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Abstract

The Nadler–Zaslow correspondence famously identifies the finite-dimensional Floer
homology groups between Lagrangians in cotangent bundles with the finite-dimensional
Hom spaces between corresponding constructible sheaves. We generalize this corre-
spondence to incorporate the infinite-dimensional spaces of morphisms ‘at infinity’,
given on the Floer side by Reeb trajectories (also known as “wrapping”) and on the
sheaf side by allowing unbounded infinite rank sheaves which are categorically com-
pact. When combined with existing sheaf theoretic computations, our results confirm
many new instances of homological mirror symmetry.

More precisely, given a real analytic manifold M and a subanalytic isotropic subset
Λ of its co-sphere bundle S∗M , we show that the partially wrapped Fukaya category of
T ∗M stopped at Λ is equivalent to the category of compact objects in the unbounded
derived category of sheaves on M with microsupport inside Λ. By an embedding trick,
we also deduce a sheaf theoretic description of the wrapped Fukaya category of any
Weinstein sector admitting a stable polarization.
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1 Introduction

I saw the angel in the marble, and
carved until I set him free.

—Michelangelo (attributed)

The calculation of Fukaya categories of symplectic manifolds has emerged as a question
of central interest in geometry. Within symplectic geometry itself, many questions may be
phrased in terms of intersections of Lagrangian submanifolds; as the Fukaya category is built
from these, it is a natural tool for their study. In low-dimensional topology, a number of
invariants of smooth manifolds and smooth knots can be extracted from Fukaya categories
of associated symplectic manifolds. Homological mirror symmetry, a largely conjectural
correspondence arising from non-rigorous reasoning in mathematical physics, further predicts
that many categories of interest in algebraic geometry and representation theory also arise
as Fukaya categories.

Beyond the intrinsic interest in confirming or explaining these predictions, knowing that
a category of interest arises as a Fukaya category suggests the existence of additional struc-
tures. For one example, morphism spaces in the Fukaya category are Floer homology chain
complexes, and as such come with a natural basis; this often ‘explains’ the existence of
previously known ‘canonical’ bases of these Hom spaces. For another, the relative ease of
constructing symplectomorphisms (which act on the relevant Fukaya categories) gives a nat-
ural source of automorphisms of these categories that are far less apparent from other points
of view. The difficulty in calculating Fukaya categories, which is present in all of the afore-
mentioned settings, stems from the global and analytic nature of the pseudo-holomorphic
disks appearing in the definition.

In this paper, we obtain a combinatorial description of the partially wrapped Fukaya
categories of all stably polarized Weinstein manifolds (more generally, sectors), by showing
that they are isomorphic to certain corresponding categories of microlocal sheaves.

1.1 Weinstein manifolds and partially wrapped Fukaya categories

A vector field Z on a symplectic manifold (X,ω) is said to be Liouville when LZω = ω. Recall
that in this case λ := ω(Z, ·) is a primitive for ω, and that such symplectic manifolds are
necessarily non-compact. Such a triple (X,ω, Z) (equivalently (X,λ)) is called a Liouville
manifold if, in addition, the non-compact ends of X are identified (necessarily uniquely)
by Z with the positive end of the symplectization of a contact manifold [31]. The core of a
Liouville manifold is the locus of points cX which do not escape to infinity under the Liouville
flow. The inclusion cX ⊆ X is a homotopy equivalence, and in some sense cX carries all of
the symplectic topology of X as well.

A Liouville manifold (X,ω, Z) is said to be Weinstein if Z is gradient-like [20]. The
key feature of such manifolds is that the core cX is a union of isotropic submanifolds, and
moreover admits transverse Lagrangian disks (‘cocores’) at its smooth Lagrangian points.
Prototypical examples include cotangent bundles, affine algebraic varieties, and more gen-
erally (finite type) Stein complex manifolds. Many examples of interest in geometric rep-
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resentation theory, such as conical symplectic resolutions, quiver varieties, moduli of Higgs
bundles, and cluster varieties are in this class. Moreover, any compact symplectic manifold
whose symplectic form has rational periods can be presented as a compactification of a Wein-
stein manifold [24, 37], and hence, through a strategy introduced in [76], understanding the
Fukaya categories of Weinstein manifolds serves as a stepping stone to studying the Fukaya
categories of closed symplectic manifolds.

While various analytic difficulties in Floer theory are simplified in the Liouville setting
(due to strong topological and geometric control on pseudo-holomorphic disks), there is a sig-
nificant new layer of complexity possible, thanks to the non-compactness of the target space.
Namely, as has been understood for some time, it is desirable in this context to enlarge the
Fukaya category of compact Lagrangians by adding certain non-compact (properly embed-
ded, conical at infinity) Lagrangians as well. These larger Fukaya categories often have better
formal properties due to there being an ample supply of non-compact Lagrangians, and they
are also required by mirror symmetry, where non-compact Lagrangians in non-compact tar-
gets arise as mirror objects to sheaves on non-compact or non-Calabi–Yau manifolds, whose
Ext groups could be of infinite rank or fail to satisfy Poincaré duality. Fukaya categories
of non-compact Lagrangians also have bearing on questions about the Reeb dynamics at
infinity. There are many different ways to add non-compact Lagrangians to the Fukaya cat-
egory, with substantially different results; the basic parameters are (1) in which directions
at infinity to allow non-compact Lagrangians and (2) in what direction and by how much to
perturb (‘wrap’) Lagrangians at infinity when computing Floer homology.

The framework of partially wrapped Fukaya categories [14, 15, 86, 35, 36] has emerged
as a way to describe and relate different prescriptions for asymptotics and wrapping. One
specifies a subset at infinity which Lagrangians cannot limit to or wrap past, called the stop.
In the resulting category, Lagrangians which are isotopic in the complement of the stop induce
isomorphic objects, and symplectomorphisms preserving the stop induce autoequivalences.
The resulting category is also invariant under isotopies of the complement of the stop. A
stopped Liouville manifold (X,Λ) consists of a Liouville manifold X and a stop Λ. The
relative core cX,Λ of (X,Λ) is the set of those which do not escape to the complement of Λ
at infinity under the positive Liouville flow.

The partially wrapped setting includes variants of many previous constructions:

• When the stop is empty one obtains the (fully) wrapped Fukaya category of Abouzaid–
Seidel [11].

• Given a smooth Legendrian Λ, there is a naive ‘infinitesimally wrapped’ Fukaya cat-
egory with asymptotics along Λ given equivalently by either: (1) take the stop to be
the complement of a small regular neighborhood of Λ, or (2) take the stop to be Λ and
consider just the full subcategory of Lagrangians which admit wrappings converging
to Λ (see Section 6.3 for further discussion, including a comparison with [64]).1 More
generally, we can take Λ to be the core of a Liouville hypersurface.

1This naive category embeds fully faithfully into the category of ‘proper modules’ over the partially
wrapped Fukaya category stopped at Λ, which should be regarded as the more correct category. It is an
open and likely hard geometric question to determine when this embedding is an equivalence, already for
Λ = ∅.
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• The Fukaya category of a Landau–Ginzburg model w : Y → C, also known as the
Fukaya–Seidel category when w is a Lefschetz fibration [77], can be modeled as the
partially wrapped Fukaya category of Y stopped at (the core of) the Weinstein hyper-
surface w−1(−∞).2

Of course, partially wrapped Fukaya categories form a significantly broader class than in-
finitesimal or Fukaya–Seidel categories (e.g. they can have infinite-dimensional morphism
spaces). An illustrative example: categories of coherent complexes on arbitrary (not neces-
sarily compact or smooth) n-dimensional toric stacks can be shown equivalent to partially
wrapped Fukaya categories of (C∗)n = T ∗T n, by combining the sheaf theoretic work of [52]
with the main theorem of the present article.

Of particular importance are (possibly singular) isotropic stops. Isotropicity of the stop
plays the same role as the Weinstein condition on the symplectic manifold itself; for instance,
the core of a Weinstein hypersurface at infinity is a typical singular isotropic stop of interest
to mirror symmetry.

1.2 Topological and sheaf theoretic interpretations

Despite their analytic origins, Fukaya categories have often been found to admit topological
interpretations. The first prototype is the fact that the Lagrangian Floer homology of an
exact Lagrangian is nothing other than its ordinary cohomology. The work of Nadler and
Zaslow [64, 60] provides a sweeping generalization of this, identifying infinitesimally wrapped
Floer homologies of exact Lagrangians in cotangent bundles with morphisms of sheaves on
the base. In a seemingly different direction, it was observed that wrapped Floer homology
also has a topological interpretation. Indeed, work of Abbondondalo and Schwarz [2, 1, 3]
(see also Cieliebak and Latschev [21]) found many instances where wrapped Floer homology
is isomorphic to the homology of spaces of paths and loops. Building on these, Abouzaid
showed that in fact the wrapped Fukaya category of a cotangent bundle is naturally identified
with perfect modules over chains on the based loop space of the base [6] (see also [7]). This
last result may be restated (by the ∞ version of the van Kampen theorem): the wrapped
Fukaya category of a cotangent bundle is the global sections of the constant cosheaf of
categories on the zero section with costalk Perf Z. This formulation exhibits an instance of a
more general conjecture of Kontsevich [49]: the wrapped Fukaya category of any Weinstein
manifold X should be the global sections of a cosheaf of categories on its core cX .

Nadler’s work [61] unified these points of view, by proposing that while infinitesimally
wrapped Fukaya categories are modeled by (micro)sheaves with perfect (micro)stalks (as in
[64]), the partially wrapped category should be modeled by compact objects in the category of
all (micro)sheaves with appropriate microsupport conditions. For essentially formal reasons,
these categories of compact objects may be organized into a cosheaf of categories, so Nadler’s
proposal is a strengthening of Kontsevich’s conjecture. At the time of Nadler’s original
proposal, microsheaves were only defined for subsets of cotangent bundles, but the high

2From our point of view, this should just be taken as the definition of the Fukaya–Seidel category.
However, we note there are some technical differences between this definition and the standard definition,
and a careful proof of their equivalence is, as far as we know, a folk result whose proof has no available
reference (though a special case is treated in [36, Sec. 8.6]).
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codimension embedding trick from [78] has now defined a category of microsheaves on the
core of any Liouville manifold [63].

Since microlocal sheaf categories are entirely combinatorial/topological in nature, Nadler’s
proposal is a (conjectural) computation of (partially) wrapped Fukaya categories. An illus-
trative example calculation is given in [61], where it was shown that the relevant category
of microlocal sheaves on the skeleton of the (higher dimensional) symplectic pairs of pants
matched the mirror-symmetric prediction for the wrapped Fukaya category (which was more
recently verified directly [53]).

Example. Remarkably, while wrapped and infinitesimal Floer homologies are rather different
creatures, the same does not appear to be the case on the sheaf side of Nadler’s proposal.
Notably, there is nothing like ‘wrapping’ on the sheaf side; instead, purely categorical oper-
ations. As it is difficult to appreciate the depth of the distinction at first, let us return to
the example of the cotangent bundle, with empty stop. The core is just the zero section,
and sheaves microsupported in the zero section are (almost by definition) nothing other than
locally constant sheaves. If we require these to have finite stalks, then we are studying finite
rank local systems (which coincides with the infinitesimally wrapped Fukaya category, i.e.
in this case the Fukaya category of compact Lagrangians). On the other hand, a typical
compact object in this category is the ‘tautological’ local system, with fiber given by chains
on the based loop space. Usually of infinite rank, this object is best understood in terms of
the functor it co-represents: taking the stalk at a point. Note that no ‘wrapping’ appears
in this purely categorical procedure proposed by Nadler, yet it does in fact correctly recover
the wrapped Fukaya category.

1.3 Main results

We now fix notation and state our main results more precisely. Theorem 1.1 concerns the
special case of cotangent bundles, and its proof comprises the bulk of the paper. Theorem 1.4
is derived from Theorem 1.1 and concerns more general stably polarized Liouville manifolds.

For a Liouville symplectic manifold X and closed subset Λ ⊆ ∂∞X, we write W(X,Λ)
for the (partially) wrapped Fukaya category of X, stopped at Λ. Its objects are Lagrangians
L ⊆ X which are eventually conical and disjoint from Λ at infinity, and its morphism
complexes are Floer cochains after wrapping Lagrangians in the complement of Λ. It is an
A∞ category defined in [35, 36] (see also [11, 10, 86]); we review its definition at the beginning
of Section 5. Particularly important objects of W(X,Λ) include: the Lagrangian linking disks
to the smooth Legendrian points of Λ [36, Sec. 5.3], the Lagrangian cocore disks when X
is Weinstein, and the cotangent fibers when X = T ∗M (which may be viewed as a special
case of cocore disks). We write Perf W(X,Λ) for the idempotent-completed pre-triangulated
closure of W(X,Λ). Whenever Λ ⊆ Λ′, there is a tautological functor W(X,Λ′)→W(X,Λ).

For a smooth manifold M , we write Sh(M) for the dg category of sheaves of dg Z-
modules on M . The microsupport of a sheaf F is a closed conical locus ss(F) ⊆ T ∗M whose
role is to encode, infinitesimally, which restriction maps are quasi-isomorphisms. We write
ShΛ(M) for the full subcategory of Sh(M) spanned by those sheaves whose microsupport
at infinity is contained in Λ. Particularly nice functors ShΛ(M)→ ModZ include the stalk
functors at points of M and the microstalk functors at smooth Legendrian points of Λ. These
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definitions are reviewed in Section 4. We denote by ShΛ(M)c the category of compact objects
in ShΛ(M). The reader is cautioned that the compact objects of ShΛ(M) do not necessarily
have perfect stalks or bounded homological degree; that is, they need not be constructible
sheaves in the usual sense. The relevance of such objects on the sheaf side was pointed out in
[61], where Theorem 1.1 was implicitly conjectured by the terminology ‘wrapped sheaves’ for
compact objects of ShΛ(M) and ‘wrapped (microlocal) skyscrapers’ for co-representatives of
(micro)stalk functors.

Theorem 1.1. Let M be a real analytic manifold, and let Λ ⊆ S∗M be a subanalytic closed
isotropic subset. There there is a canonical equivalence of categories

Perf W(T ∗M,Λ)op = ShΛ(M)c (1.1)

which carries the linking disk at any smooth Legendrian point p ∈ Λ to a co-representative
of the microstalk functor at p ∈ Λ and carries the cotangent fiber at a point p ∈ M not in
the image of Λ to a co-representative of the stalk functor.

Remark 1.2. Rather than passing to the opposite category of the Fukaya category, we could
equivalently negate either Λ or the Liouville form on T ∗M .

To prove Theorem 1.1, we do not calculate a single W(T ∗M,Λ) on its own. Instead,
we calculate the functor Λ 7→ Perf W(T ∗M,Λ)op (functoriality is with respect to inclusions
Λ ⊆ Λ′) which is a much more rigid object. In fact, we formulate a pair of axioms which
uniquely charaterize such a system of categories Λ 7→ C(Λ) (Section 3), so the proof of
Theorem 1.1 then reduces to verifying these axioms for both Λ 7→ Perf W(T ∗M,Λ)op (Section
5) and Λ 7→ ShΛ(M)c (Section 4).

The underlying reason this strategy can succeed is that there are special stops Λ (specifi-
cally Λ = N∗∞S, the union of conormals to the strata of a Whitney triangulation S) for which
the Reeb dynamics in the complement of Λ are simple, thus making it tractable to show (1.1)
by direct calculation. Since every Λ is a subset of some N∗∞S, it then suffices to show that
both sides of (1.1) transform in the same way when Λ gets smaller. On the Fukaya side, the
functor W(T ∗M,Λ′)→W(T ∗M,Λ) for Λ′ ⊇ Λ is the quotient by the linking disks to Λ′ \Λ;
this was established recently in [36]. On the sheaf side, one quotients by co-representatives
of microstalks; this is ultimately a consequence of co-isotropicity of the microsupport [47,
Thm. 6.5.1]. The identification of linking disks with microstalks matches the wrapping exact
triangle of [36] with the microlocal Morse description of sheaf cohomology from [39, 47].
The conclusion is then that choosing a Whitney triangulation S of M whose conormal N∗∞S
contains Λ yields a description of both categories Perf W(T ∗M,Λ)op and ShΛ(M)c as the
same localization of the category Perf W(T ∗M,N∗∞S)op = Perf S = ShN∗∞S(M)c.

This approach to the proof of Theorem 1.1 is rather different from the previous compu-
tations of Fukaya categories of cotangent bundles [64, 60, 6]. In particular, we rely on no
results from these articles. In fact, our ability to add geometry to simplify the situation is
such that the only Floer cohomology calculations which need to be made in this entire article
are between Lagrangians which intersect in at most one point, obviating, in particular, the
need to ever compute a holomorphic disc. We therefore expect that the proofs of the results
in this paper would apply to the case of more general (e.g. sphere spectrum) coefficients,
provided one has access to the definitions of the sheaf and Fukaya categories in these settings.

The equivalence of Theorem 1.1 is also functorial under open inclusions:
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Proposition 1.3. Let M ′ ↪→ M be an analytic open inclusion of analytic manifolds. For
subanalytic isotropics Λ′ ⊆ S∗M ′ and Λ ⊆ S∗M with Λ′ ⊇ Λ ∩ S∗M ′, the following diagram
commutes

Perf W(M ′,Λ′)op Perf W(M,Λ)op

ShΛ′(M
′)c ShΛ(M)c

Thm 1.1 Thm 1.1 (1.2)

where the bottom horizontal arrow is (the restriction to compact objects of) the left adjoint
of restriction.

In Section 6, we detail a number of applications and corollaries of Theorem 1.1. These
include a version of the original Nadler–Zaslow correspondence, translations of the microsheaf
theoretic work on mirror symmetry for toric varieties and toric boundaries, and a sheaf
theoretic description of the augmentation category of the partially wrapped Floer cochains
of the linking disk to a Legendrian (expected to be equivalent to the Legendrian DGA), valid
for the jet bundle of a manifold of any dimension. After the present work, a host of sheaf
theoretic calculations [33, 82, 81, 80, 52, 62, 61, 34] can now be understood as computations
of wrapped Fukaya categories.

Finally, in Section 7, we turn from cotangent bundles to the general setting of stably
polarized Weinstein manifolds. We proceed by combining the ‘doubling trick’ of [36, Ex.
10.7 and 13.4] and the ‘antimicrolocalization’ of [63, Sec. 7] to reduce to the cotangent
bundle case. We arrive the following sheaf theoretic description of partially wrapped Fukaya
categories:

Theorem 1.4. Let X be a real analytic Liouville manifold, and let Λ ⊆ ∂∞X be a stop
whose relative core cX,Λ := cX ∪ (Λ × R) ⊆ X is subanalytic singular isotropic. For any
stable polarization3 of X, there is a fully faithful functor

Perf W(X,Λ)op ↪→ µshcX,Λ
(cX,Λ)c, (1.3)

where µshcX,Λ
(cX,Λ) denotes the category of microlocal sheaves on cX,Λ. This functor sends

a homological cocore at a smooth Lagrangian point p of cX,Λ to a co-representative of the
microstalk at p.

In particular, if X is Weinstein, or more generally admits homological cocores, then (1.3)
is an equivalence.

Let us comment on the hypotheses of Theorem 1.4 and, in particular, argue that it
applies to all stably polarized Weinstein sectors. The analyticity assumptions hold in most
concrete cases of interest, and abstractly speaking, any Weinstein manifold (more generally,
sector) may be perturbed so as to be real analytic and to have subanalytic relative core (see
Corollary 7.28). A homological cocore at a smooth Lagrangian point p ∈ cX,Λ is an object
of Perf W(X,Λ) whose image in Perf W((X,Λ) × (CRe≥0,∞)) is the linking disk at p ×∞.

3A stable polarization of a symplectic manifold is the expression of its tangent bundle plus Ck (some
finite k) as the complexification of a real vector bundle; a choice of stable polarization controls the ‘twisting’
of the categories on both sides of (1.3). Many examples of interest are stably polarized, such as all cotangent
bundles and all complete intersections in Cn.
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Admitting homological cocores means that every smooth Lagrangian point of cX,Λ has a
homological cocore; this condition turns out to depend only on X up to deformation, and
holds whenever X is Weinstein. For (X,Λ) as in Theorem 1.4, the stabilization X×C always
admits homological cocores, so there is always an equivalence Perf W((X,Λ)×(C,±∞))op =
µshcX,Λ×R(cX,Λ × R)c = µshcX,Λ

(cX,Λ)c.
The embedding of Theorem 1.4 depends a priori on a choice of analytic Liouville hyper-

surface embedding of X ×Ck into S∗M for some auxiliary analytic manifold M , compatible
with stable polarizations (part of the proof is to show such data always exists). We expect
our methods could be extended to show that the embedding of Theorem 1.4 is independent
of this choice.

The embedding of Theorem 1.4 associated to a given analytic Liouville hypersurface
embedding X ↪→ S∗M is, by construction, compatible with the equivalence of Theorem 1.1
in the sense that the following diagram commutes:

Perf W(X,Λ)op Perf W(T ∗M, cX,Λ)op

µshcX,Λ
(cX,Λ)c ShcX,Λ(M)c

Thm 1.4 Thm 1.1

µ∗

(1.4)

(see Proposition 7.24), where µ∗ denotes the left adjoint to microlocalization. Using this
compatibility, it is proven in [34] that for a Fano toric stack Y with toric divisor D, there is
a commutative diagram

Perf W(W−1(−∞)) Perf W(X,W ) Perf W(X) 0

Coh(D) Coh(Y ) Coh(Y \D) 0

(1.5)

where W : X → C is the mirror Landau–Ginzburg model (see Example 7.25).

Convention. Throughout this document, we work in the setting of dg and, equivalently,
A∞ categories over Z (or more generally any commutative ring). We only ever consider
“derived” functors, we only ever mean “homotopy” limits or colimits, and we systematically
omit the word “quasi”. By modules, we mean dg or A∞ modules, e.g. by Z-modules we
mean the category of chain complexes of abelian Z-modules, localized at quasi-isomorphisms,
except when, as in this sentence, we qualify it with the word ‘abelian’. In Section A we detail
our assumptions about these categories and collect relevant categorical notions which will
appear throughout the paper.
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2 Stratifications

2.1 Generalities

Let X be a topological space. By a stratification S of X, we mean a locally finite decom-
position into disjoint locally closed subsets {Xα}α∈S, called strata, such that each boundary
Xα \ Xα is a union of other strata Xβ. The collection of strata S is naturally a poset, in
which there is a map β → α iff Xα ⊆ Xβ.

Remark 2.1. The poset S does not generally capture the homotopy type of the space X.
Conditions under which it does (contractibility of various strata/stars) are well known and
recalled below.

We will say a subset Y ⊆ X is S-constructible when it is a union of strata of the
stratification S of X. We say that a stratification T refines a stratification S when the strata
of S are T-constructible.

We recall that an abstract simplicial complex on a vertex set V is a collection Σ of
nonempty finite subsets of V, containing all singletons and all subsets of elements of Σ.
By a simplicial complex, we mean the geometric realization |Σ| of an abstract simplicial
complex Σ; it comes with a stratification by the ‘open simplices’ (which, of course, are
locally closed, not necessarily open, subsets of |Σ|). We say a stratification S on X is a
triangulation when there exists a homeomorphism |Σ| ∼−→ X identifying stratifications. We
never impose any sort of regularity condition (differentiability, smoothness, analyticity, etc.)
on this homeomorphism, even in the context of stratifications of a given regularity class.
Note that the following are not triangulations: a stratification of a circle into single point
and its complement, or into two points and their complement; the stratification into three
points and their complement is a triangulation.

The open star of a stratum is the union of strata whose closures contain it. Taking
stars reverses the inclusion: we have Xα ⊆ Xβ ⇐⇒ star(Xβ) ⊆ star(Xα). Note that
star(Xα) ∩ star(Xβ) =

⋃
α←γ→β star(Xγ). For triangulations, we can do better: star(Xα) ∩

star(Xβ) = star(Xγ) where γ is the simplex spanned by the vertices of α union the vertices
of β (if this simplex is present), and otherwise star(Xα) ∩ star(Xβ) = ∅.

For a Cp manifold M , we say a stratification S is Cp if each stratum Mα is a (locally
closed) Cp submanifold.

A C1 stratification S of a C1 manifold M is called a Whitney stratification iff it satisfies
Whitney’s conditions (a) and (b). These are usually stated as the following conditions on
pairs of strata X and Y of S:

(a) For any sequence xi ∈ X converging to y ∈ Y such that TxiX converges to a subspace
V ⊆ TyM , we have TyY ⊆ V .
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(b) For any pair of sequences xi ∈ X and yi ∈ Y both converging to y ∈ Y such that TxiX
converges to a subspace V ⊆ TyM and the secant directions from yi to xi converge to
a line L ⊆ TyM , we have L ⊆ V .

By compactness of flag varieties, we may pass to convergent subsequences, and hence con-
ditions (a) and (b) may be reformulated as follows:

(a) For strata Y ⊆ X, as X 3 x → y ∈ Y , the tangent spaces TxX become arbitrarily
close to containing TyY , uniformly over compact subsets of Y .

(b) For strata Y ⊆ X, as X 3 x → y ∈ Y , the secant lines between x and y become
arbitrarily close to being contained in TxX, uniformly over compact subsets of Y .

Whitney’s condition (a) is equivalent to the assertion that the union of conormals N∗S :=⋃
αN

∗Mα ⊆ T ∗M is closed. In fact, it is not hard to see that Whitney’s condition (b) implies
Whitney’s condition (a) [59, Prop. 2.4]. A Whitney stratification is, by definition, at least
C1; it makes sense to consider Cp Whitney stratifications for any p ≥ 1, including p =∞.

In order to guarantee the existence of Whitney stratifications, we will ultimately restrict
to the setting of (real) analytic manifolds and subanalytic stratifications. We recall that a set
is defined to be subanalytic when locally (i.e. in a neighborhood of every point of its closure)
it is the analytic image of a relatively compact semianalytic set (i.e. locally defined by finitely
many analytic inequalities). The canonical modern reference for subanalytic geometry is [18].
By a subanalytic stratification, we mean a stratification in which all strata are subanalytic.
Every subanalytic stratification admits a subanalytic refinement in which all strata are locally
closed analytic submanifolds. It is a fundamental result that for any locally finite collection
of subanalytic subsets of an analytic manifold, there exists a subanalytic stratification with
respect to which all the subsets are constructible. For proofs of these results, see [18, 83].
We also require the result that every subanalytic stratification admits a refinement to a
subanalytic Whitney triangulation [84, 22, 23].

Remark 2.2. Wherever we have written ‘subanalytic’, one could substitute ‘defineable’ with
respect to any fixed analytic-geometric category [90, 89]. Every defineable stratification has
a defineable refinement to a Cp Whitney triangulation for any given p <∞ [84, 22, 23]. The
fact that this is not known to hold for p =∞ does not create any difficulties.

Lemma 2.3. Let M be a manifold with Whitney stratification S. If N ⊆ M is a locally
closed submanifold transverse to every stratum of S, then the intersected stratification S∩N
is a Whitney stratification of N .

Proof. It suffices to verify that S ∩ N satisfies Whitney (b). Thus consider a pair of strata
X ∩ N and Y ∩ N with Y ⊆ X. Whitney (b) for the stratification S guarantees that the
secant line from x ∈ X ∩ N to y ∈ Y ∩ N becomes arbitrarily close to being contained in
TxX as x → y, uniformly over compact subsets of Y ∩ N . On the other hand, Whitney
(b) for the stratification for S ∩ N requires this secant line to become arbitrarily close to
being contained in TxX ∩ TxN , a stronger condition. Since N is a submanifold, the secant
line certainly becomes arbitrarily close to being contained in TxN . Our task is thus to pass
from being close to TxX and TxN to being close to their intersection TxX ∩ TxN . It thus
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suffices to show that TxX and TxN are uniformly transverse as x→ y. Let us see how this
follows from Whitney (a) for S. Since N is transverse to Y , we have TyY + TyN = TyM .
Whitney (a) for S means that TxX is arbitrarily close to containing TyY as x → y. Thus
TxX + TxN = TxM uniformly as x→ y, as desired.

Remark 2.4. Here is a typical application of Lemma 2.3. Let M be a manifold with a
Whitney stratification S, and let N ⊆ M be a closed (as a subset) submanifold transverse
to every stratum of S. Then the stratification SN of M with strata Mα ∩N and Mα \N for
α ∈ S (the poset of strata SN is thus S × {(M \ N) > N}) is Whitney. Indeed, Whitney
(b) for SN is a special case of Whitney (b) for S and S ∩ N . A slight modification of this
example will also come up later. Let B ⊆ M be a closed ball whose boundary is transverse
to a Whitney stratification S. The stratification of M by Mα ∩ ∂B, Mα ∩ B◦, and Mα \ B,
for strata Mα ⊆M , is now Whitney by the same argument using Lemma 2.3.

2.2 Microlocal approximation of constructible sets

A constructible set X with respect to a Whitney stratification is in general quite singular.
Our goal in this section is to show how such sets can be microlocally approximated by
manifolds-with-corners Xη parameterized by small η > 0, in the sense that Xη → X and the
conormal to Xη converges to (being contained in) the conormal of X as η → 0. This result
will be used in the proof of Proposition 4.8 and in Section 5.7. We fix an integer p ≥ 1,
possibly p =∞, and work throughout with stratifications of class Cp.

A Cp radius function for a locally closed Cp submanifold Y ⊆ M is a pair (U, ρ) where
U ⊆ M is an open set containing Y and ρ : U → R≥0 is of class Cp on U \ Y and satisfies
the following three conditions:

• ρ−1(0) = Y ;

• ρ is Lipschitz on a neighborhood of any compact subset of Y ;

• the lim inf of the evaluation of dρ(x) on the secant direction from y ∈ Y to x ∈ M
is bounded below by some ε > 0 as x → y, provided y is constrained to a compact
subset of Y and the ratio d(x,y)

d(x,Y )
is bounded by some fixed N < ∞ (this condition is

well defined since ρ is assumed Lipschitz; it implies |dρ(x)| is bounded away from zero
over neighborhoods of compact subsets of Y ).

The standard radius function for Rn × 0 ⊆ Rn × Rm is of course (a1, . . . , an, b1, . . . , bm) 7→
(b2

1 + · · ·+ b2
m)1/2. Every locally closed Cp submanifold admits a Cp radius function, as can

be seen by choosing a collection of local coordinate patches and summing together standard
radius functions via a partition of unity (a convex combination of radius functions is a radius
function).

The following (trivial) restriction property for radius functions will be important: if (U, ρ)
is a radius function for Y ⊆ M , and N ⊆ M is transverse to Y , then (U ∩ N, ρ|U∩N) is a
radius function for Y ∩N ⊆ N .

When Y ⊆ M is relatively compact, a radius function (U, ρ) for Y will be called proper
when for every open set V containing Y , there exists ε > 0 such that ρ−1([0, ε]) ⊆ V . It is
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easy to produce proper radius functions: for any radius function (U, ρ), there exists an open
set U ′ ⊆ U containing Y such that (U ′, ρ|U ′) is proper.

The purpose of a radius function is to define tubular neighborhoods ρ−1([0, ε]). The
conditions in the definition of a radius function are chosen so as to be able to prove the
following two key assertions:

Lemma 2.5. Let (U, ρ) be a radius function for Y ⊆M . We have dρ(x)→ N∗Y as x→ Y ,
uniformly over compact subsets of Y (equivalently, N∗ρ−1(r) approaches being contained in
N∗Y as r → 0, uniformly over compact subsets of Y ).

Proof. Suppose for sake of contradiction that there is a sequence xi → y ∈ Y with dρ(xi)→
ξ ∈ T ∗yM \N∗yY . Since ξ /∈ N∗yY , there exist yi ∈ Y with d(xi,yi)

d(xi,Y )
uniformly bounded and the

secant direction from yi to xi converging to the kernel of ξ. This contradicts the final axiom
of a radius function.

Lemma 2.6. Let Y ⊆M be a stratum of a Whitney stratification S, and let (U, ρ) be a radius
function for Y . There exists an open set V ⊆ U containing Y such that the submanifold
ρ−1(r) is transverse to S over V for all r > 0.

Proof. The secant line to x ∈ ρ−1(r) from nearby y ∈ Y pairs positively with dρ(x), whereas
Whitney (b) requires that this secant line approach the tangent space to the stratum con-
taining x in the limit x→ y. Since dρ is bounded, this gives a positive lower bound on the
restriction of dρ to any stratum of S in a neighborhood of any compact subset of Y .

Figure 1: A compact constructible set X (left) and its outward cornering Xε (right).

We now turn to the setting of a compact set X ⊆M constructible with respect to a chosen
Whitney stratification S. Given a proper radius function for each stratum of S contained in
X, we define the ‘outward cornering’ of X with respect to S (see Figure 1) to be

Xε =
⋃

Mα⊆X

ρ−1
α ([0, εα]) (2.1)

for ε = (εα)Mα⊆X , where it is tacitly required that εα > 0 be sufficiently small as an unspec-
ified function of (εβ)Mβ$Mα

. Note that, no matter our notion of sufficiently small, we can

always find a parameterization ε(η) where each εα > 0 is an increasing function of η > 0,
limiting to zero as η → 0, such that εα(η) > 0 is sufficiently small in terms of (εβ(η))Mβ$Mα

for all η > 0 (proof: by induction on strata).
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The significance of properness of the given radius functions is that it (along with compact-
ness of X) ensures that the part of ∂Xε coming from ρ−1

α (εα) is contained in a neighborhood
of a compact subset of Mα ⊆ X (depending on (εβ)Mβ$Mα

), hence falls within the scope of
Lemma 2.6.

Here is the first key property of Xε:

Corollary 2.7. Fix a Whitney stratification S of M . Let X ⊆M be a compact constructible
subset, with a choice of proper radius function for each of its strata. Then M \ Xε is a
manifold-with-corners, all of whose corner strata are transverse to S.

Proof. We proceed by induction on the number of strata of X. Thus let X = X0 ∪Mα, and
suppose the result is known for X0. This means, in particular, that M\Xε

0 is a manifold-with-
corners, all of whose corner strata are transverse to Mα. It follows that further removing the
small regular neighborhood ρ−1

α ([0, εα]) produces a manifold-with-corners M \Xε, provided
εα > 0 is sufficiently small as a function of (εβ)Mβ$Mα

.

Now let us show that the corner strata of M \ Xε are transverse to S. The boundary
stratum of M \Xε coming from ρ−1

α (εα) is transverse to S by Lemma 2.6. A general corner
stratum of M \Xε is the intersection C ∩ ρ−1

α (εα) where C is a corner stratum of M \Xε
0.

To see that such an intersection is also transverse to S, apply Lemma 2.6 to the stratum
C ∩Mα ⊆ C of the restriction to C of S (which is Whitney by Lemma 2.3, locally uniformly
in ε \ εα) equipped with the restriction of ρα (which remains a radius function as noted
earlier).

Note that the conclusion of Corollary 2.7 (transversality of ∂Xε and S) is equivalent
to saying that N∗S (the union of the conormals of all strata) and N∗Xε (the union of the
conormals of all corner strata) are disjoint at infinity.

Given transversality of ∂Xε and S, we can define the ‘big conormal’ N∗(S|(M \Xε)) to
be the union of conormals of intersections of strata of S and corner strata of M \Xε. The
second key property of Xε is the following convergence result:

Corollary 2.8. Fix a Whitney stratification S of M . Let X ⊆M be a compact constructible
subset, with a choice of proper radius function for each of its strata. Then the big conormal
N∗(S|(M \Xε)) lies in arbitrarily small neighborhoods of N∗S as ε→ 0.

Proof. We proceed by induction on the number of strata of X. Thus let X = X0 ∪Mα,
and suppose the result is known for X0. It thus suffices to show that N∗(S|(M \ Xε)) lies
in an arbitrarily small neighborhood of N∗(S|(M \Xε

0)) as εα → 0 (uniformly over compact
subsets of ε \ εα).

The conormal of the intersection of a stratum Mγ of S with ρ−1
α (εα) is the sum of the

conormals of Mγ and ρ−1
α (εα). These individually approach being contained in N∗Mα in

the limit εα → 0 (the first by Whitney (a) and the second by Lemma 2.5), and they are
quantitatively transverse by the axioms of a radius function (as was the main point of the
proof of Lemma 2.6). It follows that their sum also approaches N∗Mα as εα → 0.

The general case is that of the conormal of Mγ ∩ρ−1
α (εα)∩C where C is a corner stratum

of M \ Xε
0. It follows by applying the same argument to the intersection of the situation

with C, as in the proof of Corollary 2.7.
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Remark 2.9. In the context of Corollary 2.8, note that any subanalytic family of Legendrians
inside S∗M , whose projections converge to X, will themselves converge to a subset of the
conormal of X with respect to some refinement of S. Corollary 2.8 provides a stronger
convergence result (we do not need to refine the stratification) for the particular family of
outward cornerings defined in (2.1).

2.3 Cornering and conormals of constructible open sets

Here we develop some finer properties of the microlocal approximations constructed in the
previous subsection. They will not be used until Section 5.7.

Let S be a Whitney stratification of M by locally closed smooth submanifolds. For any
S-constructible relatively compact open set U ⊆M , we define its inward cornering

U−ε := U \ (∂U)ε. (2.2)

where (∂U)ε denotes the outward cornering ∂U defined in (2.1). Thus U−ε is (the interior
of) a codimension zero submanifold-with-corners (Corollary 2.7), depending smoothly on ε,
such that as ε → 0, its conormal N∗U−ε remains disjoint from N∗S at infinity (Corollary
2.7) yet limits inside it (Corollary 2.8). Strictly speaking, U−ε also depends on the choices of
tubular neighborhoods of the strata comprising ∂U , however we will leave this choice out of
the notation as it is never particularly relevant (note that it is a convex, hence contractible,
choice). When even the choice of ε is not relevant, we will simply write U−.

Taking ε→ 0, we learn that:

Lemma 2.10. U and U− are diffeomorphic, and the diffeomorphism may be chosen to be
the identity on any fixed compact subset of U .

When S is a triangulation, we may consider for any simplex s ∈ S its open star, star(s).

Lemma 2.11. For S a triangulation and any s ∈ S, there is a homotopy equivalence
∂ star(s)− ' ∂ star(s).

Proof. Both star(s) and star(s)− are the interiors of compact (topological) manifolds-with-
boundary (namely their closures). They are also diffeomorphic: star(s) ∼= star(s)− by Lemma
2.10. It therefore suffices to recall the standard fact that the interior of a compact manifold-
with-boundary remembers its boundary, up to homotopy equivalence.

Indeed, let M be a compact manifold-with-boundary and let M = M \ ∂M denote its
interior. The ‘end space’ e(M) is the space of proper maps R≥0 → M (this is a model for
the homotopy inverse limit of M \ K over compact subsets K ⊆ M). A choice of collar
∂M × [0, 1) ↪→M determines a homotopy equivalence

e(M)
∼←− e(∂M × (0, 1

2
]) = C(R≥0, ∂M)× e((0, 1

2
]), (2.3)

and we have homotopy equivalences C(R≥0, ∂M) ' ∂M and e((0, 1
2
]) ' ∗, so we have

e(M) ' ∂M . (Compare [43, §1].)

Lemma 2.12. For S a triangulation and for simplices s, t ∈ S with star(t) ∩ star(s) 6= ∅
and t9 s, the intersection star(t)−ε ∩ ∂ star(s)−δ is contractible for ε sufficiently small and
δ sufficiently small in terms of ε.
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Proof. As in the proof of Lemma 2.11, the intersection star(t)−ε ∩ ∂ star(s)−δ is the end
space of star(t)−ε ∩ star(s)−δ. As in Lemma 2.10, this intersection star(t)−ε ∩ star(s)−δ is
diffeomorphic to star(t)−ε ∩ star(s), whose end space is in turn given by star(t)−ε ∩ ∂ star(s).
Now we may take ε → 0 again mimicking the proof of Lemma 2.10 to see that this is
homotopy equivalent to star(t)∩ ∂ star(s). The assumptions on s and t now imply that this
is contractible.

Lemma 2.13. If U has smooth boundary, then there is a C0-small isotopy between U− and
a small inward pushoff of U .

Proof. The definition of U− depends on choice of radius functions for the strata comprising
∂U . Fix coordinates ∂U × R ⊆ M near ∂U , and choose radius functions whose inward
derivative in the R-direction is positive inside U . Such radius functions exist locally, hence
can be patched together using a partition of unity pulled back from ∂U (i.e. independent of
the R-coordinate), which preserves the property of having positive inward derivative inside
U . Now using these radius functions, each vertical line p × R for p ∈ ∂U intersects ∂U−

exactly once, transversally, which provides the desired isotopy.

Remark 2.14. It is not asserted that the isotopy in Lemma 2.13 will ensure that the conormal
remains disjoint fromN∗S at infinity. This will require us to exercise some care when applying
it.

For the next result, consider a Whitney stratification S and a point q ∈ M lying in a
stratum Mχ. Let Sq denote the Whitney stratification obtained from S by replacing Mχ

with Mχ \ q and {q}. Given a compact S-constructible set X ⊆ M containing q, we can
consider its outward cornerings Xε and Xε,δ with respect to S and Sq, respectively, where
ε = (εα)Mα⊆X and δ > 0 is associated to q. Evidently

Xε,δ = Xε ∪Bδ(q), (2.4)

and according to the definition of ‘outward cornering’ above, there is the implicit requirement
that εχ > 0 be sufficiently small as a function of (εβ)Mβ$Mα

and δ. The next result concerns

the behavior of Xε,δ when we remove the dependence of εχ on δ. The resulting neighborhoods
are illustrated in Figure 2, which should be contrasted with Figure 1.

Proposition 2.15. Let X ⊆ M be a compact S-constructible subset, and fix q ∈ X living
in stratum χ. Let X̃ε,δ = Xε ∪̃ Bδ(q) where Xε is the outward cornering (2.1) and the
notation ∪̃ indicates that the boundary of the union ρ−1

χ ([0, εχ])∪Bδ(q) is smoothed along its
potential corner locus ρ−1

χ (εχ) ∪ ∂Bδ(q), and then the remaining tubes are added. Then for
suitable choices of radius functions near q, these modified outward cornerings Xε,δ satisfy the
conclusion of Corollary 2.7.

Proof. Choose a local Euclidean chart near q in which q ∈ Mχ ⊆ M is locally modelled
on 0 ∈ Rk ⊆ Rn, and let us choose the usual radius (i.e. distance) functions in this chart.
Note that we thus have a completely explicit picture of how these tubes intersect near q;
in particular, their union with smoothed boundary is well behaved. We regard the union
of tubes (with smoothed boundary) ρ−1

χ ([0, εχ]) ∪̃ Bδ(q) as a single object associated to the

17



q q q q

Figure 2: The neighborhoods Xε,δ.

stratum χ, albeit depending on two parameters εχ and δ. This single object satisfies the
conclusion of Lemma 2.6 by Whitney (b), which is all that is used in the inductive proof of
Corollary 2.7.

3 Microlocal Morse categories

3.1 Strata poset categories and refinement functors

Let S be a stratification. We fix the following notation for the Yoneda embedding:

S→ Fun(Sop, Set), (3.1)

α 7→ Hom(·, α) =: 1star(α). (3.2)

Note that

Hom(1star(α), 1star(β)) = 1star(β)(α) = Hom(α, β) =

{
{1} star(α) ⊆ star(β)

∅ otherwise.
(3.3)

For any S-constructible open set U , we introduce the functor 1U ∈ Fun(Sop, Set) defined by
the analogous formula

Hom(1star(α), 1U) = 1U(α) :=

{
{1} star(α) ⊆ U

∅ otherwise.
(3.4)

(The action of 1U on morphism sets is in fact uniquely determined by the above, since when
α→ β, the set HomSet(1U(β), 1U(α)) always consists of one element.) Note that star(α) ⊆ U
iff α ⊆ U . More generally, for U ⊆ V there is a unique natural transformation

1U → 1V . (3.5)

It sends 1 ∈ 1U(α) to 1 ∈ 1V (α) for any star(α) ⊆ U ⊆ V .
Now let S′ be a stratification refining S. There is a natural map r : S′ → S, sending a

stratum in S′ to the unique stratum in S containing it. We write

r∗ : Fun(Sop, Set)→ Fun(S′op, Set) (3.6)

for the pullback of functors along this map r. For τ ′ ∈ S′ and an S-constructible open set U ,
we have

Hom(1star(τ ′), r
∗1U) = (r∗1U)(τ ′) = 1U(r(τ ′)) =

{
{1} star(r(τ ′)) ⊆ U

∅ otherwise.
(3.7)
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Since U is open and S-constructible, we have star(r(τ ′)) ⊆ U iff star(τ ′) ⊆ U , so we conclude
that r∗1U = 1U .

We now linearize. We write Z[S] for the linearization of a poset S. We write Mod S for
the category of modules Fun(Sop,ModZ) = Fun(Z[S]op,ModZ), and we use r∗ : Mod S →
Mod S′ for pullback of modules as above. As with any pullback of modules, this functor
has a left adjoint, typically termed extension of scalars or induction, which we write as
r! : Mod S′ → Mod S, which fits into the commuting diagram

S′ Mod S′

S Mod S.

s7→1star(s)

r r!

s 7→1star(s)

(3.8)

Restriction of scalars r∗ is co-continuous, so its left adjoint r! extension of scalars preserves
compact objects, giving a map r! : Perf S′ → Perf S (which can also be viewed as the canonical
extension of r : S′ → S to the idempotent-completed pre-triangulated hulls).

3.2 A category for any Λ

We now wish to define a microlocal Morse category C(Λ) for any subanalytic (possibly)
singular isotropic Λ ⊆ S∗M , together with functors C(Λ′) → C(Λ) for inclusions Λ′ ⊇ Λ.
We define this system of categories Λ 7→ C(Λ), the microlocal Morse theatre, by formulating
axioms which characterize it uniquely. (Recall that S∗M := (T ∗M \M)/R>0 denotes the
co-sphere bundle of M , and a closed subanalytic set Λ ⊆ S∗M is called isotropic iff for
some, or, equivalently, every, cover of Λ by locally closed C1 submanifolds, all of them are
isotropic.)

The previous subsection defined categories Perf S together with functors r! : Perf S′ →
Perf S whenever S′ is a refinement of S. For our current purpose, these categories do not
have the correct significance for general stratifications S (compare Remark 2.1). As such, we
will consider these categories only for triangulations S.4 The microlocal Morse theatre is an
extension of this functor S 7→ Perf S on triangulations.

Definition 3.1. A microlocal Morse pre-theatre Λ 7→ C(Λ) is a functor from the category
of subanalytic singular isotropics inside S∗M to the category of dg categories over Z. A
normalized microlocal Morse pre-theatre is one equipped with an isomorphism of functors
(S 7→ C(N∗∞S)) = (S 7→ Perf S) on Whitney triangulations S.

Remark 3.2. Any isomorphism of functors (S 7→ H∗C(N∗∞S)) = (S 7→ H∗ Perf S) automati-
cally lifts to an isomorphism (S 7→ C(N∗∞S)) = (S 7→ Perf S) by Proposition 5.28. This will
be crucial when discussing Fukaya categories (specifically Theorem 5.35).

We will characterize the microlocal Morse theatre in terms of microlocal Morse theory.5

Let f : M → R be a function and S a stratification. An intersection of Γdf with N∗S is called

4In fact, there are weaker conditions on a stratification S (which are satisfied if S is a triangulation)
implying that Perf S is the correct category to associate to S.

5More conventionally [39], this is called stratified Morse theory. We find the term ‘microlocal’ more
descriptive, and also the word stratified would otherwise take on too many meanings in this article.
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an S-critical point, which is said to be Morse if it is a transverse intersection at a smooth
point of N∗S. The function f is said to be S-Morse when all its S-critical points are Morse.
When S is subanalytic, such functions are plentiful, and can be chosen analytic. (See [39,
Thm. 2.2.1] for this assertion, which is collected there from various results in the literature.)

More generally, for any singular isotropic Λ ⊆ S∗M , a Λ-critical point of f is by definition
an intersection of Γdf with the union of the zero section and R>0 × Λ. That is,

critΛ(f) = Γdf ∩ (0M ∪ (R>0 × Λ)) ⊆ T ∗M (3.9)

Such a Λ-critical point is said to be Morse if the intersection is transverse and occurs at a
smooth point of 0M ∪ (R>0 × Λ), and any f whose Λ-critical points are all Morse is called
Λ-Morse.

Definition 3.3. In any normalized microlocal Morse pre-theatre Λ 7→ C(Λ), the Morse
characters XΛ,p(f, ε, S) ∈ C(Λ) are defined as follows for smooth Legendrian points p ∈ Λ.

Let f : M → R be an analytic function with a Morse Λ-critical point at p (i.e. somewhere
in R>0×{p} ⊆ T ∗M) with critical value 0, no other Λ-critical points with critical values in the
interval [−ε, ε], and with relatively compact sublevel set f−1(−∞, ε). Let S be a Whitney
triangulation for which Λ ⊆ N∗∞S and for which both f−1(−∞,−ε) and f−1(−∞, ε) are
S-constructible.

The Morse character XΛ,p(f, ε, S) is then defined as the image of

cone(1f−1(−∞,−ε) → 1f−1(−∞,ε)) ∈ Perf S = C(N∗∞S). (3.10)

under the map C(N∗∞S)→ C(Λ), where 1f−1(−∞,−ε) → 1f−1(−∞,ε) is (the linearization of) the
unique map (3.5).

The Morse character XΛ,p(f, ε, S) ∈ C(Λ) depends a priori on the ‘casting directors’
(f, ε, S). Casting directors (f, ε) exist at any smooth Legendrian point p ∈ Λ by general po-
sition, and S exists by the following argument. First, by [47, Prop. 8.3.10] every closed sub-
analytic singular isotropic Λ ⊆ S∗M is contained in N∗∞S for some subanalytic stratification
S of M . Next, by refining S the subanalytic subsets f−1(−∞,±ε) can be made constructible
[18, 83]. Finally, S can be made a subanalytic Whitney triangulation by [84, 22, 23].

Definition 3.4. A microlocal Morse theatre is a normalized microlocal Morse pre-theatre
Λ 7→ C(Λ) satisfying the localization property : for any inclusion Λ ⊆ Λ′ and any collection of
Morse characters XΛ′,p(f, ε, S) ∈ C(Λ′) at smooth Legendrian points p ∈ Λ′ \ Λ with at least
one in every component of the smooth Legendrian locus of Λ′ \Λ, the functor C(Λ′)→ C(Λ)
is the idempotent-completed quotient by these Morse characters.

The definition of a microlocal Morse theatre allows one to readily compute any partic-
ular microlocal Morse category C(Λ): embed Λ into some N∗∞S, cast Morse characters in
C(N∗∞S) = Perf S for all Legendrian components of N∗∞S \Λ, and take the quotient of Perf S
by these characters and idempotent complete. It follows that:

Proposition 3.5. Any two microlocal Morse theatres Λ 7→ C(Λ) are uniquely isomorphic.
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Proof. For any normalized microlocal Morse pre-theatre C, let XΛ′\Λ ⊆ C(Λ′) denote the
collection of all Morse characters at all smooth Legendrian points of Λ′ \ Λ. Now for any
microlocal Morse theatre C, we have a canonical quasi-equivalence (functorial in Λ):

lim−→
N∗S⊇Λ

S Whitney triangulation

(C(N∗S)/XN∗S\Λ)π
∼−→ C(Λ), (3.11)

and the left hand side is independent of C since C is normalized.

A dramatic realization is a particular construction of the microlocal Morse theatre Λ 7→
C(Λ). We give two dramatic realizations, namely via sheaves and via Lagrangians in Sections
4 and 5, respectively. Both these dramatic realizations cast the Morse characters as certain
familiar objects. They moreover show that the Morse characters in fact depend only on p
(up to shifts) and are independent of the casting directors.

Theorem 3.6. The microlocal Morse theatre Λ 7→ C(Λ) exists, and the Morse characters
XΛ,p ∈ C(Λ) are independent of the casting directors and form a local system over the smooth
Legendrian locus of Λ.

Proof. This follows from either Theorem 4.28 or Theorem 5.36.

Proof of Theorem 1.1. Combine Theorem 4.28 and Theorem 5.36 with Proposition 3.5.

In fact, both dramatic realizations show that C(Λ) is invariant under contact isotopy of
S∗M , something which is not apparent from the present combinatorial prescription. This
is immediate on the Fukaya side, and on the sheaf side it is ‘sheaf quantization’ [41]. In
fact, there are even stronger invariance statements: it is shown in [36] that in fact C(Λ) is
invariant under contact isotopy of S∗M \ Λ inside S∗M ; meanwhile, it is shown in [63] that
C(Λ) is invariant under ‘gapped’ deformations of Λ.

Remark 3.7. The construction of this subsection makes sense in any stable setting, e.g. over
the sphere spectrum. To show existence of the microlocal Morse theatre in such a more
general setting, one could set up either microlocal sheaf theory or the Fukaya category over
the sphere spectrum. In principle, one could also show existence directly from the stratified
Morse theory of [39], as it already establishes results about homotopy types of spaces (not
just their cohomologies). A more interesting question is whether any symplectically invariant
statement can be made beyond the stable setting.

3.3 Open inclusions

We now discuss functoriality of the microlocal Morse theatre under open inclusions.
Given any analytic open inclusion of analytic manifolds M ′ ↪→ M , a microlocal Morse

pre-theatre C′ on M ′ determines a microlocal Morse pre-theatre Λ 7→ C′(Λ ∩ S∗M ′) on M ;
let us call this the extension of C′ to M . For microlocal Morse pre-theatres C′ on M ′ and
C on M , a morphism C′ → C means a morphism to C from the extension of C′ to M . In
other words, such a morphism consists of a coherent system of maps C′(Λ ∩ S∗M ′)→ C(Λ)
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for subanalytic singular isotropics Λ ⊆ S∗M . Equivalently, we may view such a morphism
as a coherent system of maps

C′(Λ′)→ C(Λ) (3.12)

for subanalytic singular isotropics Λ′ ⊆ S∗M ′ and Λ ⊆ S∗M with Λ ∩ S∗M ′ ⊆ Λ′. If C and
C′ are normalized, then restricting these maps to the case that Λ and Λ′ are both conormals
of Whitney triangulations, we obtain a coherent collection of maps

Perf S′ = C′(N∗∞S
′)→ C(N∗∞S) = Perf S (3.13)

for every pair of Whitney triangulations S of M and S′ of M ′ such that S′ refines S∩M ′. A
normalized morphism C′ → C is one equipped with an isomorphism between (3.13) and the
extension to Perf of the tautological maps of posets S′ → S (sending a stratum of S′ to the
unique stratum of S containing it). A morphism of microlocal Morse theatres C′ → C is, by
definition, a normalized morphism of underlying normalized microlocal Morse pre-theatres.

We now have the following refinement of Proposition 3.5:

Proposition 3.8. For an analytic open inclusion of analytic manifolds M ′ ↪→ M and mi-
crolocal Morse theatres C′ on M ′ and C on M , there exists a unique morphism of microlocal
Morse theatres C′ → C.

Proof. It follows from (3.13) that the maps C′(Λ′) → C(Λ) send Morse characters to Morse
characters (choose casting directors on M which are ‘supported inside M ′’, and appeal to
the independence of Morse characters of the casting directors from Theorem 3.6). Now we
have the following commutative diagram, functorial in Λ and Λ′:

lim−→ (C(N∗∞S
′)/XN∗∞S′\Λ′)

π lim−→ (C(N∗∞S)/XN∗∞S\Λ)π

C′(Λ′) C(Λ)

∼ ∼ (3.14)

where both direct limits take place over pairs of Whitney triangulations S and S′ for which
S′ refines M ′ ∩ S and for which Λ ⊆ N∗∞S and Λ′ ⊆ N∗∞S

′. Hence the maps C′(Λ′) → C(Λ)
are determined uniquely.

Proof of Proposition 1.3. Combine Propositions 4.29 and 5.37 with Proposition 3.8.

4 Sheaf categories

We recall the general formalism of sheaves, and properties of stratifications. We then recall
from [47] the notion of microsupport, and the category ShΛ(M) of sheaves on M whose
microsupport at infinity is contained in Λ. We show that the assignment Λ 7→ ShΛ(M) is a
microlocal Morse theatre in the sense of Definition 3.4.
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4.1 Categories of sheaves and functors between them

Here we give a brief review of the general formalism of sheaves. Our presentation is somewhat
modern in that we never discuss sheaves of abelian groups, rather we work at the dg level
and with unbounded complexes from the beginning, but it is essentially the same as any
standard account such as [45, 47, 73], complemented by [85] in order to work with unbounded
complexes, and in particular for the proper base change theorem in this setting. Some
discussion about working in the unbounded setting can be found in [48].

Given a topological space T , we write Op(T ) for the category whose objects are open sets
and morphisms are inclusions. A (Z-module valued) presheaf on T is by definition a functor
Op(T )op → ModZ. In particular, a presheaf F takes a value F(U) ∈ ModZ on an open
set U ⊆ T , termed its sections; given open sets U ⊆ V it gives a morphism F(V ) → F(U),
termed the restriction, etcetera. Given any subset X ⊆ T , we write F(X) = lim−→X⊆U F(U);

when X is a point, this is termed the stalk and is written Fx.
The category of sheaves is the full subcategory of presheaves on objects F taking covers

to limits:

F

(⋃
i∈I

Ui

)
∼−→ lim
∅6=J⊆I

F

(⋂
j∈J

Uj

)
(4.1)

The inclusion of sheaves into presheaves has a left adjoint termed “sheafification”, giving, for
any presheaf F, a sheaf Fsh such that any map from F to a sheaf factors uniquely through
Fsh.

We write Sh(T ) for the (dg) category of sheaves of (dg) Z-modules on T . It is complete
and co-complete. Its homotopy category is what was classically called the unbounded derived
category of sheaves on T .

For any continuous map f : S → T , there is an adjoint pair f ∗ : Sh(T ) ↔ Sh(S) : f∗.
The pushforward f∗ is given by the formula (f∗F)(U) = F(f−1(U)), while the pullback f ∗ is
the sheafification of the presheaf given by (f ∗G)(V ) = G(f(V )).

Example 4.1. Consider f : S → pt, and the constant sheaf Z := f ∗Z. Note that in our
conventions, Z(U) is a chain complex computing the cohomology of U . This should illustrate
where, in this account of sheaf theory, is hiding the usual homological algebra of resolutions:
it is in the sheafification.

Being a left adjoint, f ∗ is co-continuous (preserves colimits, in particular, sums). When
j : U → T is the inclusion of an open set, j∗ is given by the simpler formula (j∗F)(V ) = F(V ),
no sheafification required, and hence preserves limits as well. In particular, it must also be a
right adjoint. The corresponding left adjoint j! is easy to describe: it is the sheafification of

V 7→

{
F(V ) V ⊆ U

0 otherwise.

The sheaf j!F is termed the extension by zero, since its stalks in U are isomorphic to the
corresponding stalks of F, and its stalks outside of U are zero. For a sheaf F on T , we
write FU := j!j

∗F. By adjunction there is a canonical morphism FU → F. The object ZU
co-represents the functor of sections over U , i.e. Hom(ZU ,F) = F(U).
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Being a right adjoint, f∗ is continuous. When f is proper, it is in addition co-continuous.
More generally, for a morphism of locally compact spaces f : S → T , one defines6

f! : Sh(S) → Sh(T )

F 7→ lim−→
U⊂⊂S

f∗FU

Here the notation U ⊂⊂ S means that the closure of U is compact. When S is an open
subset, this recovers the original definition. When f is proper, then f! = f∗. When f is the
map to a point, then f!f

∗Z is the compactly supported cohomology.
As f! is built from colimits, left adjoints, and pushforwards from compact sets, it is co-

continuous. As such it has a right adjoint, denoted f !. When f is the inclusion of an open
subset, we already had the right adjoint f ∗, so in this case f ∗ = f !.

For any locally closed subset v : V ⊆ T , we extend the notation FV := v!v
∗F. This sheaf

has the same stalks as F at points in V , and has vanishing stalks outside.

For an open-closed decomposition U
j
↪−→ T

i←−↩ V (j open, i closed), the functors j∗, j! and
i∗, i! are fully faithful, and there is an exact triangle

j!j
! → id→ i∗i

∗ [1]−→ (4.2)

Denoting by Op(M) the poset of open sets, there are functors

Op(M)
!−→ Sh(M) Op(M)op ∗−→ Sh(M)

U 7→ u!Z U 7→ u∗Z (4.3)

where u : U →M denotes the inclusion. We have the following criterion for when (pullbacks
of) these functors are fully faithful:

Lemma 4.2. Let Π be a poset with a map to Op(M), and let Z[Π] denote its dg linearization.
The following are equivalent:

• H∗(U) ∼= Z for all U ∈ Π and H∗(U)
∼−→ H∗(U \ V ) whenever U * V .

• The composition Z[Π]→ Z[Op(M)]
!−→ Sh(M) is fully faithful.

Proof. We have

HomM(ZU ,ZV ) = HomM(u!Z, v!Z) = HomU(Z, u!v!Z) = HomU(Z, u∗v!Z)

= H∗(U,ZV ∩U) = cone(H∗(U)→ H∗(U \ V ))[−1], (4.4)

where we have used the exact triangle (4.2). The second condition asks that this be Z when
U ⊆ V and zero otherwise, which is exactly what is asserted in the first condition.

6This particular way of defining the ! pushforward is taken from [73]. It has the virtue of making the
co-continuity of f! obvious.
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Lemma 4.3. Let Π be a poset with a map to Op(M) satisfying the equivalent conditions
in Lemma 4.2, and suppose that W ⊆ M is an open set such that H∗(U)

∼−→ H∗(U \W )
is an isomorphism whenever U * W . Then the pullback of the module Hom(−,ZW ) along

Z[Π]
!−→ Sh(M) is the indicator functor

1W : U 7→

{
Z U ⊆ W,

0 otherwise.
(4.5)

Proof. This is true by the same calculation as above.

4.2 Constructible sheaves

Let T be a topological space and S : T =
∐
Tα a stratification. Write TS for the topolog-

ical space with underlying set T and base given by the stars of strata in S (note that the
intersection of any two stars is expressible as a union of stars). Note the continuous map
T → TS.

Remark 4.4. Let π : T → T ′ be any continuous bijection. For any open set U of T ′, and
any sheaf F on T , one has by definition π∗F(U) = F(U). It follows that π∗ZU = ZU , as this
sheaf co-represents the functor of sections over U .

Lemma 4.5. Pulling back sheaves under S
star−−→ Op(TS) defines an equivalence

Sh(TS)
∼−→ Fun(Sop,ModZ) = Mod S (4.6)

F 7→ (s 7→ F(star(s))) = HomTS(Zstar(−),F) (4.7)

which sends Zstar(s) to HomS(·, s) = 1star(s).

Proof. The functor in question is simply restricting a sheaf on TS to the base consisting of
stars of strata. This functor is fully faithful because a map of sheaves is determined by
its restriction to a base for the topology. It is essentially surjective because there are no
nontrivial covers of stars of strata by stars of strata. The behavior on objects is as asserted
because Zstar(s) and s are the co-representatives of the functors of sections over s and the
value of the module at s, respectively.

Lemma 4.6. If S′ refines S, then the following diagram commutes:

Sh(TS′) Mod S′

Sh(TS) Mod S

π∗ r∗ (4.8)

where π∗ denotes pullback of sheaves under the continuous map π : TS′ → TS and r∗ :
Mod S→ Mod S′ denotes the pullback along the natural map r : S′ → S.

Proof. By Remark 4.4 and the characterization of the horizontal functors as ZU 7→ 1U .

25



A sheaf is said to be constant when it is isomorphic to the star pullback of a sheaf on
a point, and locally constant when this is true after restriction to an open cover. For a
stratification S of M , we say a sheaf is S-constructible7 if it is locally constant when star
restricted to each stratum of S. We write ShS(T ) for the full subcategory of Sh(T ) on the
S-constructible sheaves.

Note that the image of the pullback map Sh(TS)→ Sh(T ) is contained in ShS(T ).

Lemma 4.7. For a triangulation S, the map Sh(TS)→ ShS(T ) is an equivalence.

Proof. To show full faithfulness, in view of the equivalence of Lemma 4.5 it is enough to
check that HomTS(Zstar(s),Zstar(t)) = HomT (Zstar(s),Zstar(t)). The former is the indicator of
star(s) ⊆ star(t) again by Lemma 4.5. To show that HomT (Zstar(s),Zstar(t)) is as well, by
Lemma 4.2 it is enough to show that H∗(star(s))→ H∗(star(s) \ star(t)) is an isomorphism
for star(s) * star(t). If star(s) * star(t), then star(s) \ star(t) is the join of something with
s, and is hence contractible.

Regarding essential surjectivity, note that the exact triangle of (4.2) serves to decompose
any sheaf into an iterated extension of (extensions by zero of) sheaves on the strata; hence
any constructible sheaf into (extensions by zero of) locally constant sheaves on the strata.
Since the strata are all contractible, these sheaves are in fact constant. This shows that
the Zs generate. To conclude that the Zstar(s) generate, use the exact triangle Zstar(s)\s →
Zstar(s) → Zs

[1]−→ and induction on dimension of strata (noting that the first term is in the
span of Zt for dim(t) < dim(s)).

4.3 Microsupport

The notion of microsupport is developed in [47].8 We recall some basic facts here.
For what follows, let M denote an analytic manifold. Given a sheaf F and a smooth

function φ : M → R, consider a point m in a level set φ−1(t). We say that m ∈ M is a
cohomological F-critical point of φ if, for inclusion of the superlevelset i : φ−1(R≥t) ↪→ M ,
one has (i!F)m 6= 0.

The microsupport ss(F) ⊆ T ∗M is by definition the closure of the locus of differentials
of functions at their cohomological F-critical points [47]. It is conical.

If F is locally constant, then a cohomological F-critical point can only occur where the
function in question has zero derivative. Thus the microsupport of a locally constant sheaf
is contained in the zero section (and is equal to it where the sheaf is not locally zero). If
U ⊆ M is an open set and m is a point in the smooth locus of ∂U , then over m, the locus
ss(ZU) = ss(u!Z) is the half-line of outward conormals to ∂U . The locus ss(u∗Z) is the
inward conormal.

For a subset X ⊆ T ∗M , we write ShX(M) for the full subcategory of Sh(M) spanned by
objects with microsupport contained in X. Similarly, for X ⊆ S∗M , we write ShX(M) for

7Some sources, such as [47], also ask that the word constructible should mean that sheaves should have
perfect stalks and bounded cohomological degree. We do not.

8In [47], the authors work in the bounded derived category. As noted in [71], the only real dependence
on this was in the proof of one lemma, which is extended to the unbounded setting in that reference.
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the full subcategory of Sh(M) with microsupport at infinity contained in X. Evidently if
0M ⊆ X, then ShX(M) = Sh∂∞X(M).

The following result is a strengthening of [47, Prop. 8.4.1]:

Proposition 4.8. For a Whitney stratification S of a C1 manifold M , we have ShS(M) =
ShN∗S(M) (i.e. having microsupport contained in N∗S is equivalent to being S-constructible).

Proof. We first show the inclusion ShS(M) ⊆ ShN∗S(M). Let us first show that ss(ZX) ⊆
N∗S. When X is relatively compact, express X as the ascending union of locally closed
submanifolds-with-corners Xi = X \ (∂X)εi where (∂X)εi denotes the outward cornering of
∂X = X \X in the sense of (2.1) and εi → 0. Corollary 2.7 implies X \ (∂X)εi are indeed
locally closed submanifolds-with-corners, and Corollary 2.8 implies that their conormals limit
inside N∗S as εi → 0, and hence that ss(ZX) = ss(lim−→ZXi) ⊆ N∗S. The case of general X
may be reduced to the relatively compact case by refining the stratification as in Remark
2.4 (the assertion ss(ZX) ⊆ N∗S is local). The same argument shows that for any locally
constant sheaf on X, its lower shriek pushforward to M has microsupport contained in N∗S.
Since any S-constructible sheaf is (locally) a finite iterated extension of such sheaves, we
conclude that ShS(M) ⊆ ShN∗S(M).

We now show that the inclusion ShS(M) ⊆ ShN∗S(M) implies the reverse inclusion
ShN∗S(M) ⊆ ShS(M) by a straightforward dévissage argument. Suppose ss(F) ⊆ N∗S,
and let us show that F is S-constructible. Let X be a maximal stratum over which F is
nonzero, and let U ⊆ M be an open set containing X so that X ⊆ U is the support of
F |U (hence, in particular, X ⊆ U is closed). Since ss(F) ⊆ N∗S, there exists a (derived)
local system on X whose lower shriek pushforward F0 (which is S-constructible) agrees with
F over U . Since F0 ∈ ShS(M) ⊆ ShN∗S(M), it suffices to show that the cone of F0 → F

is S-constructible. We have thus reduced to a sheaf with smaller support. Iterating, we
eventually reduce to the case of F = 0 which is obviously S-constructible.

4.4 Microstalks

Recall that if F is a sheaf and φ is a smooth function with φ(x) = t and dφx = ξ, and we
denote the inclusion i : φ−1(R≥t) → M , then if (i!F )x 6= 0, we have (x, ξ) ∈ ss(F) (though
not conversely). Given this, one wants to assign the complex (i!F)x itself as an invariant
of F at (x, ξ). This is not generally possible, but it can be done when ξ is a point in the
smooth Lagrangian locus of ss(F) [47, Prop. 7.5.3]. Namely, at any smooth Lagrangian point
(x, ξ) ∈ X ⊆ T ∗M , there is a ‘microstalk’ functor

µ(x,ξ) : ShX(M)→ Sh(pt). (4.9)

It is given by a shift of F 7→ (i!F)x for any φ with dxφ = ξ with the graph of dφ trans-
verse to X. The shift can be fixed using the index of the three transverse Lagrangians
(ss(F), T ∗xM,Γdφ). When ξ = 0, the microstalk functor is simply the stalk functor.

Lemma 4.9. The microstalk functors are co-continuous.

Proof. Every stalk functor (i∗ for i the inclusion of a point) is a left adjoint, hence is co-
continuous. To show co-continuity of the microstalk at a point (x, ξ) ∈ Λ with ξ 6= 0, argue
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as follows. By applying a contact transformation, we may reduce to the case that Λ is
(locally near (x, ξ)) the conormal of a smooth hypersurface N ⊆M . Let B ⊆M be an open
ball with smooth boundary whose inward conormal at x ∈ ∂B is ξ. Moreover, choose B so
that N∗∂B and Λ = N∗N intersect cleanly at (x, ξ) (that is, ∂B and N are tangent at x,
differing by a non-degenerate quadratic form). Define B− and B+ from B by pushing ∂B
inward/outward near x. Now the cone of the map Γc(B−,−)→ Γc(B+,−) is (up to a shift)
the microstalk functor µ(x,ξ). The compactly supported sections functor Γc is co-continuous,
since it is the composition of the restriction and lower shriek pushforward functors, both of
which are co-continuous.

Proposition 4.10. Let X ⊆ T ∗M be closed and conical, and let Λ ⊆ T ∗M \ X be closed,
conical, and stratified by isotropic submanifolds. Then ShX(M) ⊆ ShX∪Λ(M) is the kernel
of all microstalks at Lagrangian points of Λ.

Proof. If ss(F) ⊆ X, then the microstalks of F at Lagrangian points of Λ vanish by defi-
nition of microsupport. To prove the converse, suppose that ss(F) ⊆ X ∪ Λ and that the
microstalks of F vanish at all Lagrangian points of Λ, and let us show that ss(F) ⊆ X. By
the fundamental result [47, Thm. 6.5.4] that the microsupport is co-isotropic, it is enough
to show that p /∈ ss(F) for every Lagrangian point p ∈ Λ. It is not quite immediate from
the definitions that vanishing of the microstalk implies there is no microsupport, since the
microsupport is defined in terms of arbitrary test functions, whereas microstalks are defined
in terms of microlocally transverse test functions. To see it is true, and that moreover the
microstalk is locally constant along Λ, one can apply a contact transformation so that Λ
becomes locally the conormal to a smooth hypersurface; for details see [47, Chap. 7].

It will be central to our discussion to find co-representatives of the microstalk functors.
Here is a first step:

Theorem 4.11 ([47, Cor. 5.4.19, Prop. 5.4.20, Prop. 7.5.3] or [39, 74]). Let X ⊆ T ∗M be a
closed conical subset, let φ : M → R be a proper function, and assume that over φ−1([a, b)),
one has Γdφ ∩X = (x, ξ), where (x, ξ) is a smooth Lagrangian point of X.

Let A : φ−1((−∞, a)) → M , A′ : φ−1((a,∞)) → M , B : φ−1((−∞, b)) → M , and B′ :
φ−1((b,∞))→M be the inclusions. Then (up to a shift), the following functors ShX(M)→
Sh(pt) are isomorphic:

• The microstalk functor µ(x,ξ).

• Hom(cone(A!Z→ B!Z),−).

• Hom(cone(A′∗Z→ B′∗Z),−).

Here the maps are the canonical ones coming from restriction of sections.

We do not say that cone(A!Z → B!Z) co-represents the microstalk because it is not an
element of ShX(M). As observed in [61], such co-representatives do exist, for categorical
reasons, as we now explain. First, we need to know that the categories in question are well
generated in the sense of Neeman [67, 50].

Lemma 4.12. The category ShX(M) is well generated.
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Proof. The category of all sheaves Sh(M) is the derived category of a Grothendieck abelian
category, hence is well generated [66]. A sheaf F having singular support inside X is equiv-
alent to the restriction maps F(Uα) → F(Vα) being isomorphisms for some list of pairs
(Uα, Vα)α depending on X. This condition is equivalent to F being right-orthogonal to the
cone of the map ZVα → ZUα . Now the right-orthogonal complement of a set of objects in a
well generated category is well generated [67][70, Thm. 4.9].

Now note that the microsupport of a sum or product is contained in the closure of the
union of the microsupports. Thus if X is closed, then the subcategory ShX(M) ⊆ Sh(M) is
closed under sums and products. In particular, ShX(M) is complete and co-complete, and
the inclusion ShX(M)→ Sh(M) is continuous and co-continuous. More generally, if X ⊆ X ′

are closed, then the inclusion ι : ShX(M) → ShX′(M) is continuous and co-continuous. It
follows that:

Lemma 4.13. For closed X ⊆ X ′ ⊆ T ∗M , the inclusion ι : ShX(M) → ShX′(M) has both
adjoints: (ι∗, ι, ι!).

Proof. Since ShX(M) is well generated and ι is co-continuous, it has a right adjoint ι! by
Brown representability for well generated categories [67].

For the left adjoint ι∗, it would be sufficient to know Brown representability for the
opposite of ShX(M). However according to Neeman [68], it is an open problem to establish
Brown representability for the opposites of well generated categories. Instead, we may argue
as follows. The categories in question are presentable (co-complete and accessible [56, Def.
5.4.2.1 and 5.5.0.1]; this is a version of well generation) and so a functor has a left adjoint
iff it is continuous and accessible (preserves κ-filtered colimits [56, Def. 5.4.2.5 and 5.3.4.5])
by Lurie [56, Corollary 5.5.2.9].

Another proof of the existence of the left adjoint ι∗ has been given by Efimov [26].

For example, if V ⊆ M is a closed subset, then taking X = T ∗M |V and X ′ = T ∗M
recovers the adjoint triple for the pushforward along V →M , because ShT ∗M |V (M) = Sh(V ).

Using the left adjoint and Theorem 4.11, we can obtain a co-representative for the
microstalk as follows. Take any X ′ ⊇ ss(cone(A!Z → B!Z)), e.g. X ′ = T ∗M . Then
ι∗ cone(A!Z→ B!Z) ∈ ShX(M) co-represents the microstalk.

We do not generally have a good understanding of (ι∗, ι, ι!), but when X ′ \X is isotropic
we have the following (special cases of which have appeared in [61, 44]):

Theorem 4.14. Let X ⊆ T ∗M be closed and conical, and let Λ ⊆ T ∗M\X be closed, conical,
and stratified by isotropic submanifolds. The left adjoint ι∗ to the inclusion ι : ShX(M) →
ShX∪Λ(M) realizes the quotient

ShX∪Λ(M)/D
∼−→ ShX(M), (4.10)

where D denotes co-representing objects for the microstalks at Lagrangian points of Λ.

Proof. According to Proposition 4.10, the full subcategory ShX(M) ⊆ ShX∪Λ(M) is precisely
the right-orthogonal to D. The left adjoint ι∗ to the inclusion ι is thus termed the quotient
by D.

29



Remark 4.15. For our purposes in this paper, we do not need Lemma 4.13 and Theorem
4.14 in their general formulations given above, rather only in the special case of subanalytic
singular isotropic singular supports. In this setting, we give an elementary derivation (i.e.
without appealing to general Brown representability type statements) in the next subsection.

4.5 Compact objects

Here we elaborate upon some assertions of [61].
We write ShX(M)c for the compact objects in the category ShX(M). Be warned:

Proposition 4.16 ([66]). When M is connected and non-compact, Sh(M)c = 0.

There are not many more compact objects in the compact case. However, for sheaves
with prescribed isotropic microsupport, the situation is different:

Proposition 4.17. For Λ ⊆ T ∗M a conic subset Whitney stratifiable by isotropics, the
category ShΛ(M) is compactly generated by the (co-representatives of the) microstalk functors
at the smooth Lagrangian points of Λ.

Proof. It was shown immediately after the proof of Lemma 4.13 that the microstalk functors
at smooth Lagrangian points of Λ are co-represented by objects of ShΛ(M). Since the
microstalk functors are co-continuous (Lemma 4.9), these co-representatives are compact.
Any sheaf right-orthogonal to these co-representatives has by definition vanishing microstalks
at all smooth Lagrangian points of Λ, hence has microsupport contained in the complement
of the smooth Lagrangian locus (see the proof of Proposition 4.10). This complement, being
stratified by subcritical isotropics, has no co-isotropic subset; hence by the involutivity of
microsupports [47, Thm. 6.5.4], the microsupport is in fact the empty set and the sheaf
vanishes.

As promised in Remark 4.15, we now give arguments avoiding the use of representability
theorems in non-compactly-generated categories. This comes at the cost of assuming suban-
alyticity in order to ensure the existence of triangulations, but for the main results we will
anyway need this hypothesis.

Lemma 4.18. For S a triangulation, the category ShS(M) is compactly generated, and the
objects of ShS(M)c are the sheaves with perfect stalks and compact support.

Proof. Under the identification (Lemma 4.7) ShS(M) = Mod S, the Zstar(s) go to compact
generators. The dévissage in the proof of the same Lemma shows that Zs also generate, and
can be expressed using finitely many Zstar(s), hence are compact. The Zs evidently generate
the sheaves with perfect stalks and compact support.

Remark 4.19. Note that while a non-compact manifold does not admit a finite triangulation,
it can sometimes be a relatively compact constructible subset of a larger manifold.

Recall that ShS(M) = ShN∗S(M) for any Whitney stratification by Proposition 4.8.

Proposition 4.20. For any subanalytic Whitney triangulation S, the category ShS(M) is
compactly generated by co-representatives of the microstalks at smooth points of N∗S.
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Proof. Consider the microstalk at some smooth point (x, ξ) ∈ N∗S. It is possible to choose
real analytic φ as in Theorem 4.11, see [39, Thm. 2.2.1] or [47, Prop. 8.3.12]. We keep the
notation of Theorem 4.11. Refine S to a subanalytic Whitney triangulation S′ for which A!Z
and B!Z are constructible.

By Lemma 4.18, cone(A!Z → B!Z) is a compact object in ShS′(M). Lemmas 4.5 and
4.7 give ShS(M) = Mod S, and Lemma 4.6 states that the inclusion ι : ShS(M) → ShS′(M)
corresponds to the map r∗ : Mod S→ Mod S′ from Section 3.1. It was observed in Section 3.1
that r∗ has a left adjoint r! : Mod S′ → Mod S, thus giving us a left adjoint ι∗ : ShS′(M) →
ShS(M). These left adjoints r!/ι

∗ preserve compact objects since r∗/ι are co-continuous.
Thus the object ι∗ cone(A!Z→ B!Z) ∈ ShS(M), which co-represents the desired microstalk,
is compact.

Co-representatives of the microstalks at all smooth points of N∗S generate ShS(M) by
Proposition 4.10.

Remark 4.21. A similar argument shows that the stalk at any point of M (not necessarily a
smooth point of N∗S) is co-representable by a compact object of ShS(M). Indeed, note that
for any x ∈ M , the functor of taking stalks at x, which is by definition Fx := lim−→F(Bε(x)),
is in fact computed by some fixed Fx = F(Bεx(x)). Indeed, further shrinking of the ball
will be non-characteristic with respect to N∗S, as follows from Whitney’s condition (b) (or
alternatively from microlocal Bertini–Sard [47, Prop. 8.3.12]). We may now argue as above,
choosing any analytic function with sublevelset Bεx(x).

Corollary 4.22. For any closed conical subanalytic isotropic Λ ⊆ T ∗M , the category ShΛ(M)
is compactly generated by co-representatives of the microstalks at smooth points of Λ.

Proof. Fix a subanalytic Whitney triangulation S for which Λ ⊆ N∗S. Denote by D ⊆
ShN∗S(M)c the co-representatives of the microstalks at smooth points of N∗S\Λ. By Propo-
sition 4.10, ι : ShΛ(M) ⊆ ShN∗S(M) is precisely the inclusion of the right-orthogonal to D.
Since the objects of D are compact by Proposition 4.20, Lemma A.7 applies to show that
ShΛ(M) = ShN∗S(M)/D is compactly generated by ShΛ(M)c = (ShN∗S(M)c/D)π and that
the resulting functor ι∗ : ShN∗S(M)→ ShΛ(M) is left adjoint to ι.

Corollary 4.23. Let X ⊆ T ∗M and Λ ⊆ T ∗M \X be closed conical subanalytic isotropics.
The inclusion ι : ShX(M)→ ShX∪Λ(M) has a left adjoint ι∗ : ShX∪Λ(M)→ ShX(M) whose
restriction to compact objects defines an equivalence

(ShX∪Λ(M)c/D)π
∼−→ ShX(M)c, (4.11)

where D denotes co-representing objects for the microstalks at Lagrangian points of Λ.

Proof. By Corollary 4.22, ShX∪Λ(M) is compactly generated by the microstalks at smooth
points of X ∪ Λ. Now argue as in the proof of Corollary 4.22.

The following result was shown in [61] using arborealization; here is a direct argument.

Corollary 4.24. The Yoneda embedding induces an equivalence between the full subcategory
of ShΛ(M) of objects with perfect stalks and the category Prop ShΛ(M)c.
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Proof. From the argument in Proposition 4.20, we see that the microstalks are calculated
by comparing sections over precompact sets; it follows that a sheaf microsupported in Λ
(thus constructible) with perfect stalks has perfect microstalks. The microstalk functors
split-generate ShΛ(M)c by Corollary 4.22, so we see that a sheaf with perfect stalks defines
a proper module over ShΛ(M)c.

To see the converse, recall from Remark 4.21 that the stalk functors can be expressed in
terms of sections over open sets constructible with respect to some S satisfying N∗S ⊇ Λ.
The left adjoint to ShΛ(M) ↪→ ShS(M) preserves compact objects as observed previously,
hence proper over ShΛ(M)c implies perfect stalks.

For compact M , we establish smoothness and/or properness for some of these categories.

Proposition 4.25. If M is compact and S is a triangulation, then ShS(M)c is smooth and
proper.

Proof. The Zstar(s) give a finite generating exceptional collection which is proper, and this
implies smoothness by Lemma A.11.

More generally,

Corollary 4.26. If M is compact and Λ is closed conical subanalytic singular isotropic, then
ShΛ(M)c is smooth, and hence Prop ShΛ(M)c ⊆ Perf ShΛ(M)c and Prop ShΛ(M)c is proper.

Proof. By Proposition 4.25 and Corollary 4.23, the category ShΛ(M)c is a quotient of a
smooth category, hence smooth (Lemma A.9). Smoothness implies proper modules are
perfect (Lemma A.8) and that the category of proper modules is proper.

Remark 4.27. When (M,Λ) are non-compact but finite-type in a suitable sense, the same
result is true. One can prove it by embedding into a compact manifold as in Remark 4.19.

4.6 In conclusion

Collecting the results of this section, we have shown:

Theorem 4.28. The functor Λ 7→ ShΛ(M)c is a microlocal Morse theatre in the sense of
Definition 3.4, which casts the co-representatives of the microstalk functors at smooth points
of Λ as the Morse characters.

Proof. The most obvious functor Λ→ ShΛ(M) is the one which carries inclusions Λ ⊆ Λ′ to
inclusions ShΛ(M) ↪→ ShΛ′(M); note that this is in fact a strict diagram of categories (as all
are simply full subcategories of Sh(M)) and takes values in the category whose objects are
large dg categories and whose morphisms are continuous and co-continuous functors. Passing
to left adjoints and taking compact objects (see Corollary 4.23), we obtain a microlocal Morse
pre-theatre Λ 7→ ShΛ(M)c.

For triangulations S, the functors

S
s 7→Zstar(s)−−−−−−→ ShS(M)

F 7→Hom(Zstar(−),F)
−−−−−−−−−−−→ Mod S (4.12)
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define an equivalence Perf S = ShS(M)c by Lemmas 4.5 and 4.7. When S is a Whitney
stratification, we have ShS(M)c = ShN∗∞S(M)c by Proposition 4.8.

Taking the commutative diagram in Lemma 4.6 and passing to the left adjoints of the
vertical maps shows that this equivalence respects refinement of Whitney triangulations.
This shows that Λ 7→ ShΛ(M)c is normalized.

By Theorem 4.11, the Morse characters in Perf S correspond, under this isomorphism, to
co-representatives of the microstalks. According to Corollary 4.23, the functor ShΛ′(M)c →
ShΛ(M)c is the quotient by co-representatives of the microstalks. Thus Λ 7→ ShΛ(M)c

satisfies the localization property, and is thus a microlocal Morse theatre.

Proposition 4.29. For any analytic open inclusion of analytic manifolds M ′ ↪→ M , the
restriction functors ShΛ(M) → ShΛ′(M

′) for subanalytic singular isotropics with Λ′ ⊇ Λ ∩
S∗M ′ have left adjoints whose restrictions to compact objects form a morphism of microlocal
Morse theatres.

Proof. The categories ShΛ(M) are compactly generated by Corollary 4.22, and Brown repre-
sentability holds for the opposites of compactly generated categories by [67, 51]. Thus since
the restriction functors ShΛ(M)→ ShΛ′(M

′) are continuous, they admit left adjoints. Since
restriction is co-continuous, these left adjoints preserve compact objects. Restricting these
left adjoints to compact objects defines a morphism of microlocal Morse pre-theatres in the
sense of Section 3.3.

Let us show that this is a morphism of microlocal Morse theatres, i.e. that it is normalized.
For a stratification S of M and a stratification S′ refining S ∩ M ′, we have the following
commutative diagram

ShS′(M
′) Sh(M ′

S′) Mod S′

ShS(M) Sh(MS) Mod S

∼

∼

(4.13)

(compare Lemmas 4.5 and 4.6). When S and S′ are triangulations, the left horizontal maps
are also equivalences by Lemma 4.7. Finally, when S is Whitney, we have ShS(M) =
ShN∗S(M) (and the same for S′) by Proposition 4.8. Thus passing to left adjoints of the
vertical arrows and restricting to compact objects, we conclude.

5 Wrapped Fukaya categories

5.1 Wrapped Floer cohomology

Here we quickly fix notation and review basic facts (see, e.g., [35, Sec. 3] for more details).
Fix a Liouville manifold or open Liouville sector X.

For a pair of exact Lagrangians L,K ⊆ X, conical and disjoint at infinity, we write
HF ∗(L,K) for their Floer cohomology. We write HF ∗(L,L) to mean HF ∗(L+, L), where
L+ denotes an (unspecified) small positive (meaning positive at infinity) pushoff of L. There
is a isomorphism of groups HF ∗(L,L) = H∗(L) and the group HF ∗(L,L) = HF ∗(L+, L)
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is a unital algebra;9 its unit is termed the continuation element. Composition of con-
tinuation elements associated to small pushoffs defines more generally a continuation el-
ement in HF ∗(L++, L) for L++ any (not necessarily small) positive wrapping (i.e., iso-
topy) of L. Composition with the continuation element associated to L  L++ gives maps
HF ∗(L,K) → HF ∗(L++, K) and HF ∗(K,L++) → HF ∗(K,L) for any K disjoint at infin-
ity from L and L++, which are termed continuation maps. If the entire positive isotopy
L  L++ takes place in the complement of ∂∞K, then these continuation maps are iso-
morphisms. More generally, if L  L′ is any isotopy taking place in the complement of
∂∞K (for example any compactly supported isotopy), then there is an induced identifica-
tion HF ∗(L,K) = HF ∗(L′, K) (see [35, Lem. 3.21]) which coincides with the continuation
isomorphism if L  L′ is positive at infinity (see [35, Lem. 3.26]). In particular, seeing as
HF ∗(L,K) = 0 tautologically when K and L are disjoint, Floer cohomology HF ∗(L,K)
vanishes whenever L is disjoinable from K by an isotopy in the complement of ∂∞K.

The wrapped Floer cohomology HW ∗(L,K)X is equivalently calculated by

lim−→
L L++

HF ∗(L++, K) = lim−→
L L++

K−− K

HF ∗(L++, K−−) = lim−→
K−− K

HF ∗(L,K−−). (5.1)

Here, the direct limits are taken using the continuation maps over positive-at-infinity iso-
topies of L and negative-at-infinity isotopies of K. The freedom to wrap in only one factor
is extremely useful in practice.

Given any closed subset Λ ⊆ ∂∞X, and L,K disjoint at infinity from Λ, we similarly
define partially wrapped Floer cohomology HW ∗(L,K)X,Λ by restricting wrappings to take
place in the complement of Λ.

The following Lemma allows one to explicitly describe some cofinal wrapping sequences
in a given (X,Λ). Its typical use is the following. To compute HW ∗(L,K)X,Λ, if one can
find a cofinal sequence Lt such that the induced maps HF ∗(Lt, K) → HF ∗(Lt+1, K) are
eventually all isomorphisms, then HW ∗(L,K)X,Λ = HF ∗(Lt, K) for any Lt in this stable
range.

Lemma 5.1 ([35, Lem. 3.29] [36, Lem. 2.2]). Let Lt be a positive isotopy of Lagrangians
in X avoiding Λ at infinity. If ∂∞Lt escapes to infinity in (i.e. is eventually disjoint from
any given compact subset of) ∂∞X \ Λ as t → ∞, then it is a cofinal wrapping of L0 in
(X,Λ).

5.2 Wrapped Fukaya categories

In [35, 36], for any Liouville sector X and any closed subset Λ ⊆ (∂∞X)◦, we constructed
A∞ categories W(X,Λ) whose objects are exact Lagrangians in X \Λ, conical at infinity (by
convention W(X) := W(X, ∅)). The cohomology-level morphisms are simply the wrapped
Floer cohomology groups as defined above: H∗W(L,K) = HW ∗(L,K)X,Λ. For a compact
manifold-with-boundary M , its cotangent bundle T ∗M is a Liouville sector [35, Ex. 2.7].

One main point of [35] was the construction of a covariant functor W(X)→W(Y ) for an
inclusion of Liouville sectors X ⊆ Y . In [36] we remarked that the same construction gives

9One expects (as is known for compact L) that the isomorphism HF ∗(L,L) = H∗(L) is further compatible
with algebra structures; we are not aware of a reference for this.

34



a functor W(X,Λ∩ (∂∞X)◦)→W(Y,Λ). This covariance is a nontrivial result having to do
with the fact that holomorphic disks can be made to not cross the boundary of a Liouville
sector (if the Lagrangian boundary conditions do not). By contrast, it is immediate from
the definition that if Λ ⊆ Λ′ then there is a natural map W(X,Λ′) → W(X,Λ): just wrap
more. Both covariance statements allow one to calculate in a potentially simpler geometry,
and push forward the result.

We wish to consider here categories W(T ∗M,Λ) for (possibly non-compact) manifolds M
without boundary and closed subsets Λ ⊆ S∗M = ∂∞T

∗M . Such a cotangent bundle T ∗M
is an open Liouville sector in the sense of [35, Rem. 2.8] (meaning, concretely, it admits an
exhaustion by Liouville sectors, in this case T ∗M0 ⊆ T ∗M1 ⊆ · · · where M0 ⊆ M1 ⊆ · · · is
an exhaustion of M by compact codimension zero submanifolds-with-boundary).

The construction of the wrapped Fukaya category of an open Liouville sector is given in
[35, Sec. 3.8]. The generalization to case with a stop following [36, Sec. 2] is straightforward.
The result is the following definition. We consider tuples (P, {Mp}p∈P , {Lp}p∈P , J, ξ) where:

(i) P is a partially ordered set.

(ii) Each Mp ⊆ M is a compact codimension zero submanifold with smooth boundary,
equipped with a choice of projection from T ∗Mp to CRe≥0 as in [35, Def. 2.26] defined
near the boundary.

(iii) Each Lp ⊆ T ∗Mp is an exact Lagrangian, cylindrical at infinity, disjoint from Λ at
infinity, equipped with grading and orientation data as in Section 5.3 below, such that
for every totally ordered subset p0 > · · · > pk ∈ P , the Lagrangians Lp0 , . . . , Lpk are
mutually transverse.

(iv) The pair (ξ, J) is a choice of compatible Floer data (strip-like coordinates and almost
complex structures) as in [35, Eq. (3.31)–(3.33)] for every totally ordered subset p0 >
· · · > pk ∈ P (so Jp0,...,pk is an almost complex structure on T ∗Mp0), such that all
moduli spaces of Fukaya A∞ disks are cut out transversally.

Any such tuple gives rise to a A∞ category whose objects are the elements of P , whose
morphism spaces from p to p′ are CF ∗(Lp, Lp′) for p > p′, are Z for p = p′, and other-
wise vanish. We may ask that such a tuple be cofinite (meaning P≤p is finite for every
p ∈ P ) and duplicate-free (meaning P≤p equipped with the restriction of the remaining
data are pairwise non-isomorphic for p ∈ P ). There is a universal cofinite duplicate-free
tuple (P, {Mp}p∈P , {Lp}p∈P , J, ξ) [35, Lem. 3.42], which thus gives a canonically defined
A∞ category O(T ∗M,Λ). The wrapped category W(T ∗M,Λ) is defined as the localization
O(T ∗M,Λ)[C−1] (refer to [35, Sec. 3.1.3] for localizations of A∞ categories) at the class C
of all continuation elements in HF 0(Lp, Lp′) for positive isotopies Lp′  Lp inside T ∗Mp

disjoint at infinity from Λ. That this category deserves the name W(T ∗M,Λ) is justified by
[35, Prop. 3.43, Prop. 3.39, Lem. 3.37] and [36, Sec. 2]; in particular, these show that it has
the correct cohomology category.

The resulting category W(T ∗M,Λ) is moreover strictly functorial in M and Λ: for any
open inclusion of manifolds M ↪→ M ′ such that Λ contains the inverse image of Λ′, there is
an induced functor W(T ∗M,Λ)→W(T ∗M ′,Λ′), and these functors respect compositions of
inclusions M ↪→M ′ ↪→M ′′.
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5.3 Gradings and orientations

We briefly review the setup for defining gradings and orientations in Floer theory; for more
details see Seidel [75] and [77, (11e)–(11l)]. Our Floer cohomology groups and Fukaya cate-
gories are all Z-graded and with Z coefficients.

Denote by LGr(V ) the Grassmannian of Lagrangian subspaces of a given symplectic
vector space V . A map ∂D2 = S1 → LGr(V ) defines elliptic boundary conditions for the
∂̄-operator on the trivial vector bundle with fiber V over D2 (choosing also a compatible
complex structure on V , which is a contractible choice), and hence a virtual vector space,
namely the index (kernel minus cokernel) of this operator, thus giving a map

L(LGr(V ))→ Z×BO. (5.2)

Identifying U/O = lim−→n
LGr(Cn) and restricting to the based loop space, the resulting map

Ω(U/O)→ Z× BO is (almost [77, Rmk. 11.8]) the Bott periodicity homotopy equivalence.
For Floer theory with Z-grading and Z coefficients, we care just about the dimension and
orientation, i.e. we compose the above map with (id, w1) : Z × BO → Z ×K(Z/2, 1). Now
restricting to the based loop space Ω LGr(V ) and applying B, we obtain cohomology classes
on LGr(V ), which are (see the related [77, Lem. 11.7] or [9, Prop. 4.2.8]) the Maslov class
µ ∈ H1(LGr(V ),Z) and w2 ∈ H2(LGr(V ),Z/2) (the second Stiefel–Whitney class of the tau-
tological bundle L→ LGr(V )). The class w2 is represented by a map LGr(V )→ K(Z/2, 2)
given by the pullback of w2 : BO → K(Z/2, 2) under the map LGr(V ) → BO (which is
well-defined up to contractible choice) classifying the tautological bundle. In contrast, the
map LGr(V )→ K(Z, 1) = S1 classified by the Maslov class µ is not well-defined up to con-
tractible choice. Rather, given a compatible complex structure on V (a contractible choice),
the Maslov class is represented by the canonical map

LGr(V )→ ((∧top
C V )⊗2 \ 0)/R>0 (5.3)

given by the composition of ∧top
R : LGr(V ) → LGr(∧top

C V ) = RP (∧top
C V ) with the squaring

map RP (∧top
C V ) → ((∧top

C V )⊗2 \ 0)/R>0. Given a ‘basepoint’ S ∈ LGr(V ) (so V = S ⊗R
C), we obtain canonical identifications LGr(V ) = LGr(S ⊗R C) = U(S ⊗R C)/O(S) and
((∧top

C V )⊗2)/R>0 = (C \ 0)/R>0 = U(1), under which (5.3) is given by det2. Given a
map LGr(V ) → K(Z, 1) × K(Z/2, 2) representing (µ,w2), we obtain a (Z × RP∞)-bundle
LGr(V )# → LGr(V ).

We now globalize. Let X be a symplectic manifold, and denote by LGr(X) the bundle of
Lagrangian Grassmannians of TX over X. There is a canonical map LGr(X)→ K(Z/2, 2)
restricting to w2 on each fiber, namely the pullback of w2 : BO → K(Z/2, 2) under the
map classifying the tautological bundle over LGr(X). There need not be a map LGr(X)→
K(Z, 1) whose restriction to each fiber represents µ; the obstruction to the existence of such
a map is given by 2c1(TX) ∈ H2(X,Z) and is represented geometrically by the complex
line bundle (∧top

C TX)⊗2. Grading/orientation data for X is, by definition, a choice of map
X → K(Z/2, 2) and map LGr(X) → K(Z, 1) whose restriction to each fiber represents
µ. The choice of map X → K(Z/2, 2) induces a map LGr(X) → K(Z/2, 2) by pulling
back and adding the canonical map LGr(X) → K(Z/2, 2) restricting to w2 on each fiber.
Grading/orientation data on X thus induces a map LGr(X)→ K(Z, 1)×K(Z/2, 2) whose
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restriction to each fiber represents (µ,w2). The pullback of the tautological (Z × RP∞)-
bundle over K(Z, 1) × K(Z/2, 2) thus defines a (Z × RP∞)-bundle LGr(X)# → LGr(X)
associated to this choice of grading/orientation data.

We now introduce Lagrangians. Fix a choice of grading/orientation forX, giving LGr(X)# →
LGr(X). Given a Lagrangian L ⊆ X, grading/orientation data for L means a lift of the
canonical section of LGr(X)|L to LGr(X)#|L. It is explained in Seidel [77, (11e)–(11l)] (also
reviewed in [35, Sec. 3.2]) how such data determines graded orientation lines associated to
transverse intersections of ordered pairs of Lagrangians, as well as a recipe for orienting
moduli spaces of pseudo-holomorphic disks relative to these orientation lines.

For our purposes in this paper, we will induce grading/orientation data from Lagrangian
polarizations. Recall that a (Lagrangian) polarization of a symplectic manifold X is a global
section of LGr(X); equivalently (up to homotopy) it is a real vector bundle B with an isomor-
phism B⊗RC = TX. Given such a polarization, we obtain a map LGr(X)→ K(Z, 1) using
the section as the fiberwise basepoint, and we obtain a map X → K(Z/2, 2) by pulling back
w2 : BO → K(Z/2, 2) under the map classifying B. By this very definition, any Lagrangian
which is everywhere tangent to the polarization admits canonical grading/orientation data
(i.e. section of LGr(X)#|L). A stable polarization (a global section of LGr(TX ⊕ Ck) for
some k < ∞) also induces grading/orientation data by restriction from LGr(TX ⊕ Ck) to
LGr(X) = LGr(TX)).

In the specific case of cotangent bundles T ∗M , there is a tautological polarization given
by (the tangent space of) the tautological foliation by Lagrangian fibers of the projection
T ∗M → M ; the fibers are thus equipped with canonical grading/orientation data with
respect to the grading/orientation data on T ∗M induced by this polarization. Conormals to
open sets with smooth (or cornered) boundary also have canonical grading/orientation data,
see §5.5. We will see in Remark 5.27 and Lemma 5.10 the point in the proof of Theorem 1.1
where it matters to have chosen this particular grading/orientation data on T ∗M .

Remark 5.2. The notion of grading/orientation data given above may be reformulated as
follows, which connects it to the corresponding discussion of coefficient twisting in microlocal
sheaf categories as it appears in [40, 46]. The stable J-homomorphism sends a (stable) vector
bundle to (the suspension spectrum of) its Thom space, which is a family of invertible
modules over the sphere spectrum. Applying cochains, we may obtain a family of invertible
dg Z-modules. We thus have an infinite loop map

Z×BO J−→ PicS→ PicZ (5.4)

sending a vector bundle V to the local system C∗(V, V \ 0) (where Pic denotes the space of
invertible modules). The invertible module Z[1] and the automorphism −1 of the invertible
module Z together define an isomorphism of infinite loop spaces Z × B(Z/2)

∼−→ PicZ.
The map Z × BO → PicZ = Z × B(Z/2) is then the evident projection to Z times the
Stiefel–Whitney class w1, as considered above. Applying B as before, we obtain a map

U/O = B(Z×BO)→ B PicZ = BZ×B2(Z/2). (5.5)

Now the tangent bundle of a symplectic manifold X is classified by a map X → BU , which
we may compose with BU → B(U/O) to obtain a map X → B(U/O) which classifies the
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(stable) Lagrangian Grassmannian of X. Composing this with B(5.5) yields a map

X → B2Z×B3(Z/2). (5.6)

Now grading/orientation data on X is equivalently a null-homotopy of this map. Indeed, the
map to the second factor is canonically null-homotopic (since it by definition factors through
BU → B(U/O)→ B2O which is canonically null-homotopic), so a choice of null-homotopy
of it is the same as a choice of map X → ΩB3(Z/2) = B2(Z/2). The map to the first
factor by definition classifies (∧top

C TX)⊗2, a trivialization of which is the same as a map
LGr(X)→ K(Z, 1) whose restriction to each fiber represents µ.

On a Lagrangian L ⊆ X, there is a tautological section of LGr(X)|L given by the tan-
gent space to the Lagrangian. That is, the restricted map L → B(U/O) has a canonical
null-homotopy, inducing in turn a null-homotopy of the map L → B2Z × B3(Z/2). Now
given grading/orientation data for X, grading/orientation data on L is equivalently a ho-
motopy between this null-homotopy and the restriction to L of the chosen null-homotopy
of (5.6). Note that the space of such null-homotopies has the homotopy type of maps from
L to Ω(B2Z × B3(Z/2)) = BZ × B2(Z/2), the component group of which is H1(L,Z) ⊕
H2(L,Z/2). The obstruction to the existence of grading/orientation data for L thus lies in
H1(L,Z)⊕H2(L,Z/2), and if this obstruction vanishes, the homotopy classes of choices of
grading/orientation data for L form a torsor over H0(L,Z)⊕H1(L,Z/2).

A stable polarization of X gives a global section of the stable Lagrangian Grassmannian,
hence a null-homotopy of X → B(U/O), hence of (5.6), which by definition agrees with the
canonical homotopy of its restriction to any Lagrangian L ⊆ X everywhere tangent to the
polarization.

5.4 Wrapping exact triangle, stop removal, generation

The fundamental ingredients underlying our work in this section are the wrapping exact
triangle and its consequence stop removal, both proved in [36]. The wrapping exact triangle
can be thought of as quantifying the price of wrapping through a stop; it should be compared
with Theorem 4.11.

Theorem 5.3 (Wrapping exact triangle [36, Thm. 1.10]). Let (X,Λ) be a stopped Liouville
sector, and let p ∈ Λ be a point near which Λ is a Legendrian submanifold. If L ⊆ X is an
exact Lagrangian submanifold and Lw ⊆ X is obtained from L by passing ∂∞L through Λ
transversally at p in the positive direction, then there is an exact triangle

Lw → L→ Dp
[1]−→ (5.7)

in W(X,Λ), where Dp ⊆ X denotes the small Lagrangian disk linking Λ at p and the map
Lw → L is the continuation map.

The following result about wrapped Fukaya categories is a consequence of the wrapping
exact triangle, and can be compared with Theorem 4.14.
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Theorem 5.4 (Stop removal [36, Thm. 1.20]). Let (X,Λ′) be a stopped Liouville sector, and
let Λ ⊆ Λ′ be closed so that its complement Λ′ \Λ ⊆ (∂∞X)◦ \Λ is an isotropic submanifold.
Then pushforward induces an equivalence

W(X,Λ′)/D
∼−→W(X,Λ), (5.8)

where D denotes the collection of small Lagrangian disks linking (Legendrian points of) Λ′\Λ.

We will also need to know that:

Theorem 5.5. The cotangent fibers split-generate W(T ∗M).

Proof. When M is compact (including the case with boundary), this is [36, Thm. 1.14
and Ex. 1.15]. For a general possibly non-compact M , we observe that any Lagrangian
L ∈ W(T ∗M) is in the essential image of the pushforward functor W(T ∗ML) → W(T ∗M),
for some compact codimension zero submanifold-with-boundary ML ⊆M . Now push foward
the fact that L is split-generated by a fiber in W(T ∗ML).

Remark 5.6. In fact, the argument above shows that the fibers generate W(T ∗M), however
we only need split-generation.

Another ingredient which proves useful in our computations is the Künneth theorem for
Floer cohomology and wrapped Fukaya categories, also proved in [36].

5.5 Conormals and corners

Let U ⊆ M be a relatively compact open set. When U has smooth boundary, we write
LU ⊆ T ∗M for (a smoothing of) the union of U ⊆ M ⊆ T ∗M with the outward conormal
along its boundary. More generally, if U is a compact manifold-with-corners with interior U ,
then LU shall mean LŨ where Ũ is obtained from U by smoothing out its boundary. We also
allow the degenerate case that U is a point p (hence, in particular, not open), in which case
Lp denotes the cotangent fiber over p. In all of the above cases, we could also equivalently
say that LU is a rounding of ss(ZU) (compare Section 4.3).

Remark 5.7. Various natural constructions, such as the cornering operations of Section 2.2–
2.3 and taking products, introduce corners. By convention, we conflate such cornered objects
with their smoothings, usually without comment. The choice of this smoothing is always a
contractible choice which is ultimately irrelevant.

Recall that for a Lagrangian L, we write L+ for an unspecified small positive Reeb
pushoff of L, and L− for a negative pushoff. Thus if U is an relatively compact open set
with smooth boundary and U+ denotes its ε neighborhood in some metric, then LU+ = L+

U .
That is, positive Reeb flow pushes outward conormals out. In particular, (T ∗pM)+ = LBε(p).

Each LU is exact and possesses canonical grading/orientation data: the codimension zero
inclusion U ⊆ LU is a homotopy equivalence, and U is a codimension zero submanifold of, and
thereby inherits all of this data from, the zero section. The grading/orientation data for the
zero section arises from the canonical homotopy from its tangent bundle TM ⊆ T (T ∗M)|M
to the family of tangent spaces of the cotangent fibers T ∗M ⊆ T (T ∗M)|M (which is the
chosen polarization of T ∗M) given by eiθT ∗M for θ ∈ [0, π/2] (where J is chosen so that
J(T ∗M) = TM).
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5.6 Floer cohomology between conormals of balls and stable balls

We study here the Floer cohomology between conormals of open sets with smooth boundary
(though recall Remark 5.7 about implicit smoothing of corners). The assertion that an
open set with smooth boundary is a ball shall mean that its closure is diffeomorphic to the
standard closed unit ball. Note that a small positive pushoff of the cotangent fiber Lp over a
point p is the conormal of a small open ball around p, so we may substitute ‘point’ in place
of ‘open ball’ in many of the statements below.

Lemma 5.8. Let U, V ⊆ M be balls with U ⊆ V . Then HF ∗(LV , LU) = Z, and is canoni-
cally generated by the continuation element, lying in degree zero.

Proof. There is a positive isotopy from L+
U to LV in the complement of ∂∞LU . Hence

HF ∗(LV , LU) = HF ∗(LU , LU) (compare [35, Lem. 3.21]), but this latter group (which is
isomorphic to H∗(LU) = H∗(U)) is generated by its identity element.

Lemma 5.9. Let U, V ⊆ M be balls with U ⊆ V , and let V ⊆ W ⊆ M . The continua-
tion map HF ∗(LW , LV )→ HF ∗(LW , LU) (i.e. multiplication by the continuation element in
HF ∗(LV , LU)) is an isomorphism.

Proof. The positive isotopy LU  LV takes place in the complement of ∂∞LW , hence induces
an isomorphism HF ∗(LW , LV ) = HF ∗(LW , LU) which agrees with multiplication by the
continuation element by [35, Lem. 3.26].

Lemma 5.10. Let U ⊆M be a ball, and let U ⊆ W ⊆M . There is a canonical isomorphism
HF ∗(LW , LU) = Z, with respect to which the continuation maps from Lemma 5.9 act as the
identity on Z.

Proof. The groups HF ∗(LW , Lp) form a local system of p ∈ W [35, Lem. 3.21]. It suffices
to show that this local system is canonically isomorphic to the constant local system Z.
Indeed, by Lemma 5.9 we have a canonical isomorphism HF ∗(LW , LU) = HF ∗(LW , Lp) for
any p ∈ U , which is compatible with the local system structure of HF ∗(LW , Lp) by [35, Lem.
3.26].

The assertion that the local system p 7→ HF ∗(LW , Lp) is canonically trivialized is local
on W , so let us consider p varying only in a small ball U ⊆ W . Now the isomorphism
HF ∗(LW , Lp) = HF ∗(LW , Lp′) for nearby points p and p′ from [35, Lem. 3.21] is induced by
a diffeomorphism supported in U sending p to p′. As such, it is sent under the identifications
HF ∗(LW , Lp) = HF ∗(LU , Lp) and HF ∗(LW , Lp′) = HF ∗(LU , Lp′) (coming from the fact
that, in both cases, they are generated by the ‘same’ Lagrangian intersection and have no
Floer differential, and we have chosen the ‘same’ grading/orientation data on LW and LU in
§5.5) to the corresponding isomorphism HF ∗(LU , Lp) = HF ∗(LU , Lp′). Now HF ∗(LU , Lp)
and HF ∗(LU , Lp′) are canonically Z by Lemma 5.9, and the isomorphism between them acts
as the identity on Z by [35, Lem. 3.26].

Lemma 5.11. Let V be an open set with smooth boundary, and let U be a ε-ball centered at
a point on ∂V . Then HF ∗(LU , LV ) = 0 = HF ∗(LV , LU).

Proof. During the obvious isotopy of U outward to become disjoint from V , their conormals
never intersect at infinity.
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By a stable ball, we mean a compact manifold-with-boundary which is contractible; the
statement that an open set with smooth boundary is a stable ball shall mean its closure is a
stable ball. The reason we study stable balls is that we do not know how to prove that for a
subanalytic Whitney triangulation, the ‘inward cornering’ in the sense of Section 2.3 of an
open star is a ball; it is, however, obviously a stable ball.

To compute Floer cohomology between conormals of stable balls, we reduce to the case of
conormals to balls by stabilizing (i.e. taking their product with conormals to standard balls
in Rk) and appealing to the Künneth theorem for Floer cohomology. We begin by showing
that the stabilization of a stable ball is indeed a ball, thus justifying the name. This uses
the following famous corollary of the h-cobordism theorem:

Theorem 5.12. A stable ball of dimension ≥ 6 with simply connected boundary is a ball.

Corollary 5.13. Let M be a stable ball. Then M × Ik is a ball provided dimM + k ≥ 6 and
k ≥ 1.

Proof. We just need to check that the boundary of M×Ik is simply connected. It suffices to
show that for any stable ball N of dimension ≥ 2, the boundary of N×I is simply connected.
The boundary of N × I is, up to homotopy, two copies of N glued along their common
boundary. Since N is contractible, the fundamental group of this gluing vanishes provided
∂N is connected. If ∂N were disconnected, then by Poincaré duality, the cohomology group
HdimN−1(N) would be nonzero, which contradicts contractibility as dimN ≥ 2.

Proposition 5.14. Let U, V ⊆ M be stable balls with U ⊆ V . Then HF ∗(LV , LU) = Z,
and it is equipped with a canonical generator 1V U which we call the pseudo-continuation
element (it coincides with the usual continuation map when U and V are balls). The pseudo-
continuation elements are closed under composition: for any triple of stable balls U, V,W ⊆
M with U ⊆ V and V ⊆ W , we have 1WV 1V U = 1WU .

Proof. We multiply by LU , LV by LB1(0), LB2(0) ⊆ T ∗Rk where k is sufficiently large to
guarantee that U × B1(0) and V × B2(0) are balls by Corollary 5.13. By the Künneth
formula for Floer cohomology (see e.g. [36, Lem. 8.3]) and freeness of HF ∗(LB2(0), LB1(0))
(compare [36, Rmk. 8.4]), we have

HF ∗(LV × LB2(0), LU × LB1(0)) = HF ∗(LV , LU)⊗HF ∗(LB2(0), LB1(0)) = HF ∗(LV , LU).

On the other hand, by the result for balls Lemma 5.8, we have

HF ∗(LV × LB2(0), LU × LB1(0)) = HF ∗(LV×B2(0), LU×B1(0)) = Z.

After arguing that the above identification is compatible with rounding of corners, this
defines the canonical generator 1V U ∈ HF ∗(LV , LU). The proof that 1WV 1V U = 1WU is the
same: stabilize to reduce to the corresponding fact for honest continuation maps.

In order to make sense of the next corollary, recall that Lemma 5.8 and Proposition
5.14 continue to apply in the limiting situation in which LU is replaced by a cotangent fibre
Lp = T ∗pM for some p ∈ V .
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Corollary 5.15. Let U ⊆ M be any stable ball. Then the pseudo-continuation element
LU → T ∗pM is an isomorphism in W(T ∗M) for any point p ∈ U .

Proof. Note that this corollary is tautologically true if U is a ball, as genuine continuation el-
ements by definition are isomorphisms in the wrapped Fukaya category. By pushing forward,
it suffices to treat the case M = U+. Appealing to the fully faithful Künneth embedding (see
[36, Thm. 1.5]) W(T ∗U+)⊗W(T ∗Ik) ↪→W(T ∗(U+×Ik)), it further suffices to show the result
after taking (the image under this embedding of) the product of this pseudo-continuation
element with the continuation element LIk → [fiber] (which is an isomorphism in W(T ∗Ik)).
The pseudo-continuation element LU → [fiber] is, by definition, sent by this stabilization to
the continuation element LU×Ik → [fiber] (which is defined since the stabilized stable ball
U+ × Ik is a ball). This latter map is an isomorphism so we are done.

Here is an improved version of Lemma 5.10:

Lemma 5.16. For any stable ball U ⊆ M whose closure is contained in W ⊆ M , there is
canonical isomorphism HF ∗(LW , LU) = Z, such that for an inclusion U ⊆ V of such stable
balls, the pseudo-continuation map Z = HF ∗(LW , LV )→ HF ∗(LW , LU) = Z (multiplication
by the pseudo-continuation element in HF ∗(LV , LU)) is the identity on Z.

Proof. Stabilize to reduce to Lemma 5.10.

There is similarly an improved version of Lemma 5.11:

Lemma 5.17. Let V be an open set with smooth boundary, and let U be stable ball such that
U ∩ ∂V is also a stable ball. Then HF ∗(LU , LV ) = 0 = HF ∗(LV , LU).

Proof. Stabilization (multiplying both U and V by Ik) and appealing to the Künneth formula
for Floer cohomology (as in the proof of Lemma 5.14) reduces this proof to Lemma 5.11 (note
that U ∩ ∂V necessarily divides U into two stable balls).

A more subtle result about stable balls is the following, which will be important later:

Proposition 5.18. Let Xm ⊆ Y n be an inclusion of stable balls, with ∂X ⊆ ∂Y . Assume
there exists another stable ball (with corners) Zm+1 ⊆ Y n such that ∂Z is the union of X
with a smooth submanifold of ∂Y . Then the pseudo-continuation element LY → LBε(x) is an
isomorphism in W(T ∗Y,N∗∞X) for any x ∈ X.

Proof. By stabilization, we reduce to the case that X, Y , and Z are all balls. This implies
that, up to diffeomorphism, everything is standard: Y is the unit ball, X is the intersection
of Y with a linear subspace, and Z is the intersection of Y with a linear halfspace. Indeed,
since X and Z are balls, we can use Z to push X to Z ∩ ∂Y , thus showing that X is simply
a slight inward pushoff of the ball Z ∩ ∂Y ⊆ ∂Y .

By definition, the pseudo-continuation element becomes the continuation element under
stabilization (i.e., after multiplying by the continuation isomorphism from the conormal of
a large ball to that of a small ball as in the proof of Corollary 5.15). Once everything is
standard, the continuation map LY → LBε(x) is an isomorphism, since there is a positive
isotopy LBε(x)  LY disjoint from N∗∞X at infinity.

We will apply Proposition 5.18 when (before rounding) X is a simplex in a triangulation,
Y is its star, and Z is any simplex containing X of dimension one larger.
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5.7 Fukaya categories of conormals to stars

Let S be a Whitney stratification of M by locally closed smooth submanifolds. For an S-
constructible open set U , we abuse notation and denote by LU the conormal of the inward
cornering of U with respect to S in the sense of Section 2.3. More precisely, we have LU :=
LU−ε for ε ∈ RS

>0 satisfying εα ≤ f((εβ)β$α). Recall that LU−ε is disjoint from N∗S at infinity
but limits to it as ε→ 0.

Lemma 5.19. Let L be any Lagrangian disjoint at infinity from N∗S. Then for all ε > 0
sufficiently small, CF ∗(LU−ε , L)

∼−→ CW ∗(LU−ε , L)N∗∞S.

Proof. Taking ε → 0 is a positive wrapping of LU−ε (compare Section 5.5) which converges
to (while remaining disjoint from) N∗∞S. It is thus cofinal by Lemma 5.1.

Now assume further that S is a triangulation, and let us consider the conormals to (the
inward cornernings of) open stars Lstar(s) ∈ W(T ∗M,N∗∞S). Since star(s) is contractible,
Lstar(s) is the conormal to a stable ball (Lemma 2.10), and hence the results about stable
balls from Section 5.6 above apply, allowing us to deduce the following:

Proposition 5.20. We have

HW ∗(Lstar(s), Lstar(t))N∗∞S =

{
Z t→ s

0 otherwise
(5.9)

generated in the former case by the pseudo-continuation element.

Proof. Fix a small ε > 0 and let δ → 0. By Lemma 5.19, the wrapped Floer cohomology
HW ∗(Lstar(s), Lstar(t)) is calculated by HF ∗(Lstar(s)−δ , Lstar(t)−ε).

Now if t→ s, then star(t)−ε ⊆ star(s)−δ is an inclusion of stable balls, so by Proposition
5.14 HF ∗(Lstar(s)−δ , Lstar(t)−ε) = Z is generated by the pseudo-continuation element.

Now suppose that t 9 s. If star(s) ∩ star(t) = ∅, then the desired vanishing is trivial.
Otherwise, we have star(s) ∩ star(t) = star(r) where r is the simplex spanned by the union
of the vertices of s and t. To show the desired vanishing, it suffices by Proposition 5.17 to
show that star(t)−ε ∩ ∂ star(s)−δ is a stable ball, which is the content of Lemma 2.12.

It will be convenient to have another perspective on the objects Lstar(s). Let Ls denote
the conormal to a small ball centered at any point on the stratum s (this conormal is disjoint
from N∗∞S at infinity by Whitney’s condition (b), compare with the proof of Lemma 2.6);
this is well defined up to Lagrangian isotopy. One reason the Ls are nice to consider is the
following calculation:

Lemma 5.21. For any S-constructible open set U , we have

HW ∗(LU , Ls)N∗∞S =

{
Z star(s) ⊆ U

0 otherwise.
(5.10)
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q

Bδ(q)

Figure 3: The isotopy from U−ε,δ+η to U−ε,δ−η to U−ε.

Proof. We calculate using Lemma 5.19. If s is a stratum in the interior of U , then the
ball centered at s is contained in U , and in paticular as Ls is a small positive pushoff of a
cotangent fiber to a point in s, one can arrange for there to be a single intersection point
between LU−ε (for small ε) and Ls. Hence HW ∗(LU , Ls)N∗∞S = HF ∗(LU−ε , Ls) = Z. If s is
a stratum not contained in the closure of U , then the morphism space obviously vanishes
since the two Lagrangians (LU−ε for any ε and Ls) are disjoint.

Finally, we claim that if s is a stratum on the boundary of U , the morphism space still
vanishes. To prove this, it suffices to construct a cofinal wrapping of LU which begins disjoint
from Ls and remains forever disjoint from ∂∞Ls (see [35, Lem. 3.26]). Such an isotopy is
illustrated in Figure 3, which we now define precisely. Fix a point q ∈ s, and consider the
stratification Sq obtained from S by declaring {q} to be its own stratum. Now the inward
cornering with respect to Sq may be denoted U−ε,δ for ε ∈ RS

>0 and δ > 0 the parameter
associated to the new stratum {q}. Fix ε and take δ to zero, and note that Proposition 2.15
implies this gives an isotopy of U−ε,δ whose conormals remain disjoint at infinity from N∗S.
Once δ = 0, we just have U−ε, whose conormal has cofinal wrapping by taking ε→ 0. Now
take Ls to be the conormal of Bδ(q) and take the isotopy of LU to be given the conormal of
the isotopy

U−ε,δ+η  U−ε,δ−η  U−ε (5.11)

illustrated in Figure 3, followed by isotoping U−ε by taking ε → 0. Corollary 2.7 implies
that this isotopy remains disjoint at infinity from Ls = N∗Bδ(q) except possibly at U−ε,δ,
but these do not intersect at infinity due to their coorientations being opposite.

Another reason that the Ls are nice to consider is that we can show using the wrapping
exact triangle and stop removal that they (split-)generate:

Proposition 5.22. The objects Ls for strata s split-generate W(T ∗M,N∗∞S).

Proof. Denote by S≤k the stratification where we keep all strata of dimension ≤ k and
combine all other strata into a single top stratum. We consider the sequence of categories

W(T ∗M,N∗∞S) = W(T ∗M,N∗∞S≤n−1)→W(T ∗M,N∗∞S≤n−2)→ · · ·
· · · →W(T ∗M,N∗∞S≤0)→W(T ∗M). (5.12)

Each of these functors removes a locally closed Legendrian submanifold N∗∞S≤k \N∗∞S≤k−1,
and thus by stop removal Theorem 5.4, is the quotient by the corresponding linking disks.

The linking disk at a point on N∗∞S≤k \N∗∞S≤k−1 can be described as follows. A point on
N∗∞S≤k \N∗∞S≤k−1 is simply a point x on a k-dimensional stratum together with a covector ξ
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at x conormal to the stratum. Consider a small ball Ba centered at x, and consider a smaller
ball Bb ⊆ Ba disjoint from the stratum containing x. There is a family of balls starting
at Ba and shrinking down to Bb whose boundaries are tangent to the stratum containing x
only at (x, ξ). It follows from the wrapping exact triangle Theorem 5.3 that the cone on the
resulting continuation map LBa → LBb is precisely the linking disk at (x, ξ).

We have thus shown that the linking disks to each locally closed Legendrian N∗∞S≤k \
N∗∞S≤k−1 are generated by the objects Ls. By Theorem 5.5 above, these Ls also split-generate
the final category W(T ∗M). We conclude that the Ls split-generate W(T ∗M,N∗∞S), as the
quotient by all of them vanishes.

Remark 5.23. A small variation on the above proof and an appeal to [36, Thm. 1.14] shows
that the objects Ls in fact generate W(T ∗M,N∗∞S). We give the weaker argument above to
minimize the results we need to appeal to.

Proposition 5.24. The pseudo-continuation element Lstar(s) → Ls is an isomorphism in
W(T ∗M,N∗∞S).

Proof. We proceed by induction on the codimension of s. When s has codimension zero, the
desired statement follows from Corollary 5.15.

Now suppose that s has positive codimension. For any t of strictly smaller codimension
than s, we have Hom(Lstar(t), Lstar(s)) = 0 by Proposition 5.20 and Hom(Lstar(t), Ls) = 0 by
Lemma 5.21.

Now by the discussion in the proof of Proposition 5.22, the functor

W(T ∗M,N∗∞S)→W(T ∗M,N∗∞S≤dim s) (5.13)

quotients by cones of Lt for t of strictly smaller codimension than s. By the induction
hypothesis and the calculations of the previous paragraph, such cones are left-orthogonal
to Ls and Lstar(s). Hence it suffices to check that Lstar(s) → Ls is an isomorphism in
W(T ∗M,N∗∞S≤dim s).

Finally, we observe that Lstar(s) → Ls is an isomorphism in W(T ∗M,N∗∞S≤dim s) by Propo-
sition 5.18. Namely, we take Y = star(s)−, X = s ∩ star(s)−, and Z = t ∩ star(s)− for any
simplex t containing s and of one higher dimension.

Remark 5.25. For a ‘smooth triangulation’ S, there is an obvious positive isotopy from Ls to
Lstar(s) disjoint from N∗∞S (thus proving Proposition 5.24 in this case), obtained by expanding
a small ball centered at a point on s to star(s), keeping the boundary transverse to the strata
of S. We do not know whether this proof can be generalized from smooth triangulations to
subanalytic Whitney triangulations.

5.8 Functors from poset categories to Fukaya categories

Definition 5.26. Let M be a manifold with Whitney stratification S, and let U : Π →
OpS(M) be a map from a poset Π to the poset of S-constructible open subsets of M . Suppose
further that each U(π)− (from Section 2.3) is a stable ball. Define a functor on cohomology
categories

H∗FU : Z[Π]→ H∗W(T ∗M,N∗∞S)op (5.14)
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by H∗FU(π) := LU(π) and H∗FU(1π,π′) = 1U(π′),U(π) ∈ HW ∗(LU(π′), LU(π)) is the pseudo-
continuation element.

Remark 5.27. Note that the definition ofH∗FU depends on having defined pseudo-continuation
elements with the compatibility properties from Proposition 5.14, which in turn depends on
having equipped the cotangent fibers of T ∗M with continuously varying grading/orientation
data (compare Section 5.3). For general grading/orientation data on T ∗M , it may not be
possible to define continuously varying grading/oriention data on the cotangent fibers, in
which case we could only define H∗FU to respect composition up to sign. The resulting
2-cocycle, or rather its class in H2(NΠ,Z/2), would represent (the pullback of) the obstruc-
tion in H2(M,Z/2) to choosing continuously varying relative Pin-structures on the cotangent
fibers.

Proposition 5.28. For any functor f : Z[Π] → H∗C such that H∗C(f(x), f(y)) is concen-
trated in degree zero for every pair x ≤ y ∈ Π, there exists an A∞ functor F : Z[Π]→ C with
H∗F = f . Moreover, given any two A∞ functors F,G : Z[Π]→ C such that H∗C(F (x), G(y))
is concentrated in degree zero for every pair x ≤ y ∈ Π and a natural transformation
t : f → g, the space of A∞ natural transformations T : F → G with H∗T = t is con-
tractible.

Proof. We show existence of a lift F by induction. Lift the action on objects arbitrarily. Take
F 1 to be any map in the correct cohomology class H∗F 1 = f . Having chosen F 1, . . . , F k−1,
the existence of an F k satisfying the A∞ functor equations is equivalent to a certain element
of ∏

π0,...,πk∈Π

Hom(Z[Π](π0, π1)⊗ · · · ⊗ Z[Π](πk−1, πk),C(F (π0), F (πk))), (5.15)

(namely the sum of all the terms of the A∞ functor equations with k inputs except for those
involving F k) being a coboundary. This element is always a cocycle due to F 1, . . . , F k−1

satisfying the A∞ functor equations, so it suffices to show that its class in cohomology
vanishes. The cohomology of (5.15) is of course simply∏

π0≤···≤πk∈Π

H∗C(F (π0), F (πk)), (5.16)

which is concentrated in degree zero by hypothesis. The obstruction class thus vanishes for
degree reasons for k ≥ 3. For k = 2, the obstruction class measures the failure of H∗F
to respect composition, so by hypothesis the obstruction vanishes in this case as well. We
conclude that there always exists an F k compatible with the previously chosen F 1, . . . , F k−1.
(Compare [77, Lem. 1.9], where a variant on this obstruction theory argument is explained
in more detail.)

To construct a natural transformation [77, (1d)] T : F → G with H∗T = t, first pick
some T 0 lifting t. Given T 0, . . . , T k−1, the obstruction to the existence of T k is a degree 1−k
cohomology class in ∏

π0≤···≤πk∈Π

C(F (π0), G(πk)). (5.17)

It hence vanishes for degree reasons for k ≥ 2, and for k = 1 it measures the failure of H∗T
to respect morphisms, hence vanishes in this case as well.
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Contractibility of the space of natural transformations T with H∗T = t is, concretely, the
assertion that the complex of pre-natural transformations Hom(F,G) is acyclic in negative
(cohomological) degree and that any two natural transformations (i.e. degree zero cocycles)
T and T ′ with H∗T = t = H∗T ′ are cohomologous. In both cases, we should produce a
pre-natural transformation Q of degree −g < 0 with prescribed value of dQ. Such Q =
(Q0, Q1, . . .) is again constructed by induction. The existence of Qk then comes down to the
vanishing in degree 1− k− g of the cohomology of (5.17) for all g ≥ 1 and k ≥ 0 (except for
g = 1 and k = 0, for which the relevant obstruction measures the failure of the desired value
T − T ′ of dQ to vanish on H∗C, hence vanishes by the assumption H∗T = t = H∗T ′).

Remark 5.29. The assertion of Proposition 5.28 over a field k (instead of over Z) is a straight-
forward consequence of the fact that any A∞ category C over k is quasi-isomorphic to an A∞
category C̃ with vanishing differential, sometimes called a minimal model of C. In this case,
the essential image of f inside C̃ would be necessarily concentrated in degree zero on the
chain level, hence have vanishing higher order A∞ structure maps for degree reasons (and
hence this essential image inside C̃, equivalently C, is formal). It follows that any functor
on cohomology categories k[Π]→ H∗C̃ would lift tautologically to an A∞ functor by taking
all higher operations to vanish. The proof above bypasses the question of the existence of
minimal models over Z.

Corollary 5.30. There is a unique up to contractible choice A∞ functor

FU : Z[Π]→W(T ∗M,N∗∞S)op (5.18)

lifting the functor on cohomology categories from Defintion 5.26.

Proof. By Corollary 5.19, the wrapped Floer cohomology group HW ∗(LU(π), LU(π′)) is simply
the Floer cohomology of two nested stable balls, which is Z by Proposition 5.14. Thus
Proposition 5.28 is applicable.

Remark 5.31. To extend Corollary 5.30 to the Fukaya category with a Z/N -grading, we would
need to add to the requirement that F (and the natural transformations F1 → F2) must lift
to Z-graded categories locally (the Z-grading is only defined locally, over any contractible
open subset of M).

For the next corollary, let us denote by H∗ the functor from ModZ to the category of
graded abelian groups given by taking the cohomology of objects of ModZ. The functor H∗

factors through, but does not coincide with, the functor H∗ : ModZ → H∗ModZ which
exists for any A∞ category in place of ModZ (and which takes cohomology of morphisms).

Corollary 5.32. Consider functors F : Z[Π] → ModZ such that H∗F (x) is free and con-
centrated in degree zero for all x ∈ Π. Given any two such functors F and G and a nat-
ural transformation t : H∗F → H∗G, the space of natural transformations T : F → G
with H∗T = t is contractible. In particular, any such functor F is quasi-isomorphic to
iH∗F : Z[Π] → ModZ, namely the composition of H∗F with the inclusion i of free abelian
groups into ModZ (as complexes concentrated in degree zero).
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Proof. We first argue that if P,Q ∈ ModZ are such that H∗P and H∗Q are free and
concentrated in degree zero, then the natural map

H∗Hom(P,Q)→ Hom(H∗P,H∗Q) (5.19)

is an isomorphism. Since H∗P is projective, there is a quasi-isomorphism H∗P → P
(and the same for Q). It follows that there is a quasi-isomorphism of chain complexes
Hom(P,Q) = Hom(H∗P,H∗Q) (homomorphisms in ModZ). Since H∗P and H∗Q are pro-
jective and concentrated in degree zero, the complex Hom(H∗P,H∗Q) is (quasi-isomorphic
to) homomorphisms of abelian Z modules H∗P → H∗Q concentrated in degree zero; thus
(5.19) is an isomorphism as desired.

Now suppose F and G are as in the statement and a natural transformation t : H∗F →
H∗G is given. Since H∗F and H∗G are free and concentrated in degree zero, we see from
(5.19) that the data of t is equivalent to the data of a natural transformation t̄ : H∗F → H∗G.
Now (5.19) also implies that the hypotheses of Proposition 5.28 are satisfied, so the space of
natural transformations T with H∗T = t̄ (which is, as just noted, equivalent to H∗T = t) is
contractible.

It is immediate from the definition that H∗F = H∗iH∗F , so the final statement follows
from the first.

Definition 5.33. For a Whitney triangulation S, let

FS : Z[S]→W(T ∗M,N∗∞S)op (5.20)

denote the functor induced from Definition 5.26 and Corollary 5.30 by the map associating
to each simplex of S its open star.

Theorem 5.34. The functor FS is a Morita equivalence.

Proof. Proposition 5.20 shows is full faithfulness of FS, and Propositions 5.22 and 5.24 to-
gether show essential surjectivity of FS (after passing to Perf).

We now show that FS is compatible with refinement (compare Lemma 4.6):

Theorem 5.35. For S′ a refinement of S, the following diagram commutes:

Z[S′] W(T ∗M,N∗∞S
′)op

Z[S] W(T ∗M,N∗∞S)op

FS′

r ρ

FS

(5.21)

up to contractible choice.

Proof. There are two functors ρ◦FS′ and FS◦r from Z[S′] to W(T ∗M,N∗∞S). By Proposition
5.28, it suffices to define a canonical natural isomorphism between the induced functors on
cohomology categories. It is most natural to define this canonical natural isomorphism in
the direction FS ◦ r =⇒ ρ ◦ FS′ .
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To a stratum s of S′, the composition FS ◦ r associates the conormal of starS(r(s)), and
the composition ρ ◦ FS′ associates the conormal of starS′(s). Since starS(r(s)) ⊇ starS′(s) is
an inclusion of stable balls, we may consider by Proposition 5.14 the pseudo-continuation
element from one to the other. Since pseudo-continuation elements are closed under com-
position by Proposition 5.14, it is easy to check that this defines a natural transformation
H∗(FS ◦ r) =⇒ H∗(ρ ◦ FS′).

This natural transformation is in fact a natural isomorphism since the natural maps from
both LstarS(r(s)) and LstarS′ (s)

to Ls = Lr(s) are isomorphisms by Proposition 5.24.

5.9 In conclusion

Theorem 5.36. The functor Λ 7→ Perf W(T ∗M,Λ)op is a microlocal Morse theatre in the
sense of Definition 3.4, which casts the linking disks at smooth points of Λ as the Morse
characters.

Proof. Definition 5.33 and Theorems 5.34 and 5.35 give the identification between S 7→ Perf S
and S 7→ Perf W(T ∗M,N∗∞S)op via the functors FS.

Stop removal Theorem 5.4 says that W(T ∗M,Λ′) → W(T ∗M,Λ) is the quotient by the
linking disks at the smooth points of Λ′ \ Λ. It therefore suffices to show that the Morse
characters are precisely (isomorphic to) these linking disks.

Recall from Definition 3.3 that a Morse character at a smooth point p ∈ Λ is defined
as follows. We choose a function f : M → R and an ε > 0 such that f−1(−∞, ε) is
relatively compact, f has no critical values in [−ε, ε] and df is transverse to R>0 × Λ over
f−1[−ε, ε], intersecting it only at p (where f vanishes). We also choose a subanalytic Whitney
triangulation S such that Λ ⊆ N∗∞S and f−1(−∞,−ε) and f−1(−∞, ε) are constructible. The
Morse character associated to these choices is then defined as the image in W(T ∗M,Λ) of

cone(1f−1(−∞,−ε) → 1f−1(−∞,ε)) ∈ Perf S = Perf W(T ∗M,N∗∞S)op (5.22)

where the morphism 1f−1(−∞,−ε) → 1f−1(−∞,ε) is (the linearization of) the canonical one from
(3.5). To show that this cone is indeed sent to the linking disk at p in W(T ∗M,Λ), we
will make use of the wrapping exact triangle Theorem 5.3, which says that the linking disk
at p is the cone of the continuation map associated to any positive isotopy of Lagrangians
in T ∗M which crosses Λ exactly once transversely at p. Specifically, there is an obvious
positive isotopy from the conormal of f−1(−∞,−ε) to the conormal of f−1(−∞, ε), namely
f−1(−∞, t) for t ∈ [−ε, ε], since f has no critical values in the interval [−ε, ε]; the cone of
the associated continuation element in W(T ∗M,Λ) is thus the desired linking disk.

The conormals of f−1(−∞,±ε) are not themselves objects of the wrapped Fukaya cate-
gory associated to the triangulation W(T ∗M,N∗∞S), seeing as they by definition touch the
stop. However, in Section 5.7 we studied the conormals of the inward cornerings of S-
constructible open sets U , which we denoted LU := LU−ε . These Lagrangians Lf−1(−∞,±ε)
are thus, in particular, objects of W(T ∗M,N∗∞S), and Lemma 2.13 provides an isotopy be-
tween them and the (usual) conormals of f−1(−∞,±ε) which takes place in the complement
of Λ, thus inducing an isomorphism in W(T ∗M,Λ). Therefore to complete the argument, it
suffices to show that:

(i) FS(1f−1(−∞,±ε)) ∈ Perf W(T ∗M,N∗∞S) is isomorphic to Lf−1(−∞,±ε), and
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(ii) the canonical morphism 1f−1(−∞,−ε) → 1f−1(−∞,ε) is sent by FS and the isomorphisms
(i) to an element in HW ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε))N∗S whose image in W(T ∗M,Λ) is the
continuation element associated to the natural positive isotopy between the conormals
of f−1(−∞,±ε).

Regarding (i), let us establish the more general assertion that FS(1W ) is isomorphic to
LW for any relatively compact open S-constructible set W . Since FS is a Morita equivalence,
it suffices by Yoneda to show that the pullback F ∗SLW = CW ∗(LW , FS(−)) is isomorphic in
Mod S to 1W . Using Lemma 5.19 and Lemma 5.16 (for the case star(s) ⊆ W ) and Proposition
5.24 and Lemma 5.21 (for the case star(s) * W ), we have canonical isomorphisms

HW ∗(LW , Lstar(s))N∗∞S =

{
Z star(s) ⊆ W

0 otherwise
= 1W (s). (5.23)

This identifies F ∗SLW = 1W objectwise (i.e. identifies their evaluations at every s ∈ S). To
identify F ∗SLW = 1W as modules, it suffices by Corollary 5.32 to compare the action of
morphisms t → s for star(t) ⊆ star(s) ⊆ W at the level of cohomology (since the category
Z[S] and both modules are cohomologically concentrated in degree zero, there is no room for
any higher homotopies). In other words, we should show that the map

HW ∗(LW , Lstar(s))N∗∞S → HW ∗(LW , Lstar(t))N∗∞S (5.24)

given by multiplication with the pseudo-continuation element in HW ∗(Lstar(s), Lstar(t))N∗∞S

acts as the identity map on Z under the isomorphism (5.23), and this is precisely what is
stated in Lemma 5.16. This completes the proof of (i).

Turning to (ii), first we note that, as ∂∞Lf−1(−∞,ε) falls immediately into the stop N∗∞S
(Lemma 5.19), we have

HW ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε))N∗∞S = HF ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε)). (5.25)

In turn the isotopies of Lemma 2.13 between the (usual) conormals of f−1(−∞,±ε) and the
inward cornerings Lf−1(−∞,±ε) do not cross each other at infinity, hence induce an isomor-
phism between HF ∗ of the conormals with the above HF ∗ group of their inward corner-
ings. These transfer the continuation element associated to the isotopy of conormals from
f−1(−∞,−ε) to f−1(−∞, ε) to an element of (5.25) which we will call the cornered continua-
tion element (multiplication by which is called the cornered continuation map). The image of
the cornered continuation element in W(T ∗M,Λ) is, by definition, the continuation element
between the conormals of f−1(−∞,±ε) (as the isomorphisms between HF ∗ are compatible
with the map to HW ∗). It thus suffices to show that the cornered continuation element in
(5.25) is the image of the canonical map 1f−1(−∞,−ε) → 1f−1(−∞,ε) under FS and the isomor-
phisms of (i). Equivalently, we are to show that the canonical map 1f−1(−∞,−ε) → 1f−1(−∞,ε)
agrees under the isomorphisms HW ∗(Lf−1(−∞,±ε), FS(−)) = 1f−1(−∞,±ε)(−) from (i) with the
pulled back cornered continuation map. Again by Corollary 5.32, it suffices to make this
comparison at the level of cohomology. That is, we are to show that multiplication by the
cornered continuation map

HW ∗(Lf−1(−∞,−ε), Lstar(s))N∗∞S → HW ∗(Lf−1(−∞,ε), Lstar(s))N∗∞S (5.26)
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acts as the identity on Z under the isomorphisms (5.23) (for star(s) ⊆ f−1((−∞,−ε))). Now,
the isomorphisms of both sides with Z coming from Lemma 5.16 are compatible with pseudo-
continuation elements, so by Proposition 5.24 it is equivalent to show that multiplication by
the cornered continuation map

HF ∗(Lf−1(−∞,−ε), Ls)→ HF ∗(Lf−1(−∞,ε), Ls) (5.27)

acts as the identity on Z under the isomorphisms of Lemma 5.10 (for s ⊆ f−1((−∞,−ε)))
(we replaced HW ∗ with HF ∗ using Lemma 5.19). By the definition given in Lemma 5.10,
the ‘identity on Z’ map (5.27) is simply the identity map on the single Floer generator we
get when unperturbing Ls back to be the cotangent fiber of a point on s. Now the cornered
continuation map (5.27) agrees by the last part of [35, Lem. 3.26] with the isomorphism
(5.27) from [35, Lem. 3.21] associated to the isotopy from Lf−1(−∞,−ε) to Lf−1(−∞,ε). Since
this isotopy takes place far away from Ls, it also by definition acts as the identity on the
single Floer generator of both sides.

Proposition 5.37. For any analytic open inclusion of analytic manifolds M ′ ↪→ M , the
pushforward functor W(T ∗M ′,Λ′) → W(T ∗M,Λ) for subanalytic singular isotropics with
Λ′ ⊇ Λ ∩ S∗M ′ defines a morphism of microlocal Morse theatres.

Proof. The reasoning of Theorem 5.35 applies without change.

6 Examples

6.1 Cotangent bundles

Let M be a smooth manifold (assumed connected for sake of notation). The cotangent fiber
Fq ∈ W(T ∗M) generates by Abouzaid [5, 6] when M is closed and by [36, Thm. 1.14] in
general.

When M is closed, Abbondandolo–Schwarz [3] and Abouzaid [8] calculated the endomor-
phism algebra of the fiber as CW ∗(Fq, Fq) = C−∗(ΩqM) (using relative Pin structures as in
Section 5.3). The present Theorem 1.1 (which does not depend on any of [3, 8, 6, 5]) gives
a proof of this fact for all (not necessarily closed) M :

Corollary 6.1. There is a quasi-isomorphism CW ∗(Fq, Fq) = C−∗(ΩqM). Moreover if
M ⊆ N is a codimension zero inclusion, there is a commutative diagram

CW ∗(Fq, Fq)T ∗M C−∗(ΩqM)

CW ∗(Fq, Fq)T ∗N C−∗(ΩqN)

(6.1)

where the left hand vertical arrow is covariant inclusion and the right hand vertical arrow is
induced by pushforward of loops.
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Proof. Note that there exists a real analytic structure on M whose induced smooth structure
agrees with the given one. Taking Λ = ∅ in Theorem 1.1 gives Perf W(T ∗M) = Sh∅(M)c. It is
well known that Sh∅(M)c = Perf C−∗(ΩqM), for example because both are the global sections
of the constant cosheaf of linear categories with costalk Perf Z. Indeed, U 7→ U is a cosheaf
of spaces, equivalently of ∞-groupoids, which upon linearizing yields U 7→ Perf C−∗(ΩU),
and U 7→ Sh∅(U)c is a cosheaf since U 7→ Mod Sh∅(U)c = Sh∅(U) is a sheaf.

We may derive the more precise assertion that C−∗(ΩqM) is endomorphisms of the cotan-
gent fiber by following a fiber through the equivalence, e.g. by considering the inclusion of
the cotangent bundle of a disk, or equivalently by introducing a stop along the conormal of
the boundary of a disk and then removing it.

6.2 Plumbings

Many authors have studied Fukaya categories of plumbings [7, 12, 32] and their sheaf coun-
terparts [17]. Here we compute the wrapped category of a plumbing.

Let Π2n be the Liouville pair (Cn, ∂∞(Rn∪iRn)); we term it the plumbing sector. Plumb-
ings are formed by taking a manifold M (usually disconnected) with spherical boundary
∂M =

∐
Sn−1, and gluing the Liouville pair (T ∗M,∂M) to some number of plumbing sec-

tors along the spheres.
One can model the wrapped Fukaya category of the plumbing sector directly in sheaf

theory: we can view it as the pair (T ∗Rn, N∗∞{0}), and the category ShN∗∞{0}(R
n) has a well

known description in terms of the Fourier transform as described in [17]. This category is
equivalent to W(Π2n) by Theorem 1.1. To apply the gluing results of [36], however, we need
to know how the wrapped Fukaya categories of the two boundary sectors include, which
is slightly more than what Theorem 1.1 tells us. Hence we give a direct computation of
the wrapped Fukaya category of the plumbing sector. Take a positive Reeb pushoff of the
boundary of a cotangent fiber in T ∗Rn, so it is now the outward conormal of a small ball.
Deleting the original cotangent fiber, we obtain the Liouville sector T ∗Sn−1 ×A2 where A2

denotes the Liouville sector (C, {e2πik/3}k=0,1,2∞). We can get back to the plumbing sector
Π2n by adding back the missing fiber, which amounts to attaching a Weinstein handle along
one of the boundary sectors T ∗(Sn−1 × I). We may thus deduce from [36, Thm. 1.28, Thm.
1.5, and Cor. 1.18] that:

Lemma 6.2. W(Π2n) is Morita equivalent to

colim(Perf(•)← Perf C∗(ΩS
n−1)→ Perf(• → •)⊗ Perf C∗(ΩS

n−1)). (6.2)

Gluing in the remaining manifolds, we conclude:

Corollary 6.3. The wrapped Fukaya category of a plumbing is Morita equivalent to the
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colimit of the diagram∐
Perf(•)

∐
Perf C∗(ΩS

n−1)
∐

Perf(• → •)⊗ Perf C∗(ΩS
n−1)

∐
Perf C∗(ΩS

n−1)
∐

Perf C∗(ΩMi)

(6.3)

where Mi are the components of M .

6.3 Proper modules and infinitesimal Fukaya categories

Recall that for a dg or A∞ category C, we write PropC := Fun(C,Perf Z) for the cate-
gory of proper (aka pseudo-perfect) modules. It is immediate from our main result that
Prop ShΛ(M)c = PropW(T ∗M,Λ)op.

Recall from Corollary 4.24 that any proper ShΛ(M)c-module is representable by an object
of ShΛ(M) with perfect stalks, i.e. a constructible sheaf in the classical sense. Let us describe
some objects in the Fukaya category W(T ∗M,Λ) which necessarily give rise to proper modules
(and thus to sheaves on M with perfect stalks, microsupported inside Λ).

Definition 6.4. For any stopped Liouville manifold (X,Λ), we define the forward stopped
subcategory Wε(X,Λ) to be the full subcategory of W(X,Λ) generated by Lagrangians which
admit a positive wrapping into Λ, meaning ∂∞L becomes eventually contained in arbitrarily
small neighborhoods of Λ. By Lemma 5.1, such a wrapping is necessarily cofinal.

Example 6.5. If Λ admits a ribbon F (or, alternatively, is itself equal to a Liouville hyper-
surface F ) then Wε(X,Λ) contains all Lagrangians whose boundary at infinity is contained
in a neighborhood of a small negative Reeb pushoff of Λ (or F ).

Example 6.6. All compact (exact) Lagrangians are contained in Wε(X,Λ), as their boundary
at infinity ∅ is wrapped into Λ by the trivial wrapping.

Proposition 6.7. All objects of Wε(X,Λ) co-represent proper modules over W(X,Λ); that
is, the restriction of the Yoneda embedding W(X,Λ) ↪→ ModW(X,Λ)op to Wε(X,Λ) has
image contained in PropW(X,Λ)op.

Proof. Morphisms in the wrapped category can be computed by cofinally positively wrapping
the first factor. Any L ∈ Wε(X,Λ) admits such a wrapping {Lt}t≥0 which converges at
infinity to Λ. It follows that after some time t, its boundary at infinity stays disjoint at
infinity from K, and hence CW ∗(L,K) = CF ∗(Lt, K) for sufficiently large t.

Corollary 6.8. The equivalence Perf W(T ∗M,Λ)op = ShΛ(M)c sends Wε(T ∗M,Λ) into
Prop ShΛ(M)c.

Recall that for a Whitney triangulation S, the category W(T ∗M,N∗∞S)op is Morita equiv-
alent to Z[S], hence smooth and proper. The generators Lstar(s) of W(T ∗M,N∗∞S) used to
prove this equivalence were shown in that proof to lie in Wε(T ∗M,N∗∞S), so we have:
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Proposition 6.9. For a Whitney triangulation S, the inclusion Wε(T ∗M,N∗∞S) ⊆W(T ∗M,N∗∞S)
is a Morita equivalence.

Remark 6.10. Corollary 6.8 is very similar to the original Nadler–Zaslow correspondence
[64], restricted to Lagrangians with fixed asymptotics. To be more precise, recall that
Nadler–Zaslow wish to consider an infinitesmially wrapped Fukaya category Winf(T ∗M,Λ)
of Lagrangians ‘asymptotic at infinity to Λ’ and then show it is equivalent to a category of
sheaves on M with microsupport inside Λ.

If Λ is a smooth Legendrian and Winf(T ∗M,Λ) is defined to consist of Lagrangians
which are conical at infinity, ending inside Λ, then there is a fully faithful embedding
Winf(T ∗M,Λ) ↪→ Wε(T ∗M,Λ), sending a Lagrangian ending inside Λ to its small nega-
tive pushoff, as this pushoff tautologically wraps positively back into Λ. Hence Corollary
6.8 recovers a version of [64] when Λ is a smooth Legendrian. One can certainly imag-
ine constructing such an embedding Winf(T ∗M,Λ) ↪→ Wε(T ∗M,Λ) for more general (e.g.
subanalytic isotropic) Λ, provided one is given a definition of Winf(T ∗M,Λ) for such Λ.

Remark 6.11. We do not know when Wε(T ∗M,Λ)op ↪→ Prop ShΛ(M)c is a Morita equiva-
lence. Note that the assertion of such an equivalence (for Winf(T ∗M,Λ)op) is not made in
[60], although that work is occasionally misquoted to suggest that it is. What is actually
said is that one can get all objects of Prop ShΛ(M)c from twisted complexes of objects of
Winf(T ∗M,Λ′)op for a possibly larger Λ′ which, as twisted complexes, pair trivially with all
Lagrangians contained in a neighborhood of Λ′ \ Λ. Such Lagrangians might be said to be
“Floer theoretically supported away from Λ′ \ Λ”.

To make a precise statement along the lines of Remark 6.11, realizing a version of the
Nadler–Zaslow equivalence, we have:

Proposition 6.12. If S is any subanalytic Whitney triangulation of compact M with Λ ⊆
N∗∞S, and D denotes the collection of linking disks to smooth points of N∗∞S\Λ, then

Prop ShΛ(M)c = PropW(T ∗M,Λ)op = (TwWε(T ∗M,N∗∞S)op)Ann(D) (6.4)

where Tw denotes twisted complexes (i.e. any model for the the pre-triangulated, non idempotent-
completed, hull), and the subscript Ann(D) indicates taking the full subcategory of objects
annihilated by CW ∗(−, D) = 0 for all D ∈ D.

Proof. For such an S, the functor j : W(T ∗M,N∗∞S) → W(T ∗M,Λ) is the quotient by D

by Theorem 5.4. Pullback of modules under any localization is a fully faithful embedding,
identifying the category of modules over the localized category with the full subcategory of
modules over the original category which annihilate the objects quotiented by (see Section
A.7 and [35, Lem. 3.12 and 3.13]). Properness of a module is also clearly equivalent to
properness of its pullback. We thus conclude that

j∗ : PropW(T ∗M,Λ)op ↪→ PropW(T ∗M,N∗∞S)op (6.5)

embeds the former as the full subcategory of the latter annihilating D.
Now W(T ∗M,N∗∞S) (Morita equivalent to Perf Sop by Proposition 5.34) is smooth and

proper by Lemma A.11 (since M is compact and thus there are finitely many simplices).
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Hence PropW(T ∗M,N∗∞S)op = Perf W(T ∗M,N∗∞S)op = Perf Wε(T ∗M,N∗∞S)op (by Proposi-
tion 6.9). Finally, we observe that idempotent completion is unecessary by Lemma A.10, as
Perf S has a generating exceptional collection.

Remark 6.13. For non-compact M , the same proof implies that

Prop ShΛ(M)c = (PropWε(T ∗M,N∗∞S)op)Ann(D) ⊇ (Perf Wε(T ∗M,N∗∞S)op)Ann(D) (6.6)

but the inclusion is not generally an equality. Though, if at least Λ is compact, a similar
argument should relate proper modules annihilating co-representatives of the stalks at infinity
with the annihilator in TwWε(T ∗M,N∗∞S)op of D and the fibers at infinity.

Example 6.14. Let us explain how our ‘stopped’ setup can be used to make ordinary (not
wrapped) Floer cohomology calculations using sheaves. Suppose given two Lagrangians
L,K ⊆ T ∗M for which Λ := ∂∞L ∪ ∂∞K is subanalytic. We are interested in computing
HF ∗(L+, K). Thus consider the wrapped category W(T ∗M,Λ) and small negative pushoffs
L−, K− ∈W(T ∗M,∂∞L ∪ ∂∞K), and observe that

HF ∗(L+, K) = HW ∗(L−, K−)Λ.

By our main result, the right hand side can be computed as Hom(FK ,FL) in the sheaf
category ShΛ(M), provided we can determine the sheaves FL and FK to which L− and K−

are sent by our Theorem 1.1.
Here we make only a few observations regarding how to determine these sheaves. Because

linking disks go to microstalks and L−, K− are forward stopped, we can see immediately that
FL,FK have microstalk Z along the respective loci ∂∞L, ∂∞K ⊆ Λ. For the same reason, for
p away from the front projection of Λ = ∂∞L ∪ ∂∞K, we have

FL|p ∼= CF ∗(L, T ∗pM) FK |p ∼= CF ∗(K,T ∗pM).

In some cases, e.g. in case that L intersects every cotangent fiber either once or not at all, this
data already suffices to determine FL. In particular, this situation occurs in [81], where sheaf
calculations are made exhibiting cluster transformations arising from comparing different
fillings of Legendrian knots. The present discussion suffices to translate those calculations
into calculations in Lagrangian Floer theory.

6.4 Legendrians and constructible sheaves

Corollary 6.15. Let Λ ⊆ J1Rn ⊆ S∗Rn+1 be a smooth compact Legendrian. Let D =
D1 t · · · tDn be a disjoint union of linking disks at distinct points of Λ, at least one on each
connected component. Consider the algebra

AΛ := CW ∗(D,D)T ∗Rn+1,Λ =
n⊕

i,j=1

CW ∗(Di, Dj)T ∗Rn+1,Λ. (6.7)

Then ModA
op
Λ is equivalent to the category ShΛ(T ∗Rn+1)0 of sheaves microsupported inside

Λ and with vanishing stalk at infinity.
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This equivalence identifies the microstalk along Λ near Di with the direct summand
of the forgetful functor ModA

op
Λ → ModZ corresponding to the idempotent ei := 1Di ∈

CW ∗(Di, Di) ⊆ AΛ (e1, . . . , en are orthogonal idempotents summing to the identity). Hence
PropA

op
Λ is equivalent to the subcategory of ShΛ(T ∗Rn+1)0 of objects with perfect microstalks

along Λ (or, equivalently, with perfect stalks).

Proof. Our generation results [36, Thm. 1.14] imply that W(T ∗Rn+1,Λ) is generated by
D1, . . . , Dn and a cotangent fiber F near infinity. Because we assume that Λ ⊆ J1Rn, the
cotangent fiber at negative (in the last coordinate) infinity can be cofinally positively wrapped
without intersecting Λ, and likewise the (isomorphic) cotangent fiber at positive infinity can
be cofinally negatively wrapped without intersecting Λ. These large wrappings are conormals
to large disks in Rn+1 containing the projection of Λ; they thus have vanishing wrapped Floer
cohomology (in both directions) with the linking disks Di to Λ. Thus D = D1 t · · · t Dn

and F are orthogonal objects of W(T ∗Rn+1,Λ).
Denote by µ = µ1 ⊕ · · · ⊕ µn and σ ∈ ShΛ(T ∗Rn+1)c the objects corresponding to D =

D1 ⊕ · · · ⊕ Dn and F . They are orthogonal, and have endomorphism algebras A
op
Λ and Z,

respectively.
We have ShΛ(T ∗Rn+1) = Mod ShΛ(T ∗Rn+1)c = ModW(T ∗Rn+1,Λ)op = ModA

op
Λ ⊕

ModZ, and this equivalence is given concretely by F 7→ Hom(µ,F)⊕ Hom(σ,F). By Theo-
rem 1.1, Hom(µ,F) = Hom(µ1,F)⊕ · · · ⊕Hom(µn,F) is the direct sum of microstalks along
Λ near D1, . . . , Dn, and Hom(σ,F) is the stalk at infinity.

To see that perfect stalks is equivalent to perfect microstalks along Λ for objects of
ShΛ(T ∗Rn+1)0, argue as follows. Suppose microstalks are perfect. Stalks are computed by
Hom(ZBε(x),F) for some sufficiently small ε > 0 (in terms of Λ), since changing ε is non-
characteristic by Whitney’s condition (b) for a subanalytic Whitney stratification S whose
conormal contains Λ. Now moving Bε(x) generically to infinity picks up some number of
microstalks when its conormal passes through Λ (transversally), and eventually gives zero
since the stalk of F near infinity vanishes. Thus perfect microstalks implies perfect stalks.
Perfect stalks implies perfect microstalks was proven in Corollary 4.24.

Let us comment on the relation of the above result to the ‘augmentations are sheaves’
statement in [82, 69] (and later developments such as [72, 13]). There is an evident simi-
larity: both relate augmentations of an algebra associated to a Legendrian to categories of
sheaves microsupported in that Legendrian. But they are not exactly the same: the algebra
AΛ is not by definition the Chekanov–Eliashberg dga, and moreover in [69] the category of
augmentations is defined by a somewhat complicated procedure, not just as proper modules
over a dga. Also in [69], the authors restrict attention to augmentations, i.e. 1-dimensional
representations of the dga, whereas the above result concerns the entire representation cat-
egory (the underlying Z-module of the representation being the microstalk), specializing to
a comparison of rank k representations with rank k microstalk sheaves for every k.

In fact, AΛ was conjectured by Sylvan to be a version of the Chekanov–Eliashberg dga
with enhanced C∗(ΩΛ) coefficients. A precise statement comparing AΛ to such a generalized
“loop space dga” can be found in [28, Conj. 3], where it is explained that the comparison
should follow from a slight variant of the surgery techniques of [19, 27]. The relation between
the multiple copy construction of [69] and the loop space dga can also be extracted from
[28].
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Finally we note that a version of the above discussion serves to translate between the
arguments of [79] and [29].

6.5 Fukaya–Seidel categories of cotangent bundles

Let W : T ∗M → C be an exact symplectic fibration with singularities. The associated
Fukaya–Seidel category is by (our) definition W(T ∗M,W−1(−∞)). According to [36, Cor.
3.9], retracting the stop to its core does not affect the category: W(T ∗M,W−1(−∞)) =
W(T ∗M, cW−1(−∞)). Thus if the fiber is Weinstein, then we may calculate the corresponding
Fukaya–Seidel category using Theorem 1.1 (provided the core is subanalytic).

In particular, the sheaf theoretic work on mirror symmetry for toric varieties may now
be translated into assertions regarding the wrapped Fukaya category. Recall that [33] in-
troduced for any n-dimensional toric variety T a certain Lagrangian ΛT ⊆ T ∗(S1)n. They
conjectured,10 and [52] proved, that Sh∂∞ΛT

((S1)n)c = Coh(T), where we use Coh to denote
the dg category of coherent complexes. By Theorem 1.1, we may conclude:

Corollary 6.16. Perf W(T ∗(S1)n, ∂∞ΛT)op = Coh(T).

When T is smooth and Fano, it was expected that the Coh(T) should be equivalent to
the Fukaya–Seidel category of the mirror Hori–Vafa superpotential [42]. To compare this
expectation with Corollary 6.16, it suffices to show that ∂∞ΛT is in fact the core of the fiber
of said superpotential in the Fano case. This is shown under certain hypotheses in [34] and
in general in [91]. We summarize the above discussion in the right column of (7.31).

These results may be compared with [4], which for smooth projective T gives a fully
faithful embedding of Perf(T) into an infinitesimal Fukaya category for the superpotential.
In the Fano case, this is recovered and upgraded to an equivalence by taking proper modules
of the formulation in [34].

Note that Corollary 6.16 gives an equivalence in the general (non-Fano, non-compact,
singular, and stacky) case, although this equivalence is not yet formulated in terms of a
superpotential. Such a formulation is known to be somewhat subtle, requiring the exclusion
of some critical values; see [16, Sec. 5] or [4]. It may be interesting to explore this using the
present methods.

7 Partially wrapped Fukaya categories and microlocal

sheaves

The purpose of this section is to prove Theorem 1.4. The reasoning in this section depends
only on the statement of Theorem 1.1, together with various results from [36] and [63]; as
such, it can be read independently of previous sections of this article.

The main point in the derivation of Theorem 1.4 from Theorem 1.1 is to properly exploit,
on both the Fukaya side and the sheaf side, the ‘doubling trick’, which allows one to embed
the category associated (on either side) to a Liouville manifold (possibly relative a singular
isotropic stop) into the category associated to a cotangent bundle relative an appropriate

10Strictly speaking, they conjectured the proper module version of this statement.
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‘doubled’ stop obtained from an embedding of (a stabilization of) the given Liouville manifold
into the co-sphere bundle. The use of such an embedding to reduce to cotangent bundles
was advocated for on the sheaf side in [78]. The doubling trick has appeared in various forms
on the Fukaya side [36, 87], and we develop it systematically below. It has been used on
the sheaf side in [40, 63] to embed categories of microlocal sheaves into categories of (usual)
sheaves, and we will use it for the same purpose here.

While our eventual appeal to Theorem 1.1 will require the relative core in question to be
subanalytic isotropic, most of the intermediate results of this section require much weaker
assumptions. A subset Λ of a contact (resp. symplectic) manifold will be called mostly
Legendrian (resp. Lagrangian) [36, Def. 1.7] iff the complement Λsubcrit := Λ \ Λcrit of the
open locus Λcrit ⊆ Λ where Λ is a smooth Legendrian (resp. Lagrangian) can be covered
by the smooth image of a second countable smooth manifold of dimension strictly less than
Legendrian (resp. Lagrangian). A conical mostly Lagrangian subset is (locally) the cone over
a mostly Legendrian subset (proof: intersect with a generic contact type hypersurface). A
subanalytic isotropic subset is mostly Legendrian/Lagrangian.

7.1 Homological cocores

We begin by introducing homological cocores, which are a simultaneous generalization of
linking disks and cocores. They are analogous to co-representatives of microstalks in the
sheaf theoretic context. At various points in our arguments below, it will be relevant to
assume a given Liouville manifold X ‘admits homological cocores’ in the sense defined below
(in fact, admitting homological cocores is most naturally a condition on a pair (X,Λ), which
turns out to be independent of Λ and invariant under deformations of X). Every Weinstein
manifold admits homological cocores.

We begin by recalling a special case of the Künneth embedding from [36]. Let (X,Λ) be
a stopped Liouville manifold. We have a Künneth functor [36, Thm. 1.5]

W(X,Λ) ↪→W
(
(X,Λ)× (C,∞∪ ei[

π
2
, 3π

2
]∞)

)
(7.1)

given by multiplication by the linking disk D∞ ∈ W(C,∞ ∪ ei[π2 , 3π2 ]∞) at ∞ ∈ ∂∞C; it
is fully faithful since the endomorphism algebra of D∞ is Z. We also have a fully faithful
embedding

W((X,Λ)× (CRe≥0,∞)) ⊆W
(
(X,Λ)× (C,∞∪ ei[

π
2
, 3π

2
]∞)

)
(7.2)

by [36, Lem. 3.7] (to be explicit, (X,Λ)× (CRe≥0,∞) = (X×CRe≥0, (cX ×∞)∪ (Λ×R>0))).
The image of the Künneth functor (7.1) is evidently contained in this full subcategory (7.2),
so we obtain a functor

W(X,Λ) ↪→W((X,Λ)× (CRe≥0,∞)) (7.3)

which will be used throughout this section.

Definition 7.1 (Homological cocore). Let (X,Λ) be a stopped Liouville manifold whose
relative core cX,Λ is mostly Lagrangian. A homological cocore at a smooth Lagrangian point
p ∈ cX,Λ is an object of Perf W(X,Λ) whose image under (Perf of) the Künneth embedding
(7.3) is the linking disk at p×∞ ∈ cX,Λ ×∞.
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Recall from [36, Proof of Thm. 1.14] that if L ⊆ X is exact, cylindrical at infinity, and
intersects cX,Λ precisely once, transversely, at a smooth Lagrangian point p ∈ cX,Λ, then L is
a homological cocore at p. In particular, (properly embedded) cocores of critical Weinstein
handles are homological cocores. Also recall from [36, Sec. 9.1] that the linking disk at a
point of Λ is a homological cocore at the corresponding point of cX,Λ.

Definition 7.2. We say that (X,Λ) (with cX,Λ mostly Lagrangian) admits homological co-
cores iff every smooth Lagrangian point of cX,Λ has a homological cocore.

It follows from stop removal and the vanishing of W(X × CRe≥0) [36, Lem. 9.1] that
the linking disks to cX,Λ ×∞ split-generate W((X,Λ) × (CRe≥0,∞)). Hence (X,Λ) admits
homological cocores iff the Künneth embedding (7.3) is a Morita equivalence (and in this case
Perf W(X,Λ) is split-generated by the homological cocores). In fact, we have the following
equivalent characterizations of admitting homological cocores.

Proposition 7.3. For a stopped Liouville manifold (X,Λ) whose relative core cX,Λ is mostly
Lagrangian, the following are equivalent:

• (X,Λ) admits homological cocores.

• The Künneth embedding (7.3) is a Morita equivalence.

• The Künneth embedding is a Morita equivalence:

W(X,Λ) ↪→W((X,Λ)× (C,±∞)). (7.4)

• The Künneth embedding is a Morita equivalence:

W(X) ↪→W(X × (CRe≥0,∞)). (7.5)

• The Künneth embedding is a Morita equivalence:

W(X) ↪→W(X × (C,±∞)). (7.6)

Proof. The equivalence of admitting homological cocores and the Künneth embedding (7.3)
being a Morita equivalence was already argued for above.

We argue that (7.3) and (7.5) are equivalent. These are the statements that the cat-
egories W((X,Λ) × (CRe≥0,∞)) and W(X × (CRe≥0,∞)) (respectively) are split-generated
by Lagrangians of the form L × [iR]. Taking L to be a linking disk of Λ, we see that the
linking disks to Λ×R>0 inside W((X,Λ)× (CRe≥0,∞)) are of the desired form. Therefore it
is split-generated by Lagrangians of the form L× [iR] iff its quotient by the linking disks to
Λ×R>0 is split-generated by these objects, and this quotient is precisely W(X×(CRe≥0,∞))
by stop removal. The same argument shows that (7.4) and (7.6) are equivalent.

We argue that (7.5) and (7.6) are equivalent. They are the statements that the categories
W(X × (CRe≥0,∞)) and W(X × (C,±∞)) (respectively) are split-generated by Lagrangians
of the form L × [iR]. These statements are equivalent since the natural functor W(X ×
(CRe≥0,∞))→W(X × (C,±∞)) is an equivalence by [36, Cor. 3.9].

59



Note that condition (7.6) does not involve Λ and is invariant under deforming X; it holds
whenever X is Weinstein by [36, Cor. 1.18].

If cX,Λ is mostly Lagrangian, the stabilization (X,Λ) × (C,±∞) admits homological
cocores since every component of the smooth Lagrangian locus of c(X,Λ)×(C,±∞) = cX,Λ × R
is unbounded. It follows that the Künneth embedding

W((X,Λ)× (C,±∞)k) ↪→W((X,Λ)× (C,±∞)k+1) (7.7)

is a Morita equivalence for every k > 0.

7.2 Liouville hypersurfaces

Recall that a Liouville hypersurface embedding X ↪→ Y is a codimension one embedding of a
Liouville domain (X,λ) into a contact manifold (Y, ξ) such that there exists a contact form
α on (Y, ξ) whose restriction to X coincides with λ. A Liouville pair (Z,X) is a Liouville
manifold Z together with a Liouville hypersurface embedding X ↪→ ∂∞Z.

We will often abuse terminology and speak of a Liouville hypersurface embedding of a
Liouville manifold into a contact manifold, to mean a Liouville hypersurface embedding of
a Liouville domain whose completion is the given Liouville manifold.

We record here two real analytic approximation results for later use.

Lemma 7.4. Any codimension zero smooth embedding of real analytic contact manifolds
(U, ξU) ↪→ (Y, ξY ) can be smoothly approximated over compact subsets of the domain by real
analytic embeddings.

Proof. First, we approximate the given embedding by a real analytic map f which does not
necessarily respect contact structures. We now have two real analytic contact structures
f ∗ξY and ξU on U which are C∞-close. Interpolating linearly yields a real analytic family of
real analytic contact structures ξt interpolating between f ∗ξY and ξU . By Gray’s theorem,
we obtain a real analytic family of real analytic vector fields Vt defined uniquely by the
properties Vt ∈ ξt and LVtξt = d

dt
ξt. The total flow of this family Vt thus defines a real

analytic diffeomorphism of U (possibly defined only on a large compact subset due to lack
of completeness) carrying ξU to f ∗ξY . Pre-composing f by this diffeomorphism gives the
desired real analytic map.

Corollary 7.5. Let (X,λ) be a real analytic Liouville domain, and let (Y, ξ) be a real an-
alytic contact manifold. Any Liouville hypersurface embedding X ↪→ Y can be smoothly
approximated by real analytic Liouville hypersurface embeddings.

Proof. Given a Liouville hypersurface embedding X ↪→ Y , there is an induced codimension
zero inclusion of contact manifolds X × [0, 1] ↪→ Y to which we may apply Lemma 7.4.

We now study the question of when a Liouville manifold X admits a Liouville hypersur-
face embedding X ↪→ S∗M . Such an embedding determines three pieces of ‘formal’ data11

(i) A smooth map f : X →M .

11The term ‘formal’ has a precise meaning in the context of the h-principle, see [30, Sec. 5.3].
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(ii) A splitting f ∗TM = B ⊕ R.

(iii) An isomorphism of complex vector bundles TX = B ⊗R C.

The first two pieces of data are equivalent to a homotopy class of smooth maps X → S∗M .
Indeed, up to contractible choices, a lift of f : X →M to S∗M is the same as a non-vanishing
section of f ∗TM , which is the same as a trivialized subbundle R ⊆ f ∗TM , which is the same
as a splitting f ∗TM = R⊕B. The isomorphism TX = B⊗RC comes from the derivative of
the embedding, which identifies TX with the pullback of the contact distribution on S∗M .
There is an existence h-principle for Liouville hypersurface embeddings (under a certain
‘half-dimensional’ hypothesis on the core), namely:

Lemma 7.6. Let X be a Liouville manifold whose core cX is contained in a finite union of
locally closed submanifolds of dimension at most half the dimension of X. Every triple of
formal data as above comes from a Liouville hypersurface embedding X ↪→ S∗M .

Proof. The formal data is (homotopy) equivalent to a smooth map p : X → S∗M together
with an isomorphism q : TX = p∗ξ where ξ is the contact distribution of S∗M . Equivalently,
it is the data of a smooth map p : X× [0, 1]→ S∗M together with an isocontact isomorphism
q : T (X × [0, 1]) = p∗TS∗M (i.e. an isomorphism respecting contact distributions and their
conformal symplectic structure). The h-principle [30, 16.1.1] now guarantees that the pair
(p, q) is homotopic to an isocontact immersion, i.e. one for which p is an immersion which
pulls back the contact structure on S∗M to the contact structure λ+ dt on X × [0, 1]. The
assumption on the core cX ensures that a generic perturbation of p is an embedding in a
small neighborhood of cX × {1

2
}.

Corollary 7.7. Let X be a Liouville manifold. For any stable polarization TX = B ⊗R C,
there is a Liouville hypersurface embedding of X × Ck (some k < ∞) into some S∗M ,
compatible with stable polarizations.

Proof. In view of Lemma 7.6 (whose hypothesis is trivially satisfied for X × Ck once k ≥
1
2

dimX), it suffices to show that there exists a manifold N and a map f : X → N such that
f ∗TN and B are stably isomorphic (i.e. isomorphic after direct summing with some Rm).
To see that this is true, note that the tangent bundle to the Grassmannian of n-planes in
RN is (stably) inverse to the tautological vector bundle.

Remark 7.8. Corollary 7.7 concerns the product polarization of X ×Ck. By contrast, there
always exists a twisted stabilization, i.e. the total space of an arbitrary polarized symplectic
vector bundle over X (equivalently, the complexification of a rank k real vector bundle)
which embeds into S∗RN as in [78, 63]. In the present article, we need to restrict to untwisted
stabilization because in [36] we have only proven an untwisted Künneth theorem. Meanwhile
in the sheaf-theoretic settings of [78, 63], the corresponding twisted Künneth result is a
formality, and it is convenient to embed into S∗RN rather than some S∗M in order to have
(homotopical) uniqueness of embeddings.

7.3 Doubling I: fully faithful embeddings of Fukaya categories

We first recall the doubling trick in the ‘absolute’ (i.e. no stop) setting. Consider a Liouville
pair (Z,X). Grading/orientation data on Z determines such data on X by restriction;
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when Z = T ∗M , our primary case of interest, this means that X is equipped with the
polarization induced from the Legendrian foliation of S∗M by co-spheres. With respect
to such compatible data, there is a functor W(X) → W(Z, cX) obtained by composing
the Künneth map W(X) → W(X × CRe≥0, cX × {∞}) with the canonical neighborhood
X × CRe≥0 ↪→ Z of the Liouville hypersurface X (an embedding of Liouville sectors).

We now consider the double D(cX) := cX t cεX , where cεX denotes a small positive pushoff
of cX . There is a functor

W(X)→W(Z, cX t cεX) (7.8)

defined by including (X×CRe≥0, cX×{∞}) into (T ∗M, cXtcεX) as the canonical neighborhood
of the first copy of cX inside D(cX). When cX is mostly Lagrangian, this functor evidently
sends a homological cocore at a point of cX to the linking disk at the corresponding point of
the first copy of cX inside the double.

Proposition 7.9. The functor (7.8) is fully faithful.

Proof. [36, Ex. 10.7] asserts that the covariant pushforward W(X)→W(Z,X tXε) is fully
faithful, where Xε denotes a small positive pushoff of X. Combining this with the fact that
the functor W(Z,X t Xε) → W(Z, cX t cεX) is an equivalence [36, Cor. 3.9], we conclude
that (7.8) is fully faithful.

We now explain the doubling trick in the presence of a stop (‘relative doubling’).

Construction 7.10 (Doubling the relative core of a Liouville hypersurface). Let (Z,X) be
a Liouville pair, and let Λ ⊆ ∂∞X be a stop. We will define the double D(cX,Λ) ⊆ ∂∞Z. The
double is contained in a small neighborhood of X, so it suffices to define it as a subset of
∂∞(X × CRe≥0) (and then push forward under the standard neighborhood X × CRe≥0 ↪→ Z
of X inside Z).

The double D(cX,Λ) ⊆ ∂∞(X × CRe≥0) is the stop of the product of stopped Liouville
manifolds

(X,Λ)× (C, {±i∞}) = (X × C, (cX × {±i∞}) ∪ (Λ× iR)), (7.9)

which indeed lies inside ∂∞(X × CRe≥0) ⊆ ∂∞(X × C). The double D(cX,Λ) is evidently
comprised of a ‘first copy’ of cX,Λ namely (cX × {−∞}) ∪ (Λ× iR<0) and a ‘second copy’ of
cX,Λ namely (cX × {+∞}) ∪ (Λ× iR>0), joined along their common boundary Λ = Λ× 0.

The fact that D(cX,Λ) ⊆ ∂∞(X ×CRe≥0) lies on the boundary poses no issue for defining
D(cX,Λ) ⊆ ∂∞Z as its image under (the action on boundaries at infinity of) X × CRe≥0 ↪→
Z. We will, however, want to consider W(X × CRe≥0, D(cX,Λ)), and for the purpose of
defining this category, we implicitly push D(cX,Λ) inward using a choice of contact vector
field transverse to the boundary. Alternatively, we could use a different Liouville structure
on CRe≥0 which is strictly isomorphic to T ∗[0, ε) near the boundary, which makes pushing
easy (simple translation).

Let us now generalize the functor (7.8) and Proposition 7.9 to the relative setting. We
consider the composition

W(X,Λ)
(7.3)
↪→ W((X,Λ)× (CIm≤0,−i∞))

→W(X × C, (cX × {−∞,±i∞}) ∪ (Λ× iR)). (7.10)
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The target category is identified with W(X ×CRe≥0, D(cX,Λ)) by [36, Cor. 3.9], so we obtain
a canonical functor

W(X,Λ)→W(X × CRe≥0, D(cX,Λ)), (7.11)

and hence composing with any inclusion X × CRe≥0 ↪→ Z, a functor

W(X,Λ)→W(Z,D(cX,Λ)). (7.12)

When cX,Λ is mostly Lagrangian, this functor evidently sends a homological cocore at a
point of cX,Λ to the linking disk at the corresponding point of the first copy of cX,Λ inside
the double.

Proposition 7.11. The functor (7.12) is fully faithful.

Proof. Appealing to the definition of the functor (7.3), the functor (7.12) is the composition

W(X,Λ)
(7.1)
↪→ W((X,Λ)× (C,−i∞∪ ei[0,π]∞))

→W(X × C, (cX × {−∞,±i∞}) ∪ (Λ× iR))→W(Z,D(cX,Λ)) (7.13)

of Künneth, stop removal, and pushforward. Given that Künneth is fully faithful, it suffices
to show that the composition of the latter two functors is fully faithful when restricted to
product objects L × D−i∞ ⊆ (X,Λ) × (C,−i∞ ∪ ei[0,π]∞). In fact, we will show they are
both full faithful on such objects.

To show full faithfulness comes down to understanding cofinal wrappings. It was shown
in [36, Sec. 7.4] that products of cofinal wrappings are cofinal (this was the basis for full
faithfulness of the Künneth functor). But the results of [36, Sec. 7.4] are better: they in fact
show that if wrappings of L ⊆ (X,Λ) and D−i∞ ⊆ (C,−i∞∪ ei[0,π]∞) satisfy the cofinality
criterion [36, Lem. 2.2], then so does their product inside (X,Λ)× (C,−i∞∪ ei[0,π]∞).

Now the cofinality criterion is robust in an important way. Choose wrappings of L ⊆
(X,Λ) and D−i∞ ⊆ (C, {±i∞}) satisfying the cofinality criterion. Their product satisfies
the cofinality criterion in (X,Λ)× (C, {±i∞}), hence also in (X ×C, (cX × {−∞,±i∞})∪
(Λ× iR)), as it stays away from the additional stop cX×{−∞}. Satisfaction of the cofinality
criterion is also preserved under cutting out a neighborhood of this additional stop at cX ×
{−∞} and embedding into W(Z,D(cX,Λ)).

We have thus described cofinal wrappings of product objects in the three categories
in (7.13) other than W(X,Λ). The desired full faithfulness results follow using [35, Lem.
3.20].

7.4 A first comparison

We now combine the doubling trick embeddings with Theorem 1.1 to arrive at a first sheaf
theoretic description of some partially wrapped Fukaya categories. Note that the doubling
construction works real analytically by appealing to Corollary 7.4 to make the contactomor-
phisms involved in Construction 7.10 real analytic (and in the below we tacitly assume that
doubling takes place real analytically in this sense).

Combining Proposition 7.11 and Theorem 1.1, we obtain the following.
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Corollary 7.12. Let (X,Λ) be a stopped real analytic Liouville manifold whose relative core
cX,Λ is subanalytic isotropic. Let M be a real analytic manifold and X ↪→ S∗M an analytic
Liouville hypersurface embedding. There is a fully faithful embedding

W(X,Λ)op ↪→ ShD(cX,Λ)(M)c (7.14)

which sends homological cocores of (X,Λ) to co-representatives of microstalks at the corre-
sponding points of the first copy of cX,Λ inside D(cX,Λ).

In particular, if (X,Λ) admits homological cocores, then (7.14) is a Morita equivalence
onto the full subcategory split-generated by co-representatives of the microstalks at smooth
points of the first copy of cX,Λ inside D(cX,Λ).

In order to bridge the gap between Corollary 7.12 and Theorem 1.4, note first that
Corollary 7.7 implies that there always exists some hypersurface embedding X ↪→ S∗M
(which can be assumed real analytic by Corollary 7.5). The remaining work thus concerns
only the sheaf side: we must relate the sheaf category in (7.14) (which is, in particular, not
a priori independent of the choice of Liouville hypersurface embedding) to the microsheaf
category defined in [61, 78, 63]. This is accomplished in [63], which we adapt to our purposes
in the next subsection.

7.5 Doubling II: microlocal sheaves and antimicrolocalization

Let us now recall the definition of the microlocal sheaf categories appearing in Theorem 1.4.
The category which sheaf theorists typically associate to a closed subset of S∗M is defined as
follows. One forms the “Kashiwara–Schapira stack” by sheafifying the presheaf of categories
on T ∗M given by the formula µshpre(Ω) := Sh(M)/ ShT ∗M\Ω(M). The presheaf µshpre is
already discussed in [47]; working with its sheafification is a more modern phenomenon, see
e.g. [40, 61, 63]. The notion of microsupport makes sense for a section of this sheaf, and we
write µshΛ for the subsheaf of full subcategories of objects with microsupport inside Λ. The
subsheaf µshΛ ⊆ µsh is evidently supported on Λ.

The sheaf µsh is conic; in particular given (T ∗M \M)
π−→ S∗M

ι−→ T ∗M we have canoni-
cally π∗ι∗ µsh = µsh |T ∗M\M . We denote also the sheaf ι∗ µsh on S∗M by µsh. Likewise for
Λ ⊆ S∗M we have µshΛ. We will consider this sheaf for Λ locally closed, and be interested
in the category µshΛ(Λ).

By construction there are evident maps Sh(M) → µsh(Ω) for any open Ω ⊆ T ∗M , and
similarly ShΛ(M) → µshΛ(Λ ∩ Ω); in particular ShΛ(M) → µshΛ\M(Λ \M) = µshΛ∞(Λ∞)
(the last of which being in the cosphere bundle). We term all such maps ‘microlocalization
functors’.

In fact, the category µshΛ(Λ) is defined for any space Λ equipped with a germ of closed
embedding into a contact manifold carrying a stable polarization [78]. Indeed, such a contact
manifold admits a homotopically unique isocontact embedding into S∗RN as N →∞ by the
h-principle [30, 16.1.2]. The key insight of [78] is that, while the image of Λ under such an
embedding would have vanishing microsheaf category, one can obtain the correct category
by thickening Λ along the relevant Lagrangian polarization of the normal bundle. The role
of these polarizations on the sheaf side is entirely parallel to the role of polarizations on the
Fukaya side to determine grading/orientation data as discussed in Section 5.3; also compare
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with Corollary 7.7 and Remark 7.8. Note that we may also define µshΛ(Λ) by embedding
into S∗M for any manifold M , since such an M admits an embedding into RN .

Remark 7.13. For Liouville manifolds X and X ′ satisfying the hypotheses of Theorem 1.4,
it follows from Theorem 1.4 that if X and X ′ are within the same Liouville deformation
class, then µshcX

(cX) = µshcX′
(cX′). This equivalence is highly non-obvious from the sheaf

theoretic standpoint, but is proven directly in [63] under certain assumptions of isotropicity.

The doubling trick in the sheaf context is developed in [63], resulting in embeddings
between categories of (microlocal) sheaves parallel to the embeddings between Fukaya cat-
egories discussed above. Let us now recall the precise definition of the doubling operation
which is relevant in the sheaf context [63], so as to compare it with Construction 7.10 from
the Fukaya context.

We begin with a discussion of the contact manifold

(C× V, λC + αV ) (7.15)

where λC is a Liouville form on C (for the standard symplectic structure) and (V, αV ) is a
contact manifold with choice of contact form. First, note that the specific choice of Liouville
form on C is of no importance, as for f : C→ R there is a strict contactomorphism

(C× V, λC + αV )→ (C× V, λC + df + αV ), (7.16)

(x, y) 7→ (x, e−f(x)RαV y), (7.17)

(at least, provided the Reeb flow on V is complete). Next, for a subset Λ0 ⊆ V and a smooth
arc γ in C, define

γ ×̃ Λ0 :=
⋃
t∈γ

(
{t} × e−g(t)RαV Λ0

)
, (7.18)

where g : γ → R is a primitive for λC|γ, namely dg = λC|γ (so g is well-defined up to adding
a locally constant function). Note that the meaning of γ ×̃Λ0 does not depend on the choice
of Liouville form on C, as the definition is compatible with the contactomorphisms (7.16).
If Λ0 is isotropic then so is γ ×̃ Λ0.

Construction 7.14 (Doubling a subset with boundary cooordinates). Begin with a contact
manifold Y and a locally closed relatively compact Λ ⊆ Y . Also fix, in a neighborhood of
Λ \ Λ, coordinates on Y of the form (7.15) (regarded as a germ near {0} × Λ0 for compact
Λ0 ⊆ V ) in which Λ = R>0 ×̃ Λ0 (so Λ0 is identified with Λ \ Λ); we call these boundary
coordinates for Λ. Now the double D(Λ) is, near Λ0, defined to be γ ×̃ Λ0 where γ is the
immersed arc obtained from two copies of R>0 by adding a small loop enclosing a sufficiently
small positive area near the origin (a contractible choice). Away from {0}×V , the double is
thus Λ t eεRλC+αV Λ (note that RλC+αV = RαV ), which is extended globally by extending the
contact form λC + αV globally (a contractible choice). The double D(Λ) thus consists of Λ
(the ‘first copy’) and a positive Reeb pushoff of Λ (the ‘second copy’) joined appropriately
near their boundary.

Note that when Λ is subanalytic with Cr subanalytic boundary coordinates, then we may
ensure that the double D(Λ) is subanalytic by choosing both γ and the global extension of α
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to be Cr subanalytic.1213 We will tacitly assume that D(Λ) is defined in this way whenever
Λ is assumed to be subanalytic with Cr subanalytic boundary coordinates.

The relative core of a Liouville hypersurface always has boundary coordinates (of the same
regularity as the hypersurface) in the sense of Construction 7.14. Indeed, a neighborhood of
the boundary of a Liouville hypersurface is given by (Y × Rs × Rt, e

sλ + dt) (a germ near
(s, t) = (0, 0), with the hypersurface itself being the locus Y ×{s ≤ 0}×{t = 0}), and we can
scale the contact form to be λ+ e−sdt, which has the desired form (7.15) near (s, t) = (0, 0).
In these coordinates, any relative core will have the desired form Λ0 × {s ≤ 0} × {t = 0}.

Proposition 7.15. For the relative core of a Liouville hypersurface, the doubles defined in
Constructions 7.10 and 7.14 are canonically isotopic.

Proof. Fix a Liouville manifold X with a stop Λ ⊆ ∂∞X, and consider the stopped Liouville
manifold

(X,Λ)× (C,±i∞) = (X × C, (Λ× iR) ∪ (cX × {±i∞}). (7.19)

The stop, as a subset of ∂∞(X × CRe≥0), is the double of cX,Λ defined in Construction 7.10.
We will exhibit an isotopy from it to the double defined in Construction 7.14.

We begin with the family of stops

(Λ× {eiθ, e−iθ}R≥0) ∪ (cX × {eiθ, e−iθ}∞) (7.20)

for θ from π/2 to 0. This family may be written as

(γθ ×̃ Λ) ∪ (∂∞γθ × cX) (7.21)

where γθ = {eiθ, e−iθ}R≥0 (illustrated in the top row of Figure 4) and we have fixed a contact
form on V = ∂∞X to obtain coordinates (C, λC)× (V, αV ) ⊆ ∂∞(X × C).

Now we smooth γθ near the origin to obtain a family of immersed arcs γ̃θ (embedded
except at θ = 0) as in the bottom row of Figure 4. We would like to consider (7.21) with
γ̃θ in place of γθ. Note, however, that while γθ and γ̃θ agree outside a compact subset of
C, the same is not true of γθ ×̃ Λ and γ̃θ ×̃ Λ, due to the fact that the actions of γθ and γ̃θ
necessarily differ at θ = 0 (this being the difference of areas enclosed). Thus while γθ ×̃ Λ
has two ‘arms’ which coincide at θ = 0, the twisted product γ̃θ ×̃ Λ has two ‘arms’ which
near infinity differ by a small positive Reeb pushoff at θ = 0. This small positive isotopy
extends to the ambient contact manifold ∂∞(X × C), hence we can, in particular, apply it
to the part of (7.21) lying near infinity in the C-coordinate. This defines the desired isotopy
from the double in the sense of Construction 7.10 (at θ = π/2) to the double in the sense of
Construction 7.14 (at θ = 0).

12A Cr subanalytic function Rn → R is one which is Cr and has subanalytic graph. This class of functions
is closed under composition, hence gives rise to a notion of Cr subanalytic manifolds, etc.

13The integer r is tacitly assumed to be sufficiently large, and we make no attempt to determine the
minimum value of r needed for our constructions to go through (though it will not be particularly large).
Note that the tangent bundle of a Cr subanalytic manifold is a Cr−1 subanalytic vector bundle, hence the
highest regularity one can impose on a contact form α is Cr−1 subanalytic. The exterior derivative dα, hence
also the Reeb vector field Rα, will then be Cr−2 subanalytic. This would suggest that at a very minimum
we must take r ≥ 3 to ensure we can integrate Rα.
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Figure 4: The family of arcs γθ (top) and their smoothings γ̃θ near the origin (bottom).

The following ‘stabilize and then double’ construction will be crucial in what follows. Let
Λ ⊆ S∗M be equipped with boundary coordinates. We consider its ‘stabilization’ Λ× (0, 1)
inside S∗(M×R), where (0, 1) ⊆ R ⊆ T ∗R is contained in the zero section. This stabilization
is naturally equipped with two boundary charts, one near ∂Λ × (0, 1) (obtained from the
boundary coordinates for Λ by multiplying by T ∗(0, 1)) and one near Λ× ∂(0, 1) (obtained
from the trivial chart (0, 1) ⊆ T ∗(0, 1) by multiplying by Λ ⊆ S∗M). When M is real
analytic and the boundary coordinates for Λ are Cr subanalytic, the first chart is also Cr

subanalytic; the second chart is always analytic. These two boundary charts overlap near
∂Λ× ∂(0, 1) in a chart of the form (C2,R2

≥0)×W . Viewing the first factor as (T ∗R2,R2
≥0),

we may simply smooth the corner of R2
≥0 as in [36, Sec. 7.1] to obtain the smoothed product

(Λ × (0, 1))sm. This splices together the charts near ∂Λ × (0, 1) and Λ × ∂(0, 1) to define
boundary coordinates for (Λ× (0, 1))sm. This smoothing and splicing can be done in the Cr

subanalytic category. The double D((Λ × (0, 1))sm) is thus defined, and we abuse notation
by writing it as D(Λ× (0, 1)).

The doubling trick for sheaf categories from [63] concerns D(Λ × (0, 1)), and its proof
relies on just a short list of its properties, which are easier to see from a different description
of it, as a ‘movie of creation and destruction’ of Λ, denoted (Λ, ∂Λ)≺� in [63, Sec. 7.4]. Thus
to apply the results of [63] we must give an isotopy D(Λ × (0, 1)) ∼ (Λ, ∂Λ)≺�. Let us do
this now:

Lemma 7.16. For Λ ⊆ S∗M equipped with boundary coordinates, the double of the stabi-
lization D(Λ × (0, 1)) ⊆ S∗(M × R) is isotopic to the ‘movie of creation and destruction’
(Λ, ∂Λ)≺� ⊆ S∗(M × R) from [63, Sec. 7.4].

Proof. The main point is to take the picture from Construction 7.14 based on the Lagrangian
projection and translate it into the front projection.

First we translate Construction 7.14 itself into the front projection. We add an imaginary
third coordinate Rz to C to form (C×Rz, λC+dz). A Legendrian curve γ in (C×Rz, λC+dz)
determines γ ×̃ Λ0 ⊆ (C × V, λC + αV ) for Λ0 ⊆ V via (7.18). The ‘front projection’ is the
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projection (Cx+iy×Rz, dz−y dx)→ Rx×Rz. The Legendrian curve relevant for Construction
7.14 has front projection given by the two rays Rx≥0 × {z = 0, ε} joined by a single cusp in
the standard way illustrated in Figure 5.

Figure 5: A standard cusp.

To understand the double of the stabilization D(Λ × (0, 1)), we may look in the corner
boundary coordinates T ∗R2

≥0×W . Passing to the front projection and smoothing the corner,
we see that in these coordinates, the double is given by two parallel copies of R2

≥0 (with its
corner smoothed) joined by cusps (i.e. the standard cusp in Figure 5 times a smoothing of
the boundary of R2

≥0). Up to fixing a standard model of this cusped object (which some
readers might call a ‘square-ish quarter of a flying saucer’), this is exactly the definition of
(Λ, ∂Λ)≺� ⊆ S∗(M × R) from [63, Sec. 7.4].

We now state the doubling trick for sheaf categories from [63] (substitutingD(Λ×(0, 1)) in
place of (Λ, ∂Λ)≺� in accordance with Lemma 7.16 and the preceding discussion). The crucial
point for us is that it realizes a given category of microlocal sheaves as (a full subcategory of)
a certain category of sheaves with a given singular support condition; this process is termed
‘antimicrolocalization’ in [63].

Theorem 7.17 ([63, Thm. 7.30]). Let Λ be a Whitney stratifiable isotropic inside S∗M with
Cr boundary coordinates. The category ShD(Λ×(0,1))(M × R) is the orthogonal direct sum
of its full subcategories Sh∅(M × R) (local systems) and ShD(Λ×(0,1))(M × R)0 (objects with
vanishing stalk at infinity), and the microlocalization functor

ShD(Λ×(0,1))(M × R)0
∼−→ µshΛ×(0,1)(Λ× (0, 1)) = µshΛ(Λ) (7.22)

is an equivalence.

(The Künneth equivalence µshΛ×(0,1)(Λ× (0, 1)) = µshΛ(Λ) is standard.)

Remark 7.18. The actual hypothesis of Theorem 7.17 in [63] (“sufficiently isotropic”) is
somewhat weaker than being Whitney stratifiable isotropic. In our applications, we will in
fact always have subanalyticity of Λ, hence in particular Whitney stratifiability.

Corollary 7.19. Let Λ be a locally closed relatively compact subanalytic isotropic inside S∗M
with Cr subanalytic boundary coordinates. The category µshΛ(Λ) is compactly generated by
co-representatives of microstalks at the smooth points of Λ.

Proof. By Theorem 7.17, we have µshΛ(Λ) = ShD(Λ×(0,1))(M × R)0. It thus suffices to show
that the microstalk co-representatives µξ ∈ ShD(Λ×(0,1))(M × R) for smooth points ξ of the
first copy of Λ × (0, 1) inside D(Λ × (0, 1)) lie in the full subcategory ShD(Λ×(0,1))(M × R)0

and compactly generate it.
The category ShD(Λ×(0,1))(M × R) is compactly generated by Corollary 4.22 (which im-

mediately implies its orthogonal full subcategories from Theorem 7.17 are also compactly
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generated). The µξ (which are compact) are by definition left orthogonal to local systems,
so they lie in ShD(Λ×(0,1))(M × R)0 by Theorem 7.17. An object of ShD(Λ×(0,1))(M × R)
right orthogonal to all these µξ must have microsupport contained in Λ × [0, 1] (the clo-
sure of the second copy), but this implies empty microsupport since Λ × [0, 1] is isotropic
and every smooth Legendrian component has boundary (so the relevant microstalk always
vanishes, which is enough by Proposition 4.10). It follows that the µξ compactly generate
ShD(Λ×(0,1))(M × R)0 as claimed.

Remark 7.20. One may eliminate the subanalyticity hypotheses from Corollary 7.19 at the
cost of appealing to more general representability theorems as in Lemma 4.13. For example,
for Λ stratifiable by isotropics, µshΛ(Λ) is compactly generated by co-representatives of
microstalks at the smooth points of Λ. Indeed, the arguments of Lemma 4.13 imply that
for any open U ⊆ Λ, the restriction µshΛ(Λ) → µshU(U) has a left adjoint which preserves
compact objects. Taking U to be a contractible open subset near a given smooth Legendrian
point of Λ produces a compact co-representative of the microstalk. These then compactly
generate by Proposition 4.10.

7.6 Proof of Theorem 1.4

We begin by deriving from Theorem 7.17 a sheaf theoretic analogue of Proposition 7.11.
Although it is a purely sheaf theoretic statement, the proof we give passes through the
Fukaya category and the results of [36].

Corollary 7.21. Let (X,Λ) be a stopped Liouville manifold. Let M be a real analytic
manifold and X ↪→ S∗M a Liouville hypersurface embedding such that the image of cX,Λ is
subanalytic isotropic with Cr subanalytic boundary coordinates. The left adjoint µ∗ of the
microlocalization functor µ : ShD(cX,Λ)(M)→ µshcX,Λ

(cX,Λ) is fully faithful.

We will see in the proof that µ∗ exists and preserves compact objects for formal reasons.

Proof. We consider the commuting diagram

ShD(cX,Λ)(M) ShD(cX,Λ)×(0,1)(M × (0, 1)) ShD(cX,Λ×(0,1))(M × R)

µshcX,Λ
(cX,Λ) µshcX,Λ×(0,1)(cX,Λ × (0, 1))

µ

∼
r

µ

r

µ

∼
r

(7.23)

where the functors are restriction r and microlocalization µ. It is a standard result of
microlocal sheaf theory that the two leftmost restriction functors r are equivalences. We
note that we may indeed choose the double of the stabilization D(cX,Λ × (0, 1)) so that over
M × (0, 1) it coincides with D(cX,Λ)× (0, 1) (compare the picture from Lemma 7.16), so the
upper right restriction functor r is defined.

Because microsupport respects limits and colimits, so too do the microlocalization func-
tors µ (see e.g. [63, Rem. 6.1] for more details) and restriction functors r. The domain sheaf
categories are compactly generated by Corollary 4.22, and Brown representability holds for
the opposites of compactly generated categories by [67, 51], so all functors r and µ in (7.23)
admit left adjoints r∗ and µ∗.14 Being left adjoint to co-continuous functors, each r∗ and µ∗

14In fact, r∗ and µ∗ exist in general by arguing as in Lemma 4.13.
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preserves compact objects.
The microlocal sheaf categories appearing in (7.23) are compactly generated by co-

representatives of microstalk functors by Corollary 7.19. The images of these compact gen-
erators under µ∗ are again co-representatives of the same microstalk functors. To show that
a given µ∗ is fully faithful, it suffices to check on compact objects.

By Theorem 7.17, the diagonal µ in (7.23) is the projection onto an orthogonal direct
summand of the domain. Its left adjoint µ∗ is thus the inclusion of this orthogonal direct
summand, hence, in particular, is fully faithful. Thus to prove full faithfulness of the other
vertical µ∗ functors, it suffices to show full faithfulness of

r∗ : ShD(cX,Λ)×(0,1)(M × (0, 1))→ ShD(cX,Λ×(0,1))(M × R) (7.24)

restricted to co-representatives of the microstalk functors at the first copy of cX,Λ × (0, 1).
By Proposition 1.3, this functor (restricted to compact objects) corresponds under Theorem
1.1 to the pushforward functor

W(T ∗(M × (0, 1)), D(cX,Λ)× (0, 1))→W(T ∗(M × R), D(cX,Λ × (0, 1))). (7.25)

It thus suffices to show that the restriction of this functor to the linking disks of the first
copy of cX,Λ × (0, 1) is fully faithful.

The inclusion

(X,Λ)× (C,±∞)× (CRe≥0,∞) ↪→ (T ∗(M × R), D(cX,Λ × (0, 1))) (7.26)

around the first copy of cX,Λ × (0, 1) = c(X,Λ)×(C,±∞) induces a fully faithful functor on W

by Proposition 7.11 and the fact that (X,Λ) × (C,±∞) admits homological cocores. Now,
after a deformation, the above inclusion factors through (T ∗(M × (0, 1)), D(cX,Λ)× (0, 1)) as
the identity map on T ∗(0, 1) times the canonical inclusion

(X,Λ)× (CRe≥0,∞) ↪→ (T ∗M,D(cX,Λ)) (7.27)

around the first copy of cX,Λ. It thus suffices to show that the induced map on wrapped
Fukaya categories is also fully faithful. To do this, we multiply the proof of Proposition
7.11 by T ∗(0, 1). Namely, we consider Lagrangians inside T ∗(0, 1)× (X,Λ) times the linking
disk of (CRe≥0,∞) and consider product wrappings inside T ∗(0, 1) × (X,Λ) × (C, {±i∞})
which we conclude satisfy the cofinality criterion, hence remain cofinal after removing a
neighborhood of the additional stop at cX × {−∞} and gluing onto T ∗M .

Corollary 7.22. Let (X,Λ) be a stopped Liouville manifold. Let M be a real analytic
manifold and X ↪→ S∗M a Liouville hypersurface embedding such that the image of cX,Λ
is subanalytic isotropic with Cr subanalytic boundary coordinates. There is a fully faithful
functor W(X,Λ)op ↪→ µshcX,Λ

(cX,Λ)c characterized uniquely by commutativity of the diagram

W(X,Λ)op Perf W(T ∗M,D(cX,Λ))op

µshcX,Λ
(cX,Λ)c ShD(cX,Λ)(M)c

(7.12)

Thm 1.1

µ∗

(7.28)

where µ∗ denotes the restriction to compact objects of the left adjoint of the microlocalization
functor.
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Proof. Proposition 7.11 and Corollary 7.21 ensure that the horizontal arrows in (7.28) are
fully faithful. The essential image of (7.12) is contained in the subcategory generated by
linking disks of the first copy of cX,Λ since it factors through W((X,Λ)×(CRe≥0,∞)) which is
generated by linking disks. The functor µ∗ obviously sends co-representatives of microstalks
(which exist by Corollary 7.19) to co-representatives of microstalks, which are identified with
linking disks under Theorem 1.1.

Remark 7.23. The hypotheses of Corollaries 7.21 and 7.22 may be ensured by assuming
(X,λ) is analytic, cX,Λ is subanalytic isotropic, and the embedding X ↪→ S∗M is analytic.
This is how we proceed to prove Theorem 1.4, relying on the abstract analytic approximation
result of Corollary 7.5. However when applying Corollary 7.5 in practice (and in particular
in [34]), it can be more convenient to simply check subanalyticity of the core inside S∗M
and existence of analytic boundary coordinates (which holds vacuously if Λ = ∅).

Now the embedding of Theorem 1.4 is simply defined to be that of Corollary 7.22 for a
choice of Liouville hypersurface embedding, which is guaranteed to exist by Corollary 7.7.

Proof of Theorem 1.4. By Corollary 7.7, there is a Liouville hypersurface embedding X ×
Ck ↪→ S∗M compatible with polarizations for some manifold M . Equip M with a real
analytic structure, and use Corollary 7.5 to perturb the embedding to be analytic. Now
apply Corollary 7.22 to (X,Λ) × (C,±∞)k and the embedding X × Ck ↪→ S∗M to obtain
an embedding

W((X,Λ)× (C,±∞)k) ↪→ µshcX,Λ×Rk(cX,Λ × Rk), (7.29)

which sends homological cocores to co-representatives of microstalks since Theorem 1.1
sends linking disks to co-representatives of microstalks. Finally, combine this with the
Künneth embedding W(X,Λ) ↪→W((X,Λ)×(C,±∞)k) and the equivalence µshcX,Λ

(cX,Λ) =

µshcX,Λ×Rk(cX,Λ × Rk).

While the equivalence of Theorem 1.1 is canonical, the embedding of Theorem 1.4 depends
a priori on a choice of analytic hypersurface embedding X × Ck ↪→ S∗M compatible with
polarizations. We do strongly expect that it is independent of these choices, and moreover
that pursuing the present methods a bit further would show this.

In some instances, there is a particularly natural choice of Liouville hypersurface em-
bedding for which the category ShcX,Λ(M) is of interest. It is then of interest to know that
the embedding of Theorem 1.4 (associated to this particular hypersurface embedding) and
the equivalence of Theorem 1.1 intertwine pushforward on Fukaya categories and (the left
adjoint of) microlocalization. We stated this compatibility in the introduction as (1.4).
Here we make a stronger statement, relevant in applications, with Corollary 7.22 in place
of Theorem 1.4. Corollary 7.22 requires only that the image of the core be subanalytic and
have subanalytic boundary coordinates, rather than requiring the hypersurface itself to be
analytic.
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Proposition 7.24. In the notation and assuming the hypotheses of Corollary 7.22, the
following diagram commutes:

W(X,Λ)op Perf W(T ∗M, cX,Λ)op

µshcX,Λ
(cX,Λ)c ShcX,Λ(M)c

Cor 7.22 Thm 1.1

µ∗

(7.30)

Proof. Append to the right side of (7.28) a square diagram forgetting down from D(cX,Λ) to
the first copy cX,Λ ⊆ D(cX,Λ).

Example 7.25 (Mirror symmetry for very affine hypersurfaces). Let WT : (C∗)n → C∗ be the
Hori–Vafa mirror superpotential to a smooth toric stack T. In Corollary 6.16, we discussed
how the results of the present article allows to translate the sheaf theoretic work of [33, 52]
into a mirror symmetry statement equating the Fukaya–Seidel category of WT with Coh(T).
This also depended on certain calculations of skeleta in [34, 91].

The main purpose of [34] was to provide the relevant skeletal calculations and microlocal
sheaf theoretic results to prove the expected mirror symmetry between the wrapped Fukaya
category of a generic fiber (which we denote W−1

T (−∞)) and the category of coherent sheaves
on the toric boundary Coh(∂T). Theorem 7.22 provides the translation between microlocal
sheaf theory and wrapped Fukaya categories. To summarize, we have the following commu-
tative diagram

Coh(∂T) Coh T

µshΛT
(ΛT)c ShΛT

((S1)n)c

Perf W(W−1
T (−∞)) Perf W((C∗)n,W−1

T (−∞))

[34] [33, 52]

µ∗

Thm 7.22 Thm 1.1

(7.31)

in which the bottom square is (7.30), using the fact that −ΛT is the core of W−1
T (−∞) from

[34, 91]. (The absence of an ‘op’ is due to the appearance of the minus sign in −ΛT, and a
corresponding use of an antipodal map.)

7.7 Making the core subanalytic

The goal of this subsection is to show that every Weinstein sector may be perturbed to be
real analytic and have subanalytic relative core (and hence satisfy the hypotheses of Theorem
1.4).

Proposition 7.26. Let M be a real analytic manifold, and let V be a real analytic vector
field on M which is convex and complete at infinity and which is gradient-like with respect to
a proper Morse function with finitely many critical points. Suppose that a neighborhood of
every zero of V has local analytic coordinates in which V =

∑
i aixi

∂
∂xi

for some ai ∈ Q\{0}.
Then the union of all stable manifolds C ⊆M is a subanalytic subset of M . In fact, for any
subanalytic subset Λ ⊆ ∂∞M , the union C ∪ (Λ× R) ⊆M is subanalytic.

72



Proof. Fix a proper smooth Morse function φ : M → R with respect to which V is gradient-
like. There is no real need to make φ real analytic, though the usual real analytic approxi-
mation results allow us to do so if we like.

The core C is compact, so it is vaccuously true that CΛ := C ∪ (Λ × R) is subanalytic
over {φ > T} for some large T < ∞. By V -invariance of CΛ, if an interval [T ′, T ] contains
no critical values of φ, then CΛ subanalytic over {φ > T} implies CΛ is subanalytic over
{φ > T ′}. Thus the point is to understand what happens when we cross a critical value of
φ. We may assume the critical values of φ are distinct.

Fix a critical value of φ, which by translating φ we may assume is zero. Supposing that
CΛ is subanalytic over {φ > ε}, let us show that CΛ is subanalytic over {φ > −ε}. It is
trivial that CΛ is subanalytic away from the stable manifold of the critical point of φ in
question. Thus let us work in local analytic coordinates [−1, 1]n+m near this critical point
in which V =

∑
i aixi

∂
∂xi
−
∑

j bjyj
∂
∂yj

for ai, bi ∈ Q>0. We now consider the proper map
x2

1 + · · ·+ x2
n = 1

y2
1 + · · ·+ y2

m = 1
s, t ≥ 0

 (sa1x1, . . . , s
anxn, t

b1y1, . . . , t
bmym)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rn+m, (7.32)

which is analytically defineable since ai, bi ∈ Q. Note that for fixed values of (x1, . . . , xn, y1, . . . , ym)
and of the product st, the image is a flow line of V ; in fact, this identifies the space of broken
flow lines of

∑
i aixi

∂
∂xi
−
∑

j bjyj
∂
∂yj

on Rn+m with

{x2
1 + · · ·+ x2

n = 1} × {y2
1 + · · ·+ y2

m = 1} × R≥0. (7.33)

We may now show that CΛ is subanalytic in a neighborhood of the stable manifold {x1 =
· · · = xn = 0}×Rm

y as follows. Choose a small real analytic hypersurface H transverse to V
near {x2

1 + · · ·+x2
n = 1}×{y1 = · · · = ym = 0}. Since H lies in the locus where φ is positive,

the intersection CΛ ∩H is subanalytic. Now the image of CΛ ∩H under the backward flow
of V may be described by projecting it to (7.33), taking its inverse image in the domain of
(7.32), and taking its image under (7.32); the result is subanalytic since (7.32) is proper.
Near the stable manifold, CΛ is the union of this subanalytic set (the image of CΛ∩H under
the backward flow of V ) with the stable manifold, hence is subanalytic.

Corollary 7.27. Every Weinstein manifold can be perturbed to admit a real analytic struc-
ture such that for every subanalytic subset at infinity, the associated relative core is subana-
lytic.

Proof. The standard Weinstein handle(
R2k × R2(n−k),

n∑
i=1

dxi ∧ dyi,
k∑
i=1

1

2
(−xi∂xi + 3yi∂yi) +

n∑
i=k+1

1

2
(xi∂xi + yi∂yi)

)
(7.34)

is real analytic. Any critical point of a Weinstein manifold may be perturbed so as to
coincide locally with (7.34) (see [20] and [38, Lemma 6.6]). We may thus construct (after
perturbation) any Weinstein manifold by iteratively attaching such standard handles. Now
the attaching maps may be perturbed to be real analytic by Lemma 7.4. We therefore obtain
a real analytic Weinstein manifold (X,ω, Z) to which Proposition 7.26 applies.
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Corollary 7.28. Every Weinstein sector is equivalent to a stopped Weinstein manifold with
subanalytic isotropic relative core.

Proof. A Weinstein sector is (equivalent to) a Liouville pair (X,F ) where X and F are both
Weinstein. Apply Corollary 7.27 to X and F individually, and apply Corollary 7.5 to the
embedding F ↪→ ∂∞X.

A Review of categorical notions

We will assume the reader is familiar with the basic definitions of differential graded (dg)
and/or A∞ categories, functors between them, modules, and bimodules, for which there
are many references. In this section we review notation, assumptions, and relevant no-
tions/results.

All of our dg or A∞ categories C have morphism cochain complexes linear over a fixed
commutative ring (which we take for simplicity of notation to be Z), which are Z-graded
and cofibrant in the sense of [35, Sec. 3.1] (an assumption which is vacuous if working over a
field). We further assume that all such C are at least cohomologically unital, meaning that
the underlying cohomology-level category H∗(C) has identity morphisms (this follows if C

itself is strictly unital, as is the case in the dg setting). We say objects in C are isomorphic
if they are isomorphic in H∗(C).

A.1 Functors, modules, and bimodules

For two (A∞ or dg) categories C and D, we use the notation

Fun(C,D) (A.1)

to refer to the (A∞) category of A∞ functors from C to D (compare [77, Sec. (1d)], noting
that we consider here homologically unital functors). Note that Fun(C,D) is in fact a dg
category whenever D is. The morphism space between f, g ∈ Fun(C,D) is the derived space
of natural transformations (as opposed to the space of strict natural transformations, which
can be defined in the dg setting but not in the more general A∞ setting).

An A∞ functor f : C→ D is called fully faithful (essentially surjective, an equivalence) if
the induced functor on cohomology categories H∗(f) : H∗(C)→ H∗(D) is. We use freely the
similar notion of a bilinear A∞ functor C×D→ E (see [57]), which are themselves objects
of an A∞ category which is dg if E is.

Denote by ModZ the dg category of dg Z-modules, i.e. the category of (implicitly Z-
graded) unbounded complexes of Z-modules localized at acyclic complexes. When relevant,
we take as our model of this category cofibrant complexes of Z-modules.

A left (respectively right) module over a category C is, by definition a functor from
Cop (respectively C) to ModZ. More generally, a (C,D) bimodule is a bilinear functor
Cop×D→ ModZ; this notion specializes to the previous two notions by taking C or D = Z
(meaning the category with one object ∗ and endomorphism algebra Z), see [35, Sec. 3.1].
By the above discussion, left modules, right modules, and bimodules are each objects of dg
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categories, denoted

ModC = Fun(Cop,ModZ) (A.2)

ModCop = Fun(C,ModZ) (A.3)

[C,D] = Fun(Cop ×D,ModZ) (A.4)

respectively. We will most frequently discuss left modules, which we simply call modules.
There are canonical fully faithful Yoneda embeddings (see e.g., [77, Sec. (1l)] for a more
detailed description on morphism spaces):

C ↪→ ModC X 7→ homC(−, X) (A.5)

Cop ↪→ ModCop Y 7→ homC(Y,−) (A.6)

C×Dop ↪→ [C,D] (X, Y ) 7→ homC(−, X)⊗Z homD(Y,−) (A.7)

and we call any (bi)module in the essential image of these embeddings representable. Recall
that any C possesses a canonical (not necessarily representable) (C,C) bimodule, the diagonal
bimodule C∆ (defined on the level of objects by C∆(−,−) = homC(−,−)).

A (D,C) bimodule B induces, via convolution (aka tensor product), a functor

B⊗C − : ModC→ ModD (A.8)

M 7→ B(−,−)⊗C M(−) (A.9)

(note that this is a version of the derived tensor product), and more generally a func-
tor [C,E] → [D,E] for any category E. This functor always has a right adjoint, given by
N 7→ homModD(B,N).15 As one might expect, convolving with the diagonal bimodule is
(isomorphic to) the identity. Not every functor ModC → ModD comes from a bimodule,
however there is a characterization of those that do:

Theorem A.1 (compare [88, Thm. 1.4]). The convolution map [D,C]→ Fun(ModC,ModD)
is fully faithful, and its essential image is precisely the co-continuous functors, i.e. those that
preserve small direct sums.

(By ‘F preserves small direct sums’ we mean ‘the natural map
⊕

α F (Xα)→ F (
⊕

αXα)
is an isomorphism’.)

Proof Sketch. If Funco-cont(ModC,ModD) denotes the co-continuous functors, observe that
restriction to (the Yoneda image of) C induces tautologically a map (which is an equivalence)
Funco-cont(ModC,ModD) → Fun(C,ModD) = Fun(C,Fun(Dop,ModZ)) = [D,C]; in other
words co-continuous functors from ModC are determined by what they do on C. One checks
that this is a two-sided inverse to the convolution map, up to homotopy.

Given an A∞ functor f : C→ D, there is a pair of (adjoint) induced functors on module
categories: first, there is an induced restriction map

f ∗ : ModD→ ModC (A.10)

15We say f : C → D has right adjoint (or is the left adjoint of) g : D → C if there is in isomorphism in
[C,D] between homD(f(−),−) and homC(−, g(−)).
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given by pre-composing with f op; one can show this is isomorphic to tensoring with the
graph (C,D) bimodule (f op, id)∗D∆ = D∆(f(−),−) (see [35, Lem. 3.7]). In particular, there
is a natural functor D→ ModC given by composing (A.10) with the Yoneda embedding for
D. There is also (left adjoint to f ∗) an induction map

f! : ModC→ ModD (A.11)

given by tensoring with the graph (D,C) bimodule (id, f)∗D∆ = D∆(−, f(−)). One can
directly compute that f! sends a representable over X ∈ C to an object isomorphic to the
representable over f(X). Conversely, we have:

Lemma A.2. If a (D,C) bimodule B has the property that B(−, c) is representable by an
object f(c) ∈ D each c ∈ C, then convolving with B is isomorphic in Fun(ModC,ModD) to
the induction of a (unique up to isomorphism) A∞ functor f : C→ D sending c to f(c). In
particular, f! = B⊗C − admits a right adjoint, namely f ∗.

Note that f ∗ also admits a right adjoint f∗, called co-induction, induced by taking hom
from (f op, id)∗D∆, by the earlier discussion.

A.2 Pre-triangulated, idempotent complete, and co-complete cat-
egories

A category C is called pre-triangulated iff it closed under taking mapping cones; in this case
H0C is triangulated in the usual sense. Every category has a well defined pre-triangulated
closure TwC,16 which can be defined as the closure of the image of C in ModC under taking
mapping cones (see [77, Sec. 3]). An object of ModC which is in the closure of A ⊆ C under
taking mapping cones is said to be generated by A.

A category C is called idempotent complete iff H0C is closed under retracts (usually
this property is only considered when C is already pre-triangulated). Every category has a
well defined idempotent completion Cπ, which can be defined similarly as a full subcategory
of ModC (see [77, Sec. 4]). An object of ModC which is in the closure of A ⊆ C under
taking mapping cones and retracts is said to be split-generated by A. The category of
perfect modules Perf C ⊆ ModC is by definition the full subcategory spanned by objects
split-generated by C; in other words, Perf C = (TwC)π.

A category C is called co-complete iff it is pre-triangulated and has all (small) direct
sums. Equivalently, C is co-complete iff it has all small colimits. In particular, a co-complete
category is idempotent complete (compare [67, Prop. 1.6.8]). We will also call co-complete
categories large categories.

A.3 Compactly generated categories

Any category of modules ModC (or more generally bimodules, etc.) over a small category C

inherits from ModZ the property of being co-complete. Large (i.e. co-complete) categories
of the form ModC may be characterized intrinsically as follows.

16The notation TwC is usually taken to mean the specific model of the pre-triangulated closure of C given
by the category of so-called “twisted complexes” of objects of C.
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Let C be a large category. We say an object X ∈ C is compact if homC(X,−) commutes
with arbitrary direct sums (i.e. is co-continuous). Denoting by Cc ⊆ C the full subcategory
of compact objects, we say that a co-complete category C is compactly generated if there is
a small collection (i.e., a set) of compact objects C ⊆ Cc satisfying the following equivalent
conditions:

• An object X ∈ C is zero if and only if it is right-orthogonal to C (meaning homC(−, X)
annihilates C).

• The natural map C→ ModC sending Y 7→ homC(−, Y ) is an equivalence.

Thus compactly generated categories C are precisely those of the form ModC for some small
category C.

It is natural to ask to what extent ModC determines C. This is answered by the following
well known fact:

Lemma A.3. The compact objects of ModC are precisely Perf C.

Proof. Let M ∈ ModC be compact. There is a natural quasi-isomorphism C∆ ⊗C M
∼−→ M

[35, Lem. 3.7][36, Lem. A.1] which expresses M as an infinite twisted complex of Yoneda
modules. Since M is compact, the inverse quasi-isomorphism factors through some finite
subcomplex, so M is a retract of a finite twisted complex of Yoneda modules.

In particular, the inclusion C ⊆ Perf C induces an equivalence Mod Perf C = ModC.

A.4 Morita equivalence

We say categories C and D are Morita equivalent iff there exists a (C,D) bimodule P and a
(D,C) bimodule Q inducing, via convolution, an inverse pair of equivalences

ModC
'←→ ModD. (A.12)

Actually, every equivalence ModC
∼−→ ModD is isomorphic to convolution by a bimodule

by Theorem A.1 (since an equivalence is necessarily co-continuous), so C and D are Morita
equivalent iff there is an equivalence ModC = ModD.

Lemma A.4. C and D are Morita equivalent iff there is an equivalence Perf C = Perf D.

Proof. An equivalence preserves compact objects, so an equivalence between ModC and
ModD restricts to an equivalence Perf C = Perf D. Conversely, any equivalence Perf C =
Perf D induces an equivalence ModC = Mod Perf C = Mod Perf D = ModD.

In particular, the canonical inclusion C ↪→ Perf C is a Morita equivalence. In light of the
above Lemma, we will also refer to an equivalence Perf C = Perf D as a Morita equivalence
between C and D. We say a property of C is “a Morita-invariant notion” if its validity only
depends on Perf C up to equivalence.
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A.5 Adjoints and compact objects

The following is a useful criterion for when a functor preserves compact objects.

Lemma A.5. If a functor f : C → D has a co-continuous right adjoint g, then f sends
compact objects to compact objects.

Proof. For c ∈ C a compact object, we have

homD

(
f(c),

⊕
α

dα

)
= homC

(
c, g
(⊕

α

dα
))

= homC

(
c,
⊕
α

g(dα)
)

=
⊕
α

homC(c, g(dα)) =
⊕
α

homD(f(c), dα) (A.13)

as desired.

For example, if f : C → D is a functor of small categories, the pullback on module
categories f ∗ : ModD→ ModC is co-continuous and has a left adjoint f! : ModC→ ModD

extending f (see Section A.1) which thus preserves compact objects (a fact which can also
be seen from Lemma A.3).

A.6 Brown representability

On the level of large categories, a version of Brown representability gives effective criteria
for deducing the existence of adjoints to functors.

Theorem A.6 (Compare [67, Thm. 8.4.4] or [56, Cor. 5.5.2.9]). Let C and D be large
categories with C compactly generated. If an A∞ functor f : C→ D is co-continuous, then
f admits a right adjoint.

Proof Sketch. We suppose that D is also compactly generated, so one can write C = ModC,
D = ModD with C = Cc and D = Dc. Then we observe that if f is co-continuous, it comes
(by Theorem A.1) from convolving with a bimodule, which always has a right adjoint as
described above.

Theorem A.6 also holds under the weaker hypothesis that C is well generated rather than
compactly generated, by work of Neeman adapted to the dg/A∞ case (for a definition of this
notion see [67, Sec. 8], and for a proof of Theorem A.6 in that setting, see [67, Prop. 8.4.2
and Thm. 8.4.4]).

A.7 Quotients and localization

Given a (small) A∞ (or dg) category C and a full subcategory D ⊆ C, there is a well-defined
notion of the quotient (dg or A∞) category C/D which comes equipped with a functor

q : C→ C/D (A.14)

(see [25, 58] for an explicit model in the dg and A∞ cases respectively, also discussed in
[35, Sec. 3.1.3]). The pair C/D and q satisfy the following universal property: any functor
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C→ E which sends D to 0 factors essentially uniquely through C/D via q; more precisely, the
pre-composition q∗ : Fun(C/D,E) ↪→ Fun(C,E) fully faithfully embeds the former category
as the full subcategory FunAnn(D)(C,E) of the latter consisting of functors from C to E which
annihilate D. Taking E to be (ModZ)op, we note in particular that the pullback map

q∗ : Mod(C/D)→ ModC (A.15)

is a fully faithful embedding whose essential image is the C modules which annihilate D (see
[35, Lem. 3.12 and 3.13]). It follows from these universal properties that the quotient C/D
depends only on the full subcategory of C split-generated by D. If C is pre-triangulated then
so is C/D, however be warned that C/D need not be idempotent complete even if C is.

In light of (A.15), we have the following equivalent perspective on localization in terms
of large categories. Let C be a compactly generated large category, and let D ⊆ C be a full
subcategory closed under cones and arbitrary direct sums (hence itself a large category) which
is compactly generated by a subset of C’s compact objects D ⊆ C := Cc (conversely, any
full subcategory D ⊆ C gives rise to such a D ⊆ C, namely the image of the induced functor
ModD → ModC, which is co-continuous since it is left adjoint to pullback of modules,
and is fully faithful because the unit of this adjunction is an isomorphism [35, Lem. 3.7]).
The quotient of C by D, denoted C/D, is by definition the full subcategory of C which
is right-orthogonal to D (we may also write this as C/D; note that the universal property
of direct sum implies that the right-orthogonal of D is the same as the right-orthogonal
of D). According to (A.15), this quotient C/D is precisely Mod(C/D). Thus the large
quotient C/D is compactly generated, and passing to compact objects recovers the quotient
of categories of compact objects, up to Morita equivalence. By the discussion in Section
A.1, the embedding q∗ : C/D ↪→ C is right adjoint to a functor q! : C → C/D extending
q : C→ C/D. We thus conclude:

Lemma A.7 (Compatibility of large quotients with compact objects, compare [65, Thm.
2.1]). Let D ⊆ C be a co-continuous inclusion of compactly generated large categories which
sends compact objects to compact objects. The large quotient C/D (by definition the right-
orthogonal to D ⊆ C) is also a compactly generated large category with co-continuous in-
clusion into C. The fully faithful inclusion q∗ : C/D → C is right adjoint to a ‘quotient
functor’ q! : C → C/D whose restriction to compact objects is the corresponding quotient
functor on small categories q : C→ (C/D)π (with idempotent-completed target).

If C is a pre-triangulated dg/A∞ category and Z is a set of morphisms in H0(C), one can
form the localization of C with respect to Z by taking the quotient

C[Z−1] := C/conesZ (A.16)

where conesZ denotes any set of cones of morphisms in C representing the elements in Z
(regardless of how one chooses such a subset, one notices that conesZ is a well-defined full
subcategory of C, and in particular, C[Z−1] is unaffected by the choice). If C is not pre-
triangulated, one can still define this localization by taking the essential image of C under

C→ TwC→ TwC/(conesZ). (A.17)

The tautological localization map C→ C[Z−1] possesses a host of nice properties, simply as
a special case of the properties of quotients discussed above; we leave it to the reader to spell
out the details.

79



A.8 Proper modules

Recall that Perf Z ⊆ ModZ is the subcategory of perfect Z-linear chain complexes, namely
those chain complexes which are quasi-isomorphic to a bounded complex of finite projective
Z-modules.

We say a module or bimodule is proper (sometimes called pseudo-perfect in the literature)
if as a functor to ModZ, it takes values in the full subcategory Perf Z (i.e. for a module M

if M(X) is a perfect chain complex for every X ∈ C). Denote by

PropC := Fun(Cop,Perf Z) ⊆ ModC (A.18)

the full subcategory of proper modules.

A.9 Smooth and proper categories

We say a category C is smooth (sometimes called homologically smooth) if its diagonal
bimodule C∆ is perfect (a (C,D) bimodule is called perfect if it is split-generated by tensor
products of representable bimodules homC(−, X)⊗ homD(Y,−)).

We say C is proper (sometimes called compact) if its diagonal bimodule C∆ is proper, or
if equivalently homC(X, Y ) is a perfect Z-module for any two objects X, Y ∈ C. Smoothness
and properness are Morita-invariant notions; in particular C is smooth (resp. proper) if and
only if Perf C is.

In general, the subcategories of modules Perf C and PropC do not coincide,17 however
they are related under the above finiteness assumptions on C:

Lemma A.8. If C is proper then Perf C ⊆ PropC, and if C is smooth then PropC ⊆ Perf C.
In particular, if C is smooth and proper, then PropC = Perf C.

Lemma A.9. Properness is inherited by full subcategories, and smoothness passes to quo-
tients/localizations.

A.10 Exceptional collections

We say a (full) subcategory of finitely many objects A ⊆ C is an exceptional collection if
there exists a partial ordering of the objects of A such that

hom(X,X) = Z〈idX〉, (A.19)

hom(X, Y ) = 0 unless X ≤ Y. (A.20)

Lemma A.10. If N ∈ ModC is split-generated by an exceptional collection A ⊆ C, then N

is generated by A (i.e. it is not necessary to add direct summands).

Proof. Let X ∈ A be any maximal (with respect to the given partial order) object. We
consider the functor

FX : ModC→ ModZ (A.21)

M 7→M(X). (A.22)

17Rather, they are in some sense ‘Morita dual’ in that PropC = Fun(Perf Cop,Perf Z).
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Certainly if M is generated by A (i.e. by the Yoneda modules homC(−, A) for A ∈ A), then
FX(M) ∈ Perf Z by maximality of X, as all of the Yoneda modules except homC(−, X),
contribute trivially to FX , and each homC(−, X) contributes a perfect Z-module.

There is a tautological map of C modules homC(−, X) ⊗ FX(M) → M(−); denote its
cone by M|A−{X}. Now given any maximal object Y of A− {X}, we may define a functor

FY : ModC→ ModZ (A.23)

M 7→M|A−{X}(Y ). (A.24)

Again, if M is generated by A then FY (M) ∈ Perf Z. To see this, simply note that given
a twisted complex M of objects of A, the object M|A−{X} is just the same twisted complex
but with all instances of X deleted. We may now similarly define M|A−{X,Y } to be the cone
of homC(−, Y )⊗ FY (M)→M|A−{X}(−).

Iterating this procedure defines a sequence of functors FX : ModC → ModZ for all
X ∈ A (in fact, these are independent of the order in which we pick off maximal elements,
however we won’t use this). The above arguments show that for any M generated by A, all
FX(M) are in Perf Z (and hence the same holds for M split-generated by A). They also show
(for arbitrary M) that if all FX(M) are in Perf Z, then there exists M′ ∈ ModC generated
by A and a map M′ →M which is an isomorphism in ModA.

We may now conclude: if N is split-generated by A, then FX(N) ∈ Perf Z, so there is
N′ ∈ ModC generated by A and a map N′ → N which is an isomorphism in ModA, and
since N′ and N are split-generated by A, an isomorphism in ModA is an isomorphism in
ModC.

Lemma A.11. If A is an exceptional collection which is proper, then it is smooth.

Proof. In the case A has one object, this is true because Z is trivially smooth. Now in-
ductively apply the following assertion: If C and D are both smooth, and E denotes the
semi-orthogonal gluing of C with D along a (C,D) bimodule B which is perfect, then E is
smooth as well (see [54, Prop. 3.11] and [55, Thm. 3.24] for the dg case, which immedi-
ately extends to this setting). In the assertion observe it suffices that B be proper, since
proper bimodules over smooth categories are automatically perfect (by the bimodule version
of Lemma A.8). Hence, one can induct from Z to any proper exceptional collection A.
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[55] Valery A. Lunts and Olaf M. Schnürer, Smoothness of equivariant derived categories,
Proc. Lond. Math. Soc. (3) 108 (2014), no. 5, 1226–1276. MR 3214679 81

[56] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton
University Press, Princeton, NJ, 2009. MR 2522659 (2010j:18001) 29, 78

[57] Volodymyr Lyubashenko, A∞-morphisms with several entries, Theory Appl. Categ. 30
(2015), Paper No. 45, 1501–1551. MR 3421458 74

[58] Volodymyr Lyubashenko and Sergiy Ovsienko, A construction of quotient A∞-
categories, Homology, Homotopy Appl. 8 (2006), no. 2, 157–203. MR 2259271 78

[59] John Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012),
no. 4, 475–506. MR 2958928 12

[60] David Nadler, Microlocal branes are constructible sheaves, Selecta Math. (N.S.) 15
(2009), no. 4, 563–619. MR 2565051 (2010m:53131) 6, 8, 54

[61] , Wrapped microlocal sheaves on pairs of pants, Arxiv Preprint
arXiv:1604.00114 (2016), 1–50. 6, 7, 8, 9, 28, 29, 30, 31, 64

85

http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf
http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf
http://www.ihes.fr/~maxim/TEXTS/picture.pdf
http://www.ihes.fr/~maxim/TEXTS/picture.pdf


[62] , Mirror symmetry for the Landau-Ginzburg A-model M = Cn, W = z1 · · · zn,
Duke Math. J. 168 (2019), no. 1, 1–84. MR 3909893 9

[63] David Nadler and Vivek Shende, Sheaf quantization in Weinstein symplectic manifolds,
Arxiv Preprint arXiv:2007.10154v3 (2022), 1–60. 7, 9, 21, 57, 58, 61, 64, 65, 67, 68,
69

[64] David Nadler and Eric Zaslow, Constructible sheaves and the Fukaya category, J. Amer.
Math. Soc. 22 (2009), no. 1, 233–286. MR 2449059 (2010a:53186) 5, 6, 8, 54

[65] Amnon Neeman, The connection between the K-theory localization theorem of Thoma-
son, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann.
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matics, vol. 150, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1463945 12, 20

[84] , Whitney triangulations of semialgebraic sets, Ann. Polon. Math. 87 (2005),
237–246. MR 2208550 12, 20

[85] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988),
no. 2, 121–154. MR 932640 23

[86] Zachary Sylvan, On partially wrapped Fukaya categories, J. Topol. 12 (2019), no. 2,
372–441. MR 3911570 5, 7

[87] , Orlov and Viterbo functors in partially wrapped Fukaya categories, ArXiv
Preprint arXiv:1908.02317 (2019), 1–32. 58
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