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Abstract

It is conjectured that if K ⊂ R
n is a convex body, then there exists a point in

the interior of K which is the point of concurrency of normals from 2n points on the
boundary of K. We present a topological proof of this conjecture in dimension four
assuming ∂K is C1,1. From the assumption that the conjecture fails for K ⊂ R

4, we
construct a retraction from K to ∂K. We apply the same strategy to the problem for
lower n, assuming no regularity on ∂K, and show that it provides very simple proofs
for the cases of two and three dimensions (the dimension three case was first proved by
Erhard Heil). A connection between our approach to this problem and the homotopy
type of some function spaces is also explored, and some conjectures along those lines
are proposed.

1 Introduction

Conjecture 1.1 (Problem A3 in [3]). If K ⊂ R
n is a bounded open convex set, then there

exists a point p ∈ K which is the point of concurrence of 2n normals from points on ∂K.

In this paper, we present a proof of Conjecture 1.1 when n = 4 and ∂K is C1,1 (Theorem
4.1). We also present a proof along the same lines for n = 3 (Theorem 3.2), a case which
was proved using more geometric methods by Heil [6] [7] [5]. The method of our proofs is
notable in that it is entirely topological: we use essentially no geometry. Instead, we rely on
the decomposition of ∂K given by thinking of the distance squared function d : K×∂K → R

as a Morse function on ∂K. Heil’s proof for n = 3 on the other hand relies on the geometric
fact of the existence of a minimal spherical shell for a convex body.

Our strategy is proof by contradiction: we assume that d(p, ·) has fewer than eight critical
points for all p ∈ K ⊂ R

4 (critical points of d(p, ·) correspond to normals passing through
p), and construct a retraction from K to ∂K. The basic idea is that if a function on S

n−1

has only a small number of critical points, it can’t be far from a height function p 7→ x · p.
The fact that we use only these functions d(p, ·) suggests that something deeper is going

on, and we go on to interpret our approach in terms of homotopy groups of a space of
functions on S

n−1 with ≤ k critical points. Define G◦
k(S

n−1) ⊂ C1(Sn−1) to be the set of
those functions f for which ∇f = 0 at no more than k points. Let Gk(S

n−1) ⊂ G◦
k(S

n−1)
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be the closure in G◦
k of the set of Morse functions in G◦

k. Now note that there is a natural
embedding e : Sn−1 →֒ G2(S

n−1) which sends a point x to the function p 7→ x · p.

Conjecture 1.2 (see Section 5). There exists r : G2n−1(S
n−1) → S

n−1 so that r ◦ e is the
identity on S

n−1. In other words, G2n−1(S
n−1) retracts to Im e.

We will show (Lemma 5.7) that Conjecture 1.2 implies a weak form of Conjecture 1.1.
The converse implication, i.e. that Conjecture 1.1 implies Conjecture 1.2, seems impossible
unless one proves a priori that Conjecture 1.2 is true. Hence it is especially interesting
that we prove Conjecture 1.1 (for 2 ≤ n ≤ 4) using methods which in fact suffice to prove
Conjecture 1.2 (for 2 ≤ n ≤ 4). Such a generalization of Conjecture 1.1 does not seem
possible using Heil’s geometric methods. Conjecture 5.5 asserts that for k ≥ 2n, Gk(S

n−1) is
contractible. In fact, any result concerning the homotopy or homology groups of following
filtration would be new and interesting:

S
n−1 e

→֒ G2(S
n−1) →֒ G4(S

n−1) →֒ G6(S
n−1) →֒ G8(S

n−1) →֒ · · · (1.1)

We include here a brief review of literature on problems concerning normals to convex
bodies. For one of the many proofs of Conjecture 1.1 in two dimensions, see [4]. In [12],
it is shown that a smooth hypersurface in R

n has four concurrent normals. Conjecture 1.1
was proved for centrally symmetric bodies by Lusternik and Schnirelmann [10]. Kuiper [9]
has generalized their result and shown that any convex body in R

n has n double normals.
Zamfirescu [13] has shown that almost all (in the Baire category sense) convex bodies in
R

n have the property that almost all (in the Baire category sense) points in R
n are the

concurrence point of infinitely many normals.
For bodies of constant width, one conjectures that there are 4n−2 normals which concur

in the interior of K [3]. This is straightforward for n = 2, was proved by Heil [5] for n = 3,
and is open for n ≥ 4. Conjecture 1.1 is open for n ≥ 5. We remark that for Conjecture
1.1, 2n normals is the maximum one can expect to find in the worst case: an ellipsoid in R

n

with axes of length 1, 1 + ǫ, . . . , 1 + (n− 1)ǫ shows this.

1.1 Definition of a normal to a nonsmooth convex set

It should be noted that a small generalization (which many authors simply omit) of the word
normal must be made for Conjecture 1.1 to not be trivially false in every dimension. For
example, take a regular n-simplex ∆n ⊂ R

n. Then every point in the interior of ∆n has a
unique normal to each of the faces of ∆n, making for n+ 1 normals. As is familiar to those
who work in convexity, we instead define a hyperplane P to be tangent to an open convex
set K if and only if it satisfies P ∩K = ∅ and P ∩K 6= ∅. A normal to ∂K is then a line
normal to P passing through some point in P ∩K. Thus, for example, every point in the
interior of an equilateral triangle in R

2 is the concurrence point of six normals: one from
each edge and one from each vertex. In essence we allow normals from points where ∂K is
not differentiable. The reader may also think of this as instead considering normals to the
parallel surface K+Bǫ, whose normals coincide with the normals of K, and whose boundary
is of class C1,1.

In fact, ∂K is of class C1,1 if and only if we can write K = K−ǫ +Bǫ for some ǫ > 0 and
some convex set K−ǫ (see [2, p475], or [9, p74] where the condition C1,1 is called C2−).
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2 The case n = 2

Lemma 2.1. If K ⊂ R
2 is a bounded open convex set, then there exists a point p ∈ K which

is the point of concurrence of four normals from points on ∂K.

Proof. Consider the function dp : ∂K → R (p ∈ K) which computes the distance squared to
p. Any local extremum of dp corresponds to a normal passing through p. Thus it suffices to
find p ∈ K so that dp has at least four local extrema. Suppose for sake of contradiction that
there is no such p. Now a continuous function f : S1 → R which has fewer than four local
extrema must have a unique local minimum. Thus the function r : K → ∂K defined by
r(p) = argminq dp(q) is continuous (by argminx f(x) we mean that value of x for which f(x)
attains its minimum; if multiple such x exist (or none does), then argminx f(x) is undefined).
Furthermore, r = id∂K on ∂K. Thus r is a retraction from K to ∂K, a contradiction.

3 The case n = 3

For the higher dimensions, we need dp : ∂K → R to be Morse for a dense set of p. The
following lemma proved by Heil guarantees that this will be the case.

Lemma 3.1 (Heil [5, p176 Lemma 2′]). If K ⊂ R
n is a bounded open convex set and ǫ > 0,

then the subset of points p ∈ R
n for which dǫp : ∂Kǫ → R is not Morse has measure zero.

Here Kǫ is the parallel body K + Bǫ (which shares the same normals as K) and dǫp is the
distance squared function.

We say that f : ∂Kǫ → R is Morse if f is C1 and at every point where ∇f = 0, we have:

• ∂Kǫ is twice differentiable

• f is twice differentiable

• the Hessian of f is nondegenerate

Proof. Since ∂Kǫ is C1,1, the set of points A where ∂Kǫ is not second differentiable has
measure zero. Let j : N(∂Kǫ) → R

n be the natural map from the normal bundle. The map
j is locally Lipschitz since ∂Kǫ is C1,1. Now dǫp is Morse if p is not in j(A) and p is not a
critical value of j. We see that j(A) is of measure zero since A is, and that the set of critical
values of j has measure zero by a generalization Sard’s Theorem (see [5, p175]).

Theorem 3.2. If K ⊂ R
3 is a bounded open convex set, then there exists a point p ∈ K

which is the point of concurrence of six normals from points on ∂K.

Proof. Let V ⊆ K be the set of points p ∈ K such that dp on ∂K has a unique local
minimum. Similarly define W ⊆ K to be the set of points where dp has a unique local
maximum. It is easy to see that both V and W are closed.

Now if K 6= ∂K ∪ V ∪W then we are done. Since K − ∂K ∪ V ∪W is open, by Lemma
3.1, it contains a point p such that dǫp : ∂Kǫ → R is Morse. Now since dp has ≥ 2 local
minima and ≥ 2 local maxima, we know that dǫp does as well. Any Morse function on S

2
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with ≥ 2 local minima and ≥ 2 local maxima must have ≥ 6 critical points. Thus there
are six normals from Kǫ passing through p. Normals to Kǫ are normal to K, so K has six
concurrent normals and we are done. Thus in the remainder of the proof we may assume
K = ∂K ∪ V ∪W .

Define r : V ∪ ∂K → ∂K and R : W → ∂K by r(p) = argmin dp and R(p) = argmax dp.
Clearly r and R are continuous, r is the identity on ∂K, and r 6= R on (V ∪∂K)∩W . These
functions contradict Lemma 3.3 (below), so we are done.

Lemma 3.3. Let K ⊂ R
n be a bounded open convex set. Let A,B ⊆ K be two closed sets so

that ∂K ⊆ A. Then there does not exist any pair of functions with the following properties:

• r : A → ∂K and R : B → ∂K are continuous

• r 6= R on A ∩ B

• r = id∂K on ∂K.

Proof. Let E =
{

(p, q) ∈ B × ∂K
∣

∣ q 6= R(p)
}

in the subspace topology. Then E is a bundle
over B with fiber D2.

Since r 6= R on A∩B, the function r on A∩B ⊆ B forms an incomplete (that is, partially
defined) section of the bundle E. Since the fiber D2 is contractible, r extends continuously
to a complete (that is, everywhere defined) section of E [11, p55]. After this extension, we
see that r is a continuous map K → ∂K and by assumption, r is the identity on ∂K. This
is a contradiction, so we are done.

4 The case n = 4

Theorem 4.1. If K ⊂ R
4 is a bounded open convex set whose boundary ∂K is of class C1,1,

then there exists a point p ∈ K which is the point of concurrence of eight normals from points
on ∂K.

If ∂K is of class C1, then either there exists a point p ∈ K where eight normals concur
or there exists a point p ∈ ∂K where infinitely many normals concur.

Proof. The first statement trivially follows for K ⊂ R
4 of class C1,1 by applying the second

statement to a parallel body K−ǫ (with K−ǫ + Bǫ = K, compare Section 1.1). Below we
prove the second statement.

Our strategy is the same as in the proof of Theorem 3.2: if dp has ≤ 7 critical points
for all p ∈ K, and finitely many critical points for p ∈ ∂K, then we will eventually produce
functions r and R which contradict Lemma 3.3.

Let V0 ⊆ K be the set of those p such that dp has a unique local minimum. Define
r0 : V0 → ∂K to be r0(p) = argmin dp. Similarly define W0 ⊆ K and R0 : W0 → ∂K,
this time concerning the maximum. As before, V0 and W0 are closed and r0 and R0 are
continuous. Let U0 = K − V0 −W0.

Let m2 ⊆ K be the set of points p such that dp has exactly two local minima. Define
λ : m2 → R as follows: λ(p) is the minimum value a0 such that for all a ≥ a0, d

−1
p ((−∞, a])

is connected (if dp is Morse and has only one index 1 critical value, then λ(p) is that critical
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value). Observe that λ is continuous (although it need not extend continuously to m2).
Similarly define M2 and Λ, this time concerning maxima.

Now by definition, m2 ∩M2 ⊆ U0. If this inclusion is proper, then we are done. We can
find a p so that dp has ≥ 3 local minima and ≥ 2 local maxima (or ≥ 2 local minima and
≥ 3 local maxima). Using Lemma 3.1, we can find a nearby p so that dǫp is Morse, and also
has ≥ 3 local minima and ≥ 2 local maxima (or ≥ 2 local minima and ≥ 3 local maxima).
But any Morse function on S

3 with ≥ 3 local minima and ≥ 2 local maxima must have ≥ 8
critical points, so we have found eight concurrent normals. Thus in the remainder of the
proof we may assume U0 = m2 ∩M2.

Define ℓ(p) = max dp−min dp. We can assume minp∈K ℓ(p) > 0, since if ℓ(p) = 0 then K
is a sphere with center p and the conclusion is trivial.

Let H ⊆ U0 be those points p ∈ U0 for which λ(p) ≥ Λ(p) (if dp is Morse and has unique
index 1 and index 2 critical points, then λ(p) ≥ Λ(p) means that the index 1 critical value
of dp is greater than or equal to the index 2 critical value). Note H ∩U0 = H since λ and Λ
are continuous.

If H turns out to be empty, then the proof becomes much easier. We can skip to Remark
4.5 below, from which point the proof is in the same vein as the proof of Theorem 3.2. If H
is empty, then the list of properties in Remark 4.5 all hold if one replaces the subscript 1’s
with subscript 0’s (and define r = id∂K on ∂K). The reader is at this point encouraged to
read the short argument remaining after Remark 4.5, keeping in mind that this argument is
all that is necessary when H is empty.

Thus, what we need to show between here and Remark 4.5, is how to extend r0 and R0

continuously to larger domains whose union contains H (these new functions will then be r1
and R1). The first step is to define the functions π and Π on H which will serve to extend
r0 and R0 respectively.

The following two lemmas are the crux of the proof.

Lemma 4.2 (Structure of dp for p ∈ H). Suppose dp has ≤ 7 critical points for p ∈ H.
Then for p ∈ H, there are distinguished local minima and maxima, π(p) and Π(p), of dp.
Furthermore, π,Π : H → ∂K are continuous, and dp(π(p)) < dp(Π(p)).

Proof. The reader may find it helpful to refer to Figure 1 for a schematic of the sublevel set
evolution of a function dp : ∂K → R in the case that λ(p) < Λ(p). Figure 2 shows the case
λ(p) ≥ λ(p).

Observe that in the case λ(p) ≥ Λ(p), the sublevel sets must form a second homology
group before the two components of the sublevel sets merge. This should be especially clear
from Figure 2. Thus the two minima of dp are distinguishable when λ(p) ≥ Λ(p), whereas
they are not if λ(p) < Λ(p). We define π(p) to be the local minimum of dp which is in the
component of the sublevel set d−1

p ((−∞,Λ(p)]) which has nonzero H2.
Let us put this on more rigorous footing as follows. For ease of notation below, we write

λ for λ(p) and similarly for Λ.
The argument is easiest when λ > Λ. In this case, we see that d−1

p ([1
2
(λ+Λ),∞)) has two

connected components. Thus d−1
p ((−∞, 1

2
(λ+Λ))) has nonzeroH2. Now d−1

p ((−∞, 1
2
(λ+Λ)))

also has two connected components (one for each local minimum of dp). If both components
had nonzero H2, then dp would have ≥ 3 local maxima, which we know is not the case. Thus
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(a) v < λ (b) λ < v < Λ (c) λ < v < Λ

(d) Λ < v (e) Λ < v sub-
level set
cross section

(f) Λ < v level
set cross
section

Figure 1: This the sublevel set evolution schematic of the case λ < Λ. The subcaptions show
the value generating the sublevel set. The sublevel sets are subsets of ∂K ∼= S

3, which we
have represented as R3 (with a point at infinity).
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(a) v < Λ (b) v < Λ (c) Λ < v < λ

(d) Λ < v < λ

sublevel
set cross sec-
tion

(e) Λ < v < λ

level set
cross section

(f) λ < v

Figure 2: This the sublevel set evolution schematic of the case λ ≥ Λ. The subcaptions show
the value generating the sublevel set. The sublevel sets are subsets of ∂K ∼= S

3, which we
have represented as R3 (with a point at infinity).
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exactly one component of d−1
p ((−∞, 1

2
(λ+Λ)]) has nonzero H2, and we define π(p) to be the

minimum corresponding to that component.
Some care must be taken in the case that λ = Λ. In this case, we see d−1

p ((−∞,Λ])
is actually connected. Now let us consider the points in d−1

p ((−∞,Λ]) where the two com-
ponents of d−1

p ((−∞,Λ)) merge (call these the wedge points). By this we mean points in
d−1
p ((−∞,Λ]) which are in the closure of both of the components of d−1

p ((−∞,Λ)). Now it is
easy to see that these wedge points are critical points of dp. This is because in a neighborhood
of any noncritical point of dp, we can find local coordinates in which dp is just (u, v, w) 7→ u.
Now if the set of wedge points is ever infinite, we are done, since we have found infinitely
many critical points of dp, and thus infintely many normals to K concurrent at p.

In fact, we are done if there is ever more than one wedge point. To see this, suppose there
are finitely many wedge points. Let A and B denote the closures of the two components of
d−1
p ((−∞,Λ)). Let a1, . . . , ak ∈ A and b1, . . . , bk ∈ B denote the k wedge points, so that

d−1
p ((−∞,Λ]) = A ∨(a1,b1),...,(ak,bk) B where we have identified ai with bi. We see from this

that rkH1(d
−1
p ((−∞,Λ]))) ≥ k − 1. Now if we take p1 ∈ K sufficiently close to p, and pick

a small ǫ > 0, so that dǫp1 is Morse, then we see that dǫp1 has ≥ 2 local minima and ≥ 2 local
maxima. Also, if k ≥ 2, then there is some sublevel set of dǫp1 with nonzero H1. Thus dǫp1
also has ≥ 2 index 1 critical points. Hence dǫp1 has ≥ 8 total critical points so we are done.

Thus we can assume that the wedge point is unique. Hence d−1
p ((−∞,Λ]) is A ∨(a,b) B.

Thus we see that H2(d
−1
p ((−∞,Λ]) = H2(A) ⊕ H2(B). Now from this we can see how to

finish as above. Since d−1
p ((−∞,Λ]) separates ∂K into two and only two components, we

see that exactly one of H2(A) and H2(B) is nonzero. We then take r(p) to be the minimum
corresponding to the set with nonzero H2.

Now it is also easy to see that π cannot switch between the two local minima, and each
local minimum depends continuously on p, so π is continuous.

We define Π in an exactly symmetric way to π. It is evident that dp(π(p)) < dp(Π(p)).

As is remarked in the preceding proof, we may assume the truth of Lemma 4.2 in the
remainder of the proof since otherwise we are already done.

Lemma 4.3. If any of the following is false, then K has infinitely many normals that concur
in K. For p ∈ V0 − W0, we have limH∋p1→p π(p1) = r0(p), and for p ∈ W0 − V0, we have
limH∋p1→pΠ(p1) = R0(p). Also, for every p ∈ V0 ∩W0 and every ǫ > 0, there exists δ > 0 so
that |p1 − p| < δ implies that either |π(p1)− r0(p)| < ǫ or |Π(p1)− R0(p)| < ǫ.

Proof. Let us show that for p ∈ V0 −W0, limp1→p π(p1) = r0(p). Suppose that there were a
sequence of pn ∈ H so that pn → p ∈ V0 −W0 and π(pn) 9 r0(p); we will show that then K
has infinitely many concurrent normals which concur inK. We can assumeWLOG that π(pn)
is convergent. Let us now show that since π(pn) 9 r0(p), we have λ(pn) − dpn(π(pn)) →
0. First of all, λ(pn) > dpn(π(pn)) for all n. Now suppose for sake of contradiction that
λ(pn)− dpn(π(pn)) > ǫ for infinitely many n. We can assume WLOG that λ(pn)− ǫ is larger
than dp(r0(p)) for sufficiently large n. Now consider d−1

p ((−∞, lim infn→∞ λ(pn)− ǫ/2)). We
see that r0(p) and limn→∞ π(pn) are in two different components of this set, which contradicts
the fact that dp has exactly one local minimum. Now since Λ ≤ λ for pn ∈ H , certainly we
also have Λ(pn)− dpn(π(pn)) → 0.
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Consider the sets Sn = d−1
pn
((−∞,Λ(pn)]). The reader is encouraged to refer to Figure

2(d) and 2(e). If λ(pn) > Λ(pn), let S ′
n be the component of Sn containing π(pn). If

λ(pn) = Λ(pn), then there is a unique point whose removal disconnects Sn (see the proof of
Lemma 4.2), and we take S ′

n to be the union of that unique point and the π(pn) component
of Sn minus that point.

The sets S ′
n separate the two maxima of dpn (that is, they are in different connected

components of ∂K − S ′
n). Since p /∈ W0, the two maxima of dpn approach the two maxima

of dp as n → ∞. We know that S ′
n stays away from both maxima of dpn, so for sufficiently

large n, S ′
n separates the two maxima of dp. Thus we see that the set of limit points of S ′

n

as n → ∞ is infinite. But let us now observe that any limit point of S ′
n as n → ∞ must

be a critical point of dp. To see this, it is easiest to prove that a regular point of dp cannot
be a limit point of S ′

n. First observe that the values of dpn at points in S ′
n are contained in

[π(pn),Λ(pn)], and interval whose length is going to zero. If x ∈ ∂K is a regular point of
dp, then we can find local coordinates in which dp is just (u, v, w) 7→ u. Then if we pick n
large enough so that the length of the interval [π(pn),Λ(pn)] is much smaller than the range
of dp in our neighborhhod of x, then we see that Sn just corresponds to the set where the
coordinate u is ≤ a, contradicting our fact that the values of dp in S ′

n are sandwiched in an
interval of much smaller length. Hence x cannot be a limit point of S ′

n Since dp has infinitely
many critical points, there are infinitely many normals that concur at p ∈ K.

The statement that for p ∈ W0 − V0, limp1→pΠ(p1) = R0(p) follows from an exactly
symmetric argument.

To demonstrate the last part of the lemma, we argue as before and again consider the
sets S ′

n. However this time, we use the fact that they separate the maximum of dpn other
than Π(pn) from the minimum of dpn other than π(pn). Since by assumption π(pn) stays
away from the minimum of dp, we see that the other minimum of dpn must approach the
minimum of dp. The same is true for the maximum. Thus we see that we get a similar
situation as above, namely that for sufficiently large n, S ′

n separates the minimum and the
maximum of dp (this is true since S ′

n stays away from both the minimum other than π(pn)
and the maximum other than Π(pn) of dpn). Now by the same reasoning as above, we see
that S ′

n has infinitely many limit points, all of which must be critical points of dp, showing
again that there are infinitely many normals concurrent at p.

In the remainder of the proof we may assume the truth of the statements in Lemma 4.3
since otherwise we are already done.

As stated above, the two preceding lemmas are the crux of the proof. I do not have a good
conceptual reason why they should be true, though it seems key that dp(π(p)) < dp(Π(p)).

The next conceptual step is to stitch r0 and π together so they form a continuous function
(and do the same with R0 and Π). By Lemma 4.3, we have limp1→p π(p1) = r0(p) when
p ∈ V0 −W0. However this can fail for p ∈ V0 ∩ W0. Thus our first step is to take care of
continuity at points p ∈ V0 ∩W0. We will define sets v1, w1 ⊆ H whose union is H so that
limv1∋p1→p π(p1) = r0(p) for p ∈ V0 ∩W0 and similarly for R0 and w1.

Let η > 0. Let v◦1 be the set of p ∈ H where dp(π(p)) − min dp ≤ ηℓ(p). Let w◦
1 be the

set of p ∈ H where dp(Π(p))−min dp ≥ ηℓ(p). Any sufficiently small η > 0 will do; we will
discuss how to choose it later. Observe that v◦1 ∪ w◦

1 = H (since dp(π(p)) < dp(Π(p))) and
that v◦1 and w◦

1 are closed as subsets of H .
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We will now construct sets v1 ⊆ v◦1 and w1 ⊆ w◦
1. If V0 ∩ W0 = ∅, then v1 = v◦1 and

w1 = w◦
1 and we pick up again after the definition of v1 and w1 in the case V0 ∩W0 6= ∅ is

described below.
We define:

ǫ◦(δ) := max

{

max
p∈V0∩W0

p2∈H
|p−p2|≤δ

[

min

(

min
p2∈v◦1

|π(p2)− r0(p)|, min
p2∈w◦

1

|Π(p2)− R0(p)|

)]

,

max
p,q∈V0

|p−q|≤2δ

2|r0(p)− r0(q)|, max
p,q∈W0

|p−q|≤2δ

2|R0(p)−R0(q)|, δ

}

(4.1)

The expression min(minp2∈v◦1
|π(p2) − r0(p)|,minp2∈w◦

1
|Π(p2) − R0(p)|) above requires some

explanation. What we mean is for this to equal:










min (|π(p2)− r0(p)|, |Π(p2)− R0(p)|) p2 ∈ v◦1 ∩ w◦
1

|π(p2)− r0(p)| p2 ∈ v◦1 − w◦
1

|Π(p2)−R0(p)| p2 ∈ w◦
1 − v◦1

(4.2)

Clearly ǫ◦(δ) is increasing and satisfies ǫ◦(δ) → 0 as δ → 0 (this is a consequence of
Lemma 4.3 and the compactness of V0 ∩W0). For technical reasons, we need to replace ǫ◦

with a function that satisfies an additional property: we need it to be upper semicontinuous
(so that v1 and w1 defined below are closed). To achieve this, all that is necessary is to
change the value of ǫ◦ at each jump discontinuity so that it assumes the larger value (i.e.
the limit from the right). We call this modified function ǫ(δ) := lim supδ1→δ ǫ

◦(δ1), which
the reader can check gives us what we want. Clearly we have ǫ(δ) is increasing and satisfies
ǫ(δ) → 0 as δ → 0. Also observe that ǫ(δ) ≥ ǫ◦(δ) and that ǫ is upper semicontinuous.

Define:

v1 =
{

p1 ∈ v◦1

∣

∣

∣
|π(p1)− r0(p)| ≤ ǫ(|p1 − p|) for

at least one of the p ∈ V0 ∩W0 closest to p1

}

(4.3)

w1 =
{

p1 ∈ w◦
1

∣

∣

∣
|Π(p1)−R0(p)| ≤ ǫ(|p1 − p|) for

at least one of the p ∈ V0 ∩W0 closest to p1

}

(4.4)

Observe that v1 ∪w1 = H (by the definition of ǫ and since v◦1 ∪w◦
1 = H) and that v1 and w1

are closed as subsets of H (since ǫ is upper semicontinuous).
Let us now observe that the following two functions are continuous:

p 7→

{

r0(p) p ∈ V0

π(p) p ∈ v1
p 7→

{

R0(p) p ∈ W0

Π(p) p ∈ w1

(4.5)

Consider for instance the first function. Continuity at points in V0 − W0 is confirmed by
Lemma 4.3. Continuity at points in V0 ∩ W0 follows from the definition of v1, using the
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fact that limδ→0+ ǫ(δ) = 0. Continuity on v1 is clear since π is continuous and V0 is closed.
Continuity of the second function is similarly demonstrated.

It is no good however if either of these functions has no continuous extensions, which can
be the case if V0 ∪ v1 or W0 ∪ w1 is not closed! Thus we proceed to restrict these functions
to closed domains.

The only way that V0 ∪ v1 can fail to be closed is if there is a sequence of points in v1
which approachess some point in W0 − V0. Thus we will remove an open disc of radius δ(p)
centered at each point p ∈ W0−V0 from v1. We define δ(p) for p ∈ W0−V0 to be the largest
δ > 0 with the following properties:

• 2δ ≤ dist(p, V0)

• The open δ neighborhood of p intersect H is contained in w1

Lemma 4.4. Given p ∈ W0 − V0, there exists a δ > 0 satisfying the above.

Proof. If V0 ∩W0 = ∅, then is nothing to prove. Otherwise, let L be the distance from p to
the closest point in V0 ∩W0 to p. Now it suffices to find δ > 0 so that:

ǫ(L− δ) ≥ |Π(p1)−R0(p3)| (4.6)

for |p1−p| ≤ δ and p1 ∈ H , where p3 = p3(p1) denotes the closest point in V0∩W0 to p1. Now
the right hand side of equation (4.6) is bounded above by |Π(p1)−R0(p)|+ |R0(p)−R0(p3)|.
First restrict δ < L/3 so that it suffices to make |Π(p1)−R0(p)|+ |R0(p)−R0(p3)| ≤ ǫ(2L/3).
Now the first term can be made arbitrarily small by making δ sufficiently small. We see
that the distance from p to p3 is at most 2δ + L and p, p3 ∈ W0. Thus we find that
ǫ(2L/3) ≥ 2|R0(p)− R0(p3)| as long as 2δ + L ≤ 4L/3 (by the definition of ǫ), and we can
make this true by picking δ sufficiently small.

Now we remove any point q ∈ v1 with |q − p| < δ(p) for some p ∈ W0 − V0 (that is, we
remove the open set

⋃

p∈W0−V0
Bδ(p)(p) from v1). Call the resulting set v′1. Do the analogous

definition and procedure to obtain w′
1. From the definition of δ(p), it is clear that since

v1 ∪ w1 = H , we in fact have v′1 ∪ w′
1 = H .

Now we observe that the following functions are continuous and defined on closed do-
mains:

r◦1(p) :=

{

r0(p) p ∈ V0

π(p) p ∈ v′1
R1(p) :=

{

R0(p) p ∈ W0

Π(p) p ∈ w′
1

(4.7)

Let V ◦
1 = V0 ∪ v′1 and W1 = W0 ∪ w′

1 be the closed domains of r◦1 and R1 respectively.
Observe that K−V ◦

1 −W1 = U0−H =: U◦
1 is open (as a subset of K), and is the set of those

points in U0 = m2 ∩M2 where λ < Λ. Observe also that r◦1(p) is always a local minimum of
dp, and R1(p) is always a local maximum of dp. Since ∂K is of class C1, we can choose η > 0
small enough so that for p ∈ ∂K, the only local minimum of dp within distance η of p is p
itself. Hence with this choice of η, we can extend the definition of r◦1 to include ∂K, define it
to be the identity there, and it is still continuous, defined on a closed set, and always equal
to a local minimum:

r1(p) :=

{

r◦1(p) p ∈ V ◦
1

p p ∈ ∂K
(4.8)
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Let V1 = V ◦
1 ∪ ∂K and U1 = U◦

1 − ∂K.

Remark 4.5. Let us now catalogue our functions and their properties:

• r1 : V1 → ∂K and R1 : W1 → ∂K are continuous

• V1 and W1 are closed

• For all p ∈ V1, r1(p) is a local minimum of dp

• For all p ∈ W1, R1(p) is a local maximum of dp

• ∂K ⊆ V1 and r1 is the identity on ∂K

• K − (V1 ∪W1) =: U1 is open

• U1 ⊆ m2 ∩M2 and λ(p) < Λ(p) for all p ∈ U1

From this, the rest of the proof is simply an elaboration on our strategy for Theorem 3.2.
Specifically, we may use level sets of dp to divide ∂K into two balls, one containing the two
local minima and one containing the two local maxima. Such a division is possible exactly
because λ(p) < Λ(p).

We define the cutoff functions c1, c2 : U1 → R as c1(p) = 2
3
λ(p) + 1

3
Λ(p) and c2(p) =

1
3
λ(p) + 2

3
Λ(p).

Lemma 4.6. For p ∈ V1, lim infp1→p c1(p) ≥ dp(r1(p)); if equality holds, then dp has only
one local minimum (and therefore r1(p) is that minimum). We have an analogous result for
c2 and R1 as well.

Proof. It is easy to see that if dp had multiple local minima, then c1 would be bounded below
by λ(p) > dp(r1(p)) as p1 → p.

Let us consider the structure of the sublevel sets of dp for some p ∈ U1 where d
ǫ
p is Morse.

The Morse function dǫp has two local minima and two local maxima. If for some p it had > 1
index 1 or > 1 index 2 critical points, it would have ≥ 8 total critical points and we would
be done. Thus we may assume each such Morse function dǫp has one index 1 critical point
and one index 2 critical point. Now since p ∈ U1, we have λ(p) < Λ(p), so we refer to Figure
1 for a schematic of the sublevel set evolution. In particular note 1(b). One observes that
dǫp

−1((c1(p), c2(p))) is homeomorphic to S
2×(0, 1). In particular, we can pick a C1 embedded

sphere that represents the fundamental second homology class of d−1
p ((c1(p), c2(p))). Such a

sphere then separates ∂K into two balls, one of which contains the two local minima of dp
and one of which contains the two local maxima of dp. The following lemma, whose proof
may be omitted on a first reading, shows that in fact we can pick such a C1 embedded sphere
for all p ∈ U1.

Lemma 4.7. There exists a family of C1 embedded spheres:

S(p) ⊂ d−1
p ((c1(p), c2(p))) (4.9)

varying continuously with p ∈ U1 which separate the two local minima of dp from the two
local maxima of dp.
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Proof. For p ∈ U1, dp has the following six critical points: two local minima, two local
maxima, one critical point with critical value λ(p), and one critical point with critical value
Λ(p). Now we only need to take care of the case that there is never more than one additional
critical point. Let G ⊆ U1 be the set on which dp has a seventh critical point whose critical
value is in [c1(p), c2(p)]. Observe that G ∩ U1 = G. Now the function γ : G → [c1(p), c2(p)]
giving the critical value is continuous. Extend γ continuously to all of U1 so that it still
satisfies γ : U1 → [c1(p), c2(p)].

Thus we see that for p ∈ U1 and g ∈ (c1(p), c2(p))−{γ(p)}, d−1
p (g) forms a C1 embedded

sphere in ∂K with the desired property. One may ask why d−1
p (g) has this property. One

may choose a p1 close to p and an ǫ > 0 so that dǫp1 is Morse, and thus dǫp1
−1(g) is a C1

embedded sphere with the desired property. Letting p1 → p and ǫ → 0, we see that d−1
p (g)

is also a C1 embedded sphere, and that it separates the two local minima of dp from the two
local maxima of dp.

Define α(p) = 3
5
λ(p) + 2

5
Λ(p) and β(p) = 2

5
λ(p) + 3

5
Λ(p), so that:

c1(p) < α(p) < β(p) < c2(p) (4.10)

Let Y ⊆ U1 be the set of p ∈ U1 where γ(p) ∈ [α(p), β(p)]. Over Y , let us consider two families
of spheres given by d−1

p (1
2
c1(p)+

1
2
α(p)) and d−1

p (1
2
β(p)+ 1

2
c2(p)). This is a continuous family

of C1 spheres. They are disjoint and divide ∂K into three components: a B3 containing the
two local minima of dp, a B3 containing the two local maxmima of dp, and an S

2 × [0, 1]
which is the set d−1

p ([1
2
c1(p) +

1
2
α(p), 1

2
β(p) + 1

2
c2(p)]). Now let us fix diffeomorphisms from

S
2 × [0, 1] to this last component, the diffeomorphisms varying continuously with p ∈ Y .

Thus for (p, t) ∈ Y × [0, 1], we have a continuously varying family of C1 embedded spheres
S(p, t), where in particular S(p, 0) = d−1

p (1
2
c1(p)+

1
2
α(p)) and S(p, 1) = d−1

p (1
2
β(p)+ 1

2
c2(p)).

Now it is easy to see that the following definition suffices:

S(p) =











d−1
p (1

2
β(p) + 1

2
c2(p)) γ(p) ≤ α(p)

S(p,LINp(γ(p))) α(p) ≤ γ(p) ≤ β(p)

d−1
p (1

2
c1(p) +

1
2
α(p)) β(p) ≤ γ(p)

(4.11)

where LINp : [α(p), β(p)] → [0, 1] is the order reversing linear homeomorphism x 7→ 1− x−α
β−α

.
Clearly when p satisfies more than one of the criteria on the right, the two definitions of
S(p) coincide.

Consider two bundles over U1, namely those whose fibers over p ∈ U1 respectively are
the two open balls that ∂K is separated into by S(p). Restrict the bundle containing the
two local minima of dp to the base space of those p ∈ U1 satisfying dist(p, V1) ≤ dist(p,W1)
and call the resulting bundle ω and the resulting base space |ω|. Similarly define the bundle
Ω over the base space |Ω|. Observe |ω| ∪ |Ω| = U1.

We now wish to extend r1 continuously from V1 to V1 ∪ |ω| (observe V1 ∪ |ω| is closed).
We do this as follows. Extend r1 arbitrarly to a closed neighborhood of V1. Remove any
extension which is not in V1 ∪ |ω|. Additionally, remove from this extension any point in
|ω| where dp(r1(p)) > c1(p) (this is necessary since at such points, the extended function
may fail to be a section of ω). Call the resulting function r̃1 (which is defined on a closed
set containing V1 and contained in V1 ∪ |ω|). Now the fiber of ω is contractible. Viewing
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r̃1 restricted to |ω| as a partial section of ω, we see that we may extend r̃1 continuously
to a section of ω. Call this extended function r2, which is continuous on |ω|. Let us now
see that in fact r2 is continuous at points in V1 as well. Clearly, one only need check
continuity at those points of V1 whose every neighborhood contains points which were cutoff
(that is, cutoff when we removed points where dp(r1(p)) > c1(p)). But such points satisfy
lim infp1→p c1(p) = dp(r1(p)). Thus at such points, r1(p) must be the unique global minimum
of dp. Then we see that dp1(r2(p1)) → dp(r1(p)) = min dp as p1 → p implies r2(p1) → r1(p),
so we are done. Hence r2 : V1 ∪ |ω| → ∂K is continuous and is a section of the bundle ω.

Perform the analogous extension for R1 to a section of Ω to obtain R2.
Now we have two continuous functions (r2 and R2) to ∂K defined on closed subsets of

K (V1 ∪ |ω| and W1 ∪ |Ω|) whose union is K, which are never equal to each other, and one
of which is the identity on ∂K. This contradicts Lemma 3.3, so we are done.

5 Interpretation in terms of homotopy groups of func-

tion spaces

Recall that very little geometry was used in the proof of Theorem 4.1 (or in Lemma 2.1 or
Theorem 3.2). What we have really shown is that ∂K ∋ p 7→ dp ∈ F2n−1 cannot be extended
to all p ∈ K, where F2n−1 is the (suitably defined) set of functions on ∂K with ≤ 2n − 1
critical points. We now give a rigorous definition of such a space of functions and state a
conjecture (Conjecture 1.2) which is closely related to Conjecture 1.1, though not a priori
equivalent to it (see, however, Lemma 5.7 below). We then note that the proofs given above
apply directly to prove this conjecture for 2 ≤ n ≤ 4.

Definition 5.1. Let M be a closed manifold. Let G◦
k(M) denote the set of functions f ∈

C1(M) with ≤ k critical points (points where ∇f = 0). We topologize G◦
k(M) using the

topology of C1(M). Define Gk(M) ⊂ G◦
k(M) to be the closure in G◦

k(M) of the Morse
functions in G◦

k(M).

One can also imagine taking Gℓ
k(M) to be as above but instead using Cℓ(M). Here we

just stick to the simplest case.

Definition 5.2. We define the canonical embedding e : Sn−1 →֒ C1(Sn−1) by sending x ∈
S
n−1 to the function p 7→ x · p.

Problem 5.3. Study the stable and unstable homology and homotopy groups of the filtra-
tion:

S
n−1 e

→֒ G2(S
n−1) →֒ G3(S

n−1) →֒ G4(S
n−1) →֒ G5(S

n−1) →֒ · · · (5.1)

One expects that G2k(S
n−1) →֒ G2k+1(S

n−1) is a homotopy equivalence since every Morse
function on S

n−1 has an even number of critical points. In this case, one then studies:

S
n−1 e

→֒ G2(S
n−1) →֒ G4(S

n−1) →֒ G6(S
n−1) →֒ G8(S

n−1) →֒ · · · (5.2)

Conjecture 5.4. There exists r : G2n−1(S
n−1) → S

n−1 so that r ◦ e is the identity on S
n−1.

In other words, G2n−1(S
n−1) retracts to Im e.
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Conjecture 5.5. For all k ≥ 2n, Gk(S
n−1) is contractible.

A weaker version of Conjecture 5.5 is that for all sufficiently large k, Gk(S
n−1) is con-

tractible. In fact, finding any k such that Gk(S
n−1) is contractible would be interesting.

5.1 The connection with Conjecture 1.1

Lemma 5.6. The canonical embedding e : Sn−1 →֒ G2n(S
n−1) is null homotopic.

Proof. We define an ellipsoid E ⊂ R
n with axes of length 1, 1+ ǫ,. . . , 1+ (n− 1)ǫ. Now this

convex body has no point in its interior with more than 2n normals to the boundary. Thus
the functions dp for p ∈ E are all in G2n(∂E). Hence q 7→ dq for q ∈ ∂E is null homotopic.
But it is also easy to see that this map is homotopic to the canonical embedding e.

Lemma 5.7. Suppose Conjecture 1.2 is true for some n. Then if K ⊂ R
n is a bounded open

convex set, it has 2n normals which are concurrent somewhere in R
n (i.e. not necessarily

inside K). Additionally, Conjecture 1.1 is true for K ⊂ R
n which are C2 close to S

n−1.

Proof. Given K ⊂ R
n, suppose it is not the case that some 2n normals concur somewhere in

R
n. Then B1 + tK certainly does not have 2n concurrent normals for t ∈ (0, 1]. Now we see

that varying t from 0 to 1 gives a homotopy between ∂(B1+K) ∋ p 7→ dp ∈ G2n−1(∂(B1+K))
and ∂B1 ∋ p 7→ dp ∈ G2n−1(S

n−1). Since the latter is not null homotopic (by Conjecture
1.2 since it is homotopic to e), the former also cannot be null homotopic. But since B1 +K
does not have 2n concurrent normals, we see that the former map is in fact null homotopic,
a null homotopy given simply by B1 +K ∋ p 7→ dp ∈ G2n−1(∂(B1 + K)) (note the use of
Lemma 3.1 to show that dp ∈ G2n−1(∂(B1 +K))!). This is a contradiction, so we are done.

If K ⊂ R
n is C2 close to S

n−1, then ∂K ∋ p 7→ dp ∈ G2(∂K) is homotopic to e,
so in particular is not null homotopic in G2n−1. But if Conjecture 1.1 failed for K, then
∂K ∋ p 7→ dp ∈ G2(∂K) would be null homotopic in G2n−1, since every dp ∈ K would have
≤ 2n− 1 critical points, and dp is Morse for a dense set of p ∈ K.

Theorem 5.8. Conjecture 1.2 is true for 2 ≤ n ≤ 4.

Proof. In the notation of our proofs of Conjecture 1.1 for 2 ≤ n ≤ 4, e is the analogue
of ∂K ∋ p 7→ dp, and r : G2n−1(S

n−1) → S
n−1 is analogous to r : K → ∂K. With this

correspondence, the proofs of Lemma 2.1, Theorem 3.2, and Theorem 4.1 work essentially
as written.

For example, let us sketch the n = 3 case, that is, we show that G5(S
2) retracts to the

image of e : S2 →֒ G5(S
2). Let V ⊆ G5(S

2) consist of those functions with a unique local
minimum. Let W ⊆ G5(S

2) be those with a unique local maximum. Let r : V → S
2 be

defined by r(f) = argminp f(p), and similarly define R : W → S
2.

Now let us see that V ∪ W = G5(S
2). If this were not the case, then there would be

f ∈ G5(S
2) with ≥ 2 local minima and ≥ 2 local maxima. By definition, Morse functions

are dense in G5(S
2), so there exists a Morse function f1 ∈ G5(S

2) that is close to f . By
requiring f1 to be sufficiently close to f , we can force f1 also to have ≥ 2 local minima and
≥ 2 local maxima. Since f1 is Morse, it must have ≥ 6 critical points, contradicting the fact
that it is in G5(S

2). Thus V ∪W = G5(S
2).
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Now consider E =
{

(f, p) ∈ W × S
2
∣

∣ p 6= R(f)
}

. We see that E is a bundle over W
with fiber D2. Since r 6= R on V ∩W , r forms a partial section of E. Thus since the fiber
is contractible, r extends to an entire section of E. Hence we have a continuous function
r : G5(S

2) → S
2. It is easy to see that (−r) ◦ e = idS2 (r ◦ e is the antipodal map), since

Im e ⊆ V , where we have defined r explicitly.

5.2 Morse-Smale functions

If we restrict ourselves to Morse-Smale functions, one observes the following.

Lemma 5.9. If f : Sn−1 → R is a Morse function whose gradient flow is Morse-Smale, and
f has ≤ 2n− 1 critical points, then there exists k < n− 1 such that the union of the stable
manifolds of all critical points of index ≤ k is contractible.

Proof. Since there are n possible indices and < 2n critical points, there is some k0 for which
there is a unique critical point of index k0. Call this critical point c0. Set:

k =











0 k0 = 0

k0 k0 > 0 and ∂c0 6= 0

k0 − 1 k0 > 0 and ∂c0 = 0

(5.3)

Let Xk be the union of the stable manifolds of all the critical points of index ≤ k. Now by
examining the cell decomposition of Sn−1 induced by f , one observes that H∗(Xk) = 0 and
π1(Xk) = 0, so Xk is contractible as claimed.

Given the canonical nature of their construction, it is tempting to expect that these
contractible subsets may in some weak sense form a bundle over G2n−1(S

n−1). Specifically,
we might expect it to be a stratified bundle (see [1]), the strata of the base space being:

Sk =
{

f ∈ G2n−1(S
n−1)

∣

∣

∣
k is the smallest integer

satisfying the conclusion of Lemma 5.9
}

(5.4)

Now one can try to extend the partial section e−1 defined on Im e to a section of the entire
bundle, using the contractibility of the fibers. This would then give a suitable function r
satisfying the conclusion of Conjecture 1.2.

It is the author’s opinion, however, that this approach as stated above fails even when
n = 4. Thus in our proof of Theorem 4.1 we have used more intricate techniques to deal
with the existence of functions that are not Morse-Smale. Recall that the bulk of the proof
was spent dealing with points where λ(p) ≥ Λ(p). This is because it is in this case that dp
can fail to be Morse-Smale: a flow line descending from the index one critical point can flow
to the index two critical point. In classical Morse theory, one often assumes the function
is self indexing, so this situation cannot occur, but it is not possible to deform our entire
parameter space of functions to be self indexing since we have critical points which cancel.
We expect that the relative heights of the critical points play a crucial role in determining
the homotopy properties of Gk(M).
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A result of Klein [8] may be useful in approaching the problem in higher dimensions. It
gives a construction of a canonical contractible parameter space of quasi cell decompositions
of a manifold given some fixed Morse function.
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