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Abstract

Our main result is a nontrivial lower bound for the distortion of some specific knots.
In particular, we show that the distortion of the torus knot Tp,q satisfies δ(Tp,q) ≥
1

160 min(p, q). This answers a 1983 question of Gromov.

1 Introduction

If γ is a rectifiable curve in R3, then its distortion is defined to be the quantity:

δ(γ) = sup
p,q∈γ

dγ(p, q)

dR3(p, q)
≥ 1 (1.1)

where dγ denotes the arclength along γ and dR3 denotes the Euclidean distance in R3. In
1983, Gromov asked the following question:

Question (quoted directly from [6, p114]). Does every isotopy class of knots in R3 have a
representative in R3 with distortion < 100? Is it so for all torus knots Tp,q for p, q → ∞?

In this paper we show that this is not the case. For a knot K, let δ(K) denote the
infimum of δ(γ) over all rectifiable curves γ in the isotopy class K.

Theorem 1.1. Let Tp,q denote the (p, q)-torus knot. Then δ(Tp,q) ≥ 1
160

min(p, q).

Theorem 1.2. Let K be a nontrivial tame knot, and let Kp,q denote the (p, q)-cabling of K,
where p is the longitudinal coefficient. Then δ(Kp,q) ≥ 1

160
p.

These are both consequences of the following more general theorem which deals with
knots lying on any embedded surface.

Theorem 1.3. Let F ⊆ R3 be a PL embedded closed surface of genus g ≥ 1. Let S denote
the set of nontrivial isotopy classes of simple loops on F , and let i : S ×S → Z≥0 denote the
minimum geometric intersection number. Let β ∈ S, and let Kβ denote the corresponding
knot in R3. Then we have:

δ(Kβ) ≥
1

160
I(F, β) (1.2)

where we define I(F, β) := minα∈U i(α, β), where U is the set of all α ∈ S which bound a PL
embedded disk whose interior is disjoint from F .
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Some calculation shows that δ(Tp,q) is bounded above by a constant times:

min
{

|xp| + |yq|
∣

∣

∣
xp + yq = 1, (x, y) ∈ Z2

}

(1.3)

(indeed, the standard embedding on a torus of revolution of the correct dimensions achieves
this). Thus for some families of torus knots (e.g. the (p, kp + 1)-torus knots for fixed k),
the bound in Theorem 1.1 is sharp up to a constant factor. In particular, Theorem 1.3
gives the best possible asymptotics in terms of I(F, β), up to a constant factor. However,
to the author’s knowledge, there are no known embeddings of the torus knots which achieve
distortion smaller than a constant times (1.3), which is clearly at least max(p, q). Thus one
would like to improve Theorem 1.1 substantially. For instance, surely limp→∞ δ(T2,p) = ∞,
though at present it seems that a significant new idea would be needed before our methods
would yield such a result.

Despite the simplicity of (1.1), very little is known about the distortion of knots, especially
if one is interested in lower bounds. Gromov showed that for any simple closed curve γ, we
have δ(γ) ≥ 1

2
π, with equality if and only if γ is a circle, thus determining δ(unknot). Denne

and Sullivan [2] have shown that for any nontrivial tame knot K, we have δ(K) ≥ 5
3
π.

The principal difficulty in dealing with the distortion is that it is not coercive, that is,
δ(γ) < ∞ does not imply nice regularity properties of γ. As a result, even if γ has finite
distortion, it may still be knotted at arbitrarily small length scales. The “remarkable simple
closed curve” of Fox [3] is an illuminating example of a wild knot with finite distortion,
and it is easy to observe (see, e.g., Gromov [5, p308]) that there is some finite threshold of
the distortion under which there are infinitely many tame knots (even prime ones). It is
also worth remarking that if we let δPL(K) equal the infimal distortion over all polygonal
representatives of K, then it is an open question whether or not δPL(K) = δ(K) for all
tame knots K. Because of the possibility of pathological embeddings with small distortion,
it is also an open problem to establish the existence of minimizers of δ in any nontrivial
knot class. It is not clear how much information can be obtained from calculus of variations
(e.g. as applied by Mullikin [10]), the main difficulty being that (1.1) is a supremum, not an
average.

It is perhaps relevant to contrast the situation when an “energy functional” is coercive.
For example, suppose one can derive an a priori C1,α estimate in terms of the value of an
energy functional on a curve. Since C1,α curves are tame, we conclude that finite energy
implies tameness. If in addition the energy functional blows up for non-embedded curves
(and depends continuously on the input curve), a straightforward compactness argument
(Arzelà-Ascoli) shows the existence of energy minimizers in any tame knot class, as well as
the finiteness of the number of knot classes with energy less than any finite threshold. As a
typical example of a functional to which this applies, we cite the knot energies epj of O’Hara
[12, 13] in the range jp > 2. Freedman, He, and Wang [4] have studied e12 (the “Möbius
energy”) in detail, where the analysis is much more delicate since this is the critical case
jp = 2, and only a weaker form of coercivity holds. It is natural to interpret the limit e∞0 as
the logarithm of the distortion; however, as noted above, the distortion is not coercive, and
thus the basic methods used to deal with epj apparently do not apply.
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2 Proofs

We shall prove Theorem 1.3 by contradiction. Specifically, we shall show that if the desired
inequality is violated, then there exist arbitrarily small regions of R3 whose intersection with
F has a connected component of genus g (recall g is the genus of F ). An outline of the proof
is as follows.

We rely on two purely topological lemmas. Perhaps the key to the proof is Lemma 2.3,
which states, roughly speaking, that if one has a suitably generic family of embedded spheres
{St}t∈[0,1], and each of these spheres has inessential intersection with F , then the component
of F \ St with genus g must stay in a single connected component of R3 \ St as t varies. A
second essential fact is encapsulated in Lemma 2.5, which says that if a sphere intersects β
fewer than I(F, β) times, then its intersection with F must be inessential.

These two purely topological facts are combined with geometric information (i.e. the
distortion) as follows. Suppose that the portion of F contained in some region of R3, say the
ball B(0, 1), has a connected component of genus g. Counting the number of intersections
between β and the sphere S(0, r) gives a function of r, and the integral of this function over
r ∈ [1, 1 + ǫ] is less than or equal to the length of β contained in B(0, 1 + ǫ). This length
is bounded in terms of the distortion δ(β), so we find that there exists some r1 ∈ (1, 1 + ǫ)
such that #(β ∩ S(0, r1)) ≤ ǫ−1δ(β) (we’ll ignore constants in this paragraph). By a similar
argument, we find s1 ∈ (−ǫ, ǫ) such that #(β ∩ {z = s1} ∩ B(0, r1)) ≤ ǫ−1δ(β). The
crucial step is as follows: we consider a family of spheres {St}t∈[0,1], defined by starting with
S(0, r1) and performing a 2-surgery along the disk {z = s1} ∩ B(0, r1). By construction,
#(St ∩ β) ≤ ǫ−1δ(β) for all t ∈ [0, 1]. If ǫ−1δ(β) < I(F, β), then by Lemma 2.5, St has
only inessential intersections with F for all t ∈ [0, 1]. Thus by Lemma 2.3, the portion
of F contained in one of the two half-spheres which comprise S1 must have a connected
component of genus g. In summary, we have started with a region in R3 whose intersection
with F has a connected component of genus g, and under the assumption δ(β) < ǫ · I(F, β),
we have produced a smaller region with the same property. Iterating this construction yields
arbitrarily small such regions, a contradiction. Thus δ(β) ≥ ǫ · I(F, β) and Theorem 1.3 is
proved.

The topological portions of the proof appear first, in Sections 2.1 and 2.2, which contain
Lemmas 2.3 and 2.5 respectively. In Section 2.3, we formalize the sphere cutting procedure
from the previous paragraph in terms of “double bubbles” (this is still purely topological).
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Then in Section 2.4, we use integral geometry as above to relate the distortion with inter-
section counts, and thus finish the proof of Theorem 1.3.

We shall do all the necessary topology in the piecewise-linear (PL) category. To handle
arbitrary topological embeddings of the knot, we appeal to the Moise–Bing triangulation
theorem to convert the relevant topology to the PL category. The referee has pointed out
that by working in the PL category instead of the smooth category, we could avoid the use
of Munkres’ theorem [11] on approximating PL homeomorphisms with diffeomorphisms.

2.1 Embedded surfaces and families of spheres

Definition 2.1. A simple closed curve on a closed surface Σ is called inessential if and only
if it bounds a disk in Σ; otherwise it is called essential.

Definition 2.2. If S ⊆ R3 is a disjoint union of embedded spheres, then we denote by int(S)
(the “interior” of S) the collection of components of R3 \S which are separated from infinity
by an odd number of components of S.

Lemma 2.3. Suppose that F ⊆ R3 is a PL embedded closed surface of genus g ≥ 1. Let
{St}t∈[0,1] be a PL one-parameter family of embedded surfaces, with the property that St is
a disjoint union of embedded spheres transverse to F , except for finitely many values of
t ∈ (0, 1), when either St or St ∩ F undergoes a single surgery. Suppose that St ∩ F consists
solely of curves inessential in F whenever St is transverse to F . If F∩int(S0) has a connected
component of genus g, then so does F ∩ int(S1).

Proof. At any time t when St is a disjoint union of spheres transverse to F , we know that
F ∩ St consists solely of inessential curves, and thus F \ St has a connected component of
genus g. Furthermore, for such values of t, we have:

dimQ im(H1(F ∩ int(St),Q) → H1(F,Q)) =

{

2g g(F ∩ int(St)) = g

0 otherwise
(2.1)

Doing any of the allowed surgeries can change this value by at most 1, so since it always
equals either 2g or 0, we conclude that it must be constant. Thus the lemma follows.

2.2 An obstruction to essential intersections

Definition 2.4. For a PL embedded closed surface F ⊆ R3, let S denote the set of nontrivial
isotopy classes of simple loops on F , and let i : S ×S → Z≥0 denote the minimum geometric
intersection number. For β ∈ S, we define:

I(F, β) := min
α∈U

i(α, β) (2.2)

where U is the set of all α ∈ S which bound a PL embedded disk whose interior is disjoint
from F .

Lemma 2.5. Suppose that F ⊆ R3 is a PL embedded closed surface of genus g ≥ 1 which
contains a PL simple closed curve β. Let S be a PL embedded sphere which is transverse to
F and β, and which satisfies |S ∩ β| < I(F, β). Then every curve in S ∩ F is inessential in
F .
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Proof. Suppose for sake of contradiction that S ∩ F contains an essential curve. Consider
the set of all such essential curves as a collection of curves on of S, and let α be any such
curve that is innermost (i.e. bounds a disk in S which contains no other essential curves).
Then by definition α bounds a disk D whose intersection with F consists solely of inessential
curves. Considering such an inessential curve which is innermost in F , it is easy to see that
we can modify D so as to eliminate this intersection, while keeping D embedded. Proceeding
in this way, we may eliminate all the intersections of D with F , and thus conclude that α
bounds a PL embedded disk whose interior is disjoint from F . Then by definition of I(F, β),
we have |α ∩ β| ≥ I(F, β), which contradicts the assumption |S ∩ β| < I(F, β). Thus we are
done.

2.3 Double bubbles with few intersections with β

Definition 2.6. A double bubble is a 2-complex (S,D) consisting of a sphere S and a disk
D glued along its boundary to a simple loop in S. The curve ∂D ⊆ S thus divides S into
two disks, and gluing either one of these disks to D along their common boundary, we get
two spheres, which we refer to as the two halves of the double bubble.

When we say that a double bubble (S,D) is embedded in R3, it is required that D is
contained in int(S).

Lemma 2.7. Suppose that F ⊆ R3 is a PL embedded closed surface of genus g ≥ 1 which
contains a PL simple closed curve β. Let (S,D) be a double bubble PL embedded in R3, and
let H1 and H2 denote the two halves of the double bubble. Suppose that (S,D) is transverse
to F and β, and that:

|S ∩ β|+ 2 |D ∩ β| < I(F, β) (2.3)

If F ∩ int(S) has a connected component of genus g, then so does F ∩ int(Hi) for some
i ∈ {1, 2}.
Proof. Let {St}t∈[0,1] be a PL one-parameter family of embedded spheres, defined by starting
with S0 = S and performing a 2-surgery along D as t varies from 0 to 1. Putting this family
in general position, we see that St is transverse to F except for a finite number of values of
t ∈ (0, 1) at which St ∩ F undergoes a single surgery. By construction, we have:

|St ∩ β| ≤ |S ∩ β|+ 2 |D ∩ β| < I(F, β) (2.4)

Thus by Lemma 2.5, every curve in St ∩ F is inessential in F (for those times t when St

is transverse to F ). Now the hypotheses of Lemma 2.3 are satisfied, and by assumption,
F ∩ int(S0) has a connected component of genus g. Thus we conclude that F ∩ int(S1) has
a connected component of genus g. This component is contained in the interior of one of
the two spheres that comprise S1, and these two spheres are in turn contained in H1 and H2

respectively. Thus F ∩ int(Hi) has a connected component of genus g for some i ∈ {1, 2}.

For technical reasons in the proof of Theorem 1.3, we shall not be able to ensure that the
relevant double bubble is PL at the points where it intersects β. We thus need to prove a
version of Lemma 2.7 which allows such double bubbles. We shall need the following lemma,
which shows how to straighten the double bubble without increasing its intersections with
β.

5



Lemma 2.8. Fix p ∈ R3. Suppose that F ⊆ R3 is a PL embedded surface containing p, and
suppose that β is a simple PL curve on F passing through p. Let U be an open embedded
surface such that U ∩ β = {p} and U \ {p} is PL. Then there exists a perturbation U ′ of U ,
supported in an arbitrarily small neighborhood of p, such that U ′ is PL embedded, intersects
β at most once, and is transverse to F and β in a neighborhood of its intersection with β.

Proof. Let T be a small tubular neighborhood of β in a neighborhood of p, chosen so that
∂T is transverse to U . Any curve in U ∩ ∂T that is inessential and innermost in ∂T may
be eliminated by locally modifying U . After all such modifications, U ∩ ∂T consists only
of meridians of ∂T . If U ∩ ∂T = ∅, then we are done. Otherwise, observe that any such
circle which is innermost in U must correspond to an intersection U ∩ β. Since there is only
one such intersection, there is only one innermost circle. Thus the circles U ∩ β are totally
ordered by containment (they are isotopic to concentric circles). Pick the outermost circle
α on U . This is a meridian of ∂T and as such clearly bounds a PL disk which intersects β
once and is transverse to F and β. Gluing this disk into U in place of whatever is inside α,
we are done.

Lemma 2.9. Suppose that F ⊆ R3 is a PL embedded closed surface of genus g ≥ 1 which
contains a PL simple closed curve β. Let (S,D) be a double bubble embedded in R3, and let
H1 and H2 denote its two halves. Assume that (S,D) is PL away from its intersections with
β and that ∂D ∩ β = ∅. Suppose that:

|S ∩ β|+ 2 |D ∩ β| < I(F, β) (2.5)

If F ∩ int(S) has a connected component of genus g, then so does F ∩ (B(ǫ) + int(Hi)) for
some i ∈ {1, 2} and every ǫ > 0 (where B(ǫ)+int(Hi) denotes the ǫ-neighborhood of int(Hi)).

Proof. First, apply Lemma 2.8 to each intersection of (S,D) with β to construct an arbitrarily
small perturbation (S ′, D′) which is PL, still satisfies (2.5), and is transverse to F and β
in a neighborhood of its intersections with β. Second, put (S ′, D′) in general position to
achieve transversality with F everywhere, and call the resulting arbitrarily small perturbation
(S ′′, D′′). At this point, (S ′′, D′′) satisfies the hypotheses of Lemma 2.7.

Since F ∩ int(S) is an open surface, the property of it having a connected component
of genus g is preserved under sufficiently small perturbations of S. Thus we may assume
that F ∩ int(S ′′) has a connected component of genus g. Then applying Lemma 2.7, we
conclude that F ∩ int(H ′′

i ) has a connected component of genus g for some i ∈ {1, 2}. Our
perturbations can be arbitrarily small, so the lemma follows.

2.4 Integral geometry and the proof of Theorem 1.3

Proof of Theorem 1.3. By hypothesis, we are given a PL curve β on a surface F PL embedded
in R3. We will prove that if β∗ is isotopic to β, then δ(β∗) ≥ 1

160
I(F, β).

By assumption, there is a homeomorphism ψ : R3 → R3 which sends β to β∗. It is a
fundamental fact of three-dimensional topology (a result of Moise [9] and later Bing [1])
that homeomorphisms of three-manifolds can be approximated by PL homeomorphisms (see
also Hamilton [7] for a modern proof based on the methods of Kirby and Siebenmann [8]).

6



Specifically, we apply [1, p62 Theorem 8] to modify ψ : R3 \ β → R3 \ β∗ so that it is a
PL homeomorphism. We let F ∗ denote the image of F under ψ. In symbols, we have a
homeomorphism:

ψ : R3 → R3

(F, β) 7→ (F ∗, β∗) (2.6)

and the restriction ψ : R3 \ β → R3 \ β∗ is PL. This modification of ψ is necessary in order
to satisfy the hypotheses of Lemma 2.9, which we will eventually apply.

Let Box(r) denote the set {|x| < r, |y| < 21/3r, |z| < 22/3r} in R3. We will make use of the
convenient fact that the plane {z = 0} divides Box(r) into two copies of Box(2−1/3r) (this
is, however, not crucial for our method of proof; scaled copies of any convex set K could be
used in place of Box; we just might have to cut K into more pieces to make every piece fit
in a smaller copy of K). Now we define the (clearly nonempty) set:

R :=







r > 0

∣

∣

∣

∣

∣

∣

there exists an open subset of R3 congruent to
Box(r) whose intersection with F ∗ has a con-
nected component of genus g







(2.7)

We will show that if δ(β∗) < 1
160
I(F, β), then (1− δ)R ⊆ R for some δ > 0. This contradicts

the obvious fact that infR > 0, and thus finishes the proof.
Suppose r0 ∈ R; our aim will be to show that (1−δ)r0 ∈ R for some δ > 0 (independent of

r0). We may assume without loss of generality that Box(r0)∩F ∗ has a connected component
of genus g, and that r0 = 1. Fix some ǫ > 0. We begin with the following integral geometric
estimate:

∫ 1+ǫ

1

#(β∗ ∩ ∂ Box(r)) dr ≤ Length(β∗ ∩ Box(1 + ǫ)) (2.8)

Observe now that we may bound the right hand side by 10(1 + ǫ)δ(β∗) (pick any point
p ∈ β∗ ∩ Box(1 + ǫ); then any other point q ∈ β∗ ∩ Box(1 + ǫ) satisfies |p− q| ≤ 2(1 +
ǫ)
√
1 + 22/3 + 24/3 < 5(1+ ǫ), and thus is within distance 5(1+ ǫ)δ(β∗) of p along β∗). Thus

we have:
∫ 1+ǫ

1

#(β∗ ∩ ∂ Box(r)) dr ≤ 10(1 + ǫ)δ(β∗) (2.9)

Hence there exists r1 ∈ (1, 1 + ǫ) such that:

#(β∗ ∩ ∂ Box(r1)) ≤ 10(1 + ǫ−1)δ(β∗) (2.10)

Similarly, let us intersect β∗ with the planes {z = s} (dividing the long dimension of Box(r1)
roughly in half), and write:

∫ ǫ

−ǫ

#(β∗ ∩ Box(r1) ∩ {z = s}) ds ≤ Length(β∗ ∩ Box(r1)) ≤ 10(1 + ǫ)δ(β∗) (2.11)

As above, we find s1 ∈ (−ǫ, ǫ) such that:

#(β∗ ∩ Box(r1) ∩ {z = s1}) ≤ 5(1 + ǫ−1)δ(β∗) (2.12)
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For technical conveinence (to satisfy the hypotheses of Lemma 2.9), we shall also assume
that {z = s1} is disjoint from β∗ ∩ ∂ Box(r1) (at worst this disqualifies a finite number of
values of s).

Now define the double bubble (S∗, D∗) := (∂ Box(r1), {z = s1} ∩ Box(r1)), and denote
by H∗

1 and H∗
2 the two half-boxes into which D∗ divides S∗. By construction, we have:

|S∗ ∩ β∗|+ 2 |D∗ ∩ β∗| = #(β∗ ∩ ∂ Box(r1)) + 2 ·#(β∗ ∩ {z = s1} ∩ Box(r1))

≤ 20(1 + ǫ−1)δ(β∗) (2.13)

Now if 20(1+ ǫ−1)δ(β∗) < I(F, β), then we may apply Lemma 2.9 to (ϕ−1(S∗), ϕ−1(D∗)) and
conclude that for some i ∈ {1, 2} and all η > 0, the surface F ∩ (B(η) + int(ϕ−1(H∗

i ))) has
a connected component of genus g. Of course, this implies that F ∗ ∩ (B(η) + int(H∗

i )) has a
connected component of genus g for some i ∈ {1, 2} and all η > 0. By construction, each H∗

i

is strictly contained in a congruent image of Box(2−1/3(1 + ǫ) + ǫ
2
), so we have shown that:

20(1 + ǫ−1)δ(β∗) < I(F, β) =⇒
(

2−1/3(1 + ǫ) +
ǫ

2

)

R ⊆ R (2.14)

One easily calculates that for ǫ = 1
7
, we have 2−1/3(1+ ǫ)+ ǫ

2
< 1, and so the right hand side

would contradict the fact that infR > 0. Thus we have 160 · δ(β∗) ≥ I(F, β), as was to be
shown.
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