimension ≤ 0 by monomials in the x̃g,m,k with k ≥ 0 and (m− 1)k = 0 with
multiplicity tuple ≤m. Now we prove this statement by induction.

Every element of H∗c ((Z◦sF,sr,sm)<m/Cpx3) is in the image of H∗c ((Z◦sF,sr,sm)≤m′/Cpx3) for
some m′ < m, so the induction hypothesis implies that H∗c ((Z◦sF,sr,sm)<m/Cpx3) is generated
in virtual dimension≤ 0 by monomials in the x̃g,m,k for k ≥ 0 and (m−1)k = 0 with multiplic-
ity tuple < m. The monomials with multiplicity tuple = m generate H∗c ((Z◦sF,sr,sm)=m/Cpx3)
by Lemma 5.18. Now appealing to the long exact sequence (5.15), we conclude the desired
generation statement for H∗c ((Z◦sF,sr,sm)≤m/Cpx3).

Theorem 5.20. The group H∗c (ZsF/Cpx3) is generated as a ring in virtual dimension ≤ 0
by the equivariant local curve elements xg,m,k with k ≥ 0 and (m− 1)k = 0.

Proof. The map H∗c (Z◦sF,sr/Cpx3) → H∗c (ZsF/Cpx3) is an isomorphism by Proposition 5.12.
The map H∗c (Z◦sF,sr,sm/Cpx3)→ H∗c ((Z)◦sr/Cpx3) is an isomorphism in virtual dimension ≤ 0
by Lemma 5.15. By Corollary 5.19, the group H∗c (Z◦sF,sr,sm/Cpx3) is generated by monomials
in equivariant local curve elements xg,m,k with k ≥ 0 and (m− 1)k = 0.

The above argument is very close to giving a full proof of Theorem 1.1 (free generation
by local curve elements) rather than just generation (Theorem 5.20). The missing ingredient
is a proof that the connecting map

H∗c ((Z◦sF,sr,sm)=m/Cpx3)
+1−→ H∗c ((Z◦sF,sr,sm)<m/Cpx3) (5.22)

vanishes in virtual dimension 1 mapping to virtual dimension 0. This assertion appears
reasonable over complex analytic bases (a generic path in (Z(X/B)◦sF,sr,sm)=m would avoid
the closure of (Z(X/B)◦sF,sr,sm)<m since this subset has codimension two), but becomes less
clear once we consider real simplices. Instead, we will prove the injectivity part of Theorem
1.1 using an algebraic argument in the next section.

37



Proof of Theorem 1.6. By Corollary 4.7, the ring homomorphisms (−iu)kGW and (−q)−k/2PT
satisfy the MNOP correspondence when evaluated on all local curve elements xg,m,k. These
local curve elements generate H∗c (ZsF/Cpx3) in virtual dimension zero by Theorem 5.20, so
they satisfy the MNOP correspondence on all of H∗c (ZsF/Cpx3). We may thus evaluate on
the element (X, β; γ1, . . . , γr) (see §3.4) to obtained the desired result.

6 Algebraic constraints

We now use the bi-algebra structure on H∗c (ZsF/Cpx3)/tors and the nontriviality of certain
Gromov–Witten invariants to show that the sub-algebra generated by equivariant local curve
elements xg,m,k for k ≥ 0 and (m− 1)k = 0 is free.

Consider the free polynomial ring R = Z[xg,m,k] on formal variables xg,m,k indexed by
integers g ≥ 0, m ≥ 0, and k ≥ 0, satisfying (m − 1)k = 0, modulo the relation that
xg,0,k = 1. Equip R with the co-unit and co-multiplication maps given by

η : R→ Z ∆ : R→ R⊗R (6.1)

xg,m,k 7→ 0 for m > 0 xg,m,k 7→
∑

a+b=m
a,b≥0

xg,a,k ⊗ xg,b,k (6.2)

on generators and extended to be algebra maps. This makes R into a commutative and co-
commutative bi-algebra. Sending xg,m,k ∈ R to the equivariant local curve element xg,m,k ∈
H2km
c (Z(−,mk)sF/Cpx3) defines a ring homomorphism R→ H∗c (ZsF/Cpx3) and a bi-algebra

homomorphism R → H∗c (ZsF/Cpx3)/tors by Lemma 4.9 and the fact that H∗c (ZsF/Cpx3)
vanishes in negative virtual dimension (note the virtual dimension of `xg,m,k is −2`) by
Propositions 5.12 and 5.3.

Let ρd : R→ R (d ≥ 1) be given on generators by

ρd(xg,m,k) =

{
xg,m/d,k m divisible by d and k = 0 or d = 1,

0 otherwise.
(6.3)

and extended multiplicatively. This ρd is a map of bi-algebras (commutes with ∆ and η) by
inspection. The map R → H∗c (ZsF/Cpx3) is compatible with the operations ρd by Lemma
4.8 and Lemma 5.13.

We now wish to analyze the kernel A ⊆ R of the map R → H∗c (ZsF/Cpx3)/tors. Com-
patibility of this map with ρd implies that ρd(A) ⊆ A. Compatibility with ∆ implies that
∆(A) ⊆ (A⊗R) + (R⊗A) (at least rationally). Our goal is to prove that these constraints,
along with a simple Gromov–Witten invariant calculation, forces A = 0.

The weight of a monomial in the variables xg,m,k is a function w : Z≥0 × Z≥0 → Z≥0

defined by w(ab) = w(a) +w(b) and w(xg,m,k) = m · 1g,k. Given an arbitrary element a ∈ R,
we denote by aw its weight w part. A tensor product of monomials a ⊗ b has a bi-weight
(w(a), w(b)) and a total weight w(a) + w(b). The coproduct ∆ preserves (total) weight.

Lemma 6.1 (Weight splitting). Let A ⊆ R be a subgroup with the property that ∆(A) ⊆
(A⊗R) + (R⊗A). Let w be any nonzero weight. If A has an element with nonzero weight
w part, then A has an element with nonzero weight m1g,k part for some (g, k) ∈ suppw.
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Proof. The idea is to use ∆ to ‘split’ the weight w until its support becomes a singleton.
We have ∆(a)w = ∆(aw). If the support of w is not a singleton, then write w = w1 + w2

for nonzero w1 and w2 of disjoint support. Since the supports of w1 and w2 are disjoint, the
result of applying ∆ to a monomial of weight w will have a unique monomial of bi-weight
(w1, w2). In particular, aw 6= 0 implies that ∆(a)w1,w2 6= 0. Since ∆(a) ∈ (A⊗R) + (R⊗A),
we conclude that A must have an element with nonzero weight w1 part or weight w2 part.
Now we replace w with whichever of w1 or w2 it is and repeat until the support of w is a
singleton.

Lemma 6.2 (Weight purifying). Let A ⊆ R be a subgroup with the property that ∆(A) ⊆
(A ⊗ R) + (R ⊗ A). If A has an element with nonzero weight m1g,k part, then A has an
element containing the single variable monomial xg,m′,k for some m′ ≤ m.

Proof. The argument is similar to ‘weight splitting’ Lemma 6.1. Let w = m1g,k. Let a ∈ A
have nonzero weight w part. Among the weight w monomials appearing in a, consider the
factor xg,m′,k with m′ the largest possible. Now consider the monomials in ∆(a)w of the
form xg,m′,k ⊗ −. How can a given monomial in aw contribute such a monomial to ∆(a)w?
The factors xg,m′′,k with m′′ < m′ must go completely on the right. Of the factors of xg,m′,k,
exactly one must go completely on the left, and the rest must go completely on the right.
Thus the monomials in ∆(a)w of the form xg,m′,k⊗− are in bijection with the monomials in
aw with at least one xg,m′,k factor, and the effect of ∆ is to multiply their coefficient by the
number of such factors. In particular, ∆(a)w contains monomials of the form xg,m′,k ⊗ −.
Appealing to ∆(a) ∈ (A⊗R) + (R⊗A), we have ‘split’ w unless m′ = m, in which case we
have proven the desired result.

Lemma 6.3 (Weight dividing). Let A ⊆ R be a subgroup with the property that ρd(A) ⊆ A.
If A has an element containing the single variable monomial xg,m,0, then A has an element
containing the single variable monomial xg,1,0 and no single variable monomials xg,m′,0 for
m′ > 1.

Proof. Take an element of A containing single variable monomials xg,m,0 for various m, and
apply ρd to it where d is the maximum m among them.

Order the pairs (g, k) ∈ Z≥0 ×Z≥0 lexicographically, namely (g, k) < (g′, k′) when either
g < g′ or g = g′ and k < k′. This is evidently a well-ordering.

Proposition 6.4. Let A ⊆ R be a subgroup with the property that ∆(A) ⊆ (A⊗R)+(R⊗A)
and ρd(A) ⊆ A. If A 6= 0, then there exists an element of A containing the single variable
monomial xg,1,k and no single variable monomials xg,m,k with m > 1 or xg′,m′,k′ with (g′, k′) <
(g, k).

Proof. Consider the set of all weights of all monomials appearing in elements of A. Each
such weight has a maximum pair (g, k) in its support. Fix (g, k) to be the minimum such
pair. Let a ∈ A have a monomial whose weight has (g, k) as the maximum element in its
support. By Lemma 6.1, there exists a ∈ A with a monomial of weight m1g,k. By Lemma
6.2, there exists a ∈ A with a single variable monomial xg,m,k (possibly different m). By
Lemma 6.3, there exists a ∈ A with a single variable monomial xg,1,k and no single variable
monomials xg,m,k with m > 1. Finally, a has no single variable monomials xg′,m′,k′ with
(g′, k′) < (g, k) by choice of (g, k).
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Lemma 6.5. Let g, k ≥ 0. There exists a group homomorphism GWg,k : H∗c (Z/Cpx3)→ Q
such that GWg,k(xg,1,k) = 1, GWg,k(xg′,m′,k′) = 0 for (g′, k′) > (g, k), and GWg,k evaluates
to zero on any monomial of degree > 1.

Proof. Let GWg,k integrate over the virtual fundamental cycle of the moduli space (M′
g)c1=k

of non-constant stable maps from connected nodal curves of arithmetic genus g representing
a homology class with chern number k. Since the image of a connected space is connected,
GWg,k annihilates monomials of degree > 1.

We have GWg,k(xg′,m′,k′) = 0 if g′ > g, since there are no non-constant maps from a nodal
curve of arithmetic genus g to a curve of genus g′ > g. In the case g = g′, the map would
have to have degree d = k/k′ < 1, hence cannot exist.

Finally, let us calculate GWg,k(xg,1,k) = 1. We can represent xg,1,k by a curve C of
genus g and E = L ⊕ L′ for c1(L) = g − 1 and c1(L′) = g − 1 + k. Generically we have
h1(L) = h1(L′) = 0 and h0(L) = 0 and h0(L′) = k. That is, C is part of a transversely
cut out k-dimensional moduli space of sections (which locally coincides with Mg), and the
equivariant local curve element is by definition the Poincaré dual of a point in this space.

Lemma 6.6. The kernel A of any morphism F : X → Y of co-algebras over a field satisfies
∆(A) ⊆ (A⊗X) + (X ⊗ A).

Proof. Compatibility of F with ∆ implies that ∆(A) ⊆ ker(F ⊗ F ). Now ker(F ⊗ F ) =
(kerF )⊗X+X⊗(kerF ) since indeed for any pair of morphisms of vector spaces f : V → W
and f ′ : V ′ → W ′ we have ker(f ⊗ f ′) = (ker f)⊗ V ′ + V ⊗ (ker f ′).

Proposition 6.7. The map R→ H∗c (ZsF/Cpx3)/tors is injective.

Proof. Since R is torsion free, it suffices to show that the map is injective after rationalizing.
The kernel A of this map on rationalizations satisfies ∆(A) ⊆ (A⊗R) + (R⊗A) by Lemma
6.6 and ρd(A) ⊆ A. If this kernel is nonzero, then Proposition 6.4 produces an element of it
on which GWg,k is nonzero by Lemma 6.5, a contradiction (the preceding lemmas work just
the same over Q as over Z).

Proof of Theorem 1.1. Combine Theorem 5.20 and Proposition 6.7.

A Virtual fundamental classes

We give a brief exposition of the theory of the intrinsic normal cone, perfect obstruction
theories, and virtual fundamental classes as pioneered by Behrend–Fantechi [3]. Naturally,
we give particular emphasis to the properties of this theory which are used in the body of
the paper. References include Behrend–Fantechi [3], Manolache [21], Qu [33], Khan [15, 16],
Déglise–Jin–Khan [8], and Porta–Yu [32].

A morphism of complex analytic spaces is called a closed embedding when it is the in-
clusion of a closed analytic subspace, i.e. what is usually called a ‘closed immersion’ (a term
which we will avoid since it conflicts with the meaning of the term ‘immersion’ in differen-
tial topoogy). If X → Y is a closed embedding, then BlXY = ProjY

⊕
r≥0 I

r
X denotes the
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blow-up of Y along X. For any cartesian diagram of complex analytic spaces

X ′ X

Y ′ Y

(A.1)

in which the vertical arrows are closed embeddings, there is a (functorial) closed embedding of
blow-ups BlX′Y

′ → BlXY ×Y Y ′, corresponding to the surjection of graded rings
⊕

r≥0 I
r
X⊗OY

OY ′ �
⊕

r≥0 I
r
X′ .

A complex analytic stack shall mean a stack (i.e. sheaf of groupoids) on the site of
complex analytic spaces which admits a submersive atlas (hence has representable diagonal).
A morphism of complex analytic stacks is called Deligne–Mumford when its diagonal is
unramified (a morphism of complex analytic spaces is called unramified when it is, locally
on the source, a closed embedding). The diagonal of any morphism of complex analytic
spaces is a locally closed embedding, hence every morphism of complex analytic spaces is
Deligne–Mumford.

Definition A.1 (Deformation to the normal cone). Given X ↪→ Y a closed embedding of
complex analytic spaces, one associates the following spaces [10, Chapter 5].

MX/Y = BlX×0(Y × A1) (A.2)

M◦
X/Y = MX/Y \ BlX×0(Y × 0) (A.3)

CX/Y = M◦
X/Y ×A1 0 (A.4)

Note that BlX×0(Y × 0) → BlX×0(Y × A1) is a closed embedding; explicitly M◦
X/Y =

SpecY OY [t, IXt
−1]. The object CX/Y is called the normal cone of X ↪→ Y , and the space

M◦
X/Y is called the deformation to the normal cone (it maps to A1 with fiber Y over A1 − 0

and fiber CX/Y over 0). Given X → Y a Deligne–Mumford morphism of complex analytic
stacks, the above objects are defined by descent [3, 19, 18, 17][21, §2.2][33, §1.1].

Remark A.2. The normal cone CX/Y is an algebro-geometric analogue of the relative Spanier–
Whitehead dual of X over Y .

Lemma A.3 ([21, Theorem 2.31][33, Proposition 1.2]). For any cartesian square

X ′ X

Y ′ Y

(A.5)

whose vertical arrows are Deligne–Mumford, there is an induced closed embedding M◦
X′/Y ′ →

M◦
X/Y ×Y Y ′ over A1, hence also a closed embedding CX′/Y ′ → CX/Y ×Y Y ′.

Proof. For a closed embeddingsX ↪→ Y , this corresponds to the surjection of ringsOY [t, IXt
−1]⊗OY

OY ′ � OY ′ [t, IX′t−1]. Now apply descent.
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Lemma A.4. For maps X → Y and X ′ → Y ′, there is a canonical isomorphism

M◦
X×X′/Y×Y ′

∼−→M◦
X/Y ×A1 M◦

X′/Y ′ (A.6)

which, in particular, specializes over 0 to an isomorphism CX×X′/Y×Y ′
∼−→ CX/Y × CX′/Y ′.

Proof. For closed embeddings X ↪→ Y and X ′ ↪→ Y ′, this map corresponds to the map of
graded rings

OY×Y ′ [t, IXOY ′t−1, t′,OY IX′(t′)−1]/(t− t′)→ OY×Y ′ [t, (IXOY ′ +OY IX′)t−1], (A.7)

which is an isomorphism by inspection (to see this, it is helpful to choose vector space
splitings of the inclusions Ir ⊇ Ir+1). Now apply descent.

Recall the derived category D(X) of (unbounded) complexes of sheaves of Z- or Q-
modules on a complex analytic stack X (references include [20]). At the level of ∞- or dg-
categories, the category D(X) associated to a stack X is the limit of D(U) over all complex
analytic spaces U with a map to X (equivalently, all those with a submersive map to X).
For a map of complex analytic stacks f : X → Y , we have pairs of adjoint functors (f ∗, f∗)
and (f!, f

!) (always derived) between D(X) and D(Y ). Note that we need the exceptional
pushforward/pullback operations for non-separated morphisms. These satisfy proper base
change, in the sense that for a cartesian square

X ′ X

Y ′ Y

f ′

β

f

α

(A.8)

there is a canonical isomorphism f ′!β
∗ = α∗f! (equivalently β∗f

′! = f !α∗). There is also a
canonical natural transformation f! → f∗, which is an isomorphism for proper representable
morphisms f . More generally, it is an isomorphism for proper Deligne–Mumford morphisms
f provided we are using Q-coefficients (to see the need for Q-coefficients, note that for
f : ∗/G→ ∗ with G finite, the natural transformation f! → f∗ is the natural map VG → V G

from co-invariants to invariants given by ‘sum over G-orbits’ for G-representations V ).

Definition A.5. For a morphism of complex analytic stacks f : X → Y , we define
Hrel∞
∗ (X/Y ) = H∗(X, f !ZY ).

Remark A.6. When f : X → Y is separated, the group Hrel∞
∗ (X/Y ) may be regarded as

the ‘cohomology of Y with coefficients in fiberwise chains rel infinity of X → Y ’ (compare
Remark 3.4 and the preceding discussion). A class in Hrel∞

∗ (X/Y ) is roughly analogous to
what is often called a ‘bivariant class’ for the morphism X → Y .

The groups Hrel∞
∗ (X/Y ) are functorial in various ways (references include [15, 32]). For

a cartesian square

X ′ X

Y ′ Y

f ′

β

f

α

(A.9)
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there is a pullback map Hrel∞
∗ (X/Y ) → Hrel∞

∗ (X ′/Y ′). Indeed, this amounts to wanting a
map f !ZY → β∗f

′!α∗ZY , and in fact there is a natural transformation β∗f ! → f ′!α∗ since this
is (by adjunction) the same as a natural transformation f ′!β

∗ → α∗f! (and there is in fact
here a natural isomorphism by proper base change). There is also a proper pushforward map
Hrel∞
∗ (X1/Y ) → Hrel∞

∗ (X2/Y ) for g : X1 → X2 proper. Indeed, this amounts to wanting a
map g∗f

!
1ZY → f !

2ZY , and for this it is enough to have a natural transformation g∗g
! → 1,

which is the co-unit g!g
! → 1 combined with the identification g!

∼−→ g∗ since g is proper.

Definition A.7. Fix a map f : X → Y and a map π : D → Y ×A1 which is an isomorphism
over Y × (A1 − 0) and whose fiber over Y × 0 is identified (over Y ) with X. Associated
to this data is a canonical specialization element in Hrel∞

0 (X/Y ) defined as follows (note
that this definition is somewhat different from its analogue in the context of algebraic cycles
[21, 33, 15]). In fact, there is an associated natural transformation of functors 1→ f∗f

!. Let
(A1 − 0)∼ denote the universal cover, and consider the following diagram.

X D Y × (A1 − 0)∼

Y Y × A1 Y × (A1 − 0)∼

i

f π

j

i j

(A.10)

There is an induced diagram of derived categories, which commutes by proper base change.

D(X) D(D) D(Y × (A1 − 0)∼)

D(Y ) D(Y × A1) D(Y × (A1 − 0)∼)

i∗

f ! π!

j∗

i∗ j∗

(A.11)

Now we combine this on the bottom with the natural transformation j∗p
∗ → i∗ where

p : Y × (A1 − 0)∼ → Y , and we post-compose with the pushforward D(D) → D(Y ). This
produces the desired a natural transformation 1→ f∗f

! by contractibility of (A1 − 0)∼.

Definition A.8. The specialization element in Hrel∞
0 (CX/Y /Y ) refers to that associated to

the family M◦
X/Y → Y × A1 by Definition A.7.

Remark A.9. Continuing Remark A.2, the specialization element in Hrel∞
∗ (CX/Y /Y ) is anal-

ogous to the Spanier–Whitehead dual (relative Y ) of the map X → Y .

Lemma A.10. For a cartesian square

X ′ X

Y ′ Y

(A.12)

whose vertical arrows are Deligne–Mumford, the specialization elements in Hrel∞
∗ (CX/Y /Y )

and Hrel∞
∗ (CX′/Y ′/Y

′) have the same image in Hrel∞
∗ (CX/Y ×Y Y ′/Y ′).
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Proof. Diagram chase and compatibility of the proper base change isomorphism with com-
position of pullback squares.

Lemma A.11. For maps X → Y and X ′ → Y ′, the specialization element of Hrel∞
∗ (CX×X′/Y×Y ′/Y×

Y ′) = Hrel∞
∗ (CX/Y ×CX′/Y ′/Y × Y ′) is the image of the tensor product of the specialization

elements of Hrel∞
∗ (CX/Y /X) and Hrel∞

∗ (CX′/Y ′/Y
′) under the Künneth map.

Now we recall the notion of a perfect obstruction theory from Behrend–Fantechi [3], which
allows to transfer the specialization element in Hrel∞

0 (CX/Y /Y ) to a class in Hrel∞
d (X/Y )

when the ‘virtual relative tangent bundle’ T vir
X/Y has rank d.

Definition A.12. Given a two-term complex of vector bundles (aka perfect complex of
amplitude [−1 0]) E• = [E−1 → E0] over a complex analytic stack X (by which we mean an
object in the sheafified 2-category of such), we may form the ‘total space’ E• given locally
in the case X is a space by the groupoid E−1 ×X E0 →→ E0 [3, §2].

Definition A.13. A perfect obstruction theory on a Deligne–Mumford morphism X → Y
is an amplitude [0 1] perfect complex T vir

X/Y on X together with a closed embedding CX/Y →
T vir
X/Y [1] (i.e. into the ‘total space’ of T vir

X/Y [1]).

Remark A.14. Definition A.13 is non-standard and is made only for the sake of simplicity in
the present discussion. A perfect obstruction theory (in the standard meaning as introduced
by Behrend–Fantechi [3]) on a Deligne–Mumford morphism X → Y is an amplitude [0 1]
perfect complex T vir

X/Y on X together with a linear map TX/Y [1] → T vir
X/Y [1] which is a

closed embedding on total spaces, where TX/Y [1] denotes the ‘total space of the dual of
(τ≥−1LX/Y )[−1]’. There is a canonical closed embedding CX/Y → TX/Y [1] (see [3, 21]), so a
perfect obstruction theory in the sense of [3] induces one in the sense of Definition A.13.

Given (the total space of) a two-term complex π : E• → X, the functor π∗π
! is shift

by dimE• = dimE0 − dimE−1. In particular, for a morphism X → Y this identifies
Hrel∞
∗+dimE•(E

•/Y ) with Hrel∞
∗ (X/Y ).

Definition A.15. The relative virtual fundamental class [X/Y ]vir ∈ Hrel∞
dimT vir

X/Y

(X/Y ) asso-

ciated to a perfect obstruction theory CX/Y → T vir
X/Y [1] is the image of the canonical degree

zero element in Hrel∞
∗ (CX/Y /Y ) under the proper pushforward map to Hrel∞

∗ (T vir
X/Y [1]/Y ),

followed by the identification of this group with Hrel∞
∗+dimT vir

X/Y

(X/Y ) from just above.

A perfect obstruction theory on X → Y determines one on X ′ = X ×Y Y ′ → Y ′ for any
morphism Y ′ → Y , namely we take T vir

X′/Y ′ to be the pullback of T vir
X/Y , and we consider the

composition of the closed embedding CX′/Y ′ → CX/Y ×Y Y ′ with the pullback to Y ′ of the
map CX/Y → T vir

X/Y [1].

Lemma A.16. Fix a cartesian diagram

X ′ X

Y ′ Y

(A.13)
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whose vertical arrows are Deligne–Mumford, and fix a perfect obstruction theory CX/Y →
T vir
X/Y [1] with pullback CX′/Y ′ → CX×Y ×Y Y ′ → T vir

X/Y [1] ×Y Y ′ = T vir
X′/Y ′ [1]. The pullback

map Hrel∞
∗ (X/Y )→ Hrel∞

∗ (X ′/Y ′) sends [X/Y ]vir to [X ′/Y ′]vir.

Proof. Immediate from Lemma A.10.

Given perfect obstruction theories on X → Y and X ′ → Y ′, their product is a perfect
obstruction theory onX×X ′ → Y×Y ′ (recall the isomorphism CX×X′/Y×Y ′

∼−→ CX/Y×CX′/Y ′
of Lemma A.4).

Lemma A.17. For Deligne–Mumford morphisms X → Y and X ′ → Y ′ with perfect obstruc-
tion theories, the virtual fundamental class [X × X ′/Y × Y ′]vir is the image of [X/Y ]vir ⊗
[X ′/Y ′]vir under the Künneth map Hrel∞

∗ (X/Y )⊗Hrel∞
∗ (X ′/Y ′)→ Hrel∞

∗ (X ×X ′/Y × Y ′).

Proof. Immediate from Lemma A.11.

Lemmas A.16 and A.17 together imply the compatibility of virtual fundamental classes
with fiber products.

B Chains on simplicial sets and groupoids

The simplex category ∆ consists of totally ordered sets [n] = {0 < . . . < n} and weakly order
preserving (x ≤ y implies f(x) ≤ f(y)) maps. There is a functor from ∆ to topological spaces
sending [n] to the standard simplex ∆n (with vertices labelled 0, . . . , n) and a morphism
[n] → [m] to the unique affine linear map with the corresponding action on vertices. A
simplicial object X• in a category C is a functor X : ∆op → C, and we write Xn = X([n]).
A simplicial set X : ∆op → Set may be regarded as a combinatorial specification of how to
glue together standard simplices ∆n along simplicial maps preserving vertex order.

A coefficient system (valued in a category C) over a simplicial set X• is a functor (∆ ↓
X•)

op → C which sends surjections [n] � [m] → X to isomorphisms. The complex of ‘fat’
chains on X• with respect to a coefficient system A valued in the category Ab is given by

C∗(X•;A) =
⊕
n≥0

⊕
σ∈Xn

Aσ ⊗ on (B.1)

where on denotes the orientation group of ∆n (which lies in homological degree n), and the
boundary operator acts on Aσ ⊗ on via the usual sum over faces dn,i : [n− 1] ↪→ [n] for 0 ≤
i ≤ n. Dually, we may define fat cochains C∗(X•, A) with respect to any coefficient system
A valued in Abop (now involving direct product instead of direct sum). More generally, fat
chains and cochains make sense for coefficient systems valued in the category of (unbounded)
complexes of abelian groups (and its opposite); in this setting, the condition that surjections
be sent to isomorphism can be relaxed to sending surjections to quasi-isomorphisms. A map
of coefficient systems A → B over X• induces a map C∗(X•;A) → C∗(X•;B), and a map
f : X• → Y• of simplicial sets induces a map C∗(X•, f

∗A) → C∗(Y•, A) for any coefficient
system A over Y•.

Lemma B.1. A quasi-isomorphism of coefficient systems A → B over X induces a quasi-
isomorphism C∗(X;A)→ C∗(X;B). The same holds for cohomology with coefficients.
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Proof. Let X≤k denote the k-skeleton of X. The short exact sequence of complexes

0→ C∗(X<k;A)→ C∗(X≤k;A)→
⊕
σ⊆X

dimσ=k

Aσ → 0 (B.2)

induces a long exact sequence of cohomology groups. Applying the five lemma, we see that
if C∗(X<k;A) → C∗(X<k;B) is a quasi-isomorphism then C∗(X≤k;A) → C∗(X≤k;B) is a
quasi-isomorphism. Finally, note that C∗(X;A) is the directed colimit of C∗(X≤k;A) over k
and that homology commutes with directed colimits.

To prove the analogous assertion for cohomology, we follow the same argument, except
there is an apparent issue in that cohomology does not commute with inverse limits. How-
ever we actually just need to know that an inverse limit quasi-isomorphisms with surjective
transition maps is a quasi-isomorphism. This follows from the fact that for an inverse system
· · · � A•2 � A•1 � A•0 of complexes with surjective transition maps, there is a functorial
short exact sequence

0→ lim←−
i

1H∗A•−1
i → H∗ lim←−

i

A•i → lim←−
i

H∗A•i → 0 (B.3)

which yields the desired assertion upon applying the five lemma.

The argument of Lemma B.1 is used all over the place. For example, the complex of
‘reduced’ chains is the quotient of the complex of ‘fat’ chains by its subcomplex of ‘degenerate’
chains (those for which the simplex σ in (B.1) is degenerate). The subcomplex of degenerate
chains is acyclic: the argument of Lemma B.1 reduces us to checking the case of a single
simplex σ rel boundary, where the degenerate chain group has the form

Aσ
1←− Aσ

0←− Aσ
1←− Aσ

0←− · · · (B.4)

which is acyclic by inspection. It is therefore irrelevant whether we take C∗(X•;A) to mean
fat chains or reduced chains. The same applies to cohomology with coefficients.

There are two reasonable notions of ‘product’ for simplicial sets X and Y . The ‘exter-
nal product’ is the product functor X � Y : (∆ ×∆)op → Set (such a functor is called a
bi-simplicial set). Just like simplicial sets, a bi-simplicial set may be regarded as a combi-
natorial specification of how to glue together products of standard simplices ∆n×∆m along
products of simplicial maps. A product of simplices ∆n × ∆m has a standard subdivision
into

(
n+m
n

)
copies of ∆n+m, and this subdivision is moreover compatible with products of

maps. This defines a functor from bi-simplicial sets to simplicial sets, which turns out to be
pre-composition with the diagonal functor ∆ → ∆ ×∆. The subdivision of the external
product X � Y thus coincides with the ‘categorical product’ X × Y : ∆op → Set given by
(X × Y )n = Xn × Yn.

Given coefficient systems A and B on simplicial sets X and Y , the tensor product
C∗(X,A)⊗C∗(Y,B) is naturally identified with the complex of chains C∗(X � Y,A�B) on
the external product X�Y equipped with the external tensor product of coefficient systems
A� B (which assigns to a product of simplices the tensor product of what A and B assign
to the two factors). There is a natural ‘subdivision’ map

C∗(X,A)⊗ C∗(Y,B) = C∗(X � Y,A�B)→ C∗(X × Y, p∗XA⊗ p∗YB), (B.5)
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which can be seen to be a quasi-isomorphism by using the argument of Lemma B.1 to reduce
to the case of a product of simplices rel boundary, which can be verified explicitly.

Recall that a map of simplicial sets A• → B• is called a trivial Kan fibration when for
every diagram of solid arrows

∂∆n A•

∆n B•

(B.6)

there exists a dotted lift. If A• → B• is a trivial Kan fibration, then for any level-wise
injection of simplicial sets P• → Q• and diagram of solid arrows

P• A•

Q• B•

(B.7)

there exists a dotted lift (construct the lift one simplex at a time).

Lemma B.2. If X → Y is a trivial Kan fibration, then C∗(X, f
∗A)→ C∗(Y,A) is a quasi-

isomorphism for any coefficient system A on Y .

Proof. Solving the lifting problem

∅ X•

Y• Y•

f

1Y

s (B.8)

produces a section s : Y• → X• of f . Solving the lifting problem

X × ∂∆1 X•

X ×∆1 Y•

sft1X

f

fpX

H (B.9)

produces a homotopy H between 1X and sf : X• → X•. It then follows from functoriality
of C∗ (and its behavior under products) that f∗ is a homotopy equivalence.

We may also define the (co)homology of simplicial groupoids with respect to coefficient
systems. A resolution of a simplicial groupoid X• is a trivial Kan fibration X̃• → X• from a
simplicial set X̃• (the notion of a trivial Kan fibration makes sense for simplicial groupoids).
Every simplicial groupoid has a resolution: it may be constructed by induction on skeleta
(or, more or less equivalently, by the small object argument). We define the (co)chain group
of a simplicial groupoid X• with coefficients in A to be the (co)chain group of any resolution
X̃• of X• with coefficients in the pullback of A. This is well defined by Lemma B.2.
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