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Preface

This text is intended as a logical starting point for the theory of moduli spaces of pseudo-
holomorphic curves, as founded by Gromov [26] and subsequently developed by Floer, Hofer,
Eliashberg, Fukaya, Kontsevich, Seidel, Abouzaid, and many others. A distinguishing feature
of our treament of this subject is its generality: we formulate the main foundations of the
theory in a way which is logically sufficient for applications. In fact, much of what we do is
applicable well beyond the setting of pseudo-holomorphic curves, to any non-linear elliptic
Fredholm problem. A summary of this work appeared in [72].

We assume minimal prerequisites and thus include a substantial amount of advanced
graduate level background. Great effort is made to include all relevant foundational material,
much in the form of exercises, so that our treatment may qualify as self-contained. An artifact
of the resulting length is that the interesting material is spread a bit thin. The reader is
therefore advised not to read the text linearly, but rather to seek out their specific topics of
interest, and to refer to the other parts as they are cross-referenced.

The writing of this text has been something of an ‘architecture problem’. Once the correct
blueprint for the logical structure has been prescribed, the details fall into place with little
resistance. While developing a blueprint with simple and clear logical structure (both globally
and locally) is ultimately good for the subject, it also minimizes the apparent depth of the
final result, especially in comparison to the amount of work leading up to it.

Despite their analytic nature, the main results of this work rely fundamentally on the
framework of ∞-categories.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To introduce the topics we cover in more detail, we begin with some background. A map
u : C → X from a Riemann surface C to an almost complex manifold X (i.e. a manifold
equipped with an endomorphism J : TX → TX squaring to −1) is called pseudo-holomorphic
when its differential du : TC → TX is C-linear. The equation J ◦ du = du ◦ j asserting
C-linearity of du is a non-linear elliptic Fredholm partial differential equation. Though
we focus our attention on this particular equation and its variants, the vast majority of
the framework we develop applies equally to any other non-linear elliptic Fredholm partial
differential equation.

The primary objects of study in this text are the moduli spaces of solutions to the pseudo-
holomorphic map equation. Our main goal is to describe precisely what sort of mathematical
objects these moduli spaces are.
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PREFACE 5

To explain the answer this question, it is helpful to begin in the linear setting. Fix a linear
elliptic operator L : E → F acting on sections of vector bundles E and F over a compact
manifold M . The ‘space of solutions’ to Lu = 0 is most immediately the finite-dimensional
vector space kerL ∈ VectR. However, for many purposes, it is better to instead consider the
two-term complex [L] = [C∞(M,E) L−→ C∞(M,F )] regarded as an object of the ∞-category
K≥0(VectR) of complexes of vector spaces supported in non-negative cohomological degrees
(in which it is isomorphic to [kerL 0−→ cokerL]). For example, if Lt is a family of operators
parameterized by a smooth manifold T , then kerLt is not generally a smooth vector on T ,
while [Lt] is, locally on the parameter space T , equivalent to a two-term complex of smooth
vector bundles. It is very reasonable to regard the two-term complex [L] as equally deserving
of the descriptor ‘space of solutions to Lu = 0’. Indeed, while kerL is the fiber product
C∞(M,E) ×C∞(M,F ) 0 in the category VectR, the two-term complex [L] is the same fiber
product taken in the ∞-category K≥0(VectR).

Now let us move to the non-linear setting. The moduli space M of solutions to a non-linear
elliptic partial differential equation on a compact manifold may be identified locally with
the zero set f−1(0) of a smooth map f : Rn → Rm. This is a classical fact going back to
Kuranishi [49] and Atiyah–Hitchin-Singer [6], and such charts are often called Kuranishi
charts. It is desirable to regard M not just as a topological space, but to also remember its
Kuranishi charts and the relations among them; this generalizes the passage from kerL to
[L] in the linear setting. One very direct way to do this is to simply equip M with an atlas
of Kuranishi charts, as first appeared in work of Fukaya–Ono [24] and developed further by
Fukaya–Oh–Ohta–Ono [22, 23] and others. It is natural to ask whether M is naturally an
object of a non-linear analogue of the ∞-category K≥0(VectR).

linear non-linear

category VectR smooth manifolds Sm

∞-category K≥0(VectR) derived smooth manifolds Der

The relevant non-linear analogue of the ∞-category K≥0(VectR) is the ∞-category of derived
smooth manifolds, which we denote by Der and study in (2.10).

The ∞-category of derived smooth manifolds was introduced by Spivak [84], and it may
also be called the ∞-category of locally finitely presented C∞-schemes. It can be regarded
as a special case of the rather general theory of derived geometry introduced by Lurie [56]
and Toën–Vezzosi [87, 88]. We will adopt the perspective that the ∞-category of derived
smooth manifolds Der obtained from the category Sm by formally adjoining finite ∞-limits
modulo preserving finite transverse ∞-limits. It can be shown that a derived fiber product
(i.e. fiber product in Der) of smooth manifolds remembers its fiber product presentation locally,
modulo transverse fiber products of smooth manifolds. The connection between multiplicities
of non-transverse intersections and derived geometry was suggested long ago by the Serre
intersection formula [81, V.C.1], and this has been a key motivation for the development of
derived geometry since its inception.
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We may now state a refined version of our main goal: we seek to construct moduli spaces
of pseudo-holomorphic curves as derived smooth manifolds.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To explain the construction of moduli spaces of pseudo-holomorphic curves as derived
smooth manifolds, we must begin by recalling Grothendieck’s technique of constructing
moduli spaces by representing functors.

To specify an object M of a category C, it is equivalent to specify the functor HomC(−,M) :
Cop → Set associating to every object Z ∈ C the set of maps Z →M. More precisely, given a
functor F : Cop → Set, an objectM ∈ C together with an element ξ ∈ F (M) is said to represent
F when the map HomC(Z,M)→ F (Z) given by f 7→ f ∗ξ is an isomorphism for every Z ∈ C
(that is, pulling back ξ defines an isomorphism of functors HomC(−,M) → F (−)). When
such a representing pair (M, ξ) exists, we say that F is representable. It is straightforward
to check that any two representing pairs (M, ξ) and (M′, ξ′) are uniquely isomorphic. The
property of a pair (M, ξ) representing a particular functor is often also called satisfying a
particular universal property. Bored experts may at this point take note that so far this
discussion does not require any version of the Yoneda Lemma (nor is equivalent to it in any
way).

The vague idea that a moduli space M ‘parameterizes all objects of some type O’ naturally
lends itself to a precise formulation in terms of representable functors. Indeed, consider the
moduli functor F sending a space Z to the set of all families of objects of type O over Z (the
terms ‘space’ and ‘family’ are placeholders for whatever the relevant sort of mathematical
items may be). To represent F now means to find a space M and a family U→M of objects
of type O which is ‘universal’ in the sense that every family of objects of type O over a space
Z is the pullback of U→M under a unique map Z →M. As remarked above, such a pair
(M,U → M) is unique up to unique isomorphism if it exists, and in this case M is called
the ‘moduli space’ and U → M the ‘universal family’. (One important caveat about this
discussion is that it often needs a higher categorical context, that is we should replace the
category of sets Set with the 2-category of groupoids Grpd or the ∞-category of spaces Spc.)
The formalism of moduli functors may seem trivial and tautological at first glance, and it
is perhaps for this reason that moduli spaces were studied for quite some time before the
introduction of moduli functors.

Despite the apparent triviality of the formalism of moduli functors, it turns out to be
extraordinarily useful from a technical standpoint, for a few different reasons.

First of all, the moduli functor Hom(−,M) is usually much easier to describe than the
moduli space M itself. Indeed, the moduli functor simply consists of sets and maps between
them, while the moduli space is an object of some category (e.g. smooth manifolds) which
may be rather complicated to describe directly (e.g. a set, a topology on that set, and a
collection of charts with smooth transition functions). The notion of a ‘family of objects of
type O parameterized by Z’ is usually quite transparent, while turning ‘the set of all objects
of type O’ into an object of some category (e.g. describing a topology on this set) is virtually
guaranteed to be quite a bit more complicated. For this reason, the moduli functor is often
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unquestionably canonical, while the same cannot be said for (an explicit construction of)
the moduli space. Crucially, representability is a property (rather than extra structure), so
whatever arbitrary choices may go into proving that a functor is representable necessarily do
not affect the resulting representing object, which is automatically (and trivially) identified
with the result of any other construction of a representing object.

Second, if C is a category of ‘geometric objects’, then one can regard the category of
functors (‘presheaves’) P(C) = Fun(Cop, Set) itself as a category of geometric objects containing
C (it is here that we need the Yoneda Lemma, which in particular says that C ⊆ P(C)).
This makes it possible to reason geometrically with moduli functors, similarly to how we
might reason with moduli spaces, without proving (or perhaps before we prove) they are
representable. In fact, many moduli functors simply are not representable by objects of our
‘original’ geometric category C, but instead satisfy a weaker condition which nevertheless
makes them reasonable geometric objects (e.g. the moduli functor of closed Riemann surfaces
is not a smooth manifold, rather a smooth orbifold). When regarding a (moduli) functor
(object of P(C)) as a geometric object in this way, we may also call it a (moduli) stack.
Crucially, representability is a local property of a stack.

The fact that representability is a local property is of decisive importance, particularly so
for our application to moduli spaces of pseudo-holomorphic curves. Let us explain why. As
we have already noted above, the local structure of moduli spaces M of pseudo-holomorphic
curves (or, more generally, solutions to any non-linear elliptic Fredholm problem) has been
well understood since [49, 6]: we have M = f−1(0) (locally) for smooth maps f : Rn → Rm.
However, such local charts and the data relating them are non-unique (this is inevitable given
the higher homotopical nature of the ∞-category of derived smooth manifolds), and this is
the root cause of the worst technical complications in all prior work on the subject. The fact
that representability is a local property gives a decisive solution to this problem: concretely,
it tells us that the data relating local charts exists and is unique for formal reasons (provided
we construct these local charts to represent a canonical moduli functor), and so there is no
need to construct it explicitly! The use of moduli functors thus resolves one of the main
difficulties in the subject.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We can now state our main results. In a word, we define moduli functors associated to a
general class of pseudo-holomorphic moduli problems, and we show they are representable by
derived smooth manifolds. This answers a conjecture of Joyce [40, §5.3].

0.0.1 Derived Regularity Theorem. Let W → C → B be a pseudo-holomorphic sec-
tion problem over a derived smooth stack B. The morphism of derived smooth stacks
HolB(C,W )→ B is representable, and the comparison map |HolB(C,W )|! → Hol|B|!(C|B|! ,W|B|!)
is an isomorphism of topological stacks.

The proof of this result is given in (5.7). An independent proof has been announced by
Steffens [85]. We should emphasize that this is not a theorem about pseudo-holomorphic
curves, rather it is a theorem about non-linear elliptic Fredholm problems. The proof, properly
understood, applies in significantly greater generality than what we have stated here.
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Chapter 1

Category theory

In any mathematical discussion, it is helpful to have available multiple different perspectives on
the same situation, as it often happens that something which is opaque from one perspective
turns out to be clear from another. Category theory provides such an additional perspective
in virtually any mathematical setting. It has an uncanny ability to reveal large parts of
mathematical arguments to be ‘purely formal’, thus clarifying where the true content really
lies and eliminating redundant arguments. It is easy to reach the mistaken conclusion that
this means all of category theory is trivial! On the contrary, its utility in crafting efficient
arguments makes it indispensable in many settings.
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1.1 Categories
The reader may refer to Leinster [53] for a first introduction to category theory and to
MacLane [60] for a comprehensive treatment.

1.1.1 Definition. A category C consists of the following data:?

(1.1.1.1) For every pair of objects X, Y ∈ C, a set Hom(X, Y ), whose elements are called
the morphisms X → Y in C.

(1.1.1.2) A set C, whose elements are called the objects of C.
(1.1.1.3) For every triple of objects X, Y, Z ∈ C, a map

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)

called composition, such that for every composable triple of morphisms a, b, c, the two
compositions (ab)c and a(bc) are equal (composition is associative).

(1.1.1.4) For every object X ∈ C, an element 1X ∈ Hom(X,X) called the identity morphism
such that composition with 1X defines the identity map Hom(X, Y )→ Hom(X, Y ) and
Hom(Z,X)→ Hom(Z,X) for all Y, Z ∈ C.

The set of morphisms Hom(X, Y ) may also be denoted HomC(X, Y ) or C(X, Y ).

1.1.2 Example (Categories of sets, groups, and topological spaces). The following are?

categories:
(1.1.2.1) Set, the category of sets: an object is a set, and a morphism is a map of sets.
(1.1.2.2) Grp, the category of groups: an object is a group, and a morphism is a group

homomorphism.
(1.1.2.3) Top, the category of topological spaces: an object is a topological space, and a

morphism is a continuous map.
Except not quite: a category needs a set of objects (1.1.1.2), and there is no ‘set of all
sets’, ‘set of all groups’, or ‘set of all topological spaces’. So, we should really say that
we get a category of sets, groups, or topological spaces by choosing a set and, for each
element of that set, a set, group, or topological space. The notation Set, Grp, Top is thus
somewhat abusive, since it hides these choices. This is, in fact, an advantage, as we will see
shortly that such choices are to a large extent irrelevant (see the ‘principle of equivalence’
(1.1.32)(1.1.33)(1.1.34) below).

1.1.3 Example. To each poset S, we can associate a category whose objects are the elements
of S and in which

Hom(s, t) =

{
∗ s ≤ t

∅ else
(1.1.3.1)

1.1.4 Exercise (Identity morphisms are a property). Show that in a category, the identity
morphisms (1.1.1.4) are uniquely determined by the rest of the data (1.1.1.2)–(1.1.1.3)
provided they exist.
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1.1.5 Exercise (Isomorphisms and inverses). A morphism X → Y in a category is called an
isomorphism iff there exists a morphism Y → X such that the compositions X → Y → X
and Y → X → Y are the identity morphisms 1X and 1Y . Show that a given morphism
X → Y as at most one such ‘inverse’ morphism Y → X.

1.1.6 Example (Cardinal). A cardinal is an isomorphism class of objects in the category
Set.

1.1.7 Example (Groups up to finite index). Consider the category whose objects are groups
and whose morphisms G→ H are pairs (G′, f) where G′ ≤ G is a finite index subgroup and
f : G′ → H is a group homomorphism, modulo the equivalence relation that (G′, f) ∼ (G′′, g)
iff there exists a finite index subgroup G′′′ ≤ G′ ∩G′′ such that f |G′′′ = g|G′′′ . In this category,
all finite groups are isomorphic to the trivial group.

1.1.8 Exercise (Germs of topological spaces). The category of germs of topological spaces
is defined as follows. Its objects are pairs (X, x) where X is a topological space and x ∈ X
is a point. Its morphisms (X, x) → (Y, y) are pairs (U, f) where U ⊆ X is an open set
containing x and f : U → Y is a continuous map with f(x) = y, modulo the equivalence
relation that (U, f) ∼ (U ′, f ′) iff there exists an open set A ⊆ U ∩ U ′ containing x for which
f |A = f ′|A. The composition of (U, f) : (X, x)→ (Y, y) and (V, g) : (Y, y)→ (Z, z) is given
by (f−1(V ), g ◦ f |f−1(V )). Show that a morphism (X, x) → (Y, y) in this category is an
isomorphism iff can be realized as a pair (U, f) for which f is an open embedding.

1.1.9 Definition (Groupoid). A groupoid is a category in which every morphism is an
isomorphism.

1.1.10 Example (Fundamental groupoid). Let X be a topological space. Its fundamental
groupoid π1(X) is the category whose objects are points x of X and whose morphisms x→ y
are paths from x to y modulo homotopy rel endpoints, with composition being given by
concatenation (which is indeed associative on homotopy classes). The automorphism group
of a point x ∈ X in π1(X) is the fundamental group π1(X, x) of X based at x.

1.1.11 Example (Core). For any category C, we can consider the category C' with the
same objects and whose morphisms are the isomorphisms in C; thus C' is a groupoid. For
example, Set' consists of sets and bijections of sets.

1.1.12 Definition (Full subcategory). For a category C, the full subcategory spanned by a
set of objects of C is the category whose objects are this set and whose morphisms are the
same as in C.

1.1.13 Example. The category of abelian groups Ab is a full subcategory of the category of
groups Grp.

1.1.14 Definition (Opposite category). For a category C, its opposite Cop has the same
objects, but morphisms are reversed: Cop(X, Y ) = C(Y,X).

Every notion for categories has a dual notion obtained by applying the original notion to
the opposite; this is usually indicated linguistically with the prefix ‘co-’.
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1.1.15 Definition (Functor). A functor F : C → D between categories consists of the?

following data:
(1.1.15.1) For every object X ∈ C, an object F (X) ∈ D.
(1.1.15.2) For every pair of objects X, Y ∈ C, a map F : Hom(X, Y )→ Hom(F (X), F (Y ))

such that F (1X) = 1F (X) and such that composing and applying F in either order
define the same map

Hom(X, Y )× Hom(Y, Z)→ Hom(F (X), F (Z)).

1.1.16 Example (Free and forgetful functors). Associating to a group or topological space
its underlying set defines ‘forgetful’ functors Grp→ Set and Top→ Set. Associating to a set
the free group on that set or the discrete topology on that set defines functors Set → Grp
and Set→ Top.

As in (1.1.2), there is a caveat. To define categories Set and Grp, we should first choose
a set of sets and a set of groups. Then to define, say, the ‘free group’ functor Set → Grp,
we should choose, for each S ∈ Set, a group G ∈ Grp and an identification of G with the
free group generated by S. If such a group G ∈ Grp exists for every S ∈ Set, we can then
define the desired functor Set→ Grp. Fortunately, this sort of discussion can (and should) be
systematically avoided (see the ‘principle of equivalence’ (1.1.32)(1.1.33)(1.1.34) below).

1.1.17 Example (Homology and homotopy groups). Homology groups are a sequence of
functors Hn : Top → Ab from topological spaces to abelian groups for integers n ≥ 0.
The homotopy groups πn are functors Top∗ → Ab for n ≥ 2 and π1 : Top∗ → Grp and
π0 : Top∗ → Set∗, where Top∗ denotes the category of pointed topological spaces and Set∗ that
of pointed sets (and, in both cases, pointed maps). The functors Hn and πn are homotopy
invariant, meaning they factor through the functors Top→ hTop and Top∗ → hTop∗, where
the h indicates morphisms are now homotopy classes of (pointed) maps.

1.1.18 Example (Functors on fundamental groupoids). A map of topological spaces X → Y
induces a functor on fundamental groupoids π1(X)→ π1(Y ). A functor π1(X)→ C is known
as a local system on X valued in C.

1.1.19 Example (Hom functor). Sending (X, Y ) 7→ Hom(X, Y ) is a functor Cop × C→ Set
for any category C.

1.1.20 Definition (Fully faithful). A functor F is called fully faithful when its constituent
maps Hom(X, Y )→ Hom(F (X), F (Y )) are bijections of sets. A fully faithful functor is also
called an embedding or an inclusion, and full faithfulness is often indicated with the hooked
arrow ↪→.

1.1.21 Definition (Essential image). The essential image of a functor F : C→ D is the full
subcategory im(F ) ⊆ D spanned by those objects Y ∈ D which are isomorphic to F (X) for
some X ∈ C. When every object of D lies in im(F ), we say that F is essentially surjective.

1.1.22 Definition (Natural transformation). A natural transformation F → G between?

functors F,G : C→ D consists of:
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(1.1.22.1) For every object X ∈ C, a morphism F (X)→ G(X) such that for every morphism
X → Y , the two compositions F (X) → G(X) → G(Y ) and F (X) → F (Y ) → G(Y )
agree.

Given categories C and D, there is a category Fun(C,D) whose objects are functors C→ D
and whose morphisms are natural transformations.

1.1.23 Example (Homology of local systems). Local systems on X valued in C form
a category Fun(π1(X),C). Homology with twisted coefficients is a sequence of functors
Hn : Fun(π1(X),Ab)→ Ab for n ≥ 0.

1.1.24 Example. For every group G, there is a groupoid BG with a single object whose
automorphism group is G. A functor BG→ BH is a group homomorphism φ : G→ H. A
natural isomorphism of (functors associated to) group homomorphisms φ→ φ′ is an element
h ∈ H conjugating φ to φ′, namely satisfying hφ(g) = φ′(g)h.

1.1.25 Example. If D is a groupoid, then the functor category Fun(C,D) is a groupoid.

A naive notion of ‘isomorphism’ between categories is that of a compatible bijection
between objects and morphisms. The following weaker notion turns out to be much more
meaningful (see the ‘principle of equivalence’ (1.1.32) below):

1.1.26 Definition (Equivalence of categories). A functor C→ D is called an equivalence iff?

there exists a functor D→ C such that the compositions C→ D→ C and D→ C→ D are
naturally isomorphic (in Fun(C,C) and Fun(D,D), respectively) to the identity functors 1C

and 1D.

An equivalence of categories often expresses the fact that two different definitions of some
type of mathematical object (vector spaces, smooth manifolds, etc.) are equivalent.

1.1.27 Exercise. Show that a functor is an equivalence iff it is fully faithful and essentially
surjective.

1.1.28 Example. Let C be a category with set of objects S. Given any map of sets S ′ → S,
we can form a new category C′ with set of objects S ′ and with a fully faithful functor C′ → C
acting as S ′ → S on objects. If S ′ → S is surjective, then C′ → C is an equivalence of
categories.

1.1.29 Example. Fix a field k, and let Vectk denote the category of vector spaces and linear
maps over k. Now consider a category in which an object is a vector space over k with a
chosen basis. There are two reasonable notions of a morphism between two such objects:
(1.1.29.1) A linear map over k.
(1.1.29.2) A linear map over k sending basis elements to basis elements.
In the first case, the resulting category is equivalent to Vectk, via the functor forgetting
the basis. In the second case, the resulting category is equivalent to Set, via the functor
remembering just the basis. This illustrates how the information in a category is carried by
the morphisms, not the objects.
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1.1.30 Example. Given a set S, we can regard S as a groupoid in which Hom(x, x) = ∗
and Hom(x, y) = ∅ for x 6= y. A groupoid is called discrete when it is equivalent to (the
groupoid associated to) a set. A groupoid is discrete iff the automorphism group of every
object is trivial.

1.1.31 Exercise (Posets as categories). Show that a category is equivalent to the category
associated to a poset (1.1.3) iff for every ordered pair of objects x, y, there is at most one
morphism x→ y. Show that for any two such categories C and D, the groupoid Fun(C,D)' is
discrete. Let Po′ denote the category whose objects are categories in which there is at most
one morphism for each ordered pair of objects, and whose morphisms are functors up to
natural isomorphism (which, in view of the previous sentence, is unique if it exists). Let Po
denote the category of posets and weakly order preserving maps (s ≤ t implies f(s) ≤ f(t)).
Show that the natural functor Po → Po′ is an equivalence of categories. This equivalence
justifies using the term ‘poset’ for an object of Po′.

The following is a fundamental principle of category theory.

1.1.32 Remark (Principle of equivalence). Equivalence of categories (1.1.26) plays the role?

that isomorphism plays for most other mathematical objects one is used to dealing with. The
reason for this difference is that most common mathematical objects (sets, groups, rings,
modules, fields, vector spaces, topological spaces, manifolds, sheaves, schemes, cohomology
theories, functors, etc.) form categories, whereas categories form a 2-category (see (1.1.35)).

The principle of equivalence declares a statement involving categories to be ‘meaningful’
iff it is invariant under equivalence. For example, the cardinality of the set of isomorphism
classes of objects in a category is invariant under equivalence, hence is a meaningful (albeit
very crude) invariant to attach to a category. The cardinality of the set of objects in a
category is not invariant under equivalence, hence is not a meaningful invariant of a category.
A somewhat more subtle observation is that the principle of equivalence allows us to identify
the notions of ‘full subcategory’ and ‘fully faithful functor’.

Intuitively speaking, a statement about categories is invariant under equivalence provided
it makes no reference to the notion of ‘equality’ of objects (and instead says things about
morphisms between objects). Virtually any statement about categories which is invariant
under equivalence is obviously so, to the extent that there is usually no need to state it
explicitly. In particular, a construction involving categories will be invariant under equivalence
whenever it is appropriately acted on by functors (and natural isomorphisms between them)
of the categories in question (i.e. it should be 2-functorial on the 2-category of categories
Cat (1.1.35)). It follows, for example, that basic constructions such as formation of functor
categories respect the principle of equivalence by sending equivalences to equivalences.

The importance of the principle of equivalence stems from the fact that most ‘categories’
of interest, such as Set, Grp, Top (1.1.2), are, at best, only well defined up to (canonical)
equivalence (1.1.33)–(1.1.34), and so specializing a statement about categories to one of these
is only meaningful when that statement is invariant under equivalence.

To develop the foundations of category theory in standard mathematical language does
require some (minimal) breaking of the principle of equivalence. Indeed, the very definition of



CHAPTER 1. CATEGORY THEORY 15

a category (1.1.1) involves a set of objects, in which there is necessarily a notion of equality.
Proofs of statements about categories typically involve quantifying or inducting over sets of
objects. This is unavoidable (though see Voevodsky [74]) but benign.

1.1.33 Remark (Small vs large categories). A category in the sense of (1.1.1) is often called?

a small category, the adjective ‘small’ indicating that there is a set of objects and a set of
morphisms between any pair of objects. As we have seen in (1.1.2), many, or perhaps most,
‘categories’ of interest are not small. There is thus a certain amount of dissonance between the
foundations of the theory of categories in the sense of (1.1.1) and the scope of the intended
applications of this theory.

A large category has a ‘notion of object’, a ‘notion of morphism between objects’, a ‘notion
of equality of between morphisms’, and a ‘notion of associative composition of morphisms’; one
similarly has a notion of functor between large categories. We do not regard this sentence as a
precise mathematical definition. Rather, the notion of a large category is a meta-mathematical
framework into which typical categories of interest such as Set, Grp, Top (1.1.2) fall.

A large category is called essentially small when it is equivalent to a small category.
Equivalently, a large category is essentially small when there is a set of objects representing
every isomorphism class and the collection of morphisms between any pair of objects is a set.
For example, the large categories Set, Grp, Top are not essentially small, although their full
subcategories Setκ, Grpκ, Topκ of sets, abelian groups, and topological spaces of cardinality
less than a given cardinal κ are essentially small.

Given an essentially small category C, a small model of C is a small category C0 together
with an equivalence C0 → C. Small models always exist (by definition of essentially small),
and they are moreover unique up to canonical equivalence (1.1.34). It follows that any result
for small categories which adheres to the principle of equivalence remains valid for essentially
small categories.

Applying category theory to large categories which are not essentially small requires either
realizing that the underlying arguments go through without any smallness assumptions (that
is to say, they are meta-mathematical) or working with appropriately chosen essentially small
subcategories. Set-theoretic complications rarely arise as long as one avoids arguments which
are obviously ‘circular’.

1.1.34 Remark (Uniqueness of small models). We explain uniqueness of small models in
the case of Topκ, but the reasoning applies to any essentially small category.
(1.1.34.1) Given a set S along with, for every s ∈ S, a topological space Xs, such that

every topological space of cardinality < κ is isomorphic to some Xs, we obtain a small
category TopSκ (whose set of objects is S and in which a morphism s→ s′ is a continuous
map Xs → Xs′). Such sets S exist: for example, fix a set U of cardinality ≥ κ, and let
S consist of all subsets of U of cardinality < κ equipped with a topology.

(1.1.34.2) Given any two S and S ′ as above, a choice of function f : S → S ′ along with
isomorphisms Xs

∼−→ Xf(s) defines an equivalence of categories TopSκ → TopS
′

κ ; this
recipe is moreover compatible with composition of functors. Such functions f exist by
the axiom of choice.
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(1.1.34.3) Given any two f, g : S → S ′ as above, there is a canonical natural isomorphism be-
tween the two induced functors TopSκ → TopS

′

κ , namely that defined by the isomorphisms
Xf(s)

∼←− Xs
∼−→ Xg(s). This construction is also compatible with composition.

1.1.35 Example (Categories of categories). There are at least three diffferent answers to
the question of what is the category of categories, related by functors

Catstrict → Cat→ hCat. (1.1.35.1)

At one extreme is the category Catstrict, whose objects are (small) categories and whose
morphisms are functors. The category Catstrict does not see natural transformations between
functors. Because of this, an equivalence of categories need not be an isomorphism in Catstrict

(rather isomorphism in Catstrict is the notion of a ‘naive isomorphism of categories’ mentioned
above (1.1.26)). Regarding categories as objects of Catstrict thus violates the principle of
equivalence, which means Catstrict is mostly useless for doing any category theory.

At another extreme is the category hCat whose objects are (small) categories and whose
morphisms are natural isomorphism classes of functors. It is promising to note that a functor
is an isomorphism in hCat iff it is an equivalence of categories. Unfortunately, it turns out
that hCat is a poor input to most other categorical constructions, notably limits and colimits.

The objects of Cat are again (small) categories, and HomCat(C,D) = Fun(C,D)'. As
Fun(C,D)' is not a set but rather a groupoid, Cat is not a category but rather a 2-category
as we will explain in more detail (1.2.4) once we have in hand the language of 2-categories.
It is this 2-category Cat which is really the true category of categories.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.36 Definition (Monomorphism and epimorphism). A morphism X → Y is called a?

monomorphism (or monic) iff the induced map Hom(Z,X)→ Hom(Z, Y ) is injective for all
Z. Dually, X → Y is an epimorphism (or epic) when Hom(Y, Z)→ Hom(X,Z) is injective
for all Z.

1.1.37 Exercise. Show that a morphism of sets is monic iff it is injective, and is epic iff it is
surjective. Show that a morphism of commutative rings is monic iff it is injective. Show that
surjections and localizations of commutative rings are epimorphisms.

1.1.38 Exercise. Given a pair of morphisms X f−→ Y
g−→ X composing to the identity 1X ,

we say that the morphism g is a retraction of f and that f is a section of g; we also say
that the object X is a retract of Y . A morphism admitting a retraction (resp. section) is
called a split monomorphism (resp. split epimorphism); these notions are dual. Show that
a split monomorphism (resp. split epimorphism) is a monomorphism (resp. epimorphism).
Show that a morphism which is both a split monomorphism and a split epimorphism is an
isomorphism.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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1.1.39 Definition (Property of objects). A property of objects in a category C is a set P of
isomorphism classes in C. An object ‘has P’ or ‘is P’ when its isomorphism class is in P.

1.1.40 Definition (Arrow category). The morphisms in a category C are themselves the
objects of a category, namely the arrow category (C ↓ C) = Fun(∆1,C) where ∆1 = (• → •)
denotes the category with two objects and a single non-identity morphism from one to the
other. A morphism is said to be a retract of another when it is true for the corresponding
objects of Fun(∆1,C). A property of morphisms in C is a property of objects in Fun(∆1,C).

1.1.41 Example. In any category, properties of morphisms include being an isomorphism,
being a monomorphism, or being an epimorphism.

1.1.42 Example. Consider the category whose objects are finite subsets S ⊆ Z and whose
morphisms are arbitrary maps S → T . The property of a map f : S → T satisfying
f(s) ≤ f(s′) for s ≤ s′ not a property of morphisms, because it is not invariant under
isomorphisms in the category. This category is equivalent to the category of finite sets, a
context in which asking for a morphism to be weakly increasing evidently has no meaning.

1.1.43 Definition (Property closed under composition). A property of morphisms P is said
to be closed under composition iff every isomorphism has P and the composition of any two
P-morphisms has P.

1.1.44 Example. Isomorphisms, monomorphisms, and epimorphisms (in any category) are
closed under composition.

1.1.45 Definition (2-out-of-3 property). A property of morphisms P is said to have the
2-out-of-3 property when any two out of f , g, g ◦ f having P implies that the third does too.

1.1.46 Example. In the category of abelian groups, the property of having finite kernel and
finite cokernel satisfies the 2-out-of-3 property.

1.1.47 Definition (Preservation, reflection, and lifting of properties). Let P be a property of
objects in categories C and D, and let F : C→ D be a functor. We say F preserves P-objects
when c ∈ P implies F (c) ∈ P for every morphism c ∈ C. We say F reflects P-objects when
F (c) ∈ P implies c ∈ P for every object c ∈ C. We say F lifts P-objects when every d ∈ P is
isomorphic to F (c) for some c ∈ P.

1.1.48 Example. The forgetful functor Grp → Set reflects isomorphisms (a group homo-
morphism is an isomorphism iff it is a bijection of sets). The forgetful functor Top → Set
does not reflect isomorphisms (a continuous bijection of topological spaces need not have a
continuous inverse).

1.1.49 Definition (Final and initial objects). A final object in a category C is an object X?

such that Hom(Z,X) = ∗ for every Z ∈ C. Final objects are unique up to unique isomorphism:
if X and X ′ are both final objects, then there is a unique isomorphism X → X ′; because of
this, we may speak of the final object of C (in accordance with the principle of equivalence
(1.1.32)). Dually, an object X is initial when Hom(X,Z) = ∗ for every Z. An object which
is both final and initial is called a zero object. A category which has a zero object is called
pointed.
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1.1.50 Example. The initial objects of Set and Top are the empty set/space ∅. The final
objects of Set and Top are the one-point set/space ∗. The category Grp is pointed: the trivial
group 1 is a zero object (both initial and final).

1.1.51 Definition (Diagram). A diagram shape J consists of a set of 0-cells (vertices), a set?

of 1-cells (arrows between vertices), and a set of 2-cells, disks with boundary of the form

a1 · · · an

x y

b1 · · · bm

(1.1.51.1)

for some integers n,m ≥ 0. A diagram of shape J in a category C is a map D : J → C
associating to each 0-cell an object, to each 1-cell a morphism, such that for each 2-cell
(1.1.51.1), composition along the two paths from x to y yields the same morphism x → y.
Diagrams form a category Fun(J,C) in which a morphism D → D′ associates to each 0-cell
j ∈ J a morphism D(j) → D′(j) such that for each 1-cell j → j′, the two compositions
D(j)→ D′(j)→ D′(j′) and D(j)→ D(j′)→ D′(j′) coincide.

There is an evident similarity between a diagram shape and a category, and between a
diagram and a functor; in fact, this is more than just a similarity. We can regard a category
as a diagram shape by taking its objects to be the 0-cells, its morphisms to be the 1-cells,
and adding a triangular 2-cell

b

a c
(1.1.51.2)

for each pair of morphisms a → b → c composing to a morphism a → c. In the other
direction, a diagram shape determines a category whose objects are the 0-cells and whose
morphisms are directed paths (formal compositions) of 1-cells, modulo the relation that the
formal compositions of the two maximal paths bounding a 2-cell (1.1.51.1) are the same. A
diagram J → C is then exactly the same as a functor to C from the category associated to J .

We emphasize that a diagram J → C consists of specified data for each 0-cell and 1-cell,
satisfying a property for each 2-cell. The assertion that a given diagram ‘commutes’ is
simply the assertion that certain evident 2-cells (usually all possible 2-cells) are present; often
this assertion is implicit in writing the diagram (diagrams commute unless the contrary is
explicitly specified).

1.1.52 Exercise (Cancellation for fiber products). Fix a diagram

A B C

D E F

(1.1.52.1)

in which the right square (involving B,C,E, F ) is a fiber square. Consider the induced maps

A B ×E D C ×F E ×E D C ×F D∼ (1.1.52.2)



CHAPTER 1. CATEGORY THEORY 19

and conclude that the composite square (involving A,C,D, F ) is a fiber square iff the left
square (involving A,B,D,E) is a fiber square.

1.1.53 Definition (Pullback and pushout of a morphism). Let f : X → Y be a morphism.
A pullback of f is a morphism f ′ : X ′ → Y ′ fitting into a pullback square:

X ′ X

Y ′ Y

f ′ f (1.1.53.1)

Dually, a pushout of f is a morphism f ′ fitting into a pushout square:

X Y

X ′ Y ′

f

f ′

(1.1.53.2)

1.1.54 Definition (Property preserved under pullback). A property of morphisms P is said
to be preserved under pullback when the following implication holds:
(1.1.54.1) For every P-morphism X → Y and every morphism Z → Y , the pullback

X ×Y Z → Z exists and has P.
More generally, we say P is preserved under Q-pullback (Q another property of morphisms)
when the implication (1.1.54.1) holds provided Z → Y has Q.

1.1.55 Exercise. Show that isomorphisms, monomorphisms, and split epimorphisms are
preserved under pullback.

1.1.56 Exercise. Suppose P is a property of morphisms which is preserved under pullback
and closed under composition. Show that P is preserved under fiber product, in the sense
that for P-morphisms X → Y and X ′ → Y ′ and any morphisms Y → Z ← Y ′, if Y ×Z Y ′
exists then so does X ×Z X ′ and the morphism X ×Z X ′ → Y ×Z Y ′ has P.

1.1.57 Definition (Relative diagonal). For any morphism X → Y in a category, the diagram?

X X

X Y

(1.1.57.1)

induces a morphism X → X×Y X called the (relative) diagonal of X → Y . The nth diagonal
is the nth iterate of this construction: the zeroth diagonal of X → Y is X → Y itself, the
first diagonal is X → X ×Y X, the second diagonal is X → X ×X×YX X, etc.

1.1.58 Exercise. Show that the diagonal of any map of sets is injective, and that the diagonal
of an injective map of sets is an isomorphism. Show that in any category, the diagonal of
any morphism (if it exists) is a monomorphism, and that the diagonal of any monomorphism
exists and is an isomorphism.
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1.1.59 Definition (Properties of the diagonal). Let P be any property of morphisms in a
category which has all fiber products. A morphism is said to have property P∆ when its
relative diagonal has property P.

1.1.60 Exercise (The diagonal of a pullback is a pullback of the diagonal). Use cancellation
for fiber products (1.1.52) to show that if the left square below is a fiber square, then so are
the right two squares.

X ′ Y ′

X Y

=⇒
X ′ X ′ ×Y ′ X ′ Y ′

X X ×Y X Y

(1.1.60.1)

Conclude that if P is preserved under pullback then so is P∆.

1.1.61 Exercise (The diagonal of a composition is a composition of pullbacks of diagonals).
Show that if X → Y → Z are morphisms, then X ×Y X → X ×Z X is a pullback of
Y → Y ×Z Y . Conclude that if P is preserved under pullback and closed under composition
then so is P∆.

1.1.62 Lemma (Cancellation). Let P be a property of morphisms preserved under pullback
and closed under composition. If the composition X → Y → Z has P and Y → Z has P∆,
then X → Y has P.

Proof. Factor X → Y into X → X ×Z Y → Y . The map X → X ×Z Y is a pullback of
Y → Y ×Z Y so has P. The map X ×Z Y → Y is a pullback of X → Z so has P.

1.1.63 Exercise. If X → Y and Y → Z are maps of sets whose composition X → Z is
injective, then the first map X → Y is also injective. Prove this using the abstract cancellation
property (1.1.62).

1.1.64 Definition (Twisted arrow category). Let C be a category, and recall the arrow
category (C ↓ C) (1.1.40), whose objects are morphisms c→ d in C and whose morphisms
(c→ d)→ (c′ → d′) are commutative squares of the following shape.

c c′

d d′

(1.1.64.1)

The twisted arrow category (Cop ↓ C) has the same objects, but a morphism (c→ d)→ (c′ →
d′) is a commutative square of the following shape.

c c′

d d′

(1.1.64.2)

Note the direction of the top arrow.
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1.1.65 Definition (End and coend). Let F : Cop × C→ D be a functor. Its end is the limit
of its pullback to the twisted arrow category (Cop ↓ C).

lim
cop→c

F (cop, c) = Eq

( ∏
c

F (c, c)
∏

f :c1→c2

F (c1, c2)

∏
f (1Cop×f)∏
f (f×1C)

)
(1.1.65.1)

Dually, the coend of a functor F : C× Cop → D is the colimit of its pullback to (C ↓ Cop).

colim
c→cop

F (c, cop) = Coeq

( ∐
f :c1→c2

F (c1, c2)
∐
c

F (c, c)

∐
f (1C×f)∐
f (f×1Cop )

)
(1.1.65.2)

1.1.66 Exercise. Let F,G : C→ E be two functors, which together determine a functor of
the following shape.

Cop × C→ Set (1.1.66.1)
(cop, c) 7→ HomE(F (cop), G(c)) (1.1.66.2)

Show that the set of natural transformations F → G is naturally identified with end of this
functor.

HomFun(C,E)(F,G) = lim
cop→c

HomE(F (cop), G(c)) (1.1.66.3)

1.1.67 Exercise (Final and initial functors). Show that for a functor F : C → D, the?

following are equivalent:
(1.1.67.1) For every diagram p : D→ A which has a limit, the pullback diagram F ∗p : C→ A

also has a limit and the map limD p→ limC F
∗p is an isomorphism.

(1.1.67.2) For every d ∈ D, the colimit colimC/d ∗ in Set is ∗.
A functor satisfying these properties is called initial. Show that a functor d : ∗ → D is initial
iff d is an initial object of D. Although initial functors generalize initial objects, their use
is somewhat different. The dual notion of initial is called final (F is final iff F op is initial).
Formulate precisely the duals of both properties above.

1.1.68 Lemma. Every left adjoint functor is initial.

Proof. A functor F : C → D has a right adjoint iff the category C/d has a final object for
every d ∈ D. The colimit of the constant diagram ∗ over any category with a final object is
∗.

1.1.69 Definition (Preservation of colimits). A functor F : C → D is said to preserve a?

colimit diagram in C when it is sent to a colimit diagram in D by F . For example, we can
ask that a functor preserve pushouts, initial objects, finite coproducts, all coproducts, finite
colimits, filtered colimits, sifted colimits, simplicial realizations, all colimits, etc. A functor
which preserves all colimits is called cocontinuous.

1.1.70 Exercise. Show that the forgetful functor Ab→ Set preserves limits but not colimits.



CHAPTER 1. CATEGORY THEORY 22

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.71 Definition (Presheaf). A presheaf on a category C is simply a functor Cop → Set.?

The category of presheaves on C is denoted P(C) = Fun(Cop, Set).

1.1.72 Definition (Representable). A presheaf F ∈ P(C) is called representable when it is?

isomorphic to a presheaf of the form Hom(−, X) for some X ∈ C.

1.1.73 Exercise (Idempotent completion). Let C be a category. An endomorphism π of
an object X ∈ C is called idempotent when π2 = π. Given a retraction Y → X → Y , the
composition X → Y → X is idempotent. Show that this idempotent, call it π, determines the
retraction uniquely up to unique isomorphism by showing that Hom(Z, Y ) = Hom(Z,X)π ⊆
Hom(Z,X) is the set of maps Z → X which factor as πf for some f : Z → X (thus the
pair (X, π) determines the Yoneda functor of Y ). We say that an idempotent π splits when
it comes from a retraction (that is, when the functor Hom(−, X)π is representable). Split
idempotents are preserved by any functor. A category is called idempotent complete (or
closed under retracts) when every idempotent splits.

Given a category C, its idempotent completion ΠC is defined as follows. An object of ΠC
is a pair (X, π) where X ∈ C is an object and π ∈ HomC(X,X) is idempotent. Morphisms in
ΠC are given by

HomΠC((X, π), (X ′, π′)) = πHomC(X,X ′)π′ ⊆ HomC(X,X ′), (1.1.73.1)

namely the subset of Hom(X,X ′) consisting of morphisms which admit a factorization π′fπ
(equivalently those morphisms g satisfying g = π′gπ). There is an evident fully faithful
embedding C ↪→ ΠC given by X 7→ (X,1X). The maps π : X → (X, π) and π : (X, π)→ X
express (X, π) as a retract of X in the category ΠC. Show that ΠC is idempotent complete and
that for any idempotent complete category D, the restriction functor Fun(ΠC,D)→ Fun(C,D)
is an equivalence of categories.

1.1.74 Example. The idempotent completion of the category of free R-modules is the
category of projective R-modules.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.75 Definition (Reflective subcategory). A reflective subcategory is a full subcategory?

i : A0 ⊆ A whose inclusion functor i has a left adjoint r, called the reflector.

1.1.76 Example. The category of abelian groups Ab is a reflective subcategory of the category
of all groups Grp. The reflector Grp→ Ab is the abelianization functor G 7→ G/[G,G].

1.1.77 Example. Let hSpc denote the category of CW-complexes and homotopy classes of
maps. Discrete spaces Set ⊆ hSpc form a reflective subcategory, with reflector the π0 functor
hSpc→ Set.
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1.1.78 Exercise. Show that if A ⊆ B and B ⊆ C are reflective, then A ⊆ C is reflective and
rAC = rABrBC.

1.1.79 Exercise (Limits and colimits in a reflective subcategory). Let i : A0 → A be the?

inclusion of a reflective subcategory with left adjoint r. Show that A0 ⊆ A is closed under all
limits (i.e. a limit of objects of A0 which exists in A must in fact lie in A0). Show that if a
diagram in A0 has a colimit in A, then it has a colimit in A0, namely the image of the colimit
in A under the reflector r.

1.1.80 Exercise (Cocontinuity on a reflective subcategory). Let A0 ⊆ A be a reflective
subcategory, and let E be a cocomplete category. Show that a functor A → E sending
reflections to isomorphisms is cocontinuous iff its restriction to A0 is cocontinuous.

1.1.81 Exercise. Let C0 ⊆ C be a reflective subcategory. Let P be a property of objects in C
which is satisfied by all objects of C0. Show that if the reflector C→ C0 reflects isomorphisms
when restricted to the full subcategory CP ⊆ C of objects satisfying P, then conversely all
objects satisfying P lie in C0.

1.1.82 Definition (Local object). Let C be a category, and let Λ be a set of morphisms in
C. An object X ∈ C is called (right) Λ-local when the functor Hom(−, X) sends morphisms
in Λ to isomorphisms.

1.1.83 Lemma. Let C0 ⊆ C be a reflective subcategory. An object X ∈ C lies in C0 iff the
functor Hom(−, X) sends all reflections Y → rY to isomorphisms.

Proof. Suppose Hom(−, X) sends reflections to isomorphisms, and let us show that X ∈ C0

(the other direction is trivial). Apply the hypothesis on X to the reflection `X : X → rX
to see that Hom(rX,X) ◦`X−−→ Hom(X,X) is an isomorphism. Lifting the identity map 1X
produces a map s : rX → X for which the composition X `X−→ rX s−→ X is the identity. To
show that the other composition rX s−→ X `X−→ rX is the identity, it suffices to show it is
an isomorphism. Consider the commuting square obtained by applying the functor r to the
morphism s.

rX X

rrX rX

s

`rX `X

rs

(1.1.83.1)

The morphism `rX is an isomorphism, so it suffices to show that rs is an isomorphism. Now
r sends `X to an isomorphism, so it must also send its retraction s to an isomorphism.

1.1.84 Definition (Passing a functor to reflective subcategories). Let A0 ⊆ A and B0 ⊆ B
be reflective subcategories. A functor f : A → B induces a functor f0 = rfi : A0 → B0.
For functors f : A → B and g : B → C, there is a canonical natural transformation
(gf)0 = rgfi rgηfi−−−→ rgirfi = g0f0. For a third functor h : C→ D, the diagram of canonical
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natural transformations
(hgf)0 h0(gf)0

(hg)0f0 h0g0f0

(1.1.84.1)

commutes.

1.1.85 Exercise. Let f : A → B be a functor, and let A0 ⊆ A and B0 ⊆ B be reflective
subcategories with reflectors rA and rB. Show that f preserves reflections (i.e. sends reflections
to reflections) iff f(A0) ⊆ B0 and rBf sends reflections to isomorphisms.

1.1.86 Exercise. Let f! : A � B : f ∗ be adjoint (f!, f
∗), and let A0 ⊆ A and B0 ⊆ B

be reflective subcategories with reflectors rA and rB. Use (1.1.83) to show that rBf! sends
reflections to isomorphisms iff f ∗(B0) ⊆ A0.

1.1.87 Exercise (Passing an adjunction to reflective subcategories). Let f! : A � B : f ∗

be adjoint (f!, f
∗). Let iA : A0 ⊆ A and iB : B0 ⊆ B be reflective subcategories with

reflectors rA and rB. Show that if f ∗(B0) ⊆ A0 then there is an adjunction (rBf!, f
∗) of

functors rBf! : A0 � B0 : f ∗. More precisely, show that such an adjunction is given by the
identifications

Hom(rBf!X, Y )
(rB,iB)
===== Hom(f!X, Y )

(f!,f
∗)

===== Hom(X, f ∗Y ) (1.1.87.1)

for X ∈ A0 and Y ∈ B0, corresponding to the unit and counit maps

1
η−→ f ∗f!

f∗ηBf!−−−−→ f ∗rBf! : A0 → A0 (1.1.87.2)

rBf!f
∗ rBε−−→ rB

ηB←−
∼

1 : B0 → B0 (1.1.87.3)

where η : 1→ f ∗f! and ε : f!f
∗ → 1 are the unit and counit maps of the adjunction (f!, f

∗)
and ηB : 1→ rB is the unit of the reflection rB.

1.1.88 Lemma. In the setup of (1.1.87), if f! is fully faithful and rAf
∗ sends reflections to

isomorphisms, then rBf! is fully faithful.

Proof. It is equivalent (??) to show that the unit map 1→ f ∗rBf! (1.1.87.2) is an isomorphism.
We are given that the unit map η : 1→ f ∗f! is an isomorphism (since f! is fully faithful), so
it suffices to show that the map

f ∗f!
f∗ηBf!−−−−→ f ∗rBf! : A0 → A0 (1.1.88.1)

is an isomorphism. By hypothesis, the map

rAf
∗ rAf

∗ηB−−−−→ rAf
∗rB : B→ A0 (1.1.88.2)

is an isomorphism. Now simply precompose with f! to obtain the desired result (the additional
rA is harmless since the functors already land in A0).
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.89 Proposition (Universal property of a reflective subcategory of presheaves). Let
P0(C) ⊆ P(C) be a reflective subcategory with reflector r. For any cocomplete category E,
pullback along r ◦ YC : C→ P0(C) defines an equivalence between the following categories of
functors:
(1.1.89.1) Functors P0(C)→ E which are cocontinuous.
(1.1.89.2) Functors P(C)→ E which are cocontinuous and send reflections to isomorphisms.
(1.1.89.3) Functors C→ E whose unique cocontinuous extension to P(C) send reflections to

isomorphisms.

Proof. By the universal property of a reflective subcategory (??), functors P0(C) → E are
equivalent via pullback along r to functors P(C)→ E sending reflections to isomorphisms. This
equivalence respects cocontinuity by (1.1.80). Now use the universal property of presheaves
to identify cocontinuous functors P(C) → E with functors C → E via pullback along YC

(??).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.90 Definition (Representable morphism). A morphism X → Y in P(C) is called?

representable when the fiber product X ×Y c is representable for every map c→ Y from an
object c ∈ C ⊆ P(C).

1.1.91 Exercise. Show that representability is preserved under pullback and closed under
composition.

1.1.92 Definition (Induced property). Let P be a property of morphisms in C which is?

preserved under pullback. A representable morphism X → Y in P(C) is said to have the
‘induced’ property P (usually just said P) when for every map c→ Y from an object c ∈ C,
the pullback X ×Y c→ c has P.

1.1.93 Warning. When discussing induced properties, we often shorten ‘representable and
P’ to just ‘P’. This is potentially dangerous: sometimes there is a reasonable generalization
of P to (not necessarily representable) morphisms in P(C) which agrees with the induction
(1.1.92) for representable morphisms (in which case ‘representable and P’ is strictly stronger
than just ‘P’).

1.1.94 Exercise. Let P be a property of morphisms in C which is preserved under pullback.
Show that the induced property for morphisms in P(C) is preserved under pullback. Show
that if P moreover closed under composition, then so is the induced property for morphisms
in P(C).

1.1.95 Lemma. Let P be a property of morphisms in C preserved under pullback, and let
X → Y → B be morphisms in P(C). The morphism X → Y has P iff every pullback
X ×B c→ Y ×B c has P.
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Proof. Let c→ Y be a morphism from c ∈ C, and consider the following diagram.

X ×Y c X ×B c

c = Y ×Y c Y ×B c

Y = Y ×Y Y Y ×B Y

(1.1.95.1)

The bottom square and the composite square are both pullbacks (??), so the top square is a
pullback by cancellation (1.1.52).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.1.96 Definition (Monoidal category). A monoidal structure ⊗ on a category C consists
of the following data:
(1.1.96.1) A functor ⊗ : C× C→ C.
(1.1.96.2) A natural isomorphism of functors ⊗ ◦ (1C ×⊗) = ⊗ ◦ (⊗× 1C), namely a chosen

isomorphism X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z functorial in X, Y, Z ∈ C.
(1.1.96.3) The cyclic composition

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W )

must be the identity map for all X, Y, Z,W ∈ C.
(1.1.96.4) An object 1 ∈ C.
(1.1.96.5) Natural isomorphisms of functors (1 ⊗ −) = 1C = (− ⊗ 1), namely chosen

isomorphisms 1⊗X = X = X ⊗ 1 functorial in X.
(1.1.96.6) The cyclic composition

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

must be the identity map for all X, Y ∈ C.
A monoidal category (C,⊗) is a category C equipped with a monoidal structure ⊗.
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1.1.97 Definition (Enriched category). Let (C,⊗) be a monoidal category. The notion of
a (C,⊗)-enriched category is a generalization of the notion of a category (1.1.1). A (C,⊗)-
enriched category D has a set of objects, but morphisms in D consist of objects Hom(X, Y ) ∈
C for pairs X, Y ∈ D. Composition in D consists of maps Hom(X, Y ) ⊗ Hom(Y, Z) →
Hom(X,Z), and associativity of composition involves the associator isomorphisms (1.1.96.2)
of (C,⊗) and implies that iterated composition

Hom(X0, X1)⊗ · · · ⊗ Hom(Xn−1, Xn)→ Hom(X0, Xn) (1.1.97.1)

is well defined. Identity morphisms in D are maps 1X : 1C → Hom(X,X), and composi-
tion with 1X or 1Y on Hom(X, Y ) must yield 1Hom(X,Y ) when combined with the unitor
isomorphisms (1.1.96.5) of C.

A (Set,×)-enriched category is simply a category in the usual sense. A lax monoidal
functor (A,⊗)→ (B,⊗) turns (A,⊗)-enriched categories into (B,⊗)-enriched categories. In
particular, we may regard a (C,⊗)-enriched category as having an ‘underlying category’ in
the presence of a chosen lax monoidal functor (C,⊗)→ (Set,×).

1.1.98 Exercise. Let C be a pointed category (1.1.49). Show that C is naturally enriched
over (Set∗,×) (pointed sets with the product symmetric monoidal structure).

1.1.99 Definition (Complex). Let C be a pointed category (1.1.49)(1.1.98) together with
an auto-equivalence Σ : C → C called ‘suspension’. A complex in (C,Σ) is a pair (X, d)
consisting of an object X ∈ C and a morphism d : X → ΣX whose square

X
d−→ ΣX

Σd−→ Σ2X (1.1.99.1)

vanishes (is the basepoint in Hom(X,Σ2X). Complexes in (C,Σ) form a category Kom(C,Σ)
in which a morphism (X, d)→ (Y, d) is a map X → Y which commutes with d.

A functor F : (C,Σ)→ (D,Σ) (meaning equipped with an isomorphism F ◦ Σ = Σ ◦ F )
induces a functor Kom(C,Σ)→ Kom(D,Σ). In particular, the shift functor Σ on C induces
an autoequivalence of Kom(C,Σ), also denoted Σ.

1.1.100 Definition (Sign functor). The sign function sgn : R× → Z× is given by sgn(λ) =
λ/|λ|. The sign functor sgn is a functor from the category of one-dimensional real vector
spaces and isomorphisms to the category of free abelian groups of rank one and isomorphisms.
It is defined by declaring that sgn(R) = Z and sgn(R λ−→ R) = (Z sgn(λ)−−−→ Z).

1.1.101 Definition (Orientation line). Let V be a finite-dimensional real vector space. Its?

top wedge power ∧dimV V is a one-dimensional real vector space. The orientation line of V is

o(V ) = sgn(∧dimV V )[dimV ] (1.1.101.1)

where sgn is the sign functor (1.1.100) and [dimV ] indicates placement in homological degree
dimV . There are canonical associative isomorphisms o(V ⊕W ) = o(V ) ⊗ o(W ) which
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are symmetric with respect to the super tensor product on graded Z-modules. Thus the
orientation line is a symmetric monoidal functor

((VectR)',⊕)→ ((AbZ)',⊗) (1.1.101.2)
V 7→ o(V ) (1.1.101.3)

There is a canonical isomorphism o(V ) = o(V ∗).
Complex vector spaces are canonically oriented by taking, for any ordered C-basis

v1, . . . , vn ∈ V , the generator v1∧ iv1∧ · · ·∧ vn∧ ivn of ∧2 dimC V
R V , which is independent up to

positive scaling of the choice of basis. This establishes an isomorphism of symmetric monoidal
functors between the pre-composition of the orientation line functor with the forgetful functor
VectC → VectR and the functor V 7→ Z[2 dimC V ]. This isomorphism is not unique: we have
followed the usual convention by orienting C using 1∧ i, but we could just as well have taken
its opposite. This freedom is precisely the automorphism group of the symmetric monoidal
functor V 7→ Z[2 dimC V ], namely Z/2 generated by (−1)dimC V .

The definition of the orientation line of a vector space (1.1.101) carries over without
change to the setting of vector bundles.

1.1.102 Definition (Mittag-Leffler inverse system). An inverse system of sets · · · → S2 →
S1 → S0 is said to satisfy the Mittag-Leffler condition when the infinite decreasing intersection
S ′i =

⋂
j≥i im(Sj → Si) is achieved at some finite stage: S ′i = im(Sj → Si) for some j = j(i).

1.1.103 Lemma (Mittag-Leffler). Let {Ai}i → {Bi}i → {Ci}i be a sequence of maps inverse
systems of abelian groups which is exact in the middle. If {Ai}i is Mittag-Leffler, then the
sequence of inverse limits lim←−iAi → lim←−iBi → lim←−iCi is also exact in the middle.
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1.2 2-categories
A 2-category is like a category, except that Hom(X, Y ) is a groupoid (1.1.9) instead of a set.
Because of this, the associativity axiom needs modification: a natural isomorphism between
the two ways of composing a triple of morphisms Hom(X, Y )× Hom(Y, Z)× Hom(Z,W )→
Hom(X,W ) is specified, and these ‘associators’ are required to satisfy a certain ‘pentagon
identity’ for quadruples of morphisms (1.2.1.4) which ensures that composition of any tuple
of morphisms is well defined up to well defined isomorphism.

The theory of 2-categories contains the theory of categories as a special case, namely when
all morphism groupoids are discrete (1.1.30). Most concepts and results in category theory
carry over directly to 2-category theory, albeit with the caveat that there are often many
more diagrams to chase. A detailed treatment of the theory of 2-categories can be found in
Johnson–Yau [35] (though the reader should beware of various terminological differences with
our presentation here).

1.2.1 Definition (2-category). A 2-category C consists of the following data:
(1.2.1.1) A set C, whose elements are called the objects of C.
(1.2.1.2) For every pair of objects X, Y ∈ C, a groupoid Hom(X, Y ), whose objects are

called the morphisms X → Y in C and whose morphisms are called the 2-morphisms
in C.

(1.2.1.3) For every triple of objects X, Y, Z ∈ C, a functor

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)

called composition.
(1.2.1.4) For every quadruple of objects X, Y, Z,W ∈ C, a natural isomorphism between the

two ways of composing twice to obtain a functor

Hom(X, Y )× Hom(Y, Z)× Hom(Z,W )→ Hom(X,W )

such that for every quadruple of morphisms a, b, c, d, the cyclic composition

(ab)(cd)

((ab)c)d a(b(cd))

(a(bc))d a((bc)d)

is the identity map.
(1.2.1.5) For every object X ∈ C, an object 1X ∈ Hom(X,X) together with natural

isomorphisms between composition with 1X and the identity functors on Hom(X, Y )
and Hom(Z,X), such that for every pair of morphisms a, b, the cyclic composition

ab

(a1)b a(1b)
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is the identity map.

1.2.2 Example (Categories are 2-categories). Every category may be regarded as a 2-category
by regarding each set Hom(X, Y ) as a groupoid as in (1.1.30).

1.2.3 Example (Homotopy category of a 2-category). A 2-category C gives rise to a category
π0C by replacing each morphism groupoid Hom(X, Y ) with its set of isomorphism classes.

1.2.4 Example (2-category of categories). Categories form a 2-category Cat in which
Hom(C,D) = Fun(C,D)'. That is, a morphism C → D is a functor, and a 2-morphism is
a natural isomorphism of functors. The homotopy category of the 2-category Cat is the
category denoted hCat discussed in (1.1.35).
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1.3 Simplicial objects
Simplicial sets were introduced by Eilenberg–Zilber [21].

1.3.1 Definition (Simplex category ∆). Let ∆ denote the category whose objects are?

non-empty finite ordered sets and whose morphisms are weakly order preserving maps. In
other words, every object of ∆ is isomorphic to [n] = {0, . . . , n} for some integer n ≥ 0, and
a morphism f : [n]→ [m] is a map of sets satisfying f(i) ≤ f(j) for i ≤ j.

1.3.2 Example (Simplices as categories). We may regard [n] as the category with set of
objects {0, . . . , n} and a single morphism i→ j for i ≤ j. Now a map [n]→ [m] in ∆ is the
same as a functor [n]→ [m]. Thus ∆ ⊆ Cat is a full subcategory; compare (1.1.3)(1.1.31).

1.3.3 Example (Complete simplex). Given a finite set S, the complete simplex on S is
the subspace of RS defined by the conditions

∑
s xs = 1 and xs ≥ 0. A map of finite sets

f : S → T induces a map RS → RT by pushforward yt =
∑

f(s)=t xs, hence a map ∆S → ∆T

by restriction. This defines a functor Setfin → Top; by pre-composing with the forgetful
functor ∆→ Setfin, we obtain a functor ∆→ Top.

1.3.4 Definition (Simplicial object). For any category C, a simplicial object of C is a functor?

∆op → C (dually, a functor ∆ → C is termed a cosimplicial object). A simplicial object
X• : ∆op → C thus consists of a sequence of objects X0, X1, . . . of C and maps f ∗ : Xm → Xn

associated to maps f : [n] → [m], satisfying (fg)∗ = g∗f ∗. Simplicial objects of C form a
category denoted sC = Fun(∆op,C) (and csC = Fun(∆,C) for cosimplicial objects). Note
that a simplicial object of C is, despite the terminology, evidently not an object of C.

1.3.5 Definition (Simplicial set). The category of simplicial sets is sSet = Fun(∆op, Set).?

The Yoneda functor of ∆ is an embedding ∆ → sSet, and the image of [n] under this
embedding is also denoted ∆n. For any simplicial set X•, the Yoneda Lemma (??) identifies
elements of Xn = X([n]) with maps ∆n → X; these are called the ‘n-simplices of X’. One
should view a simplicial set as a combinatorial/categorical specification of a way to ‘glue’
together these simplices along simplicial maps (more formally, the category sSet is the free
cocompletion of ∆ (??)).

1.3.6 Exercise. Describe the k-simplices of ∆1 (there are k + 2 of them).

1.3.7 Definition (Levelwise property). Let P be a property of morphisms in a category?

C. A morphism of simplicial objects X• → Y• in C is called (levelwise) P when each of its
constituent maps Xk → Yk has P.

1.3.8 Exercise (Simplicial mapping space). Show that for every pair of simplicial sets
X, Y ∈ sSet, there is a simplicial set Hom(X, Y ) defined by the universal property that a
map Z → Hom(X, Y ) is the same as a map Z ×X → Y . Show that there is a tautological
composition map Hom(X, Y )×Hom(Y, Z)→ Hom(X,Z), which is associative for quadruples
(X, Y, Z,W ).
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1.3.9 Definition (Non-degenerate simplex). Let X be a simplicial set. A simplex [n]→ X is?

called non-degenerate when it has no factorization as [n]→ [m]→ X with m < n; otherwise,
it is called degenerate.

1.3.10 Definition ([21, (8.3)]). Let X be a simplicial set. Every simplex [n]→ X admits a?

unique factorization [n]� [r]→ X with [r]→ X is non-degenerate.

Proof. The existence of a factorization of the desired form is trivial, so the content is to prove
uniqueness.

A surjection out of [n] is determined uniquely by the set of arrows in 0→ · · · → n which
are collapsed. Fix a pair of surjections f : [n]� [r] and g : [n]� [s], and let [n]� [a] be the
surjection which collapses the union of the arrows collapsed by f and g. This determines a
diagram of the following shape.

[n] [r]

[s] [a]

f

g (1.3.10.1)

We will show that this diagram is pushout in the category of simplicial sets, from which the
desired uniqueness assertion follows immediately. A simple inspection shows that (1.3.10.1)
is a pushout in the simplex category ∆, but this does not imply that it is a pushout in the
category of simplicial sets sSet (Yoneda typically does not preserve colimits).

To show that (1.3.10.1) is a pushout in sSet, it is equivalent (since colimits in diagram
categories are computed pointwise (??)) to show that the induced diagram

Hom([k], [n]) Hom([k], [r])

Hom([k], [s]) Hom([k], [a])

(1.3.10.2)

is a pushout for every [k] ∈∆. This can be checked by the following explicit argument.
Every surjection in ∆ has a section, and having a section is preserved by the functor

Hom([k],−), so the maps in (1.3.10.2) are surjective. In particular, the induced map from
the colimit C of the (• ← • → •) part of the square to its lower right corner is surjective.
To show injectivity of this map, we need to show that if two maps [k] → [n] agree upon
post-composition with the surjection [n]� [a], then they coincide in the colimit C. Denote
by A the endomorphism of Hom([k], [n]) obtained by post-composing with f : [n]� [r] and
then with the section [r] → [n] of f sending an element i ∈ [r] to the smallest element of
f−1(i) ⊆ [n]. Similarly, define an endomorphism B of Hom([k], [n]) using g in place of f .
Now it is simple to check that if two elements of Hom([k], [n]) coincide upon post-composition
with [n] � [a], then they can be made to coincide in Hom([k], [n]) by applying A and B
sufficiently many times. This gives the desired injectivity assertion.

1.3.11 Definition (Cardinality of a simplicial set). The cardinality of a simplicial set is the
cardinality of the set of its non-degenerate simplices. If a simplicial set has cardinality κ, then
the set of (all of) its simplices has cardinality ℵ0 · κ, which equals max(ℵ0, κ) when κ > 0.
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1.3.12 Exercise. Show that there are exactly (n+m)!
n!m!

non-degenerate (n+m)-simplices in
∆n ×∆m. Identify these simplices with paths from (0, 0) to (n,m) in the n×m unit grid.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.3.13 Definition (Truncated simplicial object). Denote by ∆≤k ⊆∆ the full subcategory
spanned by the objects [a] for a ≤ k. A k-truncated simplicial object of a category C is a
functor ∆op

≤k → C. There is a tautological restriction (‘truncation’) functor

Fun(∆op,C)→ Fun(∆op
≤k,C) (1.3.13.1)

from simplicial objects to k-truncated simplicial objects. When C is cocomplete, the truncation
functor has a left adjoint given by left Kan extension.

Fun(∆op
≤k,C)→ Fun(∆op,C) (1.3.13.2)

X• 7→
(

[a] 7→ colim
([a]↓∆≤k)op

X•

)
(1.3.13.3)

Since ∆≤k ⊆ ∆ is a full subcategory, this left adjoint is fully faithful (??). We implicitly
identify k-truncated simplicial objects with the full subcategory of simplicial objects given by
the essential image of this functor. Being k-truncated is thus a property of a simplicial object,
and a simplicial object will be called truncated when it is k-truncated for some k <∞. The
truncation functor from simplicial objects to k-truncated simplicial objects is also called the
k-skeleton functor.

1.3.14 Definition (Latching object). Let X• : ∆op → C be a simplicial object. The nth?

latching object of X• is the colimit

LnX• = colim
([n]↓∆<n)op

X•. (1.3.14.1)

There is a tautological map LnX• → Xn called the nth latching map of X•. More generally,
the nth latching map of a map of simplicial objects X• → Y• is the tautological map

Xn

⊔
LnX•

LnY• → Yn (1.3.14.2)

(when X• = ∅ is the initial object, this evidently reduces to the latching map of Y•).
The dual notion (i.e. for cosimplicial objects) is called matching and is denoted Mn.

1.3.15 Remark. We note that the full subcategory ([n]

�

∆<n) ⊆ ([n] ↓∆<n) spanned by
surjections [n]� [a] is initial, since its inclusion has a right adjoint (sending a map [n]→ [a]
to the surjection [n]� im([n]→ [a])) (1.1.68). Thus the latching object is equivalently given
by the colimit

LnX• = colim
([n]

�

∆<n)op

X•. (1.3.15.1)
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This category ([n]

�

∆<n) has a quite simple structure. A surjection f : [n]� [a] is determined
uniquely by the sequence of n bits εi(f) = f(i) − f(i − 1) ∈ {0, 1} for i = 1, . . . , n. The
category ([n]

�

∆≤n) is thus the poset category {0← 1}n, and its full subcategory ([n]

�

∆<n)
is the complement of the initial vertex (1, . . . , 1) (corresponding to the identity surjection
[n]� [n]).

1.3.16 Lemma. A simplicial object is k-truncated iff its latching maps in all degrees > k
are isomorphisms.

Proof. The counit map skr−1X• → X• in degree r is precisely the rth latching map LrX• →
Xr. Thus if X is (r − 1)-truncated, then the rth latching map is an isomorphism. Since
being k-truncated implies being i-truncated for all i ≥ k, we conclude that being k-truncated
implies the latching maps in all degrees > k are isomorphisms.

For the converse, we apply the criterion (1.1.81) for identifying a reflective subcategory.
It thus suffices to show, for any pair of simplicial objects X• and Y• whose latching maps
are isomorphisms in degrees > k, that a morphism X• → Y• is an isomorphism iff it is an
isomorphism in degrees ≤ k. This may be proven by induction.

1.3.17 Definition (Reedy property [76]). Let P be a property of morphisms in a category C.?

A simplicial object X• : ∆op → C is said to be Reedy P when its latching maps LiX• → Xi

have property P. More generally, a morphism of simplicial objects X• → Y• is called Reedy
P when its relative latching maps (1.3.14.2) have P (when X• = ∅ is the initial object, this
is evidently the same as Y• being Reedy P).

1.3.18 Lemma. Let X• → Y • be a map of cosimplicial objects. The map on nth matching
objects MnX• →MnY • is (functorially in X• → Y •) a finite composition of pullbacks of ith
matching maps X i →M iX• ×M iY • Y

i for i < n.

Proof. Write matching objects as limits over the categories ([n]

�

∆<n) as in (1.3.15). Consider
the category ([n]

�

∆<n)× (x→ y) and the evident diagram from it associated to X• → Y •.
The limit of this diagram is MnX• (since ([n]

�

∆<n) × x is initial) while the limit of its
restriction to ([n]

�

∆<n)× y is MnY •. Now let us build ([n]

�

∆<n)× (x→ y) from its full
subcategory ([n]

�

∆<n)× y by iteratively adding maximal objects not already present. The
effect on the limit of adding such a maximal object ([n]� [i])× x is to form a pullback of
the ith matching map of X• → Y • (use Mayer–Vietoris (??) twice).

1.3.19 Exercise. Let X• : ∆op → C be a simplicial object which is Reedy P. Conclude from
(1.3.18) that if F : C→ D preserves pushouts of P-morphisms, then it preserves the latching
objects LiX• (in the sense that the natural map LiF (X•) → F (LiX•) is an isomorphism
(1.1.69)).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now study simplicial abelian groups (and, more generally, simplicial objects in additive
categories (??)).
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The following classical result identifies simplicial abelian groups with complexes of abelian
groups supported in non-negative homological degree. It is an ‘abelian’ analogue of the
fundamental result on non-degenerate simplices for simplicial sets (1.3.10) and the resulting
fact that every simplicial set is the ascending union of its skeleta, each of which is obtained
from the previous by attaching some set of non-degenerate simplices.

1.3.20 Dold–Kan Correspondence ([14][46]). The functor?

DK : Kom≥0(Ab)→ sAb (1.3.20.1)

K• 7→
(

[n] 7→ Hom(Ccell
• (∆n), K•)

)
(1.3.20.2)

is an equivalence of categories.

Proof. The key to the Dold–Kan correspondence is to express the group of homomorphisms
Hom(Ccell

• (∆n), K•) using a ‘shelling’ (filtration by pushouts of horns) of ∆n. Fix such a
filtration (there are many) ∅ = F0 ⊆ F1 ⊆ · · · ⊆ F2n = ∆n, which necessarily contains
exactly

(
n
k

)
pushouts of k-dimensional horns for all k. Applying Hom(Ccell

• (−), K•) yields a
sequence of maps.

Hom(Ccell
• (∆n), K•) = Hom(Ccell

• (F2n), K•)→ · · ·
· · · → Hom(Ccell

• (F1), K•)→ Hom(Ccell
• (F0), K•) = 0 (1.3.20.3)

Every restriction map

Hom(Ccell
• (Fi), K•)→ Hom(Ccell

• (Fi−1), K•) (1.3.20.4)

has a canonical section: when (Fi, Fi−1) is a pushout of a k-dimensional horn, a chain map
Ccell
• (Fi−1) → K• may be extended to Ccell

• (Fi) by declaring it should vanish on the new
k-simplex, and this uniquely determines its value on the new (k − 1)-simplex. The kernel of
the restriction map is Hom(Ccell

• (Fi, Fi−1), K•) = Hom(Ccell
• (∆k,Λk

j ), K•) = Kk. A choice of
shelling of ∆n thus defines an isomorphism

Hom(Ccell
• (∆n), K•) ∼=

⊕
k

K
⊕(nk)
k . (1.3.20.5)

It follows immediately that the Dold–Kan functor is faithful.

1.3.21 Example. Let X be a topological space, and let Vect(X) denote the additive category
of finite-dimensional real vector bundles on X. The category Vect(X) is idempotent complete
(it suffices to treat the ‘universal’ case which consists of showing that kerπ is a vector bundle
over {π : Rn → Rn | π2 = π}). The Dold–Kan Correspondence (1.3.20) thus provides an
equivalence between complexes of vector bundles supported in non-negative homological
degrees Kom≥0(Vect(X)) and simplicial vector bundles sVect(X).
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1.3.22 Example. Consider an idempotent complete additive category A. Idempotent
completeness is invariant under passing to opposites, so Aop is also idempotent complete. The
Dold–Kan Correspondence (1.3.20) for A is an equivalence between Kom≥0(A) and csA.

1.3.23 Exercise. Show that under the Dold–Kan Correspondence (1.3.20):
(1.3.23.1) [Z[k + 1]→ Z[k]] ∈ Kom≥0(Ab) corresponds to Ck

cell(∆
•) ∈ sAb.

(1.3.23.2) Z[k] ∈ Kom≥0(Ab) corresponds to Zk
cell(∆

•) ∈ sAb.

1.3.24 Corollary. Let C be an idempotent complete additive category, and let P be any
property of morphisms in C which is closed under direct sums and retracts. For any map
A• → B• in sC and any n ≥ 0, the following are equivalent:
(1.3.24.1) The map An → Bn has P.
(1.3.24.2) The map NiA• → NiB• has P for all i ≤ n.

In particular Ak → Bk has P for all k ≥ 0 iff NkA• → NkB• has P for all k ≥ 0.

Proof. A shelling of ∆n fixes a functorial isomorphism An =
⊕n

i=0(NiA•)
(ni) (1.3.20.5).

The next result is a linear analogue of the theory of non-degene simplices in simplicial
sets (1.3.10) (compare (??)). It appears that it does not follow formally from (1.3.10), since
the forgetful functor Vect→ Set does not preserve colimits.

1.3.25 Corollary. For any simplicial object A• in an idempotent complete additive category,
there is a functorial short exact sequence

0→ LkA• → Ak → NkA• → 0 (1.3.25.1)

for every k ≥ 0. This short exact sequence has a functorial splitting associated to any choice
of codimension one face of ∆k.

Proof.

1.3.26 Corollary. Let A• → B• be a map of simplicial objects in an idempotent complete
additive category. The cone of the kth latching map Ak tLkA• LkB• → Bk is (functorially)
homotopy equivalent to the cone of the map NkA• → NkB• on normalized chains in degree k.

Proof. The map on short exact sequences (1.3.25)

LkA• A• NkA•

LkB• B• NkB•

(1.3.26.1)

induces a map from the total complex of the square on the left to the cone of NkA• → NkB•.
It suffices to show that this map is a homotopy equivalence and so is the natural map from
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the total complex of the square on the left to the cone of Ak tLkA• LkB• → Bk. The above
map on short exact sequences is functorially split (1.3.25), hence may be written as

LkA• LkA• ⊕NkA• NkA•

LkB• LkB• ⊕NkB• NkB•

(1.3.26.2)

with the evident inclusion and projection maps, from which the two desired homotopy
equivalence assertions are immediate.

1.3.27 Corollary. A simplicial object in an additive category is n-truncated (1.3.13) iff the
corresponding chain complex is supported in degrees ≤ n.

Proof. Combine (1.3.16) and (1.3.26).
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1.4 Simplicial homotopy theory
1.4.1 Definition (Boundary and horns). The boundary ∂∆n ⊆ ∆n consists of those simplices
of ∆n which omit at least one vertex of ∆n. The ith horn Λn

i ⊆ ∆n (0 ≤ i ≤ n and n ≥ 1)
consists of those simplices of ∆n which omit at least one vertex other than vertex i.

1.4.2 Exercise. Draw Λn
i ⊆ ∆n and ∂∆n ⊆ ∆n for all n ≤ 3.

1.4.3 Exercise. Show that the map Λn
i → ∆n does not have a retraction (except for n = 1),

but does after applying geometric realization (it will be helpful to use (??)).

1.4.4 Definition (Transfinite composition of morphisms). Let α be an ordinal, and consider
a sequence of objects X0, X1, . . . of a category C indexed by ordinals ν < α along with
morphisms

colim
µ<ν

Xµ → Xν (1.4.4.1)

for all ν < α. The induced morphism X0 → colimν<αXν is called the transfinite composition
of the morphisms (1.4.4.1).

1.4.5 Exercise. Let M be a set of morphisms, and let M be the set of morphisms expressible
as transfinite compositions of morphisms in M. Show that M is closed under transfinite
composition. Show that if M is closed under pushouts then so is M. Show that if every
morphism in M satisfies the left lifting property with respect to a morphism X → Y , then so
does every morphism in M.

1.4.6 Definition (Pair). A pair of simplicial sets (X,A) is an injective map A → X. A
morphism of pairs (X,A) → (X ′, A′) is commutative square. We often (but with some
necessary exceptions) identify a simplicial set X with the pair (X,∅).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A fundamental concept in categorical homotopy theory is lifting properties.

1.4.7 Definition (Lifting property). A lift for a commuting diagram of solid arrows

A X

B Y

(1.4.7.1)

is a dotted arrow making the diagram commute. A morphism X → Y is said to satisfy the
right lifting property with respect to a morphism A→ B (and A→ B satisfies the left lifting
property with respect to X → Y ) when every such diagram with these given vertical arrows
has a lift. The right lifting property in the special case X → ∗ will be called the extension
property : X satisfies the extension property for A→ B when every map A→ X admits a
factorization A→ B → X.
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1.4.8 Exercise. Show that the right lifting property with respect to any fixed morphism
A→ B is preserved under pullback and closed under composition.

1.4.9 Exercise. Show that the left lifting property with respect to any fixed morphism
X → Y is preserved under pushout and closed under transfinite composition.

1.4.10 Definition (Kan fibration [44, 45]). A map of simplicial sets X → Y is called a Kan
fibration when it has the right lifting property for every horn (∆n,Λn

i ). That is, X → Y is a
Kan fibration when for every commuting diagram of solid arrows

Λn
i X

∆n Y

(1.4.10.1)

there exists a dotted arrow making the diagram commute.
A simplicial set X is called a Kan complex iff the map X → ∗ is a Kan fibration. In other

words, X is a Kan complex when it satisfies the extension property for (∆n,Λn
i ), meaning

every map Λn
i → X extends to ∆n.

1.4.11 Exercise. Use the retraction property (1.4.3) to show that the singular simplicial set
(??) of any topological space is a Kan complex.

1.4.12 Exercise. The set of components π0X of a simplicial set X is the set vertices X0

modulo the equivalence relation closure of the relation given by the edges (x ∼ x′ iff there
exists an edge x→ x′); this gives a functor π0 : sSet→ Set. Show that if X is a Kan complex,
then the edge relation is an equivalence relation.

1.4.13 Exercise. Show that every simplicial abelian group is a Kan complex by appealing to
the Dold–Kan correspondence (1.3.20) and noting that Ccell

• (Λn
i ) ↪→ Ccell

• (∆n) has a retract.
In fact, every simplicial group is a Kan complex (Moore [66, Théorème 3]).

1.4.14 Definition (Smash product of pairs). For simplicial set pairs (X,A) and (Y,B), we
term

(X,A) ∧ (Y,B) = (X × Y, (X ×B) ∪A×B (A× Y )). (1.4.14.1)

their smash product (beware: like tensor product, the smash product is not the categorical
product).

1.4.15 Exercise. Show that if (X ′, A′) is a pushout of a pair (X,A), then (X ′, A′) ∧ (Y,B)
is a pushout of (X,A) ∧ (Y,B). Show that if (X,A) is filtered by pushouts of pairs in some
colection M, then (X,A) ∧ (Y,B) is filtered by pushouts of pairs in M ∧ (Y,B).

1.4.16 Lemma. Every smash product (∆n,Λn
i ) ∧ (∆k, ∂∆k) is filtered by pushouts of horns.?
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Proof. The product ∆n × ∆k is the nerve of the category [n] × [k]. Its non-degenerate
(n + k)-simplices are thus in bijection with lattice paths from (0, 0) to (n, k). This set of
(n+ k)-simplices has a natural partial order in which σ � τ iff the path corresponding to σ
lies above that corresponding to τ (when the [n] coordinate is drawn horizontally and the [k]
coordinate vertically). We filter the pair (∆n,Λn

i ) ∧ (∆k, ∂∆k) by adding the non-degenerate
(n + k)-simplices one at a time, according to any total order refining the aforementioned
partial order. It suffices to show that each simplex addition in this filtration can be realized
by filling some number of horns.

Let Q ⊆ ∆n ×∆k denote the union of (∆n × ∂∆k) ∪ (Λn
i ×∆k) and any set S of non-

degenerate (n+ k)-simplices with the property that σ � τ ∈ S implies σ ∈ S. Our aim is to
show that the pair (Q∪ σ,Q) is filtered by pushouts of horns for any σ /∈ S which is maximal
among simplices not in S. Equivalently, this means filtering the pair (σ, σ ∩Q) by pushouts
of horns.

Let us say that the pair (σ, σ∩Q) is coned at a vertex v of σ iff for every simplex τ ⊆ σ∩Q,
the cone of τ with v is also ⊆ σ∩Q. Denoting by σv̂ ⊆ σ the span of all vertices other than v,
any filtration of (σv̂, σv̂ ∩Q) by pushouts of (∆a, ∂∆a) determines, by coning at v, a filtration
of (σ, σ ∩Q) by pushouts of horns with cone point v. It thus suffices show that (σ, σ ∩Q) is
coned at some vertex v ∈ σ.

Regarding σ as a lattice path from (0, 0) to (n, k), choose v = (i, j) ∈ σ where i indexes
the horn Λn

i and j is as large as possible given i.

0 n
0

k

i

v

(1.4.16.1)

Our goal is now to show that (σ, σ∩Q) is coned at v. We first describe the intersection σ∩Q.
A simplex τ ⊆ σ is contained in Q iff it satisfies at least one of the following conditions:
(1.4.16.2) The vertices of τ do not surject onto [n]− {i}.
(1.4.16.3) The vertices of τ do not surject onto [k].
(1.4.16.4) The subset of the lattice path σ corresponding to τ misses at least one cliffbottom

corner (a vertex w ∈ σ for which both w + (0, 1) and w − (1, 0) are in σ).
Now suppose τ ⊆ σ lies in Q, and let us show that the simplex spanned by τ union v also
lies in Q. The property of not surjecting onto [n]− {i} is certainly preserved by adding v.
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Missing a cliffbottom corner is also preserved by adding v since v is never a cliffbottom corner.
Now suppose τ does not surject onto [k] but τ ∪ v does. This means τ does not contain any
vertex with the same second coordinate as v. If the second coordinate of v is < k, then τ
misses a cliffbottom corner, hence so does τ ∪ v. If the second coordinate of v is k and i < n,
then τ ∪ v cannot surject onto [n]− {i}, since it misses everything > i. This completes the
proof in the case i < n. The case i = n now follows by symmetry.

1.4.17 Exercise. Let X and Y be simplicial sets. Use (1.4.16) (along with (1.4.15) and
(??)) to show that if Y is a Kan complex then so is the simplicial mapping space Hom(X, Y )
(1.3.8).

1.4.18 Exercise (Homotopy category of Kan complexes hSpc). For a Kan complex X and
a simplicial set K, call maps f, g : K → X homotopic iff there exists a map K ×∆1 → X
whose restrictions to K × 0 and K × 1 coincide with f and g, respectively. Use (1.4.16) to
show that homotopy is an equivalence relation on the set of maps K → X. Conclude that
Kan complexes and homotopy classes of maps form a category, denoted hSpc. A map of Kan
complexes is called a homotopy equivalence iff it is an isomorphism in hSpc. A Kan complex
is called contractible when it is homotopy equivalent to a point ∗.

1.4.19 Exercise. Let X → Y be a Kan fibration. Associate to any edge y → y′ in Y a map
Xy → Xy′ by lifting the pair Xy × (∆1, 0), and show that this map is well defined up to
homotopy. Show that for any 2-simplex in Y with vertices y, y′, y′′, the resulting triangle
commutes up to homotopy. Show that the map Xy → Xy′ associated to an edge y → y′ is
a homotopy equivalence (a homotopy inverse may be constructed by lifting Xy′ × (∆1, 1)).
Conclude that this defines a diagram Y → hSpc'.

1.4.20 Definition (Trivial Kan fibration). A map of simplicial sets is called a trivial Kan
fibration iff it satisfies the right lifting property for every pair (∆n, ∂∆n). A simplicial set is
called a trivial Kan complex iff the map X → ∗ is a trivial Kan fibration.

1.4.21 Exercise. Show that a trivial Kan fibration is a Kan fibration. In fact, show that a
trivial Kan fibration satisfies the right lifting property for every pair (X,A).

1.4.22 Exercise. Show that a Kan complex is trivial iff it is contractible.

1.4.23 Exercise (Functor sSet → hSpc). Show that if X ↪→ Y is filtered by pushouts of
horns and Z is a Kan complex, then the map Hom(Y, Z) → Hom(X,Z) is a trivial Kan
fibration. Use the small object argument (??) to show that for every simplicial set X, there
exists an inclusion X ↪→ X which is filtered by pushouts of horns with X a Kan complex.
Show that for any pair of such inclusions X ↪→ X and Y ↪→ Y and any map X → Y , there
exists a dotted arrow making the following diagram commute

X X

Y Y

(1.4.23.1)
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and that moreover this dotted arrow is unique up to homotopy rel X. Show that sending X
to (any choice of) X and sending a map X → Y to (any choice of) extension X → Y gives a
well defined functor sSet→ hSpc. A map of simplicial sets which is sent to an isomorphism
by this functor is called a homotopy equivalence. Show that any inclusion of simplicial sets
which is filtered by pushouts of horns is a homotopy equivalence.

1.4.24 Exercise. Show that a trivial Kan fibration is a homotopy equivalence.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.4.25 Definition (Differential graded category). Let k be a field. A k-linear differential
graded category (or dg-category) C is a category enriched over complexes of vector spaces over k.
In other words, it consists of a set C of objects, a morphism complex Hom(X, Y ) ∈ Kom(Vectk)
for each X, Y ∈ C, and composition maps Hom(X, Y )⊗Hom(Y, Z)→ Hom(X,Z) which are
associative and unital.

When discussing dg-categories, we implicitly fix a choice of ground field k.
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1.5 ∞-categories
An ∞-category is a generalization of a category. In an ∞-category, the morphisms from
one object to another form a space, and composition is associative up to coherent homotopy.
There are various different ways of turning this slogan into a precise mathematical definition;
such a definition is termed a ‘model’ for the theory of ∞-categories. We use here the model
known as quasi-categories. Quasi-categories were introduced by Bordman–Vogt [8], and their
development into a working model of ∞-categories is due to Joyal [36, 37, 38] and Lurie [58].

In this section, we develop the basics of the theory of ∞-categories in elementary, inten-
tionally unsophistocated, terms. References include Lurie [58], Riehl–Verity [78], and Land
[50].

1.5.1 Definition (Inner/outer/left/right horn). A horn Λn
i ⊆ ∆n (1.4.1) is called inner

when 0 < i < n and outer when i ∈ {0, n}. It is called left (resp. right) when 0 ≤ i < n (resp.
0 < i ≤ n).

1.5.2 Definition (∞-category). An ∞-category is a simplicial set which has the extension?

property (1.4.7) for all inner horns (1.5.1).

1.5.3 Remark (∞-categories vs quasi-categories). A simplicial set satisfying the extension
property for all inner horns is also called a weak Kan complex [8] or quasi-category [36], while
the term ‘∞-category’ may also refer to other sorts of structures (for example fibrant simplicial
categories (1.5.8)) which make precise the one-sentence slogan ‘definition’ of an ∞-category
at the beginning of this section (1.5). This terminological distinction allows one to formulate
the thesis that quasi-categories are a ‘model’ of ∞-categories (like the Church–Turing thesis,
this is not something which can be formally proven, rather only supported with evidence
such as equivalences between various different reasonable models).

Let us see how categories are a special case of ∞-categories.

1.5.4 Exercise (Nerve of a category). Let C be a category. The nerve of C is the simplicial?

set whose set of n-simplices is the set of functors the poset category [n] = (0→ · · · → n) to
C. Show that a simplicial set is the nerve of a category iff every inner horn has a unique
filling. In particular, conclude that the nerve of any category is an ∞-category.

We will henceforth identify a category with its nerve without further comment. Once we
define equivalences of ∞-categories, it will become evident that this identification respects
the principle of equivalence (note that the set of n-simplices of the nerve of a category is
evidently not invariant under equivalence).

1.5.5 Definition (Objects, morphisms, and composition in an ∞-category). An object x?

of an ∞-category C is a vertex of C, and a morphism f : x → y is an edge in C. The
identity morphism 1x of an object x ∈ C is the degenerate edge over x. A 2-simplex in C
with boundary

y

x z

gf

h

(1.5.5.1)
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should be thought of as a homotopy between the ‘composition of f and g’ (which is not itself
a morphism in C since it is not an edge) and h. A given horn Λ2

1 typically has many different
fillings to ∆2, so we cannot call h ‘the’ composition of f and g (merely ‘a’ composition). The
higher horn filling conditions do imply, however, that extending a given map Λ2

1 → C to
∆2 is a contractible choice (precisely, Hom(∆2,C)→ Hom(Λ2

1,C) is a trivial Kan fibration
(1.5.21)). They also encode the data to guarantee that composition is, in a certain sense,
associative up to coherent homotopy.

1.5.6 Definition (Opposite ∞-category). Given an ∞-category C, its opposite Cop is the
opposite simplicial set (i.e. its pre-composition with op : ∆→∆).

1.5.7 Definition (Full subcategory). A full subcategory of an ∞-category C is a subcomplex
A ⊆ C with the property that a simplex ∆n → C belongs to A iff all of its vertices belong to
A. Full subcategories of C are evidently in bijection with subsets of C0.

Here are some common constructions of ∞-categories.

1.5.8 Definition (Fibrant simplicial category). A fibrant simplicial category is a category C
enriched (1.1.97) in Kan complexes.

1.5.9 Definition (Nerve of a fibrant simplicial category; Cordier [9][58, 1.1.5]). The (simpli-
cial) nerve of a fibrant simplicial category C is the simplicial set in which an n-simplex is a
tuple of objects X0, . . . , Xn ∈ C along with maps fij : (∆1){i+1,...,j−1} → C(Xi, Xj) satisfying
fik|{tj=1} = fij × fjk, which we may express as commutativity of the following diagram:

(∆1){i+1,...,j−1} × (∆1){j+1,...,k−1} C(Xi, Xj)× C(Xj, Xk)

(∆1){i+1,...,k−1} C(Xi, Xk)

×{1}{j}

fij×fjk

fik

(1.5.9.1)

The pullback of such data along a map s : ∆m → ∆n is given by Yi = Xs(i) and gij = fs(i)s(j)
pre-composed with the map (∆1){i+1,...,j−1} → (∆1){s(i)+1,...,s(j)−1} given on vertices by the
formula tk = maxs(a)=k ta (interpreted to be 0 when s−1(k) is empty).

1.5.10 Exercise. Describe explicitly the 0-simplices (objects), 1-simplices (morphisms), and
2-simplices of the nerve of a fibrant simplicial category C. Consider the subcomplex of the
nerve consisting of those simplices in which every fij is constant; how is this related to C?

1.5.11 Lemma. The simplicial nerve of a fibrant simplicial category is an ∞-category.

Proof. The extension problem for maps from an inner horn (∆n,Λn
i ) to the simplicial nerve

of C amounts to the extension problem for

f0n : (∆1, ∂∆1){1,...,i−1} ∧ (∆1, {1})i ∧ (∆1, ∂∆1){i+1,...,n−1} → C(X0, Xn). (1.5.11.1)

This extension problem is solvable since C(X0, Xn) is Kan and the domain pair is filtered by
pushouts of horns (1.4.16).
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1.5.12 Example (∞-category of spaces Spc). The category of Kan complexes is naturally?

enriched over the category of Kan complexes (1.3.8)(1.4.17). Its simplicial nerve is called the
∞-category of spaces, denoted Spc.

1.5.13 Definition (Differential graded category). A Z-linear differential graded category (or
dg-category) C is a category enriched over complexes of Z-modules. In other words, it consists
of a set C of objects, a morphism complex Hom(X, Y ) ∈ Kom(ModZ) for each X, Y ∈ C, and
composition maps Hom(X, Y )⊗ Hom(Y, Z)→ Hom(X,Z) which are associative and unital.

1.5.14 Definition (Nerve of a differential graded category [31, A.2.1][59, 1.3.1]). The
(differential graded) nerve of a (Z-linear) dg-category C is the simplicial set in which an
n-simplex is a tuple of objects X0, . . . , Xn ∈ C along with maps fij : Ccell

• ((∆1){i+1,...,j−1})→
C(Xi, Xj) satisfying fik|{tj=1} = fij × fjk, as in (1.5.9).

1.5.15 Exercise. Show that the nerve of a differential graded category is an ∞-category
(compare (1.5.11)).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.16 Definition (Functor). A functor of ∞-categories C→ D is a map of simplicial sets.?

Functors from C to D are the objects of an∞-category Fun(C,D) = Hom(C,D) (the simplicial
mapping space (1.3.8)).

1.5.17 Definition (Diagram). Let K be a simplicial set. A K-shaped diagram in an?

∞-category C is a map of simplicial sets K → C. Such diagrams form an ∞-category
Fun(K,C) = Hom(K,C) (1.5.19).

1.5.18 Exercise. For any simplicial set K and any category C, show that Fun(K,C) is (the
nerve of) the category of K-shaped diagrams in C from (1.1.51). In particular, conclude
that for categories C and D, the category of functors Fun(C,D) defined here (1.5.16) coincides
with that defined earlier (1.1.22).

1.5.19 Proposition. Fun(K,C) is an ∞-category for any ∞-category C.

Proof. This is very similar to (1.4.17). We are to show that C satisfies the extension property
for pairs (∆n,Λn

i )∧K with 0 < i < n. By filtering K by pushouts of pairs (∆k, ∂∆k) (??), it
suffies to show that C satisfies the extension property for pairs (∆n,Λn

i ) ∧ (∆k, ∂∆k) with
0 < i < n and k ≥ 0. It thus suffices to show that for 0 < i < n, the smash product
(∆n,Λn

i ) ∧ (∆k, ∂∆k) is filtered by pushouts of inner horns. We verify this property next
(1.5.20) (stated separately for later use).

1.5.20 Lemma. The smash product (∆n,Λn
i ) ∧ (∆k, ∂∆k) with 0 < i < n is filtered by?

pushouts of inner horns.



CHAPTER 1. CATEGORY THEORY 46

Proof. We saw earlier that (∆n,Λn
i ) ∧ (∆k, ∂∆k) is filtered by pushouts of horns (∆m,Λm

j )
(1.4.16). Let us argue that all the horns (∆m,Λm

j ) appearing in this filtration are inner. The
cone point j ∈ ∆m of every such horn is the vertex v in (1.4.16.1); in particular, it projects to
the cone point i ∈ ∆n. The image of the map ∆m → ∆n thus both contains i and cannot be
contained in Λn

i , which together imply that ∆m � ∆n is in fact surjective. Thus 0 < i < n
implies 0 < j < m.

1.5.21 Exercise. Show that for any ∞-category C, the map Fun(∆n,C)→ Fun(Λn
i ,C) is a

trivial Kan fibration for any inner horn (∆n,Λn
i ).

1.5.22 Definition (Inner fibration). A map of simplicial sets is called an inner fibration?

when it satisfies the right lifting property with respect to inner horns.

1.5.23 Exercise. Show that for any inner fibration Q → X, the simplicial set of sections
Sec(X,Q) (a map Z → Sec(X,Q) being a map Z ×X → Q over X) is an ∞-category.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.24 Definition (Homotopy category of an ∞-category). Let C be an ∞-category. For
objects x, y ∈ C, the relation of right homotopy on the set of morphisms x→ y is defined by
e ∼ e′ iff there exists a 2-simplex

y

x y

1ye

e′

(1.5.24.1)

Right homotopy is an equivalence relation: reflexivity holds by taking a degenerate 2-simplex
over e, and symmetry and transitivity follow from the following two inner horn fillings (the
boxed vertex is the cone point of the horn):

y y

x y

1y

1y

1ye

e′

e

y y

x y

1y

1y

1ye

e′

e′′

(1.5.24.2)

There is a corresponding equivalence relation left homotopy. Right homotopy implies left
homotopy by filling the following inner horn (so by symmetry the converse is true as well)

x y

x y

e

e
1y1x

e

e′

(1.5.24.3)
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Since right homotopy and left homotopy are the same, we may simply call this relation
homotopy of morphisms x→ y. Filling the following inner horn

y z

x z

b

b′

1za
c

c′

(1.5.24.4)

shows that if b and b′ are homotopic, then any two fillings of x a−→ y
b−→ z and x a−→ y

b′−→ z give
homotopic morphisms x→ z. By symmetry, we conclude that composition is well-defined on
homotopy classes. The homotopy category hC has the same objects as C (i.e. the vertices
of C) and has morphisms the homotopy classes of morphisms in C. There is a tautological
functor C→ hC.

1.5.25 Exercise. Show that the homotopy category of a category is itself.

1.5.26 Exercise. Show that a functor C→ D induces a functor hC→ hD. Show that the
natural map h(C×D)→ hC× hD is an isomorphism. Conclude that a natural transformation
F → G of functors C→ D induces a natural transformation hF → hG of functors hC→ hD.

1.5.27 Exercise. Show that the homotopy category of ∞-category Spc (1.5.12) is the
category denoted hSpc in (1.4.18). More generally, describe the homotopy category of (the
nerve (1.5.9) of) a fibrant simplicial category.

1.5.28 Lemma. The functor C→ hC satisfies the right lifting property with respect to the
pair (∆2, ∂∆2).

Proof. Fill the inner horn
y z

x z

b

b

1za

c′

c

(1.5.28.1)

to see that a 2-simplex with edges a, b, c exists in C iff the boundary commutes in hC.

1.5.29 Definition (Isomorphism in an ∞-category). A morphism in an ∞-category C is?

called an isomorphism (resp. split monomorphism, split epimorphism) iff its image in the
homotopy category hC is.

1.5.30 Exercise. Show that a functor of ∞-categories sends isomorphisms to isomorphisms.

1.5.31 Exercise. As a continuation of (1.5.26), show that a natural isomorphism F → G of
functors C→ D induces a natural isomorphism hF → hG of functors hC→ hD.

1.5.32 Definition (Property of morphisms in an ∞-category). A property of morphisms in
an ∞-category C is a property of morphisms in its homotopy category hC.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.33 Definition (Join). For simplicial sets X and Y , their join X ? Y is defined by the
universal property that map Z → X ?Y is a map p : Z → ∆1 and a pair of maps p−1(0)→ X
and p−1(1)→ Y .

1.5.34 Exercise. Show that (X ? Y )op = Y op ? Xop.

1.5.35 Exercise. Show that ∆n ?∆m = ∆n+m+1 for n,m ≥ −1 (where ∆−1 = ∅).

1.5.36 Exercise. Show that the set of non-degenerate or empty simplices of X ? Y is the
product of the sets of non-degenerate or empty simplices of X and Y .

1.5.37 Definition (Right and left cone). The right and left cones of a simplicial set K are?

the joins KB = K ?∆0 and KC = ∆0 ? K, respectively.

1.5.38 Exercise. Prove that the geometric realization of KB is contractible for every
simplicial set K.

1.5.39 Definition (Slice category). Given a diagram K → C, the over-category C/K is?

defined by the universal property that a map Z → C/K is a map Z ? K → C extending the
given map K → C. Dually, the under-category CK/ represents extensions to K ? Z → C.

1.5.40 Definition (Join of pairs). The join of simplicial set pairs is

X ? (Y,B) = (X ? Y,X ? B), (1.5.40.1)
(X,A) ? (Y,B) = (X ? Y, (X ? B) ∪A?B (A ? Y )). (1.5.40.2)

Beware that join of pairs is not compatible with identifying X and (X,∅).

1.5.41 Definition (Left and right fibrations). A map of simplicial sets is called a left (resp.?

right) fibration when it satisfies the right lifting property with respect to left (resp. right)
horns (∆n,Λn

i ), namely 0 ≤ i < n (resp. 0 < i ≤ n) (1.5.1).

A left fibration over a simplicial set X is ‘equivalent’ in a certain sense to a diagram
X → Spc (1.5.53)(??). The proof of this will come quite a bit later, so for the moment we
will regard it just as intuition.

1.5.42 Exercise. Show that a left fibration of ∞-categories reflects split monomorphisms,
hence reflects isomorphisms (note the use of (1.5.28)).

1.5.43 Exercise. Show that for any diagram L → C and any monomorphism K → L,
the right lifting property for C/L → C/K with respect to a pair (X,A) is equivalent to the
extension property for maps (X,A) ? (L,K) → C. Conclude from (??) and (??) that the
restriction map C/L → C/K is a right fibration. Conclude moreover that if K → L is filtered
by pushouts of left horns, then C/L → C/K is a trivial Kan fibration.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.44 Lemma (Isomorphism as an extension property; Joyal [36]). A morphism e in an?

∞-category is an isomorphism iff every left outer horn Λn
0 ⊆ ∆n with 01 edge e can be filled.

Proof. If f : x→ y satisfies the hypothesized horn filling condition for n = 2, 3, then filling
the following two horns produces an inverse g to f in hC.

y

x x

∃gf

1x

y x

x y

g

1y

ff

1x

f

(1.5.44.1)

Conversely, let us show that every map Λn
0 → C with 01 edge an isomorphism extends to ∆n.

The extension problem for (∆n,Λn
0 )→ C is equivalent to the lifting property

Λ1
0 C/∆n−2

∆1 C/∂∆n−2

(1.5.44.2)

in view of the identity (∆n,Λn
0 ) = (∆1,Λ1

0) ? (∆n−2, ∂∆n−2) (??). Since C/∂∆n−2 → C is a
right fibration (1.5.43), it reflects isomorphisms (1.5.42), so the bottom edge in (1.5.44.2) is
an isomorphism. Now the map C/∆n−2 → C/∂∆n−2 is a right fibration (1.5.43), so it suffices to
show that for any right fibration of ∞-categories A→ B, the lifting problem

∗ A

∆1 B

0 (1.5.44.3)

has a solution provided the bottom arrow is an isomorphism in B (in fact, it need only be a
split monomorphism). Since the edge e : ∆1 → B is a split monomorphism in B, there exists
by (1.5.28) a map ∆2 → B in which the 02 edge is degenerate and the 01 edge is e. The
degenerate edge certainly lifts to A, so it suffices to solve the lifting problem for the pair
(∆2, 02), which is filtered by pushouts of right horns.

1.5.45 Definition (∞-groupoid). An∞-groupoid is an∞-category in which every morphism
is an isomorphism (by (1.5.44), this is equivalent to being a Kan complex).

1.5.46 Definition (Core of an∞-category). For an∞-category C, its core is the subcomplex
C' ⊆ C defined as those simplices all of whose edges are isomorphisms. A functor C → D
evidently restricts to a functor C' → D'.
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The characterization of isomorphisms in an ∞-category by an extension property (1.5.44)
leads naturally to the notion of a ‘marked simplicial set’.

1.5.47 Definition (Marked simplicial set). A marked simplicial set is a pair (X,S) consisting
of a simplicial set X and a set S ⊆ X1 of its edges (called the ‘marked edges’) containing all
degenerate edges. A morphism of marked simplicial sets (X,S)→ (X ′, S ′) is a morphism of
simplicial sets X → X ′ which sends every marked edge of X to a marked edge of X ′. The
category of marked simplicial sets is denoted sSet+.

By default, a simplicial set X will be regarded as being equipped with the trivial marking,
consisting of only the degenerate edges, unless specified otherwise (this defines a fully faithful
functor sSet ↪→ sSet+); for emphasis, the trivial marking is also denoted X[. We denote by
X] the simplicial set X with all its edges marked. Note that the product of marked simplicial
sets (X,S)× (X ′, S ′) is the product of underlying simplicial sets X ×X ′ with a marking of
those edges whose images in X and X ′ are both marked.

1.5.48 Definition (Marked horn). The marked horn (∆n,Λn
i )∼ is the usual horn (∆n,Λn

i )
with a marking of the edge 01 if i = 0 and of the edge (n− 1, n) if i = n.

1.5.49 Example (Marking isomorphisms in an ∞-category). Let C be an ∞-category. We
denote by C\ the result of marking all the isomorphisms in C. Thus (1.5.44) says that C\
satisfies the extension property with respect to all marked horns. Conversely, if a marked
simplicial set (X,S) satisfies the extension property with respect to all marked horns, then
X is an ∞-category and every marked edge is an isomorphism (though S need not contain
all isomorphisms).

1.5.50 Proposition (Isomorphisms in diagram categories). The functor Fun(K,C) →
Fun(K0,C) =

∏
k∈K C reflects isomorphisms.

Proof. We seek to show the extension property for maps (∆n,Λn
0 )→ Fun(K,C) in which the

image of the edge 01 in Fun(K0,C) =
∏

k∈K C is an isomorphism. Equivalently, this is the
extension property for maps of marked simplicial sets (∆n,Λn

0 )∼ ∧K → C\. It thus suffices to
show that the smash product (∆n,Λn

0 )∼ ∧ (∆k, ∂∆k) is filtered by pushouts of marked horns.
We verify this property next (1.5.51) (stated separately for later use).

1.5.51 Lemma. The smash product (∆n,Λn
0 )∼ ∧ (∆k, ∂∆k) is filtered by pushouts of marked?

left horns.

Proof. This argument is similar to (1.5.20).
We saw earlier that (∆n,Λn

0 )∧(∆k, ∂∆k) is filtered by pushouts of horns (∆m,Λm
j ) (1.4.16).

Let us argue that all the horns (∆m,Λm
j ) appearing in this filtration are marked left horns.

The cone point j ∈ ∆m of every such horn is the vertex v in (1.4.16.1); in particular, it
projects to the cone point 0 ∈ ∆n. The image of the map ∆m → ∆n thus both contains 0
and cannot be contained in Λn

0 , which together imply that ∆m � ∆n is in fact surjective.
This implies 0 ≤ j < m.

Let us now further show that in the case j = 0, the edge 01 ⊆ ∆m is marked in the
product (∆n,Λn

0 )∼ ∧ (∆k, ∂∆k). Property (1.4.16.3) says that ∆m → ∆k must be surjective,
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so if the image of j in ∆k (i.e. the vertical coordinate of v) is > 0, then the horn (∆m,Λm
j )

is inner. Thus j = 0 occurs precisely when v = (0, 0). By definition of v, this means the
lattice path in question (corresponding to σ) contains (1, 0) ∈ ∆n × ∆k. Now properties
(1.4.16.2) and (1.4.16.4) together imply that ∆m ⊆ ∆n ×∆k must contain this point (1, 0).
We conclude that the edge 01 ⊆ ∆m is the product of the edge 01 ⊆ ∆n and the degenerate
edge over 0 ∈ ∆k, and hence is marked in the product (∆n,Λn

0 )∼ ∧ (∆k, ∂∆k).

1.5.52 Exercise. Show that for any inner fibration Q → X, the functor Sec(Q/X) →∏
x∈X Qx reflects isomorphisms.

1.5.53 Exercise. Let X → Y be a left fibration. Associate to any edge y → y′ in Y a map
Xy → Xy′ by lifting the pair Xy × (∆1, 0), and show that this map is well defined up to
homotopy. Show that for any 2-simplex in Y with vertices y, y′, y′′, the resulting triangle
commutes up to homotopy. Conclude that this defines a diagram Y → hSpc.

1.5.54 Exercise (Alternative model for slice categories). Let C be an ∞-category, and let
c ∈ C be an object. Recall that the slice category C/c is defined by the property that map
Z → C/c from a simplicial set Z is the same as a map ZB → C sending the cone point to c.
Define an ‘alternative model’ slice category C/c by the property that a map Z → C/c is a
map Z ×∆1 → C sending Z × 1 to c.

Let us show that C/c and C/c are equivalent over C. We construct a simplicial set Q with
trivial Kan fibrations C/c ← Q→ C/c over C. Define Q by the property that a map Z → Q
is a map (Z ×∆1)B → C sending (Z × 1)B to c. Now Q maps to C/c and C/c by restricting
to (Z × 0)B and Z ×∆1, respectively.

The map Q→ C/c being a trivial Kan fibration amounts to the extension property for
maps ((∆k, ∂∆k) ∧ (∆1, 1)) ? (∗,∅) → C. This extension property holds since this pair is
filtered by pushouts of inner horns (1.5.51)(??).

The map Q→ C/c being a trivial Kan fibration amounts to the extension property for
maps ((∆k, ∂∆k) ∧ (∆1, ∂∆1))B → C sending (∆k × 1)B to c. This extension property holds
since this pair is filtered by pushouts of right horns whose marked edge maps to c (??)(??).

1.5.55 Example (Inverting an isomorphism). Given an isomorphism e in an ∞-category C,
in what sense is its inverse e−1 defined and unique, and in what sense is (e−1)−1 = e? Here is
one possible answer to this question.

Let Iso denote the category with two objects a and b and a single morphism between any
pair of objects (thus a and b are isomorphic). Given an ∞-category C, a functor

Iso→ C (1.5.55.1)

a describes a pair of (homotopy coherently) inverse morphisms in C. Note that this picture is
symmetric via the obvious involution of the category Iso exchanging the objects a and b. Now
to express mathematically the claim that an isomorphism in C has a homotopically unique
inverse, let us argue that the restriction map

Fun(Iso,C)→ Fun(∆1,C) (1.5.55.2)



CHAPTER 1. CATEGORY THEORY 52

is a trivial Kan fibration over the full subcategory of Fun(∆1,C) spanned by the isomorphisms
in C. Note that a map from Z ∈ sSet to this full subcategory is a map of marked simplicial
sets Z × (∆1)] → C\. The desired trivial Kan fibration property thus amounts to the
extension property for maps (Iso\, (∆1)]) ∧ (∆k, ∂∆k) → C\. It thus suffices by (1.5.51) to
filter (Iso\, (∆1)]) by pushouts of marked horns. The nerve of Iso has precisely two non-
degenerate simplices of every dimension. Let Isok ⊆ Iso denote the (k − 1)-skeleton union
either one of the non-degenerate k-simplices (doesn’t matter which). Now the pullback of
Isok ⊆ Iso under the inclusion of a non-degenerate (k + 1)-simplex into Iso is an outer horn
(inspection). The pair (Isok+1, Isok) is thus a pushout of an outer horn, so (Iso,∆1) = (Iso, Iso1)
is filtered by pushouts of outer horns (which are moreover marked since all morphisms in Iso
are isomorphisms).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now recall how the homotopy category of an ∞-category is naturally enriched (1.1.97)
over the homotopy category of spaces hSpc (1.4.18).

1.5.56 Definition (Mapping space HomC). Given objects x, y ∈ C, the mapping space
HomC(x, y) ∈ hSpc has a few different presentations as explicit Kan complexes.
(1.5.56.1) Homcyl

C (x, y) is defined by the property that a map Z → Homcyl
C (x, y) is a map

Z ×∆1 → C sending Z × 0 to x and sending Z × 1 to y.
(1.5.56.2) HomR

C(x, y) is defined by the property that a map Z → HomR
C(x, y) is a map

ZB → C sending Z to x and sending the cone point to y (and dually HomL
C(x, y) is

defined via maps ZC → C).
Note that HomR

C (x, y) is the fiber of C/y → C over x, while Homcyl
C (x, y) is the fiber of C/y → C

(1.5.54) over x. Thus (1.5.54) provides a canonical homotopy equivalence between HomR
C (x, y)

and Homcyl
C (x, y) (and, by symmetry, HomL

C(x, y)).

1.5.57 Exercise (Enrichment of hC over hSpc). For objects x, y, z ∈ C, let the simplicial
set Homcyl

C (x, y, z) represent the functor sending Z to the set of maps Z ×∆2 → C sending
Z × i to x, y, z for i = 0, 1, 2, respectively. Show that the forgetful map Homcyl

C (x, y, z) →
Homcyl

C (x, y) × Homcyl
C (y, z) is a trivial Kan fibration. Conclude that the forgetful map

Homcyl
C (x, y, z)→ HomC(x, z) defines a ‘composition’ morphism

HomC(x, y)× HomC(y, z)→ HomC(x, z) (1.5.57.1)

in hSpc. Show that composition is unital (composition with 1x or 1y gives the identity
map HomC(x, y) → HomC(x, y)). Define a simplicial set Homcyl

C (x, y, z, w) and use it to
show composition is associative. Conclude that this defines an enrichment of hC over hSpc,
equipped with the monoidal structure × and the functor π0 : hSpc→ Set.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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1.5.58 Definition (Equivalence of ∞-categories). A functor of ∞-categories F : C → D?

is called an equivalence iff there exists a functor G : D → C such that G ◦ F ' 1C and
F ◦G ' 1D (isomorphisms in the functor categories Fun(C,C) and Fun(D,D), respectively).

1.5.59 Remark. Consider the category hCat∞ whose objects are ∞-categories and whose
morphisms are isomorphism classes of functors. A functor of ∞-categories is an equivalence
iff it is an isomorphism in hCat∞. It follows that equivalences of ∞-categories satisfy the
2-out-of-3 property (1.1.45).

1.5.60 Exercise (Functor sSet→ hCat∞; compare (1.4.23)). Show that if X ↪→ Y is filtered
by pushouts of inner horns and C is an ∞-category, then the map Fun(Y,C)→ Fun(X,C) is
a trivial Kan fibration. Use the small object argument (??) to show that for every simplicial
set X, there exists an inclusion X ↪→ X which is filtered by pushouts of inner horns with X
an ∞-category.

1.5.61 Definition (Isofibration). A functor of ∞-categories F : C→ D is called an isofibra-?

tion when the map F \ : C\ → D\ (1.5.49) satisfies the right lifting property with respect to
marked horns (1.5.48).

1.5.62 Exercise. Show that if F : C→ D is an isofibration, then d ∈ D is in the image of F
iff it is in the essential image of F .

1.5.63 Exercise. Show that for any isofibration C → D, the induced map Fun(K,C) →
Fun(K,D) is an isofibration (use the characterization of isomorphism in functor categories
(1.5.50) and the fact that (∆k, ∂∆k) ∧ (∆n,Λn

i )∼ is filtered by pushouts of marked horns
(1.5.51)). Similarly, show that for any monomorphism K → L and any ∞-category C, the
restriction map Fun(L,C)→ Fun(K,C) is an isofibration.

1.5.64 Definition (Categorical fiber). Let F : C → D be a functor of ∞-categories. The
categorical fiber F−1(d) over an object d ∈ D is the full subcategory of CF (·)/d spanned by
isomorphisms F (c)→ d.

1.5.65 Definition (Final object). An object c ∈ C is called a final object iff the extension?

property holds for maps (∆n, ∂∆n)→ C which send the final vertex n ∈ ∆n to c (for n ≥ 1).
Dually, an initial object in C is a final object in Cop.

1.5.66 Exercise. Show that the full subcategory of C spanned by final objects is either a
trivial Kan complex or empty.

1.5.67 Exercise. Show that if c ∈ C is a final object, then C/c → C is a trivial Kan fibration.
Conclude that every diagram K → C extends to a diagram KB → C sending the final vertex
to c.

1.5.68 Exercise. Show that if c ∈ C is final, then so is its image in hC.

1.5.69 Exercise. Show that if x→ y is an isomorphism in C, then x is final iff y is final.
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1.5.70 Exercise. Let F : C→ D be a map of ∞-categories. Consider the lifting property
for diagrams

∂∆r C

∆r D

F (1.5.70.1)

where the map ∆r → D sends the final vertex r ∈ ∆r to a final object of D. Show that if
this lifting property holds for all r ≥ 1, then F reflects final objects. Show that if this lifting
property holds for all r ≥ 0, then F reflects and lifts final objects.

1.5.71 Exercise. Show that an object of
∏

i Ci is final iff its image in every Ci is final.

1.5.72 Proposition (Final objects in diagram categories). The functor Fun(K,C) →
Fun(K0,C) reflects and lifts final objects.

Proof. It suffices to show that Fun(K,C) → Fun(K0,C) satisfies the right lifting property
with respect to maps from pairs (∆r, ∂∆r) which send the final vertex r ∈ ∆r to a final
object of Fun(K0,C) (1.5.70). By filtering the pair (K,K0) by pushouts of pairs (∆k, ∂∆k)
with k ≥ 1, we reduce to the extension property for maps

(∆r, ∂∆r) ∧ (∆k, ∂∆k)→ C (1.5.72.1)

whose specialization to every vertex lying over r ∈ ∆r is final. The smash product (∆r, ∂∆r)∧
(∆k, ∂∆k) is filtered by pushouts of pairs (∆a, ∂∆a). Each map ∆a → ∆r ×∆k appearing
in this filtration must send the final vertex a ∈ ∆a to the final vertex r ∈ ∆r (otherwise
∆a ⊆ ∂∆r ×∆k). We are thus reduced to the extension problem (∆a, ∂∆a)→ C for maps
sending the final vertex a ∈ ∆a to a final object, which is solvable for a ≥ 1 (which is
guaranteed by k ≥ 1).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.73 Definition (Limit and colimit). A limit diagram is a diagram KC → C which is a?

final object in C/K . The limit of a diagram p : K → C is the image limK p ∈ C of a final
object in C/K (if one exists; otherwise the limit is not defined).

1.5.74 Proposition (Recognizing products in a fibrant simplicial category). Let C be a
fibrant simplicial category, and let X → Xα be a collection of maps in C indexed by α. If
the map C(Z,X)→

∏
α C(Z,Xα) is a homotopy equivalence for every Z ∈ C, then X is the

product
∏

αXα in (the simplicial nerve of) C.

Proof. The family of maps X → Xα determines a lift of X ∈ C to the slice category C/A,
where A denotes the set of indices α, regarded as a disjoint union of 0-simplices. Our task is
to show that this lift is a final object of C/A. In other words, we are to show the extension
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property for maps (∆n, ∂∆n) ? A→ C (n ≥ 1) whose restriction to n ? A = AC is the given
family of maps X → Xα. This amounts to the extension property for diagrams

(∆1, ∂∆1){1,...,n−1} C(Z,X)

(∆1, ∂∆1){1,...,n−1} ∧ (∆1, 0){n}
∏
α

C(Z,Xα)

×{1}{n} (1.5.74.1)

where Z is the object assigned to the initial vertex 0 ∈ ∆n. This extension property holds
since the right vertical map is a homotopy equivalence (choose to extend the top horizontal
map in the correct homotopy class rel boundary so that the subsequent extension problem
(∆1, ∂∆1){1,...,n} →

∏
α

C(Z,Xα) has a solution).

1.5.75 Example. Products (resp. coproducts) of Kan complexes are products (resp. coprod-
ucts) in the ∞-category Spc (1.5.12) by (1.5.74).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now discuss final maps of simplicial sets following Lurie [58, 4.1.1].

1.5.76 Definition (Final; Joyal). A map of simplicial sets K ′ → K is called ∞-final when?

the pullback map Sec(K,E)→ Sec(K ′,E) is a homotopy equivalence for every right fibration
E→ K.

1.5.77 Exercise. Show that if K ′ ⊆ K is filtered by pushouts of right horns, then
Sec(K,E)→ Sec(K ′,E) is a trivial Kan fibration, hence K ′ → K is ∞-final.

1.5.78 Exercise. Show that∞-final maps are closed under composition. Show that a retract
of an ∞-final map is ∞-final.

1.5.79 Exercise. For maps K f−→ L g−→M , show that if f and g ◦ f are ∞-final, then so is g.
Show by example that if g and g ◦ f are ∞-final, it need not be the case that f is ∞-final.

1.5.80 Lemma. An ∞-final map of simplicial sets is a homotopy equivalence.

Proof. LetK → K ′ be∞-final. As a special case of (1.5.76), the pullback map Hom(K ′, X)→
Hom(K,X) is a homotopy equivalence for every Kan complexX. In particular, it is a bijection
on connected components, which implies the map HomhSpc(K

′,−) → HomhSpc(K,−) is an
isomorphism of functors on hSpc.

1.5.81 Lemma. A product of ∞-final maps is ∞-final.

Proof. It suffices to show that if K ′ → K is ∞-final, then so is K ′ × L → K × L for any
simplicial set L. Given a right fibration E → K × L, we can form its ‘pushforward’ to K,
which is the right fibration G → K defined by the universal property that a map from a
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simplicial set Z to G is a map Z → K together with a lift of Z ×L→ K ×L to E. The right
lifting property for G→ K with respect to (∆n,Λn

i ) follows from the right lifting property for
E→ K × L with respect to pairs (∆n,Λn

i )× L, so G→ K is indeed a right fibration (1.5.51).
Since K ′ → K is ∞-final, the pullback map

Sec(K × L,E) = Sec(K,G)→ Sec(K ′,G) = Sec(K ′ × L,E) (1.5.81.1)

is a homotopy equivalence.

1.5.82 Definition (Cartesian functor). A functor F : C→ D is called cartesian iff for every
object c ∈ C and every morphism d→ F (c) in D, the right fibration C/c×D/F (c)

D/(d→F (c)) → C
(1.5.83) is representable and the map from the image in D of its representing object to d is
an isomorphism.

1.5.83 Exercise. Use (1.5.43) to show that C/c ×D/F (c)
D/(d→F (c)) → C is a right fibration.

1.5.84 Lemma. A morphism c → c′ in C is cartesian with respect to F : C → D iff the
diagram

c′ c

F ∗F (c′) F ∗F (c)

(1.5.84.1)

is a pullback square in P(C), where F ∗ : P(D)→ P(C) denotes pullback of presheaves and we
implicitly apply Yoneda functors.

Proof.

1.5.85 Lemma. Let F : C→ D be a functor, and fix a diagram

X ′ Y ′

X Y

(1.5.85.1)

in C whose image under F is a pullback and whose bottom arrow X → Y is cartesian. In
this case, the diagram (1.5.85.1) is a pullback iff X ′ → Y ′ is cartesian.

Proof. Consider the diagrams (1.5.84.1) associated to the morphisms X → Y and X ′ → Y ′,
which fit together into a cube.

X ′ Y ′

X Y

F ∗F (X ′) F ∗F (Y ′)

F ∗F (X) F ∗F (Y )

(1.5.85.2)
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The assumptions that X → Y is cartesian and that F (1.5.85.1) is a pullback imply that two
faces of this cube are pullbacks. By cancellation for fiber products (1.1.52), X ′ → Y ′ being
cartesian and (1.5.85.1) being a pullback are both equivalent to the composite square

X ′ Y ′

F ∗F (X) F ∗F (Y )

(1.5.85.3)

being a pullback.

1.5.86 Lemma. Let F : C→ D be cartesian and suppose D has pullbacks. Then cartesian
morphisms are preserved under pullback, and F sends pullbacks of cartesian morphisms to
pullbacks in D.

Proof. Fix a cartesian morphism X → Y and an arbitrary morphism Y ′ → Y . Define a
cartesian morphism X ′ → Y ′ as the cartesian lift of F (X)×F (Y ) F (Y ′) → F (Y ). There is
a morphism X ′ → X completing the diagram (1.5.85.1) since X → Y is cartesian. Now by
construction X ′ → Y ′ is cartesian and F (1.5.85.1) is a pullback, so (1.5.85.1) is a pullback
(1.5.85). By construction, the morphism X ′ → Y ′ is cartesian and the image F (1.5.85.1) is a
pullback.

1.5.87 Definition (Relative limit). Let X → Y be an inner fibration. Given a simplicial set
K and a diagram of solid arrows

K X

KC Y

(1.5.87.1)

we can consider the simplicial set of dotted lifts. This is an∞-category since (KC, K)∧(∆n,Λn
i )

is filtered by pushouts of inner horns when 0 < i < n (1.5.20). A final object in this∞-category
is called the relative limit of the diagram.

1.5.88 Definition (Relative functor category). Let X → Y be a map of simplicial sets,
and let C be an ∞-category. The relative functor category FunY (X,C) is the simplicial set
defined by the universal property that a map Z → FunY (X,C) is a pair of maps Z → Y and
X ×Y Z → C.

Formation of the relative functor category is compatible with pullback: if X ′ → Y ′

is a pullback of X → Y , then the natural map FunY ′(X
′,C) → FunY (X,C) ×Y Y ′ is an

isomorphism. In the case Y = ∗, the relative functor category reduces to the usual functor
category Fun(X,C). The fiber of the map FunY (X,C) → Y over a point y ∈ Y is thus the
functor category Fun(Xy,C).

1.5.89 Definition (Weak Kan extension). Let f : A → B be a functor. Given a functor
G : A→ E, a weak left Kan extension of G along f is a functor f!G : B→ E and a natural
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transformation η : G→ f!G ◦ f such that the pair (f!G, η) is an initial object in the category
Fun(B,E)G/f∗(·).

A B

E

f

G
⇒

f!G
(1.5.89.1)

When every G has a weak left Kan extension, the resulting left adjoint to f ∗ is denoted
f! : Fun(A,E)→ Fun(B,E). The dual notion is called weak right Kan extension and is denoted
f∗, which is right adjoint to f ∗.

The category of functors H : B→ E equipped with a natural transformation G→ H ◦ f
is the category of maps

(A×∆1) ∪fA×1 B→ E (1.5.89.2)

whose restriction to A equalsG. We would like to replace the ‘mapping cylinder’ (A×∆1)∪fA×1B
in this situation with an ∞-category.

1.5.90 Exercise (Semi-orthogonal gluing). Given a functor of ∞-categories f : A→ B, let
〈A,B〉f denote the simplicial set defined by the property that a map Z → 〈A,B〉f is a map
p : Z → ∆1 and a diagram

p−1(0) A

Z B

f (1.5.90.1)

Show that 〈A,B〉f is an ∞-category.

1.5.91 Lemma. For any functor of ∞-categories f : A→ B, the tautological map

(A×∆1) ∪fA×1 B→ 〈A,B〉f (1.5.91.1)

is a categorical equivalence.

Proof. For f a monomorphism, the map (1.5.91.1) is a monomorphism as well, and we will
show that is filtered by pushouts of inner horns. We begin by classifying the non-degenerate
simplices of 〈A,B〉f . A simplex σ : ∆k → 〈A,B〉f is (given injectivity of A→ B) a simplex
πBσ : ∆k → B along with a map pσ : ∆k → ∆1 such that πBσ(p−1

σ (0)) ⊆ A. The simplex σ is
non-degenerate in precisely the following two situations:
(1.5.91.2) The simplex πBσ is non-degenerate.
(1.5.91.3) The simplex πBσ is the composition of a surjection ∆k � ∆k−1 (say identifying

vertices i and i+1) with a non-degenerate simplex τ : ∆k−1 → B and pσ([0 · · · i]) = 0
and pσ([i+1 · · · k]) = 1.

We group the non-degenerate simplices of 〈A,B〉f by their associated (as above) non-degenerate
simplex of B.
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We now define a filtration of the pair (〈A,B〉f , (A×∆1)∪fA×1 B) as follows. We filter B by
simplices (∆r, ∂∆r), and in this order we add all the associated non-degenerate simplices of
〈A,B〉f . Adding the non-degenerate simplices of 〈A,B〉f associated to a given non-degenerate
τ : ∆r → B amounts to attaching the pair ((∆a, ∂∆a) ∧ (∆1, 1)) ? (∆b, ∂∆b) where ∆r =
∆a ? ∆b and ∆a ⊆ ∆r is the maximal prefix satisfying τ(∆a) ⊆ A. The smash product
(∆a, ∂∆a) ∧ (∆1, 1) is filtered by right horns by (1.5.51), and these become inner upon join
with (∆b, ∂∆b) by (??).

1.5.92 Definition (Kan extension). Fix functors f : A→ B and G : A→ E. An extension?

of G to 〈A,B〉f is called a (pointwise) left Kan extension when its pre-composition with the
tautological map

(Af(·)/b)
B → 〈A,B〉f (1.5.92.1)

is a colimit diagram in E for every b ∈ B.

1.5.93 Lemma. If f : A → B is fully faithful and g : A → E has a left Kan extension f!g,
then the natural transformation g → f ∗f!g is an isomorphism.

Proof. Consider the functor 〈A,B〉f → E underlying the left Kan extension f!g. For a ∈ A,
consider the following tautological diagram.

∆1 (Af(·)/f(a))
B

(A×∆1) ∪fA×1 B 〈A,B〉f E

1f(a):f(a)→f(a)

a× (1.5.93.1)

The diagonal arrow is a colimit diagram by definition of Kan extension, and the point
1f(a) ∈ Af(·)/f(a) is a final object since f is fully faithful, so we conclude that the composition
∆1 → E is an isomorphism. Considering now the composition ∆1 → E through the rest
of the diagram, this means precisely that the unit transformation g(a)→ (f!g)(f(a)) is an
isomorphism.

1.5.94 Corollary. Let f : A→ B be fully faithful. A functor B→ E is a left Kan extension
along f iff the composition (Af(·)/b)

B → B→ E is a colimit diagram for every b ∈ B.

Proof. Since the unit transformation g → f ∗f!g is an isomorphism for every g (1.5.93), the
functor (A×∆1) ∪fA×1 B→ E underlying a left Kan extension factors through the projection
(A×∆1) ∪fA×1 B→ 〈A,B〉f → B.

1.5.95 Corollary. If f : A → B is fully faithful, then the left Kan extension functor
f! : Fun(A,E)→ Fun(B,E) is fully faithful on its domain of definition.

Proof. Combine (1.5.93) with (??).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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We now discuss universal properties of presheaf categories, which assert (in various precise
senses) that passing to a presheaf category freely adjoins colimits.

1.5.96 Exercise. Let p : K → C be any diagram. Apply the small object argument (??) to
express p as the composition of a map K ↪→ K̂ which is filtered by pushouts of right horns
and a map p̂ : K̂ → C which is a right fibration. Note that K ↪→ K̂ is final since it is filtered
by pushouts of right horns (1.5.77) and hence that colim p→ colim p̂ is an isomorphism (??).
Combine this with the fact that a right fibration is its own colimit (??) to conclude that
colimP(C) p is the right fibration p̂ : K̂ → C.

1.5.97 Definition (Finite presheaf). A presheaf F ∈ P(C) is called finite when it is a finite?

colimit of representable presheaves. The full subcategory spanned by finite presheaves is
denoted Pfin(C) ⊆ P(C).

1.5.98 Lemma (Classification of morphisms in Pfin(C)). Let p : K → C be a finite diagram.
Every morphism out of p in Pfin(C) is isomorphic in (p ↓ Pfin(C)) to the tautological map
p→ q associated to a diagram q : L→ C, an injection K ↪→ L, and an isomorphism q|K = p.

Proof. Fix a finite diagram q : L → C and an arbitrary morphism p → q in Pfin(C). The
object q ∈ Pfin(C) is represented by the right fibration q̂ : L̂→ C obtained from q : L→ C
by applying the small object argument (1.5.96). Our morphism p → q is thus induced by
a map K → L̂ over C (??). Since K is finite and right horns are finite, this morphism
necessarily factors through the result L ⊆ L̂ of attaching just finitely many right horns to L.
The morphism colim q → colim q̄ is an isomorphism for the same reason colim q → colim q̂
is (1.5.96). Thus our morphism p → q is represented by the morphism K → L of finite
simplicial sets over C. This map may not be injective, so we may replace it with the mapping
cylinder K = K × 0 ⊆ (K ×∆1) ∪K×1 L.

1.5.99 Proposition. The full subcategory of finite presheaves Pfin(C) ⊆ P(C) is closed under?

finite colimits in P(C).

Proof. It suffices to show that a pushout of finite presheaves is finite (??). So, consider
morphisms X ← Y → Z in Pfin(C). Represent Y by a finite diagram p : K → C. By the
classification of morphisms in Pfin(C) (1.5.98), the morphisms Y → X and Y → Z are of the
form p→ q and p→ r for finite diagrams q : L→ C and r : M → C with K ⊆ L and K ⊆M
with q|K = p = r|K . We may thus consider the pushout diagram q tp r : LtKM → C, which
represents an object of Pfin(C). There is now a tautological square diagram containing p, q, r,
and q tp r, and this diagram is a pushout in P(C) by Mayer–Vietoris (??).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1.5.100 Definition (Local presheaf). Let C be an ∞-category, and let Λ be a set of?

morphisms in P(C). We denote by PΛ(C) ⊆ P(C) the full subcategory spanned by right
Λ-local objects (1.1.82).
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1.5.101 Proposition. The full subcategory PΛ(C) ⊆ P(C) is reflective.?

Proof. Represent Λ as a set of diagrams {Aα ↪→ Xα → C}α for simplicial set pairs (Xα, Aα).
A right fibration Q → C is Λ-local iff it satisfies the right lifting property with respect to
all pairs (Xα, Aα) ∧ (∆k, ∂∆k) (mapping to C via the given maps Aα ↪→ Xα → C). For
any right fibration Q → C satisfying this lifting property, if a map K ′ → C is obtained
from K → C (not necessarily a right fibration) by forming the pushout of such a right
lifting problem against a right horn or a pair (Xα, Aα) ∧ (∆k, ∂∆k), then the restriction map
Fun/C(K ′, Q)→ Fun/C(K,Q) is a trivial Kan fibration.

We can now argue that every object of P(C) has a reflection in PΛ(C). Represent an
arbitrary object of P(C) by a diagram K → C. The small object argument (??) produces
a factorization K → K → C where K → K is filtered by pushouts of right horns and pairs
(Xα, Aα) ∧ (∆k, ∂∆k) over C and K → C has the right lifting property with respect to right
horns and pairs (Xα, Aα) ∧ (∆k, ∂∆k) over C. Thus K lies in PΛ(C) and the restriction map
HomP(C)(K,Q) = Fun/C(K,Q) → Fun/C(K,Q) = HomP(C)(K,Q) is a trivial Kan fibration
for all left fibrations Q→ C in PΛ(C).

1.5.102 Warning. It is tempting to claim the converse to (1.5.101) (every reflective subcat-
egory of P(C) is of the form PΛ(C) for some set of morphisms Λ, namely the collection of all
reflections) by applying (1.1.83), however this argument is flawed since the collection of all
reflections need not be a set.

1.5.103 Lemma. The reflector rΛ : P(C)→ PΛ(C) sends morphisms in Λ to isomorphisms.

Proof. Let ` ∈ Λ. The morphism rΛ` is an isomorphism iff Hom(rΛ`,X) is an isomorphism
for every X ∈ PΛ(C). We have Hom(rΛ`,X) = Hom(`,X) for X ∈ PΛ(C), and Hom(`,X) is
an isomorphism for all X ∈ PΛ(C) by definition of PΛ(C).

1.5.104 Lemma. A functor F : P(C)→ E sending reflections X → rΛX to isomorphisms
sends all morphisms in Λ to isomorphsms.

Proof. Suppose F sends reflections to isomorphisms. Given a morphism ` : X → Y in Λ,
consider the diagram

F (X) F (Y )

F (rX) F (rY )

F (`)

F (X→rX) F (Y→rY )

F (r`)

(1.5.104.1)

obtained by applying F to square ` → r`. The two vertical arrows are isomorphisms
by hypothesis on F . The bottom horizontal arrow F (r`) is an isomorphism since r` is
an isomorphism (1.5.103). Thus the top horizontal map F (`) is also an isomorphism, as
desired.

1.5.105 Lemma. A cocontinuous functor F : P(C) → E sends reflections X → rΛX to
isomorphisms iff it sends all morphisms in Λ to isomorphsms.



CHAPTER 1. CATEGORY THEORY 62

Proof. One direction is given by (1.5.104), so we just need to prove the other.
Suppose F is cocontinuous and sends morphisms in Λ to isomorphisms. The construction

of the reflector r : P(C)→ PΛ(C) by the small object argument (1.5.101) exhibits the reflection
X → rX as the colimit X → colim−−−→i

Xi of a diagram over a well ordered set whose transition
maps colim−−−→i<i0

Xi → Xi0 are pushouts of pairs (Y,A) ∧ (∆k, ∂∆k) mapping to C via maps
A ↪→ Y → C in Λ. Now F is cocontinuous, so to show that F sends such a reflection to an
isomorphism, it suffices to show that it sends (the presheaf on C represented by) any such pair
(Y,A) ∧ (∆k, ∂∆k) to an isomorphism. Now this pair is simply the kth iterated codiagonal of
the morphism A→ Y in P(C), and F preserves codiagonals since it is cocontinuous, so we
are done since F sends each map A→ Y to an isomorphism by hypothesis.

1.5.106 Proposition (Universal property of local presheaves). For any cocomplete ∞-
category E, pullback along C Y−→ P(C) rΛ−→ PΛ(C) defines equivalences between the following
∞-categories of functors:
(1.5.106.1) Functors PΛ(C)→ E which are cocontinuous.
(1.5.106.2) Functors P(C)→ E which send reflections X → rX to isomorphisms.
(1.5.106.3) Functors P(C)→ E which send morphisms in Λ to isomorphisms.
(1.5.106.4) Functors C→ E whose unique cocontinuous extension to P(C) satisfy the above

two equivalent conditions.

Proof. Combine the universal property of a reflective subcategory of presheaves (1.1.89) with
the equivalence for cocontinuous functors P(C)→ E of sending reflections to isomorphisms
and sending morphisms in Λ to isomorphisms (1.5.105).

1.5.107 Definition (Finite local presheaves). We denote by PΛ,fin(C) ⊆ PΛ(C) the full
subcategory spanned by finite colimits of objects of C. By reflectivity of PΛ(C) ⊆ P(C),
this is the same as the image of the finite presheaves Pfin(C) ⊆ P(C) under the reflector
P(C)→ PΛ(C).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now study ∞-sifted colimits following [79] and [58, 5.5.8].

1.5.108 Definition (∞-sifted). A simplicial set K is called∞-sifted when the diagonal map?

K → Kn is ∞-final (1.5.76) for all n ≥ 0.

1.5.109 Exercise. Use (1.5.80) to show that a sifted simplicial set is contractible.

1.5.110 Lemma. A simplicial set K is ∞-sifted iff it is non-empty and the diagonal map
K → K ×K is ∞-final.

Proof. Suppose K is non-empty and K → K2 is ∞-final, and let us show that K → Kn is
∞-final for all n ≥ 0 (the other direction is trivial). The case n = 1 is trivial, and the cases
n ≥ 2 follow by induction upon expressing the diagonal map ∆n : K → Kn as the composition
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of ∆n−1 and 1Kn−2 ×∆2 and recalling that ∞-final maps are closed under composition and
products (1.5.81).

For the case n = 0, it suffices (and, in fact, is necessary (1.5.80)) to show that K is
contractible. Since K → K×K is∞-final, it is a homotopy equivalence, hence acts bijectively
on homotopy groups/sets (??). On the other hand, the homotopy group/set functors preserve
products, so the diagonal maps of the homotopy groups/sets of K are bijections. This implies
they are trivial, so K is contractible by Whitehead’s Theorem (??).

1.5.111 Exercise. Let K → L be ∞-final. Show that if K is ∞-sifted then L is ∞-sifted.
Show by example that if L is ∞-sifted then K need not be ∞-sifted.

1.5.112 Definition (Formal ∞-sifted colimits). We define Sif(C) ⊆ P(C) to consist of those?

presheaves which are ∞-sifted colimits of representable presheaves.

1.5.113 Lemma. A presheaf lies in Sif(C) iff the total space of its corresponding right
fibration over C is ∞-sifted.

Proof. For any right fibration π : E → C, the corresponding object of P(C) is the colimit
colim

P(C)
E π. Thus if E is ∞-sifted then the corresponding object of P(C) lies in Sif(C) ⊆ P(C).

Conversely, suppose K is ∞-sifted and p : K → C is a diagram. Apply the small object
argument (??) to factor p as the composition K → K̂ → C of a right fibration p̂ : K̂ → C
and a map K → K̂ filtered by pushouts of right horns. The map K → K̂ is ∞-final (1.5.77),
so colim

P(C)
K p = colim

P(C)

K̂
p̂ is the object corresponding to the right fibration p̂ : K̂ → C. The

total space K̂ is ∞-sifted since K is ∞-sifted and K → K̂ is ∞-final (1.5.111).

1.5.114 Lemma. Let f : C→ D be a functor, and let F → G be a morphism in P(C). The
left Kan extension functor f! : P(C)→ P(D) preserves all pullbacks of F → G iff it preserves
the pullback diagrams

F ×G c′ F ×G c

c′ c

(1.5.114.1)

for all morphisms c′ → c→ G from c′, c ∈ C.

Proof. The diagram (1.5.114.1) is the pullback of F → G along c′ → c→ G, which is more
fully illustrated as follows.

F ×G c′ F ×G c F

c′ c G

(1.5.114.2)

Now if f! preserves every pullback of F → G, then it preserves the right fiber square and
composite fiber square above, hence preserves the left fiber square (1.5.114.1) by cancellation
(1.1.52).
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It remains to show that if f! preserves all fiber squares (1.5.114.1), then it preserves all
pullbacks of F → G. Consider the pullback of F → G under a morphism Z → G from
arbitrary Z ∈ P(C). Writing Z as a colimit of representables and appealing to the fact that
presheaf pullback is cocontinuous (??) and f! is cocontinuous, we may reduce to the case that
Z is representable. That is, we are to show that f! preserves the pullback square

F ×G c0 F

c0 G

(1.5.114.3)

for any map c0 → G from c0 ∈ C. Present G via the tautological colimit diagram G =
colim(C↓G) c and note F = colim(C↓G) F ×G c (??). Thus we would like to show that the
following pullback square

F ×G c0 colim
(C↓G)

F ×G c

c0 colim
(C↓G)

c

(1.5.114.4)

in P(C) is preserved by f!. Note that we can see the square (1.5.114.4) to be a pullback using
(1.5.116) since the diagram (C ↓ G) → Fun(∆1,P(C)) given by F ×G c → c sends edges in
(C ↓ G) to pullback squares in P(C). This property is preserved by f! by assumption (1.5.114.1),
so since f! is cocontinuous, we conclude it sends (1.5.114.4) to a pullback square.

1.5.115 Corollary (Pullbacks and properties preserved by presheaf left Kan extension). Let?

f : C→ D be a functor. If f preserves pullbacks, then f! : P(C)→ P(D) preserves pullbacks
of representable morphisms (in particular, sends representable morphisms to representable
morphisms). More generally, for properties of morphisms P (in C) and Q (in D) preserved
under pullback, if f sends pullbacks of P-morphisms to pullbacks of Q-morphisms (in particular,
sends P-morphisms to Q-morphisms), then so does f!.

Proof. We apply (1.5.114). If F → G is a P-morphism in P(C), then the pullbacks (1.5.114.1)
are pullbacks of P-morphisms in C, hence are preserved by f by assumption. Thus (1.5.114)
guarantees that f! preserves all pullbacks of F → G. To see that f!(F → G) is a Q-morphism,
note that every morphism d → f!G from d ∈ D factors through f!(c → G) for some c ∈ C,
and the pullback f!(F ×G c→ c) of f!(F → G) is a Q-morphism in D by hypothesis on f .

1.5.116 Lemma. Let p→ q be a morphism in Fun(K, Spc). If the map p→ q sends edges
in K to pullback squares in Spc, then the diagram

p(v) colim
K

p

q(v) colim
K

q

(1.5.116.1)
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is a pullback in Spc.

Proof. Using the small object argument (??), represent p → q as a composition of left
fibrations P → Q→ K. Consider the diagram

Pk Pk′

Qk Qk′

(1.5.116.2)

associated to an edge k → k′ in K. Given an edge q → q′ in Q lying over k → k′, there is
a map Pq → Pq′ induced by the fact that P → Q is a left fibration. Equivalently, this is
the map from the homotopy fiber of Pk → Qk over q to the homotopy fiber of Pk′ → Qk′

over q′ induced by the edge q → q′. Since the square (1.5.116.2) is a pullback, this map
is a homotopy equivalence. Now any left fibration P → Q for which the maps Pq → Pq′
associated to edges q → q′ in Q are homotopy equivalences is a Kan fibration (??).

Now the desired diagram (1.5.116.1) may be realized concretely as the pullback of simplicial
sets

P ×K v P

Q×K v Q

(1.5.116.3)

which remains a pullback in Spc since P → Q is a Kan fibration.



Chapter 2

Topology

2.0.1 Definition (Topological space). A topology on a set X is a collection of subsets T ⊆ 2X?

(called ‘open subsets’) satisfying the following axioms:
(2.0.1.1) ∅ and X are open.
(2.0.1.2) If U and V are open, then is U ∩ V is open.
(2.0.1.3) If Uα are open, then

⋃
α Uα is open.

A subset is called closed when its complement is open. A topological space is a set equipped
with a topology. A map between topological spaces is called continuous when the inverse
image of every open subset is open. The category of topological spaces is denoted Top.

2.0.2 Definition (Neighborhood). Let X be a topological space, and let x ∈ X be a point.
A neighborhood of x is a subset N ⊆ X containing an open subset U ⊆ X which contains
x. A neighborhood base at x is a collection N of neighborhoods of x with the property that
every open subset U ⊆ X containing x contains some N ∈ N. To say that x has ‘arbitrarily
small’ neighborhoods with some property means that the collection of all neighborhoods of x
with this property is a neighborhood base of x.

2.0.3 Definition (Locally compact). A topological space is called locally compact iff every
point has arbitrarily small compact neighborhoods.

66
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2.1 Properties of morphisms
We recall here some important properties of morphisms (1.1.40) of topological spaces.

2.1.1 Exercise. Show that the following properties of morphisms of topological spaces?

f : X → Y are closed under composition (1.1.43).
(2.1.1.1) f is open (i.e. the image of any open set is open).
(2.1.1.2) f is closed (i.e. the image of any closed set is closed).
(2.1.1.3) f is an embedding (i.e. a homeomorphism onto its image).
(2.1.1.4) f has local sections (i.e. there is an open cover Y =

⋃
i Ui such that each inclusion

Ui → Y factors through X → Y ).

X

Ui Y

Show that the following properties of morphisms of topological spaces f : X → Y are
preserved under pullback (1.1.54).
(2.1.1.5) f is open.
(2.1.1.6) f is an embedding.
(2.1.1.7) f is a closed embedding.
(2.1.1.8) f is has local sections.

Show that being closed is not preserved under pullback, but that it is preserved under pullback
along open embeddings.

2.1.2 Exercise (Locally closed embedding). A map of topological spaces X → Y is called a
locally closed embedding iff it can be factored as a closed embedding X → U followed by an
open embedding U → Y . Show that locally closed embeddings are preserved under pullback
and closed under composition.

2.1.3 Exercise (Locally trivial). A map of topological spaces X → Y is called locally trivial
iff there exists an open cover Y =

⋃
i Ui such that each restriction X×Y Ui → Ui is isomorphic

to the projection Ui × Fi → Ui for some topological space Fi. Show that being locally trivial
is preserved under pullback.

2.1.4 Exercise (Local isomorphism). A map of topological spaces X → Y is called a?

local isomorphism iff there exists a collection of open embeddings {Vi → X} which is jointly
surjective (an ‘open covering’) such that each composition Vi → X → Y is an open embedding.
Show that local isomorphisms are preserved under pullback and closed under composition.

2.1.5 Definition (Target-local property). Let P be a property of morphisms of topological?

spaces. We say P is local on the target when for every open cover Y =
⋃
i Ui, a morphism

X → Y has P iff every pullback X ×Y Ui → Ui has P. In particular, P is preserved under
pullback by open embeddings.
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2.1.6 Exercise. Show that the properties of morphisms of topological spaces (2.1.1.1)–
(2.1.1.4) and (2.1.2)–(2.1.4) are local on the target.

2.1.7 Exercise. Let P be a property of morphisms of topological spaces which is preserved
under pullback. Show that P is local on the target iff it satisfies the following two properties.
(2.1.7.1) For every map X → Y and every map Z → Y admitting local sections, if

X ×Y Z → Z has P then so does X → Y .
(2.1.7.2) If a collection of maps fi : Xi → Yi all have P, then so does their disjoint union⊔

i fi :
⊔
iXi →

⊔
i Yi.

2.1.8 Exercise. Let P be a property of morphisms of topological spaces which is local on
the target (hence, in particular, preserved under pullback by open embeddings). Show that
P is preserved under pullback by local isomorphisms.

2.1.9 Definition (Source-local property). Let P be a property of morphisms of topological?

spaces. We say P is local on the source when for every open cover X =
⋃
i Vi and every

collection of open sets Ui ⊆ Y on the same index set, a map f : X → Y with f(Vi) ⊆ Ui
satisfies P iff all its restrictions Vi → Ui satisfy P.

2.1.10 Exercise. Show that being open (2.1.1.1) is local on the source.

2.1.11 Exercise. Show that being a local isomorphism (2.1.4) is local on the source. Con-
versely, show that if P is local on the source and contains all isomorphisms, then it contains
all local isomorphisms. This justifies the term ‘local isomorphism’.

2.1.12 Exercise. Show that a property which is local on the source is also local on the
target.

2.1.13 Exercise. Show that if P is local on the source, then ∅ → Y has P for every
topological space Y .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Recall that closed maps of topological spaces are not preserved under pullback (2.1.1).
‘Universally closed’ is the weakest property which is preserved under pullback and implies
closed (2.1.14). It turns out that this notion is a relative form of compactness. We will see
that, like compactness, it has equivalent characterizations in terms of coverings and subnet
convergence (2.1.23).

2.1.14 Definition (Universally closed). A map of topological spaces X → Y is called
universally closed when for every map Z → Y , the pullback X ×Y Z → Z is closed.

2.1.15 Exercise. Show that being universally closed is preserved under pullback, closed
under composition, and local on the target.

2.1.16 Exercise. Show that an embedding of topological spaces is closed iff it is universally
closed.
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2.1.17 Exercise. Show that if the composition X → Y → Z is universally closed and
X → Y is surjective, then Y → Z is universally closed.

2.1.18 Definition (Limit pointed topological space). A limited pointed topological space (X, 0)
is a topological space X together with a point 0 ∈ X whose complement is dense (X \ 0 = X);
we set X∗ = X \ 0. A map of limit pointed topological spaces f : (X, 0X)→ (Y, 0Y ) is a map
satisfying f−1(0Y ) = 0X (equivalently, f(0X) = 0Y and f(X∗) ⊆ Y ∗).

A limit pointed topological space X is called discrete when X∗ has the discrete topology.
Given any limit pointed topological space X, we can consider the topology on it obtained
by adjoining all subsets of X∗ as open sets; this is called the discretization Xδ. There is an
evident map of limit pointed topological spaces Xδ → X, composition with which induces,
for discrete limit pointed topological spaces Y , a bijection between maps of limit pointed
topological spaces Y → Xδ and Y → X.

2.1.19 Exercise. Show that there is a unique topology on Z≥0∪{∞} with the property that
a map f : Z≥0 ∪ {∞} → X is continuous iff the sequence f(0), f(1), f(2), . . . converges to
f(∞). Show that Z≥0 ∪ {∞} with this topology is a discrete limit pointed topological space.

2.1.20 Definition (Swarm). A swarm in a topological spaceX is a limited pointed topological
space S and a map S∗ → X. A completed swarm is a map S → X. A limit of a swarm
S∗ → X is a point x ∈ X for which sending 0 7→ x defines a completed swarm, and a swarm
is convergent iff it has a limit. A subswarm of a swarm S∗ → X is its pre-composition with a
map of limit pointed topological spaces T → S.

A relative swarm on a map X → Y is a commuting diagram of solid arrows

S∗ X

S Y

(2.1.20.1)

and a completed relative swarm is a relative swarm along with a dotted arrow making
the diagram commute. The definition of limits, convergence, and subswarms carry over
analogously to the relative context.

A (relative) swarm is called discrete when its underlying limit pointed topological space
is discrete. Pre-composition with discretization is a subswarm.

2.1.21 Exercise. Show that the closure of a subset A of a topological space X is the set of
limits of swarms S∗ → X landing inside A.

2.1.22 Definition (Compact). A topological space X is called compact when for every open
cover X =

⋃
i Ui there exists a finite subcollection which cover X.

2.1.23 Proposition. For a map of topological spaces f : X → Y , the following are equivalent:?

(2.1.23.1) (Universally closed) For every map Z → Y , the pullback X ×Y Z → Z is closed.
(2.1.23.2) (Finite subcover property) For every {Ui ⊆ X}i covering f−1(y), there exists a

finite subcollection which cover f−1(V ) for some open neighborhood y ∈ V ⊆ Y .
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(2.1.23.3) (Subswarm lifting property) Every relative swarm on X → Y has a convergent
subswarm.

(2.1.23.4) The map X → Y is closed and has compact fibers.
These conditions are a relative version of compactness: a topological space X is compact iff
the map X → ∗ is universally closed.

Proof. Let us show the subswarm lifting property (2.1.23.3) implies universal closedness
(2.1.23.1). Since the subswarm lifting property is evidently preserved under pullback, it
suffices to show that it implies that X → Y is closed. Let A ⊆ X be closed, and let us show
that f(A) is closed. Suppose S∗ → Y is a swarm contained in f(A) converging to some y ∈ Y ,
and let us show that y ∈ f(A). By passing to a subswarm, we can assume that S∗ has the
discrete topology, and hence we can lift S∗ → Y to X so that it lands inside A. This is now
a relative swarm, which (after passing to a further subswarm) has a limit by the subswarm
lifting property, which lies in A since A is closed. We have thus shown y ∈ f(A) as desired.

Now for some properties of morphisms of topological spaces which are defined using the
relative diagonal (1.1.57).

2.1.24 Exercise. Show that the diagonal of any map of topological spaces is an embedding.
Show that the diagonal of any injective map of topological spaces is an isomorphism.

2.1.25 Exercise. Show that the diagonal of a local isomorphism of topological spaces is an
open embedding.

2.1.26 Exercise (Separated). Show that for a morphism of topological spaces f : X → Y ,?

the following are equivalent:
(2.1.26.1) Every pair of distinct points x1, x2 ∈ X in the same fiber f(x1) = f(x2) have

disjoint open neighborhoods U1 ∩ U2 = ∅, xi ∈ Ui ⊆ X.
(2.1.26.2) The relative diagonal X → X ×Y X is a closed embedding.
(2.1.26.3) Every relative swarm on X → Y has at most one limit.

A morphism satisfying these conditions is called separated ; this is a relative version of the
Hausdorff property (X is Hausdorff iff X → ∗ is separated). Show that being separated is
preserved under pullback, closed under composition, and local on the target.

2.1.27 Exercise (Proper). A map of topological spaces is called proper iff all its iterated?

diagonals are universally closed. Show that a map has proper diagonal iff it is separated.
Conclude that a map is proper iff it is separated and universally closed (in particular, X → ∗
is proper iff X is compact Hausdorff).

2.1.28 Exercise. Show that a map of topological spaces is a proper local isomorphism iff it
is locally trivial (2.1.3) with finite fibers.

Now that we have seen the notions of separatedness and properness, let us have a more
abstract discussion of properties of morphisms of topological spaces defined in terms of their
diagonal (1.1.59).
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2.1.29 Exercise. Let P be a property of morphisms of topological spaces which is local on
the target. Show that P∆ is also local on the target.

One reason to consider properties of the diagonal is to apply cancellation (1.1.62).

2.1.30 Exercise. Prove both directly and using cancellation that if X → Y → Z are maps
of topological spaces whose composition X → Z is separated, then the first map X → Y is
separated.

2.1.31 Exercise. Prove both directly and using cancellation that if X → Y → Z are maps
of topological spaces whose composition X → Z is an embedding, then the first map X → Y
is an embedding.

2.1.32 Exercise. Prove both directly and using cancellation that if X → Y → Z are maps
of topological spaces with X → Z an open embedding and Y → Z is a local isomorphism,
then X → Y is an open embedding. Conclude that any section of a local isomorphism is an
open embedding.

2.1.33 Exercise. Prove both directly and using cancellation that if X → Y → Z are maps
of topological spaces with X → Z universally closed and Y → Z separated, then X → Y is
universally closed. Deduce that a compact subspace of a Hausdorff space is closed.
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2.2 Sheaves
A presheaf F on a topological space X assigns to each open subset U ⊆ X a set F (U) and
to each inclusion V ⊆ U a ‘restriction’ map F (U)→ F (V ), compatible with composition for
triples W ⊆ V ⊆ U . A presheaf F is called a sheaf when, roughly speaking, an element of
F (U) amounts to local data on U , where ‘locality’ is understood via the restriction maps.
Sheaves originated in work of Leray [54, 64], though the modern definition of a sheaf was
formulated a bit later, notably by Cartan. It makes sense to consider presheaves and sheaves
valued in any category, not just the category of sets. Sheaves valued in 2-categories were first
considered by Giraud [25], who introduced sheaves valued in the 2-category of groupoids.
More generally, one can consider sheaves valued in any ∞-category.

Here we review the basic theory of sheaves, sheafification, pushforward, pullback, etc. We
will also explain the meaning and the utility of ∞-categories in the context of sheaves.

2.2.1 Definition (Category of open subsets). Let X be a topological space. We denote by
Open(X) the poset of open subsets of X, regarded as a category as in (1.1.3); that is, an
object of Open(X) is an open subset U ⊆ X, and there is a single morphism from U to V
when U ⊆ V .

2.2.2 Definition (Presheaf on a topological space). A presheaf on a topological space?

X valued in C is a functor Open(X)op → C. The category of such presheaves is denoted
P(X;C) = Fun(Open(X)op,C). By default, a presheaf without further qualification is a
presheaf of sets (that is, valued in Set); notationally P(X) = P(X; Set). Dually, a precosheaf
is a functor Open(X)→ C.

2.2.3 Example. Here are some examples of presheaves.
(2.2.3.1) For any topological space X, we can assign to U ⊆ X the set C(U) of continuous

functions U → R, and to an inclusion U ⊆ V the restriction map C(V )→ C(U). Thus
U 7→ C(U) is a presheaf on X.

(2.2.3.2) U 7→ C(U × U) is a presheaf on any topological space.
(2.2.3.3) Associating to U ⊆ X the set of embeddings of U into Rn (some fixed n) is a

presheaf (the restriction of an embedding is an embedding).
(2.2.3.4) The constant presheaf assigns to every U ⊆ X a fixed set S and to every inclusion

the identity map 1S.
(2.2.3.5) Associating to U the set of isomorphism classes of vector bundles on U is a presheaf.
(2.2.3.6) On a smooth manifold, the assignment U 7→ C∞(U) is a presheaf.
(2.2.3.7) On a smooth manifold, assigning to U the set of smooth embeddings of U into a

fixed Rn is a presheaf.
(2.2.3.8) On a smooth manifold, assigning to U the set of smooth immersions of U into a

fixed Rn is a presheaf.
We have omitted an explicit description of the restriction maps for most of these examples
since they are quite obvious. The same holds for most presheaves we will encounter.
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2.2.4 Definition (Čech descent). Let F be a presheaf on a topological space X. Given any?

open covering X =
⋃
i Ui, there is a natural map

F (X)→ lim
(∏

i

F (Ui)→→
∏
i,j

F (Ui ∩ Uj)
)
, (2.2.4.1)

and we say that F satisfies descent for the open cover X =
⋃
i Ui when this map is an

isomorphism.

2.2.5 Definition (Sheaf on a topological space). A presheaf F on a topological space X is?

called a sheaf when it satisfies descent (2.2.4) for all open covers of all open subsets of X.
The category of sheaves Shv(X;C) is the full subcategory of P(X;C) spanned by sheaves.
As with presheaves, the default is C = Set unless specified otherwise. Dually, a cosheaf is a
precosheaf satisfying descent (for its opposite presheaf).

2.2.6 Example. The presheaf of continuous real valued functions (2.2.3.1) is a sheaf on any
topological space X. This amounts to two separate assertions: (i) to specify a function, it is
equivalent to specify it on an open cover subject to the requirement of agreement on overlaps,
and (ii) a function is continuous iff it is locally continuous. There is nothing special about
the target being R: the same holds for continuous functions C(−, Z) valued in any fixed
topological space Z.

2.2.7 Exercise. Of the remaining presheaves (2.2.3.2)–(2.2.3.8), which are sheaves? For
those which are not, what exactly fails?

2.2.8 Exercise. Show that the identity functor Top→ Top is a cosheaf.

It turns out that the sheaf property, namely Čech descent (2.2.4), admits an equivalent
formulation in terms of so-called ‘covering sieves’. This alternative formulation is often useful.

2.2.9 Definition (Sieve). A sieve S on a topological space X is a set of open subsets U ⊆ X
with the property that V ⊆ U ∈ S implies V ∈ S. A covering sieve S on X is a sieve for
which

⋃
U∈S U = X. The set of covering sieves on a topological space X is denoted J(X).

2.2.10 Definition (Sieve descent). Let F be a presheaf on a topological space X. Associated
to any covering sieve S ∈ J(X) is a map

F (X)→ lim
U∈S

F (U). (2.2.10.1)

When this map is an isomorphism, we say that F satisfies descent for the covering sieve S.

2.2.11 Exercise (Sieve descent equals Čech descent). Show that a presheaf satisfies descent
for all covering sieves on X iff it satisfies descent for all open coverings of X.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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2.2.12 Exercise (Étale space). Fix a topological space X. Let Toplociso
/X ⊆ Top/X denote the

full subcategory spanned by local isomorphisms to X. Consider the functor

Toplociso
/X → Shv(X) (2.2.12.1)

sending a local isomorphism A → X to its sheaf of sections. Show that this functor is an
equivalence of categories, and that it identifies pullback of sheaves with pullback of local
isomorphisms. The local isomorphism over X corresponding to a sheaf F on X is called the
étale space of F .

2.2.13 Proposition (Sheafification). The inclusion Shv(X) ⊆ P(X) is a reflective subcate-?

gory whose left adjoint, termed sheafification and denoted F 7→ F#, is given by applying †
twice.

2.2.14 Definition (Čech nerve). Let X =
⋃
i∈I Ui be an open cover. Denote by 2Ifin the?

category of finite subsets of I, and consider the functor (2Ifin)op → Top given by A 7→
⋂
i∈A Ui

(in particular ∅ 7→ X). We may regard 2Ifin as the cone (2Ifin\∅)C and thus obtain a comparison
map

N(X, {Ui}i∈I) =
P(Open(X))

colim
∅6=A⊆I
|I|<∞

⋂
i∈A

Ui → X. (2.2.14.1)

The Čech nerve N(X, {Ui}i∈I) of the open cover X =
⋃
i∈I Ui is the above formal colimit (i.e.

colimit in P(Open(X))) over (2Ifin \∅)op.

2.2.15 Definition (Homotopy coherent pushforward and pullback). Consider the category
Open o Top of pairs (X,U) where X is a topological space and U ⊆ X is an open subset,
in which a morphism (X,U) → (Y, V ) is a map f : X → Y with f(U) ⊆ V (equivalently
U ⊆ f−1(V )). The functor

Openo Top→ Top (2.2.15.1)
(X,U) 7→ X (2.2.15.2)

is (by inspection) cartesian, the cartesian edges being the morphisms (X, f−1(V ))→ (Y, V )
for f : X → Y . This cartesian functor encodes the categories Open(X) for topological spaces
X and the functors f−1 = Open(f) : Open(Y )→ Open(X) for maps f : X → Y .
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2.3 Topological stacks
In (2.2), we studied sheaves on a fixed topological space. We now turn to sheaves on the
category of all topological spaces, where the discussion takes a markedly different, more
geometric, flavor. We will call a sheaf on the category of topological spaces a topological
stack (we find this terminology the most descriptive, though it is not standard). The Yoneda
functor gives a fully faithful embedding from the category of topological spaces into the
category of topological stacks

Top ⊆ Shv(Top), (2.3.0.1)

and it is helpful to regard topological stacks as ‘generalized topological spaces’. We will
see how to generalize many natural notions and constructions from topological spaces to
topological stacks. Arbitrary topological stacks are a bit like arbitrary topological spaces:
they can be very pathological and are not of so much interest. There is a particularly nice class
of topological stacks, namely those which admit a representable atlas ; they are equivalent, in
a certain sense, to ‘topological groupoids’ as introduced by Ehresmann [20] and developed
by Haefliger [27, 28, 29] and others. Examples of such topological stacks include orbifolds
[80, 86] and graphs/complexes of groups [29].

References for the theory we are about to discuss include Noohi [71] and Heinloth [30].
It is a topological analogue of the theory of algebraic stacks originating from Grothendieck,
Deligne–Mumford [12], and Artin [4], for which a comprehensive reference is Laumon–Moret-
Bailly [51]. This topological analogue is an easier, more elementary, version of the algebraic
theory; it was documented only much later in Noohi [71]. An intuitive geometric introduction
may be found in Behrend [7].

We will work in the generality of sheaves of ∞-groupoids Shv(−) = Shv(−; Spc). We
emphasize, however, that the reader may restrict to the technically and conceptually simpler
setting of sheaves of groupoids Shv(−;Grpd) ⊆ Shv(−; Spc) and retain the essence of the
discussion (in fact, this is the setting addressed by all of the aforementioned references).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.1 Definition (Topological stack). A topological stack is a sheaf on Top valued in?

the ∞-category Spc (that is, a functor Topop → Spc satisfying descent for open covers
(2.2.4)(2.2.10)(??)). Topological stacks form the ∞-category Shv(Top).

2.3.2 Proposition (Universal property of topological stacks). For any cocomplete∞-category
E, pullback along the functors Top YTop−−→ P(Top) #−→ Shv(Top) defines equivalences between the
following ∞-categories of functors:
(2.3.2.1) Cocontinuous functors Shv(Top)→ E.
(2.3.2.2) Cocontinuous functors P(Top)→ E which send sheafifications to isomorphisms.
(2.3.2.3) Cocontinuous functors P(Top)→ E which send Čech nerves N(X, {Ui}i)→ X to

isomorphisms.
(2.3.2.4) Cosheaves Top→ E.
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Proof. This is a special case of the universal property of local presheaves (1.5.106), given
the fact that a presheaf is a sheaf iff it is right local (1.1.82) with respect to Čech nerves
N(X, {Ui}i)→ X (??).

2.3.3 Definition (Point of a topological stack). A point x of a topological stack X is a map?

x : ∗ → X, i.e. it is an object x ∈ X(∗) (also simply written x ∈ X).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Recall the notion of a representable morphism of presheaves (1.1.90) and induced properties
(1.1.92).

2.3.4 Example (Open cover). A morphism of topological stacks U → X is called an open
embedding (1.1.92) when for every morphism Z → X from a topological space Z, the pullback
U ×X Z → Z is an open embedding of topological spaces. A collection of open embeddings
{Ui → X}i is called an open cover when for every morphism Z → X from a topological space
Z, the collection of pullbacks {Ui ×X Z → Z}i is an open cover.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.5 Definition (Admits local sections). A map of topological stacks X → Y is said to?

admit local sections iff for every map U → Y from a topological space U , there exists an open
cover U =

⋃
i Ui so that each restriction Ui → Y lifts to X.

X

Ui U Y

(2.3.5.1)

2.3.6 Exercise. Show that a representable map of topological stacks admits local sections
in the sense of (2.3.5) iff it does so in the sense of (1.1.92).

2.3.7 Exercise. Show that admitting local sections is preserved under pullback and closed
under composition.

2.3.8 Lemma. For any map of topological stacks U → X admitting local sections, the natural?

map
Shv(Top)

colim
(
· · · →→→→ U ×X U ×X U →→→ U ×X U →→ U

)
→ X (2.3.8.1)

is an isomorphism.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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2.3.9 Exercise. Let X be a topological stack. A subset E ⊆ |X(∗)| (|·| denotes isomorphism
classes) determines an assignment to every map f : Z → X of a subset ZE,f ⊆ Z which is
compatible with pullback in the sense that Z ′E,f◦g = g−1(ZE,f) for every map g : Z ′ → Z.
Show that this defines a bijection between subsets of |X| and pullback compatible assignments
of subsets of Z to maps Z → X.

2.3.10 Exercise (Classification of embedded substacks). Let X be a topological stack, let
E ⊆ |X(∗)| be any subset, and let XE denote the topological stack for which a map Z → XE

is a map Z → X whose specialization to every point of Z lies in E. Show that for f : Z → X,
the natural diagram

ZE,f XE

Z X
f

(2.3.10.1)

is a pullback square. Conclude that XE → X is an embedding (2.1.1.3)(1.1.92) and that
XE → X satisfies a property P preserved under pullback iff every ZE,f ⊆ Z satisfies P.
Moreover, show that every embedding X ′ → X is uniquely isomorphic to a unique XE → X.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.11 Definition (Universally closed). A map of topological stacks X → Y is said to be?

universally closed when it satisfies the subswarm lifting property (2.1.23.3), namely that for
any commuting diagram of solid arrows

T ∗ S∗ X

T S Y

(2.3.11.1)

in which (S, S∗) is a limit pointed topological space (2.1.18), there exists a map of limit
pointed topological spaces (T, T ∗)→ (S, S∗) and a diagonal dotted arrow making the diagram
commute.

2.3.12 Exercise. Show that universal closedness (2.3.11) is preserved under pullback, closed
under composition, and local on the target (??).

2.3.13 Exercise. Show that a representable morphism of topological stacks is universally
closed in the sense of (2.3.11) (satisfies the subswarm lifting property) iff it is universally
closed in the sense of (1.1.92) (every pullback to a topological space is universally closed).

2.3.14 Definition (Proper). A map of topological stacks is called proper when its iterated?

diagonals are all universally closed.

2.3.15 Definition (Separated). A map of topological stacks is called separated when its?

diagonal is proper.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.16 Definition (Atlas). Let X be a topological stack. A morphism U → X admitting?

local sections (where U is a topological space) is called an atlas for X.

2.3.17 Proposition (Proper atlas from proper diagonal). Let X have a representable atlas
and proper diagonal, and let U → X be a map from a locally compact (2.0.3) Hausdorff
topological space U . Suppose p ∈ U is such that Aut(p) = p ×X p ⊆ p ×X U is open (note
that p → U is a closed embedding, hence so is its pullback p ×X p → p ×X U). For every
sufficiently small open neighborhood V ⊆ U of p, we have p ×X p = p ×X V and the map
V → X is proper over an open substack of X containing the image of p.

Proof. By hypothesis, p×X (U \ p) ⊆ p×X U is closed, and p×X U → U is proper since it is
a pullback of the diagonal of X. Thus the image of p×X (U \ p)→ U is a closed set disjoint
from p. By replacing U with the complement of this closed set, we may assume wlog that
p×X p = p×X U (p is unique in its orbit).

Since U is locally compact, there exists a compact neighborhood K ⊆ U of p. Since
K → ∗ is proper and X → ∗ has proper diagonal, it follows that the map K → X is proper
(1.1.62). Suppose V ⊆ U is open and contained in K. Hence V ⊆ K is open, so K \ V → K
is a closed embedding, hence proper, so K \ V → X is also proper. It is representable, hence
its image (embedded substack of X) is closed (consider its pullback under any map from a
topological space Z to X). Let Y ⊆ X denote the complement of the image of K \ V → X
(thus Y is an open substack of X); note that Y contains the image of p since p is unique in
its orbit. Thus V ×X Y = K ×X Y → Y is a pullback of K → X, hence is proper.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.3.18 Definition (n-Artin morphism). A morphism of topological stacks is called (−1)-?

Artin iff it is an isomorphism. A morphism of topological stacks X → Y is called n-Artin
(for integer n ≥ 0) when for every map U → Y from a topological space U , the pullback
X ×Y U admits an (n− 1)-Artin atlas. It is immediate that n-Artin morphisms are preserved
under pullback.

2.3.19 Lemma. n-Artin morphisms are closed under composition.

Proof. Fix n-Artin maps X → Y → Z, and consider a map U → Z from representable U .
Since Y → Z is n-Artin, there exists an (n− 1)-Artin atlas V → Y ×Z U . Since X → Y is
n-Artin, there exists an (n− 1)-Artin atlas W → X ×Y V .

W X ×Y V X ×Z U X

V Y ×Z U Y

U Z

(2.3.19.1)
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The maps W → X ×Y V → X ×Z U are both (n− 1)-Artin and admit local sections, hence
so does their composition (by induction on n). This is the desired (n − 1)-Artin atlas for
X ×Z U .

2.3.20 Lemma. The diagonal of an n-Artin morphism is max(n− 1, 0)-Artin.

Proof. Let X → Y is n-Artin.
By (??), every pullback of X → X ×Y X to a topological space U is a pullback of the

diagonal of the pullback X ×Y U → U . We may thus assume wlog that Y is representable.
Since Y is representable, there exists an (n − 1)-Artin atlas U → X. We consider the

following fiber square.
U ×X U X

U ×Y U X ×Y X

(2.3.20.1)

The pullback U ×Y U is representable since U and Y are representable. The pullback U ×X U
has a max(−1, n− 2)-Artin atlas since U is representable and U → X is (n− 1)-Artin. Thus
the morphism U ×X U → U ×Y U is max(0, n− 1)-Artin (??). The map U ×Y U → X ×Y X
admits local sections since U → X does (1.1.56), hence X → X ×Y X is max(0, n− 1)-Artin
(??).
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2.4 Mapping stacks
Here we study topological stacks parameterizing maps between topological spaces.

2.4.1 Definition (Mapping stack Hom(X, Y )). For topological spaces X and Y , the topo-?

logical stack Hom(X, Y ) is defined by declaring a map Z → Hom(X, Y ) to be a continuous
map Z ×X → Y .

2.4.2 Example. The set of maps ∗ → Hom(X, Y ) is the set Hom(X, Y ) of continuous maps
X → Y .

2.4.3 Exercise. Show that Hom(X, Y ) is a sheaf on Top.

2.4.4 Exercise. Show that the natural map Hom(X, Y × Y ′)→ Hom(X, Y )× Hom(X, Y ′)
is an isomorphism.

2.4.5 Exercise. Show that there is a tautological ‘evaluation’ map X × Hom(X, Y )→ Y .

2.4.6 Definition (Condition on morphisms). A condition C on morphisms X → Y is a?

subset HomC(X, Y ) ⊆ Hom(X, Y ). Equivalently, a condition is the assignment to every map
f : Z → Hom(X, Y ) of a subset ZC,f ⊆ Z which is compatible with pullback in the sense that
Z ′C,f◦g = g−1(ZC,f) for any map g : Z ′ → Z (2.3.9). Given a condition C, we can consider
the embedded substack HomC(X, Y ) ⊆ Hom(X, Y ) parameterizing those maps Z ×X → Y
whose specialization to every z ∈ Z lies in HomC(X, Y ); this defines a bijection between
conditions on morphisms X → Y and embedded substacks of Hom(X, Y ) (2.3.10).

Given a property of morphisms of topological stacks P, we say that a condition C satisfies
P when the morphism HomC(X, Y )→ Hom(X, Y ) has P. Concretely, this just means that
the inclusion ZC,f → Z has P for every map f : Z ×X → Y .

2.4.7 Exercise. Show that f(A) ⊆ V is a closed condition on maps f : X → Y for any
subset A ⊆ X and any closed subset V ⊆ Y .

2.4.8 Exercise. Show that f |A = 1A is a closed condition on maps f : X → X for any
subset A ⊆ X provided X is Hausdorff.

2.4.9 Lemma. For K ⊆ X compact and U ⊆ Y open, the condition f(K) ⊆ U is open.

Proof. Equivalently, we show that the condition f(K) ∩ V 6= ∅ is closed for V ⊆ Y closed.
This condition may be alternatively stated as f−1(V )∩K 6= ∅. Given a map F : Z×X → Y ,
the subset ZF ⊆ Z of maps satisfying this condition is the image of F |−1

Z×K(V ) under the
projection Z × K → Z. The inverse image F |−1

Z×K(V ) is closed, so its projection to Z is
closed since K → ∗ is universally closed (2.1.23).

2.4.10 Lemma. The diagonal of Hom(X, Y ) is an embedding (2.1.1.3).

Proof. The diagonal of Hom(X, Y ) is the map Hom(X, Y )→ Hom(X, Y × Y ) (2.4.4). Since
the diagonal Y → Y ×Y is an embedding (2.1.24), it follows that Hom(X, Y ) = HomC(X, Y ×
Y ) where C is the condition of having image contained in the diagonal. The inclusion of the
subsheaf of maps satisfying any condition C is an embedding (2.4.6).
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2.4.11 Exercise. Show that if Y is Hausdorff, then the diagonal of Hom(X, Y ) is a closed
embedding.

We now turn to representability of Hom(X, Y ). As remarked earlier, the set of maps
∗ → Hom(X, Y ) is simply the set of maps X → Y . It follows that Hom(X, Y ) is representable
iff there is a topology T on the set Hom(X, Y ) such that a map Z ×X → Y is continuous iff
the induced map Z → Hom(X, Y )T is continuous.

2.4.12 Definition (Compact-open topology). Let X and Y be topological spaces. The
compact-open topology on the set Hom(X, Y ) is the topology generated by declaring that,
for all compact sets K ⊆ X and open sets U ⊆ Y , the locus of maps f : X → Y satisfying
f(K) ⊆ U should be open. The resulting topological space is denoted Hom(X, Y )cptopen.

For any map Z → Hom(X, Y ), the induced map Z → Hom(X, Y )cptopen is continuous by
(2.4.9), which gives a tautological map Hom(X, Y )→ Hom(X, Y )cptopen. Hence if Hom(X, Y )
is representable, necessarily by Hom(X, Y )T for some topology T, then T is at least as fine as
the compact-open topology.

2.4.13 Proposition. If X is locally compact (2.0.3), then the map Hom(X, Y )→ Hom(X, Y )cptopen?

is an isomorphism. In particular, Hom(X, Y ) is representable.

Proof. We are to show that if Z → Hom(X, Y )cptopen is continuous, then the resulting map
Z ×X → Y is also continuous. What we must show is that if (z, x) is sent inside an open set
U ⊆ Y , then a neighborhood of (z, x) is as well. Since X is locally compact, there is a compact
neighborhood K ⊆ X of x such that z ×K is sent inside U . Since Z → Hom(X, Y )cptopen is
continuous in the compact-open topology, there is an open set V ⊆ Z such that V ×K is
sent inside U .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The basic mapping stack Hom(−,−) (2.4.1) admits several important generalizations,
such as the stack of sections of a fixed map E → X or maps between fibers Xb → Yb of maps
X, Y → B. Here is the most general notion we will consider.

2.4.14 Definition (Parameterized stack of sections Sec). Let E → X → B be morphisms?

in a category C which has all pullbacks of X → B. We define a presheaf SecB(X,E) on C by
the property that a map Z → SecB(X,E) from Z ∈ C is a map Z → B along with a map
X ×B Z → E over X.

E

X ×B Z X

Z B

(2.4.14.1)

Our present interest will be in the case of topological spaces, in which case SecB(X,E) is
evidently a sheaf.
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2.4.15 Example. A point ∗ → SecB(X,E) is a point b ∈ B together with a section of
Eb → Xb.

2.4.16 Exercise. Show that a diagram

E F

X Y

B C

(2.4.16.1)

induces a map SecB(X,E)→ SecC(Y, F ). Show that the tautological maps

SecB′(X ×B B′, E ×B B′)
∼−→ SecB(X,E)×B B′ (2.4.16.2)

SecB(X,E ×X F )
∼−→ SecB(X,E)×B Sec(X,F ) (2.4.16.3)

are both isomorphisms.

2.4.17 Exercise. Show that for any embedding E → F (over X), the induced map
SecB(X,E) → SecB(X,F ) is also an embedding (compare (2.4.6)). Conclude that the
diagonal of SecB(X,E)→ B is an embedding (and so, in particular, representable).

2.4.18 Exercise. Let s : B → X be a section, and let F ⊆ s∗E := E ×X B be a closed
substack. Show that the condition on SecB(X,E) of sending s to F is a closed condition.

2.4.19 Lemma. If E → F is a closed embedding (over X) and X → B is open, then
SecB(X,E)→ SecB(X,F ) is a closed embedding.

Proof. We saw earlier that SecB(X,E)→ SecB(X,F ) is an embedding (2.4.17). Fix a map
Z → SecB(X,F ), namely a diagram (2.4.14.1), and let us show that the locus of z ∈ Z for
which the specialization of the map X ×B Z → F lands inside E is closed. The inverse image
of E ⊆ F is a closed subset K of X ×B Z. Since the projection X ×B Z → Z is open (being
a pullback of X → B), the locus of points z ∈ Z whose inverse image X ×B z is contained in
K is closed (being the complement of the image of the complement of K).

2.4.20 Exercise. Fix topological spaces E → X → B. Fix a map X0 → X for which the
composition X0 → B is open, and let E0 ⊆ E ×X X0 be a closed substack. Conclude from
(2.4.19) that the condition on SecB(X,E) of mapping X0 inside E0 is closed.

2.4.21 Exercise. Show that if E → X is separated and X → B is open, then SecB(X,E)→
B is separated.

2.4.22 Exercise. Let X be the locus {xy = 0} (the union of the two axes in R2), and let
X → B = R be the projection to the x-coordinate. Show that HomB(X,R) → B is not
separated (a map Z → HomB(X,R) is a map Z → B and a map X ×B Z → R).

2.4.23 Exercise. Argue as in (2.4.9) to show that if E◦ ⊆ E is open and X → B is
universally closed, then SecB(X,E◦)→ SecB(X,E) is an open embedding.
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2.5 Stability
Recall that a topological stack is called separated when its diagonal is proper, and that this
is a generalization of the Hausdorff condition to topological stacks (2.3). Many topological
stacks of interest, for instance the moduli stack of compact nodal Riemann surfaces, are
non-separated. Rather, they contain an open substack of ‘stable’ points, which is instead the
object of interest for many purposes. In this section, we introduce a general structure which
allows us to pick out this open ‘stable locus’ and deduce properties of it from properties of
the ambient stack.

2.5.1 Exercise (Stable object). Show that for an object X in a category C, the following
are equivalent:
(2.5.1.1) Every morphism Z → X is a terminal object in the under-category CZ/.
(2.5.1.2) Every morphism A→ B induces an isomorphism Hom(B,X)→ Hom(A,X).
(2.5.1.3) For every diagram of solid arrows

A B

X

∃!

there exists a unique dotted arrow making the diagram commute.
We call an object X satisfying these conditions stable.

2.5.2 Exercise. Show that every morphism out of a stable object is a split monomorphism.
Conclude that every morphism between stable objects is an isomorphism.

2.5.3 Exercise (Category with enough stable objects). Show that for a category C, the
following are equivalent:
(2.5.3.1) Every object admits a morphism to a stable object.
(2.5.3.2) Every under-category CZ/ has a terminal object, and for every morphism Z → Y ,

the induced functor CY/ → CZ/ sends terminal objects to terminal objects.
A category C satisfying these conditions is said to have enough stable objects.

2.5.4 Exercise (Stabilization). For a category C with enough stable objects, let i : Cs ⊆ C
denote the full subcategory spanned by the stable objects (so Cs is a groupoid by (2.5.2)).
Show that sending Z ∈ C to the target of a terminal object in CZ/ defines a functor st : C→ Cs

with a natural transformation 1C → i ◦ st defining an adjunction (st, i) (hence that Cs ⊆ C is
a reflective subcategory (1.1.75)).

2.5.5 Exercise (Functor preserving stable objects). Let C and D be categories with enough
stable objects. Show that for a functor F : C→ D, the following are equivalent:
(2.5.5.1) F sends stable objects to stable objects.
(2.5.5.2) The induced functor CZ/ → Df(Z)/ sends terminal objects to terminal objects for

every Z ∈ C.
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A functor F satisfying these conditions is said to preserve stable objects.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We next study stable objects in the context of sheaves of categories. By a ‘sheaf of
categories’ we mean a sheaf valued in the 2-category Cat.

2.5.6 Exercise. Show that the ‘subcategory of isomorphisms’ functor ': Cat → Grpd is
right adjoint to the inclusion Grpd ⊆ Cat, hence is continuous. Conclude that for any sheaf of
categories ~X, its subcategory of isomorphisms X = ( ~X)' is a sheaf of groupoids. Conclude
that this functor

': Shv(Top,Cat)→ Shv(Top,Grpd) (2.5.6.1)

is continuous.

We regard a sheaf of categories ~X as an ‘enhancement’ of its ‘underlying sheaf of groupoids’
X = ( ~X)' to be used to study X itself. A lift of a sheaf of groupoids X to a sheaf of categories
~X will be called categorical structure on X.

2.5.7 Definition (Topological stack of categories). By a topological stack of categories, we?

mean a sheaf of categories on the category of topological spaces. Topological stacks of
categories form the 2-category Shv(Top,Cat).

2.5.8 Example. Vector bundles and linear maps is a topological stack of categories Vect,
enhancing the topological stack Vect' =

⊔
n ∗/GLnR of vector bundles and isomorphisms.

2.5.9 Definition (Stability structure). A sheaf of categories ~X is called pre-stable iff it?

satisfies the following properties:
(2.5.9.1) Every ~X(Z) has enough stable objects.
(2.5.9.2) Every pullback ~X(Z)→ ~X(Z ′) for Z ′ → Z preserves stable objects.
(2.5.9.3) (Isomorphism is an open condition) For every morphism α→ β in ~X(Z), there is

an open subset U ⊆ Z such that the pullback i∗(α→ β) under a map i : Z ′ → Z is an
isomorphism iff i(Z ′) ⊆ U .

A stability structure on a sheaf of groupoids X is a pre-stable enhancement ~X of X.

2.5.10 Exercise (Stable locus). Let ~X be a pre-stable categorical stack. Show that for every?

α ∈ ~X(Z), there exists an open set U ⊆ Z such that i∗α ∈ ~X(Z ′) is stable iff i(Z ′) ⊆ U (for
any i : Z ′ → Z). Conclude that the stable locus Xs defined by Xs(Z) = ~X(Z)s is an open
substack of X.
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2.6 Smooth manifolds
We assume the reader has a foundational understanding of differential topology and smooth
manifolds. The purpose of this section is to set notation and terminology and to recall
arguments which will be adapted later to more novel settings.

2.6.1 Definition (Category of smooth manifolds Sm). A smooth manifold is a pair (X,Φ)?

consisting of a topological space X and a collection Φ of pairs (U,ϕ) (called ‘charts’) where
U ⊆ Rn is an open set and ϕ : U ↪→ X is an open embedding, such that for every pair
(U,ϕ), (U ′, ϕ′) ∈ Φ, the ‘transition map’ ϕ−1ϕ′ : (ϕ′)−1(ϕ(U))→ U is smooth. A morphism
of smooth manifolds (X,Φ)→ (Y,Ψ) is a map X → Y such that for every (U,ϕ) ∈ Φ and
(V, ψ) ∈ Ψ, the composition ψ−1fϕ : ϕ−1(f−1(ψ(V ))) → V is smooth. The category of
smooth manifolds is denoted Sm. The underlying topological space of a smooth manifold M
is denoted |M |.

2.6.2 Warning. The term ‘smooth manifold’ is usually taken to mean an object of Sm
whose underlying topological space is Hausdorff and paracompact (2.6.13), since these are
the objects of main interest to differential topology. As our current focus is more categorical
and point set topological, it is more convenient to use the term ‘smooth manifold’ to refer to
arbitrary objects of Sm. In later chapters, when we have a more differentiable topological
focus, we will (explicitly) revert to the standard meaning of the term ‘smooth manifold’
(though the symbol Sm will continue to denote the category defined here). For now, it is
logically clarifying to only include paracompact and Hausdorff assumptions when they are
actually needed.

2.6.3 Definition (Open embedding). A map X → Y in Sm is called an open embedding
when it is an open embedding of topological spaces and sends charts Rn ⊇ U ↪→ X to
charts U ↪→ Y . The notion of a local isomorphism in Sm is then defined as for topological
spaces (2.1.4) with respect to this notion of open embedding. Open embeddings and local
isomorphisms are preserved under pullback and closed under composition.

2.6.4 Inverse Function Theorem. A map in Sm is a local isomorphism iff its derivative
is an isomorphism at every point.

2.6.5 Definition (Submersion). A map in Sm is called a submersion (or submersive) when
its derivative is surjective at every point (by (2.6.4), this is equivalent to being locally on
the source a pullback of Rk → ∗). Submersivity is preserved under pullback, closed under
composition, and local on the source.

2.6.6 Definition (Immersion). A map in Sm is called an immersion (or immersive) when
its derivative is injective at every point (by (2.6.4), this is equivalent to being locally on the
source a submersive pullback of ∗ → Rk). Immersivity is closed under composition and local
on the source.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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The category Sm does not have all finite limits, and some finite limits which do exist are
‘wrong’.

2.6.7 Example. The zero locus of a smooth function f : R→ R is, by definition, the fiber
product

f−1(0) ∗

R R

0

f

(2.6.7.1)

which we may take in either Sm or Top, resulting in two objects f−1(0)Sm and f−1(0)Top

(which may or may not exist) and a comparison map |f−1(0)Sm| → f−1(0)Top between them.
Let us consider the smooth function f(x) = xn for a positive integer n ≥ 1. The smooth

zero locus f−1(0)Sm is a single point, with its unique structure as a smooth manifold. The
topological zero locus f−1(0)Top is also a single point, with its unique topology, and the
comparison map |f−1(0)Sm| → f−1(0)Top is an isomorphism.

Let us consider the smooth function f(x) = e−1/x2
sin(1/x). The smooth zero locus

f−1(0)Sm is representable: it is the zero set of f equipped with the discrete topology (which
is a zero-dimensional manifold, an object of Sm). The topological zero locus f−1(0)Top is also
representable, this time by the zero set of f equipped with the subspace topology inside R.
The tautological comparison map |f−1(0)Sm| → f−1(0)Top is evidently not an isomorphism.
This difference reflects the fact that test objects in Sm cannot see how the zeroes of f converge
to zero, while test objects in Top can.

Here is a class of ‘good’ finite limits.

2.6.8 Definition (Transverse diagram). A pair of maps M → N ← Q in Sm is called
transverse when at every point of the topological fiber product |M | ×|N | |Q|, the map
TM ⊕ TQ→ TN is surjective. In this case, the fiber product M ×N Q exists in Sm and has
dimension dimM − dimN + dimQ.

More generally, consider a finite diagram of smooth manifolds D : J → Sm with 0-cells
(Mv)v, 1-cells (fe : Mv(e) →Mw(e))e, and no 2-cells. Such a diagram is called transverse when
at every point p = (pv)v of its topological limit, the map⊕

v

TMv

⊕
e[1TMw(e)

−Tfe]
−−−−−−−−−−−→

⊕
e

TMw(e) (2.6.8.1)

is surjective. In this case, the limit of D exists in Sm and has dimension
∑

v dimMv −∑
e dimMw(e).
A transverse limit is the limit of a transverse diagram. Note that we have only defined

transversality for diagrams of dimension ≤ 1. The generalization to diagrams of arbitrary
dimension is given in (2.10.6).

2.6.9 Example. The zero locus f−1(0) (2.6.7) is a transverse limit precisely when f(x) = 0
implies f ′(x) 6= 0.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.6.10 Definition (Tangent functor T ). The tangent functor T : Sm → Sm sends M
to (the total space of) its tangent bundle TM and sends f : M → N to its derivative
Tf : TM → TN . The zero section M → TM and the projection TM → M are natural
transformations 1⇒ T ⇒ 1.

2.6.11 Exercise. Show that T sends vector bundles to vector bundles, in the following sense.
A vector bundle is a triple (V → M,V × R → V, V ×M V → V ) which is locally (on M)
isomorphic to the trivial family of Rk with its standard vector space structure. Show that
applying T to such a triple yields another. Also show that T sends linear maps of vector
bundles to the same.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.6.12 Definition (Bump function). A topological space X is said to have bump functions?

when for every point x ∈ X and every open set U ⊆ X containing x, there exists a
continuous ‘bump’ function ϕ : X → R≥0 supported inside U and having nonzero value at
x. This definition makes sense in contexts other than topological spaces and continuous
maps. In particular, we can consider bump functions on smooth manifolds, which are, by
definition, smooth. Any Hausdorff smooth manifold has bump functions: the construction is
straightforward given that the function

ψ(x) =

{
exp(−1/x) x > 0

0 x ≤ 0
(2.6.12.1)

is smooth.

2.6.13 Definition (Paracompact [13]). Let X be a topological space. A refinement of an
open cover X =

⋃
i Ui is another open cover X =

⋃
j Vj where each Vj is contained in some

Ui. An open cover X =
⋃
i Ui is called locally finite when every point of X has an open

neighborhood which intersects at most finitely many Ui. The topological space X is called
paracompact when every open cover has a locally finite refinement.

See [68, §29] for basic properties of locally compact Hausdorff topological spaces.

2.6.14 Exercise. Let X be a locally compact Hausdorff topological space. Show that if X is
σ-compact (is a countable union of interiors of compact subspaces), then X is paracompact.

2.6.15 Definition (Partition of unity). Let X be a topological space. A partition of unity?

on X is a collection of functions ϕi : X → R≥0 which is locally finite (every point of X has a
neighborhood over which all but finitely many ϕi are identically zero) and satisfies

∑
i ϕi ≡ 1.

A partition of unity subordinate to an open cover X =
⋃
i Ui is a partition of unity

∑
i ϕi ≡ 1

(with the same index set) on X satisfying suppϕi ⊆ Ui. A topological space is said to admit
partitions of unity when it has a partition of unity subordinate to every open cover.
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2.6.16 Remark. For the purpose of proving the existence of a partition of unity, the condition
that

∑
i ϕi ≡ 1 may be weakened to

∑
i ϕi > 0. Indeed, in the latter case, the functions

ϕi/
∑

j ϕj form a partition of unity in the former sense.

2.6.17 Proposition (Dieudonné [13][68, Theorem 41.7]). A paracompact Hausdorff topolog-
ical space admits partitions of unity.

2.6.18 Remark. The numerable topology of Dold [15] is a ‘Grothendieck topology’ in which
a collection of open subsets Ui ⊆ X counts as a covering iff it has a subordinate partition of
unity. Every (ordinary) open cover of a paracompact Hausdorff space is a numerable open
cover by (2.6.17). Most (all?) results about paracompact Hausdorff spaces are based on
(2.6.17), hence can be viewed more generally as results about the numerable topology on
arbitrary topological spaces.

2.6.19 Exercise. Let X be a paracompact Hausdorff topological space, and let V/X be a
vector bundle. Show that there exists a positive definite inner product on V .

The definition of a partition of unity makes sense in contexts other than topological spaces
and continuous maps. In particular, we can consider partitions of unity on smooth manifolds.
Such partitions of unity consist, by definition, of smooth functions.

2.6.20 Lemma. A paracompact Hausdorff smooth manifold admits (smooth) partitions of?

unity.

Proof. Let M =
⋃
i Ui be an open cover of a smooth manifold. By passing to a refinement,

we may assume that each Ui has compact closure in M . By passing to a further refinement,
we may assume that the open cover is also locally finite.

Fix a continuous partition of unity ϕi : X → R≥0 (2.6.17) subordinate to the open cover.
Now suppϕi is closed and contained Ui, whose closure is assumed compact, so suppϕi is also
compact. Since suppϕi is compact, we can sum a finite number of bump functions (2.6.12)
to construct a function ψi : M → R≥0 supported inside Ui which is positive everywhere on
suppϕi. Since the open cover M =

⋃
i Ui is locally finite, so is the collection of functions ψi.

The sum
∑

i ψi is everywhere positive since the suppϕi cover M .

2.6.21 Nagata–Smirnov Metrization Theorem ([69][82][68, Theorem 42.1]). A topolog-?

ical space is metrizable iff it is paracompact Hausdorff and locally metrizable.

It follows that every open subset of a locally metrizable paracompact Hausdorff topological
space is paracompact. In particular, every open subset of a paracompact Hausdorff manifold
is paracompact Hausdorff.

2.6.22 Definition (Topological group). A topological group is a group object (??) in Top.

2.6.23 Lemma. A topological group is Hausdorff iff the identity is a closed point.
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Proof. For any group G, the diagram

G G×G

∗ G

x 7→(x,x)

(x,y)7→xy−1 (2.6.23.1)

is a pullback square. This diagram is defined for any topological group G as well, and
it remains a pullback square, since applying Hom(Z,−) to it for any topological space Z
produces the corresponding diagram for the group Hom(Z,G). Thus if ∗ → G is a closed
embedding, then so is the diagonal map G→ G×G, and hence G is Hausdorff.

2.6.24 Lemma. A locally compact Hausdorff topological group is paracompact.

Proof. Since G is locally compact Hausdorff, there exists a compact neighborhood of the
identity K ⊆ G. Consider the infinite ascending union K∞ =

⋃
iK

i ⊆ G, which is evidently
a subgroup of G. Since K ·K∞ ⊆ K∞ and K contains a neighborhood of the identity, it
follows that K∞ ⊆ G is open, thus also locally compact Hausdorff. Being a countable union
of compact subspaces (the images of Ki → G), the subgroup K∞ is paracompact (2.6.14).
Since K∞ is open, the quotient G/K∞ is discrete. Choosing a section of the projection
G→ G/K∞ defines a homeomorphism G = (G/K∞)×K∞. It is immediate that an open
disjoint union of paracompact spaces is paracompact.

2.6.25 Definition (Lie group). A Lie group is a group object (??) in Sm.?

2.6.26 Lemma. Every Lie group is Hausdorff and paracompact.

Proof. The inclusion of a point into any smooth manifold is a closed embedding, and a
topological group whose identity is a closed point is Hausdorff (2.6.23). Smooth manifolds
are locally compact, and a locally compact Hausdorff topological group is paracompact
(2.6.24).

2.6.27 Lemma (Local structure of Sec(Q,M)). Let π : Q → M be a submersion. If M
is paracompact Hausdorff, then any section s : M → Q extends to an open embedding
(s∗TQ/M , 0)→ (Q, s) over M .

Proof. We first construct a map f : (Q, s)→ (s∗TQ/M , 0) over M whose vertical derivative
is the identity along the base section. For any p ∈ M , the source-local normal form
for submersions provides such a map fp : (Q, s) → (s∗TQ/M , 0) over an open set Up ⊆
Q containing s(p). Since M is paracompact Hausdorff, there exists a partition of unity∑

p ϕp ≡ 1 (2.6.20) subordinate to the open cover M =
⋃
p s
−1(Up). Now the sum f =∑

p ϕpfp : (Q, u) → (u∗TQ/M , 0) has the desired property and is defined over the open set⋃
I⊆M (

⋂
p∈I Up \

⋃
p/∈I π

−1(suppϕp)) (union over all finite subsets I), which contains the image
of s.

Since the vertical derivative of f : (Q, s) → (s∗TQ/M , 0) along the base section is the
identity, it follows that f is a local isomorphism over a neighborhood of s(M) ⊆ Q. That is,
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for every point p ∈ M , there exists an open set Vp ⊆ Q containing s(p) over which f is an
open embedding. It follows that f is an open embedding over the open set

⋃
I⊆M(

⋂
p∈I Vp \⋃

p/∈I π
−1(suppψp)) for any choice of partition of unity

∑
p ψp ≡ 1 subordinate to the open

cover M =
⋃
p s
−1(Vp) (indeed, it is certainly a local isomorphism over this locus, and it is

also injective since injectivity can be checked fiberwise over M). Its inverse is thus an open
embedding i : (s∗TQ/M , 0)→ (Q, s) defined in a neighborhood of the zero section.

Given an open embedding i : (s∗TQ/M , 0)→ (Q, s) defined in a neighborhood of the zero
section, we can obtain a globally defined open embedding by pre-composing as follows. Fix a
metric (positive definite inner product) on s∗TQ/M (sum up local metrics via a partition of
unity), and find a smooth function ε : M → R>0 (also using partition of unity) so that the
fiberwise ε-balls of s∗TQ/M are contained in the domain of i. Pre-compose i with multiplication
by ε to obtain an open embedding (s∗TQ/M , 0)→ (Q, s) defined on the fiberwise unit balls.
Finally, pre-compose this with α(|v|) · v for some function α : R≥0 → R>0 which equals 1 in a
neighborhood of the origin and for which x 7→ α(x)x is a diffeomorphism [0,∞)→ [0, 1).

2.6.28 Corollary (Local structure of Sec(Q,M)). Let Q → M be a submersion. If M
is compact Hausdorff, then the moduli stack Sec(M,Q) is covered by the open substacks
Sec(M,Q◦) ⊆ Sec(M,Q) associated to open subsets Q◦ ⊆ Q for which Q◦ → M can be
equipped with the structure of a vector bundle.

Proof. For any open subset Q◦ ⊆ Q, the induced map Sec(M,Q◦) ↪→ Sec(M,Q) is an open
embedding by (2.4.9) since M is compact. Since M is paracompact Hausdorff, every section
u : M → Q extends to an open embedding (u∗TQ/M , 0)→ (Q, u) over M (2.6.27), so every
point of Sec(M,Q) is in the image of Sec(M,Q◦) for an open Q◦ ⊆ Q which is the total space
of a vector bundle over M .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Many results about smooth manifolds rely on averaging of real valued functions or, more
generally, sections of a vector bundle. For others, we instead need a notion of average for a
collection of nearby points in a smooth manifold. We now explain how to construct this sort
of non-linear averaging operation.

2.6.29 Definition (Averaging on a manifold). Let M be a smooth manifold which is
paracompact and Hausdorff. We consider positive measures of unit total mass on M ; call
this set Meas(M). There is a tautological inclusion M ↪→ Meas(M) sending a point of M to
the delta measure at that point. Our goal is to define a ‘smooth’ retraction

avg : Meas(M)→M (2.6.29.1)

(a ‘notion of average’) on the set of measures of ‘small’ support (meaning, there will be an
open cover M =

⋃
i Vi, and avg(µ) will be defined when suppµ is contained in some Vi).

Let U ⊆M be an open set identified with a convex open set U ⊆ Rn. Thus any measure
µ supported inside U has an average avgU (µ) ∈ U defined by the linear structure on Rn. We
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would like to interpolate between the map avgU for measures supported deep inside U and
the identity map for measures supported away from U . Given a smooth function of compact
support η : U → [0, 1], such an interpolation can be given by

avgU,η(µ) = η(µ) · δavgU (µ) + (1− η(µ))µ, (2.6.29.2)

where η(µ) =
∫
η dµ. This map avgU,η is well behaved on the set of measures µ which are

either supported inside U or supported inside M \ supp η (in which case avgU,η(µ) = µ).
When suppµ ⊆ η−1(1), the average avgU,η(µ) is the single point avgU(µ).

We now define the averaging map avg as a composition of local averaging maps avgU,η.
Choose an open cover M =

⋃
i Ui for open convex Ui ⊆ Rn, and choose smooth functions

of compact support ηi : Ui → [0, 1] such that M =
⋃
i η
−1
i (1)◦. Define avg as the ordered

composition of all avgUi,ηi with respect to an arbitrarily chosen total order of the set of indices
i. This map avg : Meas(M)→ Meas(M) is defined on measures of sufficiently small support,
and sends measures of sufficiently small support to delta measures (hence can be viewed as
having target M ⊆ Meas(M)).

In what sense is the map avg smooth? Let us declare a map N → Meas(M) from a
smooth manifold N to be smooth iff for every smooth function on N ×M , its fiberwise
integral is a smooth function on N . A map N → M is thus smooth iff it is smooth as a
map to Meas(M) landing in the subspace of delta measures. Now the map avg is smooth
in the sense that composing a smooth map N → Meas(M) with it yields a smooth map
N → Meas(M). Indeed, it suffices to show that each map avgU,η is smooth in this sense,
which follows from inspection.

The next result is fundamental, and we will meet many generalizations of it. The main
ingredient in its proof is the averaging operation (2.6.29) above.

2.6.30 Ehresmann’s Theorem ([18, 19]). A proper submersion in Sm is trivial locally on?

the target.

Proof. Let M → B be a proper submersion, and let us show that M → B is trivial in a
neighborhood of a given point 0 ∈ B. We are free to shrink B at will (that is, replace B with
an open neighborhood of 0 and replace M with its inverse image).

Let M0 denote the fiber of M → B over 0 ∈ B. We first construct a retraction M →M0

after possibly shrinking B. We then show that such a retraction gives a local trivialization of
M → B after further shrinking.

We claim that there exists a finite covering of M by open charts Ui × B ⊆M for open
sets Ui ⊆ Rk. The source-local normal form for submersive maps provides such a chart near
any point of M0. By universal closedness of M → B, there exists a finite collection of such
charts which cover the inverse image of an open neighborhood of 0. We can thus shrink B so
that they cover all of M .

In a given chart Ui×B ⊆M there is an evident retraction to the fiber over 0 ∈ B, namely
projection to the Ui factor. These need not agree on overlaps. We will patch them together
using a partition of unity and the averaging operation (2.6.29) on M0.



CHAPTER 2. TOPOLOGY 92

Choose smooth compactly supported functions ϕi : Ui → R≥0 which form a partition of
unity on M0. Since M → B is separated and (suppϕi) × B → B is universally closed, it
follows that (suppϕi)×B →M is universally closed (2.1.33). It follows that the extension
by zero of ϕiπUi from Ui ×B to M is smooth. These functions sum to unity on M0, but may
fail to elsewhere on M . The locus where their sum is > 0 is an open neighborhood of M0,
hence can be assumed to be all of M after shrinking B. Dividing by this sum produces a
smooth partition of unity

∑
i ψi ≡ 1 on M .

Now we consider the map

M → Meas(M0) (2.6.30.1)

m 7→
∑
i

ψi(m)δπUi (m) (2.6.30.2)

where we note that if ψi(m) > 0 then m lies inside the chart Ui ×B ⊆M , so πUi(m) ∈M0

is defined. Composing this map with the averaging operation (2.6.29) on M0 produces the
desired retraction M →M0 in a neighborhood of M0 (which becomes all of M after shrinking
B).

Finally, let us argue that the existence of a retraction M → M0 implies triviality of
M → B near 0. The induced map M → M0 × B over B is a local isomorphism in a
neighborhood of M0 (which by shrinking B is wlog all of M). There is a unique section of
M →M0 ×B over M0 × 0, and this section extends to a neighborhood of M0 by (??). Any
section of a local isomorphism is an open embedding (2.1.32). Further shrinking B means
the image of this open embedding is all of M , thus it is a diffeomorphism.

2.6.31 Lemma (Local structure of SecB(M,Q)). Let Q → M → B be submersions. If
M → B is proper, then for any b ∈ B and any section s : Mb → Qb, there is (after replacing
B with an open subset containing b) a trivialization M = Mb ×B over B covered by an open
embedding s∗TQ/M ×B ↪→ Q identifying the zero section with s.

s∗TQ/M ×B Q

Mb Mb

Mb ×B M

∗ ∗

B B

0 s

b

b

(2.6.31.1)

Proof. This is similar to (2.6.27). SinceM → B is proper, Ehresmann (2.6.30) provides a local
trivialization M = Mb×B. As in (2.6.27), it suffices to construct a map (Q, s)→ (s∗TQ/M , 0)
(over this choice of local trivialization) whose vertical derivative along s is the identity map.
Such a map exists locally, hence globally using a partition of unity.

2.6.32 Corollary (Local structure of SecB(M,Q)). Let Q → M → B be submersions.
If M → B is proper, then the moduli stack SecB(M,Q) is covered by the open substacks
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SecB◦(M
◦, Q◦) ⊆ Sec(M,Q) associated to open subsets B◦ ⊆ B (let M◦ = M ×B B◦) and

Q◦ ⊆ Q×B B◦ for which Q◦ →M◦ → B◦ is isomorphic to a product (Q0 →M0 → ∗)×B◦
where Q0 →M0 is a vector bundle.

Proof. This is similar to (2.6.28). Given an open subset B◦ ⊆ B (let M◦ = M ×B B◦) and
an open subset Q◦ ⊆ Q×B B◦, the induced map SecB◦(M

◦, Q◦)→ SecB(M,Q) is an open
embedding since M → B is universally closed (2.4.23). That such open substacks where
Q◦ → M◦ → B◦ has the form (Q0 → M0 → ∗) × B◦ for Q0 → M0 a vector bundle form a
covering is the content of (2.6.31).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.6.33 Hadamard’s Lemma. If f : R× Rn → R vanishes on 0× Rn, then f has the form?

x · g(x, y1, . . . , yn) for some smooth function g.

Proof #1. If f(0) = 0 then f(x) = x
∫ 1

0
f ′(xt) dt.

Proof #2. It suffices to show that x−1f(x) is of class Ck (k times continuously differentiable)
for every k <∞ under the assumption that f(0) = 0. By subtracting off a polynomial from
f(x), we may in fact assume that f(0) = f ′(0) = · · · = f (N)(0) = 0 for some large N <∞.
This implies that f (i)(x) = O(xN+1−i) near x = 0 for 0 ≤ i ≤ N . Now explicit differentiation
shows that the ith derivative of x−1f(x) is O(xN−i) near x = 0 for 0 ≤ i < N , which implies
x−1f(x) is of class CN−1.

2.6.34 Exercise. Conclude from Hadamard’s Lemma (2.6.33) that if f : Rk × Rn → R
vanishes on 0× Rn then f =

∑k
i=1 xigi for some functions gi.

2.6.35 Exercise. Let E be a vector bundle over a paracompact Hausdorff smooth manifold
M , and let s : M → E be a smooth section transverse to zero. Show that every function
f : M → R vanishing over s−1(0) is of the form λ · s for some smooth section λ : M → E∗

(use (2.6.34) to prove it locally, and then patch together using a partition of unity).

2.6.36 Definition (Deformation to the tangent bundle). We define a functor P : Sm→ Sm
which sends a smooth manifold M to (the total space of) a submersion P(M)→ R with fiber
TM over 0 and fibers M ×M over R \ 0.

TM P(M) M ×M × (R \ 0)

0 R R \ 0

(2.6.36.1)

This structure is functorial in the expected way: for a smooth map f : M → N , the induced
map P(f) : P(M)→ P(N) is the product f × f × 1 over R \ 0 and is the derivative Tf over
0. There is a functorial involution of P which swaps the two factors M ×M over R \ 0 and
acts as negation on the fiber TM over 0.
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Local coordinates for the functor P may be defined as follows. Fix any ‘exponential’ map
A : TM →M , meaning its vertical derivative along the zero section is the identity and its
restriction to each fiber is an open embedding. Such an exponential map determines an
open embedding TM × R ↪→ P(M) in which TM × (R \ 0) is glued to M ×M × (R \ 0) via
the map (p, v, t) 7→ (p,Ap(tv), t). To show that this recipe determines the desired functor
P, it suffices to show that for any other exponential map B : TN → N and any smooth
map f : M → N , the induced map TM × (R \ 0) → TN × (R \ 0) defined by conjugating
f × f × 1 : M ×M ×R→ N ×N ×R by the relevant exponential maps extends smootly to
TM × R→ TN × R.

TM × R TM × (R \ 0) M ×M × (R \ 0)

TN × R TN × (R \ 0) N ×N × (R \ 0)

f×f×1 (2.6.36.2)

Concretely, this amounts to showing that the map (p, v, t) 7→ t−1B−1
f(p)(f(Ap(tv))) ex-

tends smoothly to t = 0. This follows from Hadamard’s Lemma (2.6.33) since the map
B−1
f(p)(f(Ap(tv))) is smooth and vanishes at t = 0. Existence of the claimed involution of P

amounts to smoothness at t = 0 of the map (p, v, t) 7→ t−1A−1
Ap(tv)(p), which holds for the

same reason.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The above discussion generalizes readily to the setting of manifolds-with-corners.
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2.7 Smooth stacks
In (2.3), we studied stacks on the category of topological spaces. We now turn to stacks
on the category of smooth manifolds, which we will call smooth stacks. As before, Yoneda
gives a full faithul embedding Sm ⊆ Shv(Sm), and it is helpful to regard smooth stacks as
‘generalized smooth manifolds’. We will be particularly interested in the class of smooth
stacks which admit a submersive atlas. The theory of such stacks is essentially equivalent
to the theory of ‘Lie groupoids’ introduced by Ehresmann [20] and studied by many others
since then. References include Heinloth [30].

The category of smooth manifolds Sm is a ‘topological site’ in the sense of (??). We
can thus formulate the descent property and define stacks on Sm as in (2.3). Stacks
Shv(Sm) ⊆ P(Sm) form a reflective subcategory, and the Yoneda embedding Sm ↪→ Shv(Sm) is
fully faithful. If Sm− ⊆ Sm denotes the category of open subsets of Euclidean space and smooth
maps between them (a full subcategory), then the restriction functor Shv(Sm)→ Shv(Sm−) is
an equivalence (??). Since Sm− is essentially small, there are fewer set-theoretic complications
in comparison to the case of Top discussed in (??).

The 2-category Shv(Sm) is complete, and the embedding Sm ↪→ Shv(Sm) preserves all
limits which exist in Sm. The fact that the category Sm is not complete leads to some
technical differences in comparison with the discussion of topological stacks in (2.3). Not
all fiber products in Sm exist, so the class of all morphisms in Sm is not preserved under
pullback, so we cannot define a notion of representability for general morphisms in Shv(Sm).
Properties of morphisms in Sm which are preserved under pullback include submersions,
local isomorphisms, and open embeddings; these notions extend to morphisms in Shv(Sm)
in the usual way by pulling back to objects of Sm. The forgetful functor Sm→ Top sends
pullbacks of submersions to pullback squares in Top, so the intersection of submersion with
any property of morphisms in Top preserved under pullback is a property of morphisms in
Sm preserved under pullback (e.g. separated submersion, proper submersion, etc.).

2.7.1 Exercise. Show that a submersion of smooth stacks X → Y factors uniquely as a
surjective submersion X → V followed by an open embedding V → Y . We call the open
substack V ⊆ Y the image of the submersion X → Y .

2.7.2 Exercise (Relative tangent bundle of a submersion of smooth stacks). Let X → Y
be a submersion of smooth stacks, and let us define a vector bundle TX/Y over X. For any
Z ∈ Sm with a map Z → X, we consider the pullback X×Y Z → Z with its canonical section.
We declare the pullback of TX/Y to Z to be the pullback of TX×Y Z/Z under the canonical
section Z → X ×Y Z. Show that this assignment of a vector bundle over Z to every map
Z → X is compatible with pullback, hence defines a vector bundle over X. Show that the
relative tangent bundle is functorial, in the sense that for submersions X → Y and X ′ → Y ′,
a commutative square (X → Y ) → (X ′ → Y ′) induces a map from TX/Y to the pullback
of TX′/Y ′ to X. Conclude that for a composition of submersions X → Y → Z, there are
induced maps TX/Y → TX/Z → TY/Z (the latter pulled back to X); moreover, show that this
sequence is exact.
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2.7.3 Exercise. Show that a submersion of smooth stacks X → Y is a local isomorphism iff
TX/Y = 0.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.7.4 Definition (Submersive atlas). A submersive atlas of a smooth stack X is a surjective?

representable submersion U → X from a smooth manifold U .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.7.5 Exercise (Tangent cohomology of a smooth stack with submersive atlas). Let X be a
smooth stack with submersive atlas. For any submersion u : U → X, consider the two-term
complex

u∗TX = [
−1

TU/X →
0

TU ] (2.7.5.1)

of vector bundles on U . We will eventually identify this two-term complex with the pullback
of a two-term complex of vector bundles on X denoted TX, but for now the notation u∗TX
is purely motivational.

Show that for any pair of submersions V, U → X with a map V → U over X, the induced
map from v∗TX to the pullback of u∗TX to V is a quasi-isomorphism (pull the situation
back to a third atlas W → X). Conclude that the fiberwise cohomology of these two-term
complexes u∗TX descends to X, in the sense that for every p ∈ X there are well-defined
vector spaces T−1

p X and T 0
pX (that is, functors T iX : Hom(∗, X) → Vectfin

R for i = −1, 0)
together with, for every submersion U → X and every point p ∈ U , an exact sequence

0→ T−1
p X → (TU/X)p → TpU → T 0

pX → 0 (2.7.5.2)

compatible with maps of submersions over X. In (??) below, we will refine this discussion to
construct a two-term complex of vector bundles TX on X with cohomology T iX.

2.7.6 Example. If X is a smooth manifold, then T−1X = 0 and T 0
pX = TpX is the fiber at

p of the tangent bundle of X in the usual sense.

2.7.7 Exercise. Show that for a Lie group G, we have T 0BG = 0 and T−1BG = g is the Lie
algebra of G equipped with the conjugation action.

2.7.8 Exercise. Show that for a Lie group G acting on a smooth manifold M , there is an
exact sequence

0→ T−1
p (M/G)→ g→ TpM → T 0

p (M/G)→ 0 (2.7.8.1)

at points p ∈M .

2.7.9 Exercise. Show that for a smooth stack X with submersive atlas, the condition that
T−1
x X = 0 is open in x.
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2.7.10 Corollary. For any submersive atlas U → X and any x ∈ X, the map x×X U → U
is, locally on the source, a submersion onto a submanifold of codimension dimT 0

xX with fibers
of dimension dimT−1

x X.

Proof. The derivative of x×XU → U is TU/X → TU , whose kernel and cokernel have constant
rank dimT−1

x X and dimT 0
xX, respectively.

2.7.11 Corollary. The automorphism stack Aut(x) of a point x of a smooth stack X with
submersive atlas is a Lie group with Lie algebra T−1

x X.

Proof. The automorphism stack Aut(x) is always a group object (??), so to show it is a Lie
group, it suffices to show it is representable. Choose an atlas U → X and a lift of x to a point
u ∈ U . Then Aut(x) = x ×X x = u ×X u is the fiber of u ×X U → U over u. By (2.7.10),
this fiber is a smooth manifold whose tangent space is the kernel of TU/X → TU , namely
T−1
x X.

2.7.12 Definition (Minimal submersion). Given a smooth stack X, a submersion U → X
from a smooth manifold U is called minimal at u ∈ U when the map TU/X → TU vanishes
at u (compare (2.7.5.2)).

2.7.13 Lemma (Proper atlas from proper diagonal). Let X be a smooth stack with proper
diagonal, and let U → X be a submersion which is minimal at p ∈ U . For every sufficiently
small open neighborhood p ∈ V ⊆ U , we have p ×X p = p ×X V and the map V → X is
proper over an open substack of X containing the image of p.

Proof. Given the purely topological result (2.3.17), it suffices to show that p×X p ⊆ p×X U
is open, which is equivalent to minimality of U → X at p (2.7.10).

2.7.14 Lemma (Existence of a minimal atlas). For every point x of a smooth stack X with
submersive atlas, there exists an atlas U → X which is minimal at some lift u ∈ U of x.

Proof. Suppose U → X is a submersion and V → U is a map of smooth manifolds. We claim
that V → X is a submersion iff TV ⊕ TU/X → TU is surjective. Submersivity of V → X
can be checked after pulling back to an atlas W → X, and such pullback also preserves the
surjectivity condition in question. We are thus reduced to the situation that X is itself a
smooth manifold, in which case the equivalence is immediate.

With this fact in hand, we can now conclude. Begin with an arbitrary atlas U → X and a
lift u ∈ U of x. Let V ⊆ U be a locally closed submanifold passing through u chosen so that
TV ⊆ TU is a complement of the image of TU/X → TU at u (and so that TV ⊕ TU/X → TU
is everywhere surjective). Thus V → X is a submersion at u, and it remains to show that it
is minimal at u.

The map [TV/X → TV ]→ [TU/X → TU ] is a quasi-isomorphism of two-term complexes
(both calculate TX (2.7.5)). Together with the fact that TV ⊆ TU is a complement of
the image of TU/X → TU at u, this implies that the map TV/X → TV vanishes at u, as
desired.
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now come to the fundamental ‘local linearization’ result for smooth stacks with
submersive atlas and proper diagonal. It was conjectured by Weinstein [89, 90] and proved
by Zung [92] (see also Crainic–Struchiner [10] and Hoyo–Fernandes [11]). An analogous result
in algebraic geometry was proven later by Alper–Hall–Rydh [3].

2.7.15 Theorem (Zung [92]). A smooth stack with submersive atlas and proper diagonal is?

a Lie orbifold (??).

Proof. Let X be a smooth stack with submersive atlas and proper diagonal. Let x ∈ X, and
let G = x×X x be its automorphism Lie group (2.7.11). Since X has proper diagonal, G is
compact.

Fix a submersion U → X from a smooth manifold U which is minimal at a lift u ∈ U of
x. By replacing U with an open neighborhood of u, we can ensure that u ×X U → U has
image {u} and that U → X is proper over an open substack of X containing x (2.7.13).

We have constructed a proper submersion U → X from a smooth manifold U over a
neighborhood of x. It suffices to equip it with the structure of a principal G-bundle. Indeed,
this implies that X = U/G, which is a Lie orbifold (??).

A ‘pseudo-principal G-bundle’ structure on U → X is simply a map φ : U ×X U → G
(2.7.16). A principal G-bundle structure on U → X is the same as a pseudo-principal G-bundle
structure for which φ is a groupoid homomorphism (meaning the two maps U×XU×XU → G
given by (x, y, z) 7→ φ(x, y)φ(y, z) and φ(x, z) coincide) and the restriction of φ to u×XU → G
is a diffeomorphism for every u ∈ U (2.7.17). We will first construct a pseudo-principal
G-bundle structure on U → X and then correct it to a principal G-bundle structure.

Since U → X and X are separated, it follows that U is separated (Hausdorff). The
map U ×X U → U is separated (pullback of U → X), so U ×X U is also Hausdorff. Now
G = u×X u = u×X U ⊆ U ×X U is a smooth submanifold (it is a fiber of the submersion
U ×X U → U). There is thus a retraction U ×X U → G defined in a neighborhood of
G = u×X u = u×X U . The complement of this neighborhood is a closed subset of U ×X U ,
hence has closed image in X by properness of U → X. This image does not contain x, since
the inverse image of x is the image of u×X U → U , which is just u. Thus after replacing X
with an open substack containing x, we conclude that U → X is a pseudo-principal G-bundle.

By construction, this pseudo-principalG-bundle structure on U → X satisfies the condition
for being a principal G-bundle over x ∈ X. It would thus suffice to functorially ‘correct’
pseudo-principal G-bundle structures to principal G-bundle structures, at least over an open
subset containing the locus where they are already principal. Such a functorial correction is
defined in (2.7.19) below, depending on an additional piece of data, namely that of a smooth
positive fiberwise density on U → X, namely a smooth positive section of |detT ∗U/X | (where
det : GLn(R)→ GL1(R) and |·| : GL1(R) = R× → R>0 are group homomorphisms applied to
principal bundles) over U ; simply choose one arbitrarily.

2.7.16 Definition (Pseudo-principal G-bundle). Let G be a compact Lie group. A pseudo-
principal G-bundle is a proper submersion P → X together with a smooth map φ : P ×X P →
G. We denote the stack of pseudo-principal G-bundles by PG.
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2.7.17 Exercise. Every principal G-bundle is a pseudo-principal G-bundle: the map φ
is defined by the property φ(x, y)y = x; this defines a map of smooth stacks BG → PG.
Show that Hom(Z,BG) → Hom(Z,PG) is fully faithful. Show that a psuedo-principal G-
bundle P → X and φ : P ×X P → G comes from a principal G-bundle iff φ is a groupoid
homomorphism (meaning φ(x, y)φ(y, z) = φ(x, z) for (x, y, z) ∈ P ×X P ×X P ) and its
restriction to p×X P → G is a diffeomorphism for every p ∈ P .
2.7.18 Definition (Measured submersion). A submersion Q→ B equipped with a smooth
fiberwise density will be called a measured submersion. We denote the stacks of measured
principal G-bundles and measured pseudo-principal G-bundles by B̃G and P̃G, respectively.

2.7.19 Proposition (Zung [92]). Let G be a compact Lie group. The map B̃G→ P̃G lands
inside an open substack P̃◦G ⊆ P̃G which has a retraction P̃◦G→ B̃G.

P̃◦G

B̃G P̃G

(2.7.19.1)

Proof. Let F be a compact Hausdorff smooth manifold equipped with a positive smooth
density µ. Recall that a function φ : F × F → G is called a groupoid homomorphism when
φ(x, y)φ(y, z) = φ(x, z) (2.7.17). We will define, for an open locus of (φ, µ) ∈ C∞(F ×
F,G) × C∞(F,Ω>0

F ), a groupoid homomorphism R(φ, µ) : F × F → G which we call the
‘rectification’ of φ with respect to µ, so that if φ is a groupoid homomorphism then R(φ, µ)
is defined and equals φ. Applying this operation fiberwise to a measured pseudo-principal
G-bundle (Q → B, φ, µ) produces a measured principal G-bundle (Q◦ → B◦, R(φ, µ), µ),
where Q◦ = Q×B B◦ and B◦ ⊆ B is the open subset where R(φ, µ) is defined. This defines
the desired open substack P̃◦G ⊆ P̃G with retraction P̃◦G→ B̃G. Our goal is thus to define
the rectification operation R(φ, µ) with the aforementioned properties.

Let us begin with some general definitions and estimates. For a function f : F → G
taking values in a small neighborhood of the identity, we define its expectation

Ex[f(x)] = exp(Ex[log f(x)]) (2.7.19.2)

with respect to µ using the exponential map exp : g = T1G → G with inverse (near
the identity) denoted log. Expectation is thus conjugation invariant: Ex[af(x)a−1] =
aEx[f(x)]a−1. When G is non-abelian, we do not have Ex[f(x)g(x)] = Exf(x)Exg(x), rather
we have an estimate

|Ex[f(x)g(x)]− Exf(x)Exg(x)| ≤ const · sup |f | · sup |g|, (2.7.19.3)

where |a| for a ∈ G means |log a| for some fixed conjugation invariant norm |·| : g → R≥0

(which exists since G is compact). To prove this estimate, it suffices to bound both the
quantities

|expEx log f(x)g(x)− expEx[log f(x) + log g(x)]| (2.7.19.4)
|exp(Ex log f(x) + Ex log g(x))− (expEx log f(x))(expEx log g(x))| (2.7.19.5)
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by const · sup |f | · sup |g|, and these bounds follow from the estimates

|log(XY )− (logX + log Y )| ≤ const · |X||Y |, (2.7.19.6)
|exp(X + Y )− expX expY | ≤ const · |X||Y |, (2.7.19.7)

respectively. As a special case of (2.7.19.3), we also have the estimate

|Ex(a · f(x))− a · Exf(x)| ≤ const · |a| · sup |f | (2.7.19.8)

(and the same with a on the right).
To measure how close a given map φ : F × F → G is to being a groupoid homomorphism,

we consider the ‘error’ function E(φ) : F × F × F → G given by

E(φ)(a, b, c) = φ(a, b)φ(b, c)φ(a, c)−1. (2.7.19.9)

Now the rectification R(φ, µ) will be defined by iterating the ‘averaging’ operation φ 7→ φ̂
given by

φ̂(a, b) = φ(a, b)Ex[φ(a, b)−1φ(a, x)φ(b, x)−1], (2.7.19.10)

whose domain is, by definition, those φ with sup |E(φ)| < ε, for some fixed small ε > 0
(note that this is an open condition on φ since F is compact (2.4.9)). The argument of the
expectation in (2.7.19.10) may be written as φ(a, b)−1E(φ)(a, b, x)−1φ(a, b), so the condition
sup |E(φ)| < ε implies that this expectation is defined (provided our fixed ε > 0 is chosen to
be sufficiently small). Moreover this expression shows that

sup |φ̂− φ| ≤ const · sup |E(φ)|. (2.7.19.11)

The key to showing favorable asymptotic behavior of the iteration φ 7→ φ̂ is to show that the
error E(φ) is rapidly decreasing.

Let us bound E(φ̂) in terms of E(φ) following [92, Lemma 2.12]. The product φ̂(a, b)φ̂(b, c)
is given by

φ(a, b)Ex[φ(a, b)−1φ(a, x)φ(b, x)−1]φ(b, c)Ex[φ(b, c)−1φ(b, x)φ(c, x)−1] (2.7.19.12)

whereas φ̂(a, c) = φ(a, c)Ex[φ(a, c)−1φ(a, x)φ(c, x)−1]. To estimate the difference between
these two expressions, we appeal to the approximate homomorphism property of expectation
(2.7.19.3)(2.7.19.8). The first expression φ̂(a, b)φ̂(b, c) can be written, using conjugation
invariance of expectation, as

φ(a, b)φ(b, c)Ex[(φ(a, b)φ(b, c))−1φ(a, x)φ(b, x)−1φ(b, c)]

× Ex[φ(b, c)−1φ(b, x)φ(c, x)−1]. (2.7.19.13)

We can now apply (2.7.19.3) to conclude that this expression differs by at most a constant
times (sup |E(φ)|)2 from

φ(a, b)φ(b, c)Ex[(φ(a, b)φ(b, c))−1φ(a, x)φ(c, x)−1]. (2.7.19.14)
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This expression is in turn related to φ̂(a, c) by substituting φ(a, c) for φ(a, b)φ(b, c) (in both
places at once!), which by (2.7.19.8) again incurs an error of at most a constant times
(sup |E(φ)|)2. We have thus shown the ‘quadratic decay estimate’

sup |E(φ̂)| ≤ const · (sup |E(φ)|)2. (2.7.19.15)

This estimate implies that once sup |E(φ)| is sufficiently small, it then decreases super-
exponentially as we iterate the operation φ 7→ φ̂. This decay implies that the iteration
converges uniformly by (2.7.19.11).

We now define the rectification R. A pair (φ, µ) is in the domain of R when the iteration

φ0 = φ, (2.7.19.16)
φi = (φi−1)∧ for i > 0, (2.7.19.17)

is defined for all i ≥ 0 and the error decays to zero

sup |E(φi)|
i→∞−−−→ 0. (2.7.19.18)

The quadratic decay estimate (2.7.19.15) implies that this is an open condition in (φ, µ).
Combining the quadratic decay estimate with the fact that the error controls the increments
of the iteration (2.7.19.11), we see that the error decay condition also implies uniform
convergence of φi as i→∞. We may thus define

R(φ, µ) = lim
i→∞

φi. (2.7.19.19)

Since φi → R(φ, µ) uniformly, the error decay property (2.7.19.18) implies that E(R(φ, µ)) =
0, which means R(φ, µ) is a groupoid homomorphism. It is evident that R(φ, µ) = φ whenever
φ is a groupoid homomorphism.

What we have shown so far is that for smooth φ : B × F × F → G and µ : B × F → Ω>0
F

(for any smooth manifold B), the rectification R(φ, µ) is continuous on its domain of definition,
which is B◦ × F × F for some open set B◦ ⊆ B.

It remains to show that R(φ, µ) is in fact smooth. We will show that limi→∞ φi converges
in the smooth topology (of local uniform convergence of all derivatives) on the total space
B◦ × F × F . We will proceed slightly differently from Zung [92, Lemma 2.13].

First, we need to slightly generalize the basic setup. Rather than assuming that F is
compact, we instead fix a compact submanifold F0 ⊆ F . The function φ remains defined on
F × F , but the measure µ now lives on F0, and the averaging (2.7.19.2) takes place over F0.
The quadratic decay estimate (2.7.19.15) holds by the same argument. Now we declare a
pair (φ, µ) to be in the domain of R when there exists a neighborhood of F0 inside F over
which the iteration φi is defined for all i and the error decays to zero (in other words, we
regard F as a germ near F0). The domain of R is open for the same reason as before. That
is, for smooth φ : B × F × F → G and µ : B × F0 → Ω>0

F0
, the subset B◦ ⊆ B where R(φ, µ)

is defined is open, and R(φ, µ) is a continuous function on an (unspecified) open subset of
B◦ × F × F containing B◦ × F0 × F0.
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We now return to the question of smooth convergence of R(φ, µ) = limi→∞ φi, now in the
above generalized setup. We claim that for every k ≥ 0, the limit R = limi φi converges in
Ck over the open set where it converges in C0. The case k = 0 is vacuous, and for k ≥ 1 we
will use induction via the tangent functor T (2.6.10). Given a pair φ : B × F × F → G and
µ : B×F0 → Ω>0

F0
, we may obtain a pair Tφ : TB×TF ×TF → TG and µ : TB×F0 → Ω>0

F0

by applying the tangent functor T to φ and pulling back µ under the projection TB → B (this
operation (φ, µ) 7→ (Tφ, µ) is what compels the generalization in the previous paragraph).
Note that TG is itself a Lie group (the functor T sends group objects to group objects
since it preserves finite products). Now the key point is that applying T commutes with the
averaging operation, in the sense that T φ̂ = (Tφ)∧. Indeed, this holds by functoriality of T
and the fact that expTG = T expG. Thus applying the claim at a given k to the iteration
Tφi = (Tφ)i implies the claim at k + 1 for the iteration φi, so the claim holds for all k ≥ 0
by induction.
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2.8 Log smooth manifolds
A log structure on a topological space is a marking which, roughly speaking, specifies how
functions are ‘allowed to vanish’. Log structures originated in algebraic geometry in work of
Fontaine and Illusie, with further development by Kato [47]. A log smooth manifold is a log
topological space (2.8.2) equipped with an atlas of charts from open subsets of real affine
toric varieties XP = Hom(P,R≥0) for polyhedral cones P , with transition functions which are
smooth in a certain sense. This key notion of ‘log smoothness’ arises from a certain notion of
tangent bundle for the local models XP , namely the b-tangent bundle of Melrose [61, 62, 63]
or the log tangent bundle as it is called in algebraic geometry. Log smooth manifolds were
introduced by Joyce [41], who also proposed their application to moduli spaces of solutions of
non-linear elliptic partial differential equations on families of degenerating manifolds. There
is also closely related work of Parker [73].

Our goal here is to set up basic differential topology for log smooth manifolds.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Let us first recall the formalism of log topological spaces.

2.8.1 Definition (Sheaves of continuous functions). For any topological space X, let CX
denote the sheaf on X of continuous maps to R, and let C>0

X ⊆ C≥0
X ⊆ CX denote the

subsheaves of functions taking values in R>0 ⊆ R≥0 ⊆ R, respectively.

2.8.2 Definition (Log topological space). Let X be a topological space. A pre-log structure?

on X is a sheaf of (commutative) monoids O≥0
X on X together with a map of sheaves of

monoids O≥0
X → C≥0

X , where the monoid operation on C≥0
X is multiplication of functions. We

consider the subsheaf O>0
X ⊆ O≥0

X defined as the pullback

O>0
X C>0

X

O≥0
X C≥0

X

(2.8.2.1)

and a log structure is a pre-log structure for which the map O>0
X → C>0

X is an isomorphism.
A log topological space is a topological space equipped with a log structure. A map of log
topological spaces (f, f [) : (X,O≥0

X ) → (Y,O≥0
Y ) is a continuous map f : X → Y together

with a map f [ : f ∗O≥0
Y → O≥0

X such that the following diagram commutes.

f ∗O≥0
Y O≥0

X

f ∗C≥0
Y C≥0

X

f[

f∗

(2.8.2.2)
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It is sometimes helpful to think in terms of ‘log coordinates’ log : R≥0
∼−→ R≥−∞. In these

coordinates, the sheaf O≥0
X becomes an extension of the sheaf of real-valued functions by

allowing some functions taking the value −∞ at some points. The category of log topological
spaces is denoted LogTop.

2.8.3 Remark. If O≥0
X → C≥0

X is injective, then there is at most one log map X → Y lifting
a given continuous map X → Y .

2.8.4 Example (Trivial log structure). Every topological space X has a ‘trivial’ log structure
O≥0
X = C>0

X , which is the default way to view X as a log topological space. This defines
a full faithful embedding Top → LogTop which is right adjoint to the forgetful functor
LogTop → Top. In practice, one is usually interested in log structures which are ‘finite
extensions’ of the trivial log structure.

The left adjoint to the forgetful functor LogTop→ Top equips a topological space X with
the log structure O≥0

X = C≥0
X . This log structure is too ‘wild’ to be of much use.

2.8.5 Exercise (Log structure associated to a pre-log structure). Show that the inclusion of
log structures on X into pre-log structures on X has a left adjoint given by sending O≥0

X to
the colimit of O≥0

X ← O>0
X → C>0

X . Describe concretely a section of this colimit over an open
set U ⊆ X, and verify that it is indeed a sheaf.

2.8.6 Exercise (Log structure from a function). Let X be a topological space, and let
f : X → R≥0 be a continuous function with Z := f−1(0). There is an induced pre-log
structure Z≥0 → C≥0

X given by n 7→ fn for n > 0 and 0 7→ 1; denote by O≥0
X the associated

log structure. Show that a global section of O≥0
X consists of a function g : X → R≥0, a

locally constant function n : Z → Z≥0, and functions hk : (X \ Z) ∪ n−1(k)→ R>0 such that
fkhk = g|(X\Z)∪n−1(k). Show that O≥0

X → C≥0
X is injective iff Z◦ = ∅. Show that there are

maps
0→ O>0

X → O≥0
X → (iZ)∗Z≥0 → 0 (2.8.6.1)

which form a ‘short exact sequence’, in the sense that O≥0
X → (iZ)∗Z≥0 is an epimorphism of

underlying sheaves of sets (i.e. every section of (iZ)∗Z≥0 is locally the image of a section of
O≥0
X ; compare (??)) and its fibers are O>0

X -torsors (i.e. any two sections of O≥0
X with the same

image in (iZ)∗Z≥0 are related by a unique section of O≥0
X ).

Given a pair (X,Z) consisting of a topological space X and a closed subset Z ⊆ X, one
might also attempt to consider the log structure given by those non-negative functions on
X whose zero locus is contained in Z. Like the log structure O≥0

X = C≥0
X (2.8.4), this log

structure is too wild to be of much use.

2.8.7 Remark (Log structure from a Cartier divisor). The construction above (2.8.6) defines
a map from C≥0

X to the sheaf of log structures on open subsets of X. Since multiplication
by a positive function determines an isomorphism of the associated log structures, this map
descends to the groupoid quotient C≥0

X /C>0
X . A section of C≥0

X /C>0
X is called a Cartier divisor.

2.8.8 Exercise (Standard log structure ′R≥0). We denote by ′R≥0 the topological space R≥0

equipped with the log structure associated to the identity function by the construction in
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(2.8.6). Show that ′R≥0 has the following universal property: maps X → ′R≥0 are in natural
bijection with global sections of O≥0

X for log topological spaces X. What are the global
sections of this log structure on ′R≥0? (Equivalently, what are the log maps ′R≥0 → ′R≥0?)

2.8.9 Definition (Pullback log structure). Given a map of topological spaces X → Y and a
log structure O≥0

Y on Y , the pullback log structure f#O≥0
Y on X is the log structure associated

to the pre-log structure f ∗O≥0
Y (ordinary sheaf pullback). That is, f#O≥0

Y is the sheaf pushout
(i.e. the sheafification of the presheaf pushout) of f ∗O≥0

Y ← f ∗O>0
Y → O>0

X (compare (2.8.5)).
A map of log topological spaces (X,O≥0

X )→ (Y,O≥0
Y ) can be equivalently defined as a map of

topological spaces X → Y together with a map f#O≥0
Y → O≥0

X of log structures on X.

2.8.10 Example. The log structure associated to a continuous function f : X → R≥0 by
the construction (2.8.6) is precisely f# of the log structure on ′R≥0.

2.8.11 Exercise. Let f : X → Y be continuous, and let O≥0
Y be a log structure on Y .

Show that its pullback f#O≥0
Y satisfies the following universal property. For any log map

g : (Z,O≥0
Z )→ (Y,O≥0

Y ) and continuous map h : Z → X satisfying g = f ◦ h, there exists a
unique refinement of h to a log map (Z,O≥0

Z )→ (X, f#O≥0
Y ) such that g = f ◦ h as log maps.

2.8.12 Exercise (Limits of log topological spaces). Show that the limit of a diagram of
log topological spaces (Xα,O

≥0
Xα

) is given by the limit of underlying topological spaces Xα

equipped with the colimit of the pullbacks of O≥0
Xα

.

2.8.13 Definition (Strict log map). A map of log topological spaces (X,O≥0
X )→ (Y,O≥0

Y ) is
called strict when the map f#O≥0

Y → O≥0
X is an isomorphism.

2.8.14 Definition (Embedding of log topological spaces). An embedding of log topological
spaces is a strict log map which is an embedding of underlying topological spaces.

2.8.15 Exercise. Show that strictness is preserved under pullback, hence so is the property
of being an embedding.

2.8.16 Definition (Ghost sheaf). For a log topological space X, the sheaf of monoids
ZX = O≥0

X /O>0
X is called the ghost sheaf of X.

2.8.17 Example. Let X be equipped with the log structure (2.8.6) associated to a function
f : X → R≥0 with zero set Z. The short exact sequence (2.8.6.1) shows that ZX = (iZ)∗Z≥0.

2.8.18 Exercise. Show that two sections f, g ∈ O≥0
X have the same image in ZX iff there

exist local expressions f = ug for various local u ∈ O>0
X .

2.8.19 Exercise. Show that the only invertible section of the ghost sheaf ZX is the identity.

2.8.20 Exercise. Show that a log map f : X → Y induces a map f [[ : f ∗ZY → ZX as a
quotient of f [. Show that if f is strict then f [[ is an isomorphism (note that Z = O≥0/O>0 is
the pushout of 0← O>0 → O≥0 and use the fact that f ∗ preserves colimits).
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2.8.21 Definition (Quasi-integral). A log topological space (X,O≥0
X ) quasi-integral when

the action of O>0
X (U) on O≥0

X (U) is free for every open U ⊆ X.

2.8.22 Exercise. Show that (X,O≥0
X ) is quasi-integral iff the sequence

0→ O>0
X → O≥0

X → ZX → 0 (2.8.22.1)

is exact in the sense that any two sections of O≥0
X with the same image in ZX differ by a

unique section of O>0
X .

2.8.23 Exercise (Checking strictness via ghost sheaves). For a log map f : X → Y , show
that if f [[ : f ∗ZY → ZX is an isomorphism and X is quasi-integral, then f is strict.

2.8.24 Definition (Cancellative). A monoid M is called cancellative when x + a = y + a
implies x = y for all elements x, y, a ∈M . A sheaf of monoids is called cancellative when its
monoid of sections over any open set is cancellative. A log topological space (or log structure)
(X,O≥0

X ) is called cancellative when O≥0
X is cancellative.

2.8.25 Exercise. Show that for a sheaf of monoidsM on a topological space X, the following
are equivalent:
(2.8.25.1) M is cancellative.
(2.8.25.2) M |Ui is cancellative for every i for some open cover X =

⋃
i Ui

(2.8.25.3) Mx is cancellative for every x ∈ X.

2.8.26 Exercise. Show that a cancellative log structure is quasi-integral.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now begin our discussion of log smooth manifolds.

2.8.27 Definition (Polyhedral cone). A (real) polyhedral cone P ⊆ Rn is a subset defined?

by finitely many inequalities of the form
∑

i aixi ≥ 0. A map of polyhedral cones P → Q is
the restriction of a linear map (the embedding into Rn is thus irrelevant).

2.8.28 Remark (Integral vs real polyhedral cones). One could work with integral polyhedral
cones (subsets P ⊆ Zn defined by finitely many inequalities of the form

∑
i aixi ≥ 0 for

ai ∈ Z) instead of real polyhedral cones. The resulting geometric theory would be very
similar, but somewhat more rigid. The additional flexibility afforded by real polyhedral cones
is needed to describe the elliptic partial differential equations, solutions thereof, and moduli
spaces of solutions, which we will study later. It is for this reason that we choose to work
here with real polyhedral cones.

2.8.29 Exercise. Let P be a polyhedral cone. Show that the groupification P gp is a finite-
dimensional real vector space, and that the map P → P gp identifies P with a polyhedral
cone in P gp.
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2.8.30 Exercise. Show that every polyhedral cone P admits a surjection from some Rn
≥0.

2.8.31 Exercise. Show that the category of polyhedral cones is an additive category (??).

2.8.32 Definition (Face). A face F ⊆ P of a polyhedral cone P is a subset of the form
F = P ∩ `−1(0) for some linear functional ` ∈ (P gp)∗ with the property that `(p) ≥ 0 for all
p ∈ P . For any map of polyhedral cones P → Q, the inverse image of a face of Q is evidently
a face of P .

2.8.33 Definition (Real affine toric varieties XP ). Let P be a polyhedral cone. We consider?

the real affine toric variety

XP = Hom((P,+), (R≥0,×)), (2.8.33.1)

which we equip with the compact-open topology (2.4.12) and with the log structure associated
to the pre-log structure P → C≥0

XP
(the tautological ‘evaluation’ map). This log structure

O≥0
XP
⊆ C≥0

XP
consists of those functions on XP which locally take the form x(p)g(x) for some

p ∈ P and g ∈ C>0
XP

. A log topological manifold is a log topological space locally isomorphic
to open subsets of various XP .

2.8.34 Example. If P = R, then XP = R>0 with the trivial log structure (2.8.4). If
P = R≥0, then XP = ′R≥0 is the half-line R≥0 with its the standard log structure (2.8.8),
namely the sheaf of continuous functions which locally have the form f(x)xa for some real
number a ≥ 0 and a continuous positive function f . If P = Rn

≥0, then XP = ′Rn
≥0, namely

Rn
≥0 equipped with the sheaf of continuous functions locally of the form f(x)

∏n
i=1 x

ai
i for real

ai ≥ 0 and continuous positive f .

2.8.35 Exercise (Monomial maps XP → XQ). Show that a map of polyhedral cones Q→ P
induces a map XP → XQ (such maps are called monomial). Show that if Q� P is surjective
then XP ↪→ XQ is a closed embedding.

2.8.36 Exercise (Presentation of XP ). Show that a surjection ϕ : Rn
≥0 � P (which always

exists (2.8.30)) presents XP ⊆ ′Rn
≥0 as the subset cut out by finitely many conditions of the

form
∏n

i=1 x
ai
i = 1 for real ai ≥ 0 (corresponding to a finite set of generators of kerϕ). For

instance, presenting P = R as R2
≥0/(1, 1) corresponds to realizing XP = R>0 as the locus

{xy = 1} ⊆ ′R2
≥0.

2.8.37 Definition (R≥0-linear log structure). An R≥0-linear monoid is a monoidM equipped
with a bilinear operation R≥0 ×M → M ; maps of R≥0-linear monoids are monoid maps
respecting the R≥0-linear structure. For example, a real polyhedral cone has a canonical R≥0-
linear structure, and in this way real polyhedral cones form a full subcategory of R≥0-linear
monoids.

For X any topological space, C≥0
X is a sheaf of R≥0-linear monoids. By taking the definition

of a log structure and replacing the category of monoids with that of R≥0-linear monoids, we
obtain the notion of an R≥0-linear log structure. The foundations of log topological spaces
expressed in (??) carry over as written. The map P → C≥0

XP
is R≥0-linear, so it determines

an R≥0-linear log structure on XP . (This discussion of R≥0-linearity is due to our use of real
polyhedral cones as opposed to integral polyhedral cones (2.8.28).)
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2.8.38 Exercise (Universal properties of XP ). Show that:
(2.8.38.1) Maps Z → XP from topological spaces Z are in natural bijection with R≥0-linear

maps of monoids P → C≥0
Z .

(2.8.38.2) Maps Z → XP from R≥0-linear log topological spaces Z are in natural bijection
with R≥0-maps of monoids P → O≥0

Z .
Conclude that the natural map XP⊕Q → XP×XQ (induced by the embeddings P → P⊕Q←
Q) is an isomorphism of R≥0-linear log topological spaces (that is, the contravariant functor
P 7→ XP sends coproducts to products).

2.8.39 Example (Log coordinates). The map P → P gp to the groupification induces?

XP gp → XP , which is a dense open embedding denoted X◦P ⊆ XP called the ‘interior’, whose
complement X id

P = XP \ X◦P is called the ‘ideal locus’. The interior X◦P ⊆ XP is also the
set Hom((P,+), (R>0,×)). Applying the logarithm map log : (R>0,×)

∼−→ (R,+) yields an
isomorphism

(P gp)∗ = X◦P ⊆ XP (2.8.39.1)
referred to as log coordinates on X◦P . In log coordinates, monomial maps are linear.

2.8.40 Exercise. Show that X◦P ⊆ XP is dense. Conclude that the map O≥0
XP
→ C≥0

XP
is

injective and that XP is cancellative (2.8.24). It was observed in (2.8.3) that this implies that
for any log topological space Z, log map XP → Z is a continuous map with a property. Show
that a log map from XP to an R≥0-linear log topological space is automatically R≥0-linear.

2.8.41 Exercise (Asymptotically cylindrical structures as log structures). Let U and V?

be open subsets of Rk, and consider maps U × ′R≥0 → V × ′R≥0. Show that such a map
necessarily takes the interior U ×R>0 to the interior V ×R>0. Show that near the ideal locus
U × 0, such a map locally takes the form (using log coordinates x = es)

(u, s) 7→ (f(u) + o(1), a · s+ b(u) + o(1)) (2.8.41.1)

where f : U → V , a ≥ 0, b : U → R, and o(1) indicates a quantity approaching zero as
s→ −∞, uniformly over compact subsets of U .

2.8.42 Definition (Stratification of XP ). Each space XP is stratified by the set of faces of P .?

Namely, to a monoid homomorphism x : P → R≥0 we associate the face Fx = x−1(R>0) ⊆ P .
Given a face F ⊆ P , there is an embedding of topological spaces XF ⊆ XP given by extension
by zero on P \ F (but note this is not an embedding of log topological spaces). The stratum
of XP associated to F is X◦F . Restriction along the inclusion F ⊆ P defines a morphism of
log topological spaces XP → XF which is a topological retraction.

2.8.43 Remark. It is known that XP and P are homeomorphic as stratified spaces (a
reference is [70, Theorem 1.4]). We will only ever use elementary special cases of this result,
such as for P = Rn

≥0.

2.8.44 Exercise (Rational maps XP → XQ). Let Q→ P gp be a map of polyhedral cones,
and consider the union of the strata X◦F ⊆ XP for the faces F ⊆ P for which Q→ P gp lands
inside P + F gp ⊆ P gp. Show that this is an open subset of XP , and that Q→ P gp defines a
map XP → XQ on this open subset (such maps are called rational).



CHAPTER 2. TOPOLOGY 109

2.8.45 Definition (Sharp). A polyhedral cone P is called sharp when its minimal stratum is
{0} (that is, when P contains no nonzero invertible elements). The quotient of a polyhedral
cone P by its minimal stratum P0 ⊆ P is denoted P#, which is always sharp. The functor
P 7→ P# is left adjoint to the inclusion of sharp polyhedral cones into all polyhedral cones.

2.8.46 Example (Local structure of XP ). Let x ∈ XP , and let Fx ⊆ P index the stratum
X◦Fx ⊆ XP containing x, namely Fx = x−1(R>0). Then x lies in the open subsetXP+F gp

x
⊆ XP ,

in which it lies on the minimal stratum, namely XF gp
x

= X◦Fx . We define Px = P/F gp
x , so

there is a short exact sequence

0→ F gp
x → P + F gp

x → Px → 0. (2.8.46.1)

The polyhedral cone Px is sharp and is the stalk ZXP ,x of the ghost sheaf ZXP = O≥0
XP
/O>0

XP
(2.8.16) at x. The polyhedral cone Px controls the local structure of XP near x: a choice of
splitting of (2.8.46.1) induces an isomorphism XPx ×XF gp

x
= XP+F gp

x
⊆ XP .

2.8.47 Exercise. Consider P = R≥0 × R = {x ≥ 0} × {y} and Q = {y ≤ |x|} ⊆ P .

Q

P

(2.8.47.1)

Let f : XP → XQ denote the restriction map, and let p = 0 ∈ XP be the basepoint p(0, y) = 1
and p(x, y) = 0 for x > 0. The short exact sequence (2.8.46.1) for f(p) ∈ XQ maps naturally
to that for p ∈ XP . Show that this results in the following diagram:

0 0 Q Q 0

0 R P R≥0 0

(2.8.47.2)

Describe the map f geometrically.

2.8.48 Exercise. Let f : XP → XQ and let x ∈ XP . Show that f = frat ·g in a neighborhood
of x for some rational map frat : XP → XQ and some map g : XP → X◦Q, where · denotes
multiplication in XQ. Moreover, show that this pair (frat, g) is unique up to a natural action
of Hom(Q,F gp

x ).

2.8.49 Example (Recovering local coordinates on a log topological manifold). Let M be a
log topological manifold, and let p ∈ M . The action of O>0

M on O≥0
M is free since X◦P ⊆ XP

is dense (2.8.40). It follows that we can construct a section of the forgetful map O≥0
p → Zp
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(2.8.16) by choosing z1, . . . , zn ∈ Zp which form a basis for the groupification Zgp
p and lifting

each to O≥0
p . Such a choice of section is equivalently the data of a germ

(M, p)→ (XZp , 0) (2.8.49.1)

(where 0 ∈ XZp is the map Zp → R≥0 sending everything other than the identity to zero)
whose action on ghost sheaves (2.8.16) at the basepoint is the identity map of Zp. The target
is stratified by the faces of Zp (2.8.42), which determines by pullback a germ of stratification
of M near p. This stratification is described more intrinsically as follows: a point q near p is
sent to the face of Zp consisting of those functions which do not vanish at q. It thus recovers
the canonical local stratification of M by the face poset of Zp (2.8.46). It hence induces an
isomorphism on ghost sheaves, so is a strict log map (2.8.23).

Now let f : M → N be a map of log manifolds, and let x ∈ M . The map of sharp
polyhedral cones f [[x : ZN,f(x) → ZM,x satisfies (f [[x )−1(0) = 0 (if f [[x (z) = 0, then z(f(x)) =
(f [[x z)(x) > 0, implying z = 0) but need not be injective (2.8.47). For any point y in a
neighborhood of x, we can consider the associated faces Fy ⊆ ZM,x and Ff(y) ⊆ ZN,f(x) (the
functions which do not vanish at y and f(y), respectively), which satisfy (f [[x )−1(Fy) = Ff(y).
The map f [[x induces a map ZN,f(y) = ZN,f(x)/F

gp
f(y) → ZM,x/F

gp
x = ZM,y which is precisely

f [[y (compare (2.8.46)).
If f [[x is injective, then in the diagram

O≥0
M,x ZM,x

O≥0
N,f(x) ZN,f(x)

f[x f[[x
(2.8.49.2)

we can choose compatible sections of the horizontal maps by first lifting z1, . . . , zn ∈ ZN,f(x)

which are a basis for the groupification, and then extending their images in ZM,x to a basis
of its groupification and lifting these. The result is a diagram of germs

(M,x) (XZM,x , 0)

(N, f(x)) (XZN,f(x)
, 0)

f f[[x
(2.8.49.3)

in which the horizontal maps are strict.

2.8.50 Exercise. Show that for a map of log smooth manifolds f : X → Y and a point
x ∈ X, the following are equivalent:
(2.8.50.1) f [[x is an isomorphism.
(2.8.50.2) f [[x′ is an isomorphism for all x′ in a neighborhood of x.
(2.8.50.3) f is strict in a neighborhood of x.
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2.8.51 Definition (Depth). The depth of a log topological manifold M at a point x is the?

dimension of the sharp polyhedral cone ZM,x (2.8.46). The depth of M itself is the maximum
depth over all its points.

2.8.52 Example. The depth of XP is the dimension of P# = P/P0 where P0 ⊆ P denotes
the minimal stratum.

2.8.53 Example.
(2.8.53.1) Depth 0 is equivalent to being locally modelled on open subsets of Rk.
(2.8.53.2) Depth ≤ 1 is equivalent to being locally modelled on open subsets of Rk × ′R≥0.
(2.8.53.3) Depth ≤ 2 is equivalent to being locally modelled on open subsets of Rk × ′R2

≥0.
(2.8.53.4) In depth 3, there are infinitely many local models (indeed, there infinitely many

isomorphism classes of sharp polyhedral cones of dimension three).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Our next major topic is differentiability on log manifolds. This discussion is a reformulation
of Melrose’s notions of b-tangent bundle, b-differential operators, etc.

2.8.54 Definition (Tangent space of XP ). The tangent bundle TXP → XP is the trivial?

vector bundle with fiber (P gp)∗. Over the interior of XP (which is a smooth manifold), we
identify this with the tangent bundle in the usual sense using log coordinates X◦P = (P gp)∗.

2.8.55 Example. The vector field x∂x is an everywhere non-vanishing section of T ′R≥0.
More generally, x1∂x1 , . . . , xn∂xn is a basis for T ′Rn

≥0. A basis for the tangent space of U× ′R≥0

(U ⊆ Rn open) is given, in log coordinates x = es on ′R≥0, by ∂u1 , . . . , ∂un , ∂s.

2.8.56 Definition (Cotangent cone of XP ). The cotangent cone of XP at a point x is the?

polyhedral cone T~x XP = P + F gp
x , whose groupification is the cotangent space T ∗xXP .

2.8.57 Example. A general section of the cotangent cone of T~′Rn
≥0 takes the form∑

i ai(x)dxi
xi

where ai(x) ≥ 0 over the locus where xi = 0.

2.8.58 Definition (Log (co)tangent short exact sequence). The short exact sequence?

(2.8.46.1) associated to a point x ∈ XP can be viewed as a sequence of cotangent cones

0→ T ∗xXFx = T~x XFx → T~x XP → Zx → 0. (2.8.58.1)

Dualizing gives a short exact sequence of tangent spaces

0→ (Zgp
x )∗ → TxXP → TxXFx → 0. (2.8.58.2)

Note that the direction of these maps is opposite to the situation of a manifold-with-boundary:
a tangent vector to XP at x determines a tangent vector to the stratum XFx ⊆ XP containing
x, rather than the other way around.
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2.8.59 Definition (Differentiability of maps XP → XQ). A map f : XP → R>0 is said
to be differentiable at x ∈ XP when its restriction to X◦Fx = (F gp

x )∗ is differentiable at
x. The derivative of f at x is then the composition of the map TxXP → TxX

◦
Fx

(namely
(P gp)∗ → (F gp

x )∗) with the derivative of f restricted to X◦Fx at x; dually, this is an element of
T ∗xFx = F gp

x ⊆ P + F gp
x = T~x XP . We say f is continuously differentiable when its derivative

df : XP → T~XP is continuous.
A map f : XP → ′R≥0 is said to be differentiable at x ∈ XP when f = p · g (near x)

for p ∈ P and g : XP → R>0 differentiable at x. The derivative of f at x is the sum of
p ∈ P ⊆ P + F gp

x = T~x XP and the derivative of g at x; this is independent of the choice of
decomposition f = p · g.

A map f : XP → XQ is said to be differentiable at x ∈ XP iff for every q ∈ Q, the
composite q ◦ f : XP → ′R≥0 is differentiable at x. In this case, the induced map Q→ T~x XP

sends Ff(x) to invertible elements F gp
x ⊆ P + F gp

x = T~x XP since for q ∈ Ff(x) the composite
q ◦ f is nonzero at x. The map Q→ T~x XP thus extends to Q + F gp

f(x) = T~f(x)XQ, and the
resulting map T~x f : T~f(x)XQ → T~x XP is called the derivative of f at x. This derivative
respects the short exact sequences (2.8.58), namely the following diagram commutes.

0 T ∗xXFx T~x XP Zx 0

0 T ∗f(x)XFf(x)
T~f(x)XQ Zf(x) 0

T ∗x (f |XFx ) T~
x f f[[x (2.8.59.1)

A map f : XP → XQ is called continuously differentiable iff it is differentiable at every point
and the map Tf : TXP → TXQ given on each fiber by the derivative is continuous. In
this case, Tf is a log map since TXP → XP is strict. The adjectives ‘k times continuously
differentiable’ (‘class Ck’) and ‘smooth’ (‘class C∞’) are now defined by iterating T .

2.8.60 Example. The derivative of a monomial map XP → XQ is the map (P gp)∗ → (Qgp)∗

induced by Q → P . In particular, the derivative of a monomial map is again a monomial
map; hence monomial maps are smooth.

2.8.61 Example. The diagonal map R≥0 → R2
≥0 of polyhedral cones induces the monomial

map

f : ′R2
≥0 → ′R≥0 (2.8.61.1)

(x, y) 7→ xy = λ (2.8.61.2)

which is thus a log smooth map. The vector fields {x∂x, y∂y} and λ∂λ form bases of the
tangent spaces of the source and target, respectively (note that, in particular, these vector
fields are nonzero even where x = 0, y = 0, or λ = 0). The derivative of f sends x∂x 7→ λ∂λ
and y∂y 7→ λ∂λ. Its kernel (i.e. the vertical tangent bundle) is thus of constant rank one,
spanned by x∂x − y∂y. Lifting λ∂λ to 1

2
(x∂x + y∂y) may be viewed as defining a ‘connection’.
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2.8.62 Example. Write f : XP → XQ near x ∈ XP as f = frat · g as in (2.8.48). There
is a unique such decomposition for which the derivative of g|X◦Fx at x vanishes. For this
decomposition, frat is the rational map associated to the derivative T~x f : Q+F gp

f(x) → P +F gp
x

at x.

2.8.63 Lemma (Chain Rule). If f : XP → XQ is differentiable at x and g : XQ → XR

is differentiable at f(x), then their composition XP → XR is differentiable at x, and its
derivative is the composition of the derivatives of f and g.

Proof. By the definition of differentiability of maps with target XR, it suffices to treat the case
XR = ′R≥0. We are thus in the situation of a pair of maps f : XP → XQ and g : XQ → ′R≥0.
By the definition of T~f(x)g as a sum, we are reduced to two cases, namely g(f(x)) > 0 or
g ∈ Q. When g ∈ Q, the relation T~(g ◦ f) = T~g ◦ T~f is the definition of T~f . When
g(f(x)) > 0, we are reduced to the chain rule for the restrictions f |XFx : XFx → XFf(x)

and
g|XFf(x)

.

2.8.64 Definition (Log smooth manifold). A log smooth manifold is a log topological space?

equipped with an atlas of charts from open subsets of various XP whose transition functions
are smooth. The category of log smooth manifolds and smooth maps is denoted LogSm.

2.8.65 Exercise (Log smooth manifolds via the structure sheaf). For any log smooth
manifoldM , let A≥0

M ⊆ O≥0
M denote the subsheaf of functions to ′R≥0 which are smooth. Prove

that XP → XQ is smooth iff it pulls back functions in A≥0
XQ

to functions in A≥0
XP

. Conclude that
a log smooth manifold is equivalently a log topological space M with a subsheaf A≥0

M ⊆ O≥0
M

which is locally isomorphic to (XP ,A
≥0
XP

). Conclude that a log smooth manifold is also a
topological space M with a subsheaf A≥0

M ⊆ C≥0
M which is locally isomorphic to (XP ,A

≥0
XP

).

2.8.66 Exercise (Strata functor). For a log smooth manifold X, define a topological space
S(X) (‘strata’) mapping to X by taking S(XP ) =

⊔
F⊆P XF (mapping to XP by ‘extension

by zero’ (2.8.42)) and gluing. Equip S(X) with the log structure given by the subsheaf
O≥0
S(X) ⊆ im(O≥0

X → C≥0
S(X)) of functions whose zero set is nowhere dense, and show that

S(XP ) =
⊔
F⊆P XF as log topological spaces (note that the map S(X) → X is not a

log map). Make the same definition with log smooth functions (2.8.65), and show that
S(XP ) =

⊔
F⊆P XF as log smooth manifolds, hence S(X) is a log smooth manifold for all X.

Finally, show that S is a functor from the category of log smooth manifolds to itself (first
argue it is a functor to topological spaces, and then show that the maps are log smooth by
inspecting the rings of log smooth functions).

2.8.67 Definition (Log (co)tangent short exact sequence). In view of the functoriality of the?

log (co)tangent short exact sequences (2.8.59.1), they make sense on log smooth manifolds.
That is, for any point x of a log smooth manifold M , there is a short exact sequence

0→ T ∗xMx → T~x M → ZM,x → 0, (2.8.67.1)
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where Mx ⊆ M denotes the local stratum containing x. A smooth map of log smooth
manifolds f : M → N induces a map of such short exact sequences.

0 T ∗xMx T~x M ZM,x 0

0 T ∗f(x)Nf(x) T~f(x)N ZN,f(x) 0

T ∗x (f |Mx ) T~
x f f[[x (2.8.67.2)

Recall that the map f [[x determines f [[y for all y in a neighborhood of x (2.8.49).

2.8.68 Definition. There is an evident short exact sequence

0→ A>0
M → A≥0

M → ZM → 0 (2.8.68.1)

for log smooth manifolds M , which is functorial under log smooth maps f : M → N . By
taking logarithmic derivatives, this sequence maps to the log cotangent short exact sequence
(2.8.67), resulting in a diagram with exact rows and columns.

ker(A>0
M,x → T ∗xMx) ker(A≥0

M,x → T~x M)

A>0
M,x A≥0

M,x ZM,x

T ∗xMx T~x M ZM,x

(2.8.68.2)

In particular, we have a short exact sequence

0→ ker(A>0
M,x → T ∗xMx)→ A≥0

M,x → T~x M → 0 (2.8.68.3)

expressing T~x M as germs of smooth functions to ′R≥0 modulo those functions with vanishing
derivative at x.

2.8.69 Exercise (Asymptotically cylindrical structures as log structures). As a continuation?

of (2.8.41), show that a log map U × ′R≥0 → V × ′R≥0 of class Ck takes the form

(u, s) 7→ (f(u), a · s+ b(u)) + o(1)Ck (2.8.69.1)

for f ∈ Ck, b ∈ Ck, and o(1)Ck indicating a function of class Ck whose derivatives of order
up to k approach zero as s→ −∞, uniformly over compact subsets of U .

2.8.70 Exercise. Show that the map ′R≥0 → R given by x 7→ x is smooth.

2.8.71 Exercise (Smooth functions ′R2
≥0 → R). Show that a function ′R2

≥0 → R is smooth
iff it is given in log coordinates (x, y) = (es, et) by (s, t) 7→ a + b(s) + c(t) + o(1)C∞ as
min(s, t)→ −∞ (uniformly over sets on which max(s, t) is bounded) for a ∈ R, b(s) = o(1)C∞
as s→ −∞, and similarly for c(t).
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2.8.72 Lemma. A Hausdorff log smooth manifold has bump functions, hence partitions of
unity (if also paracompact).

Proof. It suffices to consider the case of a local model XP . A surjection Rn
≥0 → P determines

a closed embedding XP ↪→ ′Rn
≥0 (2.8.35) which is smooth (2.8.60), so it suffices to exhibit

bump functions on ′Rn
≥0. The tautological inclusion map ′Rn

≥0 → Rn is also smooth (2.8.70),
so we reduce further to the case of Rn, which was treated earlier (2.6.12). The construction of
partitions of unity from bump functions (2.6.20) is a purely topological argument, so applies
without change.

2.8.73 Definition (Averaging on a log manifold). Let M be a paracompact Hausdorff log?

smooth manifold, and let Meas(M) denote the set of positive measures on M of unit total
mass. As in (2.6.29), we seek to construct an ‘averaging’ operation

avg : Meas(M)→M (2.8.73.1)

on the set of measures of ‘sufficiently small’ support.
Let us call an open set U ⊆ XP convex when its intersection with every stratum X◦F ⊆ XP

(for faces F ⊆ P ) is convex in log coordinates X◦F = (F gp)∗. For a measure µ on U supported
inside U ∩ X◦F for some face F ⊆ P , the average avgU(µ) ∈ U is defined via the linear
structure on (F gp)∗ = X◦F . Given a smooth function of compact support η : U → [0, 1], we
may define the cutoff average avgU,η as in (2.6.29.2).

Now consider a cover M =
⋃
i Ui by open sets identified with convex open sets Ui ⊆ XP .

To see that such an open cover exists, it suffices to show that every point of XP has arbitrarily
small convex open neighborhoods. By embedding XP ↪→ ′Rn

≥0 via a surjection Rn
≥0 � P

(2.8.36), we may reduce to the case of points of ′Rn
≥0 and hence, since convexity is preserved

by products, to the case of ′R≥0 where the result is obvious. We may now follow the manifold
case (2.6.29) and define the global average (2.8.73.1) as a composition of local averages
avgUi,ηi . This composition is defined on measures of ‘sufficiently small’ support, which now
means, for some fine open cover M =

⋃
i Ui by convex open sets Ui ⊆ XPi , that the support

of µ is contained in Ui ∩X◦F for some i and some face F ⊆ Pi.
The averaging map avg is smooth in the following sense. Consider families of measures

N → Meas(M) parameterized by a log smooth manifold N which, locally on N , are of the
form of a finite sum

∑
iwiδpi for some smooth functions wi : N → [0, 1] and pi : N → M .

Now each local averaging operation, hence also the global averaging operation, preserves
families of this form (inspection).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now discuss the inverse function theorem for log smooth manifolds. Recall that each
point of a log smooth manifold has a cotangent polyhedral cone (2.8.56), which carries more
information than its groupification the cotangent space. For this reason, the correct statement
of the inverse function theorem involves cotangent cones rather than (co)tangent spaces.
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2.8.74 Exercise (Failure of naive log inverse function theorem). Consider the map R2
≥0 →

R2
≥0 given by f(x, y) = (x2y, xy2). Show that f induces an isomorphism on tangent spaces

yet is not a local homeomorphism (in fact, it is not even open).

2.8.75 Exercise (Log inverse function theorem hypothesis). Use the log cotangent short
exact sequence (2.8.67) to show that for f : X → Y a smooth map of log smooth manifolds,
the following are equivalent:
(2.8.75.1) T~x f : T~f(x)Y → T~x X is an isomorphism (of polyhedral cones).
(2.8.75.2) f [[x : ZY,f(x) → ZX,x and Txf : TxX → Tf(x)Y are isomorphisms.
(2.8.75.3) f [[x : ZY,f(x) → ZX,x and Txf |Xx : TxXx → Tf(x)Yf(x) are isomorphisms.

Use (2.8.50) to observe that these conditions are open.

2.8.76 Log Inverse Function Theorem. Let f : M → N be Ck for k ≥ 1. If T~x f is an?

isomorphism of polyhedral cones, then f is a local log homeomorphism at x, its local inverse
is also Ck, and T (f−1) = (Tf)−1.

Proof. We first treat the case k = 1 and then deduce the general case by induction.
The assertion is local, so we may consider a C1 map f : (XP , p) → (XQ, f(p)) of real

affine toric varieties for which T~p f is an isomorphism of polyhedral cones. By replacing
P with P + F gp

p and replacing Q with Q + F gp
f(p), we may assume wlog that p and f(p)

are on the minimal strata of XP and XQ, respectively. We thus have T~p XP = P and
T~f(p)XQ = Q, so the derivative of f at p is a map Q→ P , which we have assumed to be an
isomorphism. Identifying Q with P via this isomorphism and translating so that p = 0 ∈ XP

and f(p) = 0 ∈ XQ, our map now takes the form

f : (XP , 0)→ (XP , 0) (2.8.76.1)
x 7→ u(x)x (2.8.76.2)

for some C1 map u : XP → X◦P whose derivative vanishes at 0 ∈ XP (compare (2.8.62)).
Consider u : XP → X◦P in log coordinates X◦P = (P gp)∗ (2.8.39) on (the interior of)

the source and target. The first derivative of u in such coordinates approaches zero as
x→ 0 ∈ XP ; that is, we have

u(x) = const + o(1)C1 (2.8.76.3)

in log coordinates in the limit x→ 0 ∈ XP . Now the key point is simply that every map of
the form 1+const+o(1)C1 on Rn has an inverse of the same form. Thus f is a diffeomorphism
from each stratum X◦F ⊆ XP (faces F ⊆ P ) to itself, in a neighborhood of 0 ∈ XP . In
particular, f is a continuous bijection in a neighborhood of zero, which implies it is a local
homeomorphism there since XP is locally compact Hausdorff. Now f [[ is an isomorphism in
a neighborhood of 0 (2.8.75), which implies f is strict (2.8.23), hence is an isomorphism of
log topological spaces.

Now let us show that the inverse f−1 is continuously differentiable with derivative
T (f−1) = (Tf)−1. Note that Tf is an isomorphism of vector bundles covering an isomorphism
of log topological spaces, so it is itself an isomorphism of log topological spaces, hence has
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an inverse (Tf)−1. It thus suffices to show that f−1 is differentiable with derivative (Tf)−1

at any given point. We may wlog just treat the case of the basepoint 0 ∈ XP itself, where
the desired assertion follows from the fact that f−1 has the form 1 + const + o(1)C1 on each
stratum in log coordinates. We have thus proven the case k = 1.

We may now derive the case of general k ≥ 1 from the case k = 1 using induction. Suppose
f is Ck and T~p f is an isomorphism of polyhedral cones. Since k ≥ 1, the inverse f−1 exists
and is C1 with derivative T (f−1) = (Tf)−1. We wish to show that f−1 is Ck, equivalently
that T (f−1) = (Tf)−1 is Ck−1. This follows from the induction hypothesis and the fact that
Tf is Ck−1, provided we show that the derivative of Tf is an isomorphism of polyhedral
cones. The cotangent cone of TM along the zero section M ⊆ TM is the direct sum of T~M
(cotangent to the zero section) and T ∗M (cotangent to the fibers). The derivative of Tf
respects this decomposition and is an isomorphism on each piece, hence is an isomorphism
over the zero section of TM . It is thus an isomorphism over a neighborhood of the zero
section, hence is so everywhere by scaling equivariance.

2.8.77 Example (Recovering local coordinates on a log smooth manifold). Let p ∈M be a
point of a log smooth manifold, and let us show how to construct a germ of diffeomorphism

(M, p)→ XT~
p M

(2.8.77.1)

using the log inverse function theorem (2.8.76). The map A≥0
M,p → T~p M is a torsor for the

subspace of A>0
M,p consisting of those functions whose first derivative at p vanishes (2.8.68.3).

We may thus construct a section T~p M → A≥0
M,p using the procedure from (2.8.49): pick any

set in T~p M which is a basis of the groupification, lift each of its elements to A≥0
M,p, and note

that the torsor property implies that this extends to a unique section defined on all of T~p M .
Such a section is equivalently a germ (2.8.77.1) which induces the ‘identity’ map on cotangent
cones. It is thus a local diffeomorphism by the log inverse function theorem (2.8.76).

We will see a relative version of this arugment in (2.8.81).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now study submersions of log smooth manifolds. As can be expected from the form
of the inverse function theorem for log smooth manifolds (2.8.76), arbitrary submersions of
log smooth manifolds are not so well behaved. Instead, we will see that a more useful notion
(‘exact submersion’) is obtained by imposing additional conditions on cotangent cones.

2.8.78 Definition (Submersion). A map of log smooth manifolds f : M → N is called?

a submersion at p ∈ M when its derivative TpM → Tf(p)N is surjective (equivalently,
T~f(p)N → T~p M is injective). The locus of points p ∈M where f is a submersion is evidently
an open set.

Geometrically speaking, a map f : X → Y is a submersion when it is a submersion on
interiors f ◦ : X◦ → Y ◦ and the inverse to Tf ◦ is ‘uniformly bounded’ in log coordinates as
one approaches the ideal locus. No condition, however, is imposed on how f interacts with
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the compactifications X◦ ⊆ X and Y ◦ ⊆ Y . Any injective map of polyhedral cones Q→ P
gives a submersion XP → XQ, and such maps are in general very far from being topologically
locally trivial (2.1.3).

2.8.79 Exercise. Use the log cotangent short exact sequence (2.8.67) to show that f is
a submersion at p iff its restriction f : Mp → Nf(p) to the strata containing p and f(p),
respectively, is a submersion of smooth manifolds and the snake map ker f [[p → cokerT ∗p f |Mp

is injective.

2.8.80 Exercise. Show that the strata functor (2.8.66) preserves submersions (show that for
f : M → N , a point p ∈M , and a face F ⊆ T~p M , the restriction of T~p f : T~f(p)N → T~p M

to the inverse image of F coincides with the derivative of S(f) : S(M)→ S(N) at the lift of
p corresponding to F ).

2.8.81 Lemma (Local normal form of a submersion). A map of log smooth manifolds is a
submersion iff it is locally (on the source) modelled on monomial maps associated to injective
maps of polyhedral cones.

Proof. This will be a relative version of (2.8.77).
Let f : M → N be a submersion at p ∈M . We seek to construct a diagram

(M, p) XT~
p M

(N, f(p)) XT~
f(p)

N

T~
p f (2.8.81.1)

in which the horizontal maps induce the identity on cotangent cones, hence are local diffeo-
morphisms (2.8.76). Such a diagram is equivalent to the data of compatible sections in the
following diagram.

A≥0
M,p T~p M

A≥0
N,f(p) T~f(p)N

T~
p f (2.8.81.2)

For any subset SM ⊆ T~p M (resp. SN ⊆ T~f(p)N) which is a basis of the groupification, a
choice of section SM → A≥0

M,p (resp. SN → A≥0
N,f(p)) extends uniquely to a section on T~p M

(resp. T~f(p)N) (2.8.77). Since T~p f is injective, we may produce a compatible pair of sections
by first choosing SN and its section and then choosing SM ⊇ SN and its section to be an
extension of that of SN .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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We now introduce exact submersions of log smooth manifolds, which have better local
behavior than submersions. Exact submersions are also preserved under pullback, which is
crucial for a great number of applications. It is not surprising that the relevant notion of
‘exactness’ (introduced by Kato [47, Definition (4.6)] and since recognized as a key notion in
log geometry) is a condition on the derivative on cotangent cones.

2.8.82 Definition (Local). Let f : Q→ P be a map of polyhedral cones, and let P0 ⊆ P
and Q0 ⊆ Q denote the minimal strata (equivalently, the subgroups of invertible elements). It
is always the case that Q0 ⊆ f−1(P0) (the image of an invertible element is always invertible).
The map f is called local when this inclusion is an equality, that is Q0 = f−1(P0).

2.8.83 Exercise. Show that Q → P is local iff the associated monomial map XP → XQ

sends the minimal stratum of XP to the minimal stratum of XQ. Show that the monomial
map XP → XQ associated to f : Q→ P is locally modelled near x ∈ XP on the monomial
map associated to Q + f−1(Fx)

gp → P + F gp
x (compare (2.8.46)). Show that every map

Q+ f−1(F )gp → P + F gp is local.

2.8.84 Exercise. Show that Q→ P is local iff Q# = Q/Q0 → P/P0 = P# is local. Conclude
that the derivative T~x f : T~f(x)N → T~x M of a log smooth map f : M → N is always local
(recall that f [[x : ZN,f(x) → ZM,x is always local (2.8.49)).

2.8.85 Definition (Exact; Kato [47, Definition (4.6)]). A map of real polyhedral cones
f : Q→ P is called exact when (f gp)−1(P ) = Q.

2.8.86 Exercise. Show that Q→ P is exact iff Q# → P# is exact. Conclude that T~x f is
exact iff f [[x is exact.

2.8.87 Exercise. Show that if f : Q → P is exact, then so is f−1(F ) → F for every face
F ⊆ P .

2.8.88 Definition (Locally exact; Illusie–Kato–Nakayama [34, (A.3.2)(iii)] and Nakaya-
ma–Ogus [70, Definition 2.1(3)]). A map of real polyhedral cones f : Q→ P is called locally
exact when for every face F ⊆ P , the localized map

Q+ f−1(F )gp → P + F gp (2.8.88.1)

is exact.

2.8.89 Exercise. Show that Q→ P is locally exact iff Q# → P# is locally exact. Conclude
that T~x f is locally exact iff f [[x is locally exact.

2.8.90 Exercise. Let f : M → N be a map of log smooth manifolds. Show that f [[x is locally
exact iff f [[y is exact for all y in a neighborhood of x (use (2.8.49)).

2.8.91 Definition (Exact; Kato [47, Definition (4.6)]). Let f be a map of log smooth
manifolds. We say that f is exact at x when the following equivalent conditions hold:
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(2.8.91.1) T~y f (equivalently f [[y (2.8.86)) is exact for all y in a neighborhood of x.
(2.8.91.2) T~x f (equivalently f [[x (2.8.89)) is locally exact.

Exactness is evidently an open condition.

2.8.92 Exercise. Show that an exact local map of sharp polyhedral cones is injective.
Conclude that if f is exact then f [[x is injective for every x.

2.8.93 Exercise (Relative depth). The (relative) depth of an exact map of log smooth
manifolds f : M → N at a point x ∈M is the difference

depthx(f) = dimZM,x − dimZN,f(x) (2.8.93.1)
= (dimM − dimN)− (dimMx − dimNf(x)). (2.8.93.2)

Use (2.8.92) to show that the relative depth is non-negative and upper semicontinuous on M .
Show that an exact map has depth zero iff it is strict (use (2.8.23)). What is the depth (as a
function on the source) of the multiplication map ′R2

≥0 → ′R≥0?

2.8.94 Exercise. Conclude from (2.8.87) that the strata functor (2.8.66) preserves exactness.

The significance of the notions of exactness and local exactness, at least for us, comes
from the fact that they behave well under pushout (corresponding to pullback of log smooth
manifolds).

2.8.95 Lemma. Locally exact (resp. exact and locally exact) morphisms of polyhedral cones
are preserved under pushout (in the category of R≥0-linear monoids).

Proof. We begin with a criterion for the existence of the pushout P tQ R of a diagram
of polyhedral cones R ← Q → P . Let Igp denote the pushout of groupifications (a finite-
dimensional real vector space).

Qgp P gp

Rgp Igp

(2.8.95.1)

Now define the polyhedral cone I ⊆ Igp to be the image of P ⊕R→ P gp ⊕Rgp � Igp. The
notation is consistent: the groupification of I is indeed Igp. We now wish to formulate a
condition under which the resulting diagram

Q P

R I

(2.8.95.2)

is a pushout.
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Consider the following two equivalence relations ∼Q and ∼Qgp on the set P ⊕R. For pairs
(p, r), (p′, r′) ∈ P ⊕R, we declare that (p, r) ∼Qgp (p′, r′) iff

p′ = p+ q (2.8.95.3)
r = r′ + q (2.8.95.4)

for some q ∈ Qgp. We set (p, r) ∼pre
Q (p′, r′) when (2.8.95.3)–(2.8.95.4) hold for some q ∈ Q

(as opposed to Qgp), and we take ∼Q to be the equivalence relation closure of ∼pre
Q . Now a

map out of P ⊕R comes from a (necessarily unique) map out of I iff Qgp-equivalent pairs
have the same image, while it comes from a (necessarily unique) map out of R← Q→ P iff
Q-equivalent pairs have the same image. We thus conclude that if ∼Q and ∼Qgp coincide,
then (2.8.95.2) is a pushout.

Now let us argue that if f : Q → P is locally exact, then this criterion is satisfied,
namely Qgp-equivalence implies Q-equivalence. Consider a point (p, r) ∈ P ⊕ R, and let
F ⊆ P denote the minimal face containing p. Local exactness of Q → P means that
(f gp)−1(P + F gp) = Q + f−1(F )gp, and Q + f−1(F )gp is equivalently the set of differences
Q− f−1(F ), so

(f gp)−1(P + F gp) = Q− f−1(F ). (2.8.95.5)

For any point (p′, r′) ∈ P ⊕R, the difference p′− p lies in P +F gp. A lift of this difference to
Qgp is thus an element of Q−f−1(F ). Now if (p′, r′) is Qgp-equivalent and sufficiently close to
(p, r), then the element of Qgp lifting p′ − p realizing this equivalence can be taken arbitrarily
small. It is thus an element of Q minus an arbitrarily small element of f−1(F ). Now p ∈ F ◦,
so p minus a sufficiently small element of F lies in P , and we thus conclude that (p′, r′) is
Q-equivalent to (p, r). To conclude that Qgp-equivalence implies Q-equivalence in general, it
suffices to note that Qgp-equivalence classes in P ⊕R are convex (being the intersection of
the convex set P ⊕R ⊆ P gp ⊕Rgp with the inverse image of a point of P gp tQgp Rgp) hence
connected.

Now let us show that if Q→ P is exact, then so is R→ I. Fix an element r ∈ Rgp, and
suppose that its image in Igp is contained in I. This means (0, r) is Qgp-equivalent to some
(p′, r′) ∈ P ⊕R, namely there is q ∈ Qgp lifting p′ ∈ P and r− r′ ∈ Rgp. Exactness of Q→ P
means q ∈ Q, so r = r′ + q ∈ R as desired.

Finally, we should show that R → I is locally exact. A face A ⊆ I pulls back to faces
F ⊆ P , G ⊆ Q, and H ⊆ R, and we have a resulting localized diagram.

Q+Ggp P + F gp

R +Hgp I + Agp

(2.8.95.6)

Now the pullback of A to P ⊕R is the face F ⊕H ⊆ P ⊕R (indeed, every face of P ⊕R is
a product, hence is the direct sum of its pullbacks to P and R). Thus Agp is the image of
F gp ⊕Hgp, which implies that I +Agp is the image of (P + F gp)⊕ (R+Hgp). The top map
Q+Ggp → P + F gp is locally exact, so the localized diagram remains a pushout. Exactness
of the top map thus implies exactness of the bottom map R+Hgp → I +Agp as desired.
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2.8.96 Example. The map ′R2
≥0 → ′R≥0 given by (x, y) 7→ xy = λ (i.e. corresponding to

the diagonal embedding R≥0 → R2
≥0) is an exact submersion. Although the fibers of this

map over points λ ∈ ′R≥0 develop a singularity as λ→ 0, the family is at least topologically
locally trivial on the source. In fact, all exact submersions are topologically locally trivial on
the source by a result of Nakayama–Ogus [70, Theorem 0.2] (though we will not appeal to
this result).

2.8.97 Proposition. Exact submersions are preserved under pullback.?

Proof. Since submersions are locally monomial (2.8.81), it suffices to consider monomial maps
XP → XQ associated to injective and locally exact maps Q→ P .

Now let Z → XQ be an arbitrary log smooth map, and let us show that Z ×XQ XP exists
and maps exactly submersively to Z. The map Z → XQ need not be locally monomial, but
it is at least expressible in local coordinates Z = XR as the product ug of a monomial map
g : XR → XQ and a log smooth map u : XR → X◦Q. Let us argue that the pullbacks of
XP → XQ under the two maps g and ug are identified. It suffices to consider the ‘universal’
case of Z = XR = XQ ×X◦Q where g and u are the first and second projections, respectively.
To make the desired identification, it is enough to lift the action of X◦Q on XQ to XP . Now
X◦P acts on XP , and the map XP → XQ is equivariant for the map X◦P → X◦Q. It thus suffices
to fix a section of X◦P → X◦Q, which is just the map of vector spaces (P gp)∗ → (Qgp)∗, hence
has a section since it is surjective (since Q→ P is injective).

We have thus reduced our problem to showing existence of the pullback XR ×XQ XP

of log smooth manifolds for maps of polyhedral cones R ← Q → P in which Q → P is
injective and locally exact. Now log smooth maps Z → XP are in natural bijection with
R≥0-linear maps P → A≥0

Z . It follows that XR×XQ XP = XRtQP . Local exactness of Q→ P
implies the pushout R tQ P exists and that the map R→ R tQ P is locally exact (2.8.95),
so XRtQP → XR is an exact submersion.

The fibers of an exact submersion over interior points of the base are log smooth
manifolds by stability of exact submersions under pullback (2.8.97). Stability under pullback
says nothing about fibers over ideal points of the base (note that a map of log smooth
manifolds ∗ → M must land inside the interior M◦). Such fibers may be ‘singular’ as in
(2.8.96), and may be called ‘broken’ log smooth manifolds (2.8.96). While not log smooth
manifolds, such fibers are objects in a certain ‘hybrid’ category (2.12). Here is another way
to make sense of the fibers of an exact submersion:

2.8.98 Definition (Normalized fiber). Let f : M → N be an exact submersion of log smooth
manifolds, and let n ∈ N be a point (not necessarily in the interior of N). Apply the strata
functor (2.8.66) to obtain a map S(f) : S(M)→ S(N), which remains an exact submersion
(2.8.80)(2.8.94). Now a point n ∈ N has a unique inverse image in S(N) lying in the interior
S(N)◦, so the fiber of S(f) over this point is a log smooth manifold (2.8.97) which we call
the normalized fiber of f over n.

2.8.99 Exercise. Compute the fiber and the normalized fiber of the multiplication map
′R2
≥0 → ′R≥0 (which is an exact submersion) over the point 0 ∈ ′R≥0.
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Here are two special classes of exact submersions of interest.

2.8.100 Example (Strict submersion). A map f of log smooth manifolds is strict precisely
when f [[ is an isomorphism at every point (2.8.49). In particular, a strict submersion is exact.
A strict submersion is locally on the source a pullback of Rk → ∗ (2.8.81).

2.8.101 Definition (Simply-broken submersion). A simply-broken submersion of log smooth
manifolds is a map which is locally a pullback of Rk → ∗ or its product with the multiplication
map ′R2

≥0 → ′R≥0.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now explore generalizations of Ehresmann’s Theorem (2.6.30) (proper submersions of
smooth manifolds are trivial locally on the target) to log smooth manifolds.

2.8.102 Proposition. A proper submersion of log smooth manifolds which is trivial locally
on the source is trivial locally on the target.

Proof. We generalize the proof for smooth manifolds (2.6.30) as follows. Let M → B be
a proper submersion which is trivial locally on the source, and let us show that M → B
is trivial in a neighborhood of a given point 0 ∈ B. Since M → B is trivial locally on the
source, the fiber M0 = M ×B 0 exists.

We now seek to construct a local retraction M →M0. Such a retraction may be defined
locally near any point of M0 using the fact that M → B is trivial locally on the source
(2.8.100). To patch together these local retractions, we appeal to the averaging operation
for measures on log smooth manifolds (2.8.73). The resulting map M → M0 × B is an
isomorphism on cotangent cones (inspection) so the log inverse function theorem (2.8.76)
applies to show that it is a local isomorphism.

2.8.103 Definition (Gluing coordinates). Let Mpre
0 be a log smooth manifold, let i : N ×?

′R≥0 ↪→ Mpre
0 be an open embedding covering all points of positive depth (thus Mpre

0 has
depth one), and let σ : N → N be a free involution. Associated to this data (Mpre

0 , N, i, σ) is
a standard ‘gluing coordinates’ family M → ′R≥0 as we now recall.

Mpre
0

M0

M

MλN/σ

N

(2.8.103.1)

The fiber M0 over 0 ∈ ′R≥0 is the quotient of Mpre
0 by the involution σ acting on N × 0 ⊆

N × ′R≥0 ⊆ Mpre
0 . The fiber Mλ for λ > 0 is the quotient of (Mpre

0 )◦ by the relation
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i(n, x) = i(σ(n), y) whenever xy = λ. Thus Mλ is a ‘gluing’ of M0 with ‘gluing parameter’
λ ∈ ′R≥0.

The map M → ′R≥0 is defined as follows. Consider the two maps

(Mpre
0 )◦ × ′R≥0 (N × ′R2

≥0)/(σ × s)

′R≥0

(2.8.103.2)

given by projection to ′R≥0 and projection to ′R2
≥0 followed by multiplication, respectively,

where s denotes the involution (x, y) 7→ (y, x) of ′R2
≥0. We glue these total spaces together

by identifying (n, x, y) = (σ(n), y, x) with (i(n, x), xy) and (i(σ(n), y), xy) to obtain M .

M
(
(Mpre

0 )◦ × ′R≥0

) ⋃
(N×(′R2

≥0\(0,0)))/(σ×s)

(
(N × ′R2

≥0)/(σ × s)
)

′R2
≥0

(2.8.103.3)

When Mpre
0 is compact Hausdorff, the resulting family M → ′R≥0 is proper.

Finally, let us note that we may also take a separate gluing parameter for every connected
component of N/σ to produce a family M → ′Rπ0N/σ

≥0 .

2.8.104 Proposition. Every proper simply-broken submersion is, locally on the base, a
pullback of a standard gluing family (2.8.103).

Proof. This is a generalization of (2.6.30).
Let Q → B be a proper simply-broken submersion. Fix a basepoint b ∈ B, and let Qb

denote the fiber over b. The map Q→ B is covered by local pullback diagrams.

Q ′R2
≥0 × Rk

B ′R≥0

(x,y,t) 7→xy

b7→0

(2.8.104.1)

Our task is to patch together these local charts into gluing coordinates (2.8.103) near the
basepoint b ∈ B. In fact, we will not do exactly this, rather we will show how to recover
such charts intrinsically from the map Q → B, and we will then globalize this intrinsic
construction.

Let us call a point q ∈ Q non-singular when the map π : Q→ B is strict in a neighborhood
of q, equivalently when ZB,π(q) → ZQ,q is an isomorphism (2.8.50). At a non-singular point
q ∈ Q, the map Q→ B is a strict submersion, hence is locally of the form Q = B ×Rk → B
(2.8.100). Thus the stratum Qq ⊆ Q of q is the unique local stratum lying over the stratum
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Bb ⊆ B of b, and the restriction Qq → Bb is a submersion. Thus the (open) non-singular
locus of Qb is canonically a smooth manifold. In a neighborhood of any non-singular point of
Qb, a local trivialization Q = Qb ×B may be constructed intrinsically as follows: construct a
retraction Q→ Qb simply by extension of smooth functions from strata, and note that the
induced map Q→ Qb ×B is a local isomorphism by the inverse function theorem (2.8.76).

Let us now investigate what happens near the singular points of Q. Singular points of
Q are precisely those lying over 0× 0× Rk in the local charts (2.8.104.1) (points not lying
over 0× 0× Rk are non-singular since the map ′R2

≥0 → ′R≥0 is strict away from (0, 0), and
it will be clear from the present discussion that conversely all points lying over 0× 0× Rk

are in fact singular). At a singular point q ∈ Qb, a choice of local chart (2.8.104.1) induces a
pushout square of cotangent cones (2.8.97).

T~q Q R2
≥0 × Rk

T~b B R≥0

a7→(a,a,0) (2.8.104.2)

It is somewhat more convenient to quotient by the invertible elements to obtain the following
pushout square.

ZQ,q R2
≥0

ZB,b R≥0

a7→(a,a) (2.8.104.3)

By the construction of such pushouts (2.8.95), this means that ZQ,q is the image of ZB,b⊕R2
≥0

inside the pushout of vector spaces Zgp
B,b tR R2. We now make some deductions by inspecting

this description of ZQ,q. There exist precisely two non-zero faces of ZQ,q whose intersection
with ZB,b is zero. Both are rays R≥0 ⊆ ZQ,q, and the quadrant R2

≥0 ⊆ ZQ,q they span (namely
the upper map in (2.8.104.3)) intersects ZB,b in a ray R≥0 ⊆ ZB,b (namely the lower map
in (2.8.104.3), not necessarily a face). We conclude that the pushout diagram (2.8.104.3)
is actually determined uniquely by the map ZB,b → ZQ,q, up to simultaneous scaling of
R≥0 → R2

≥0. Recall that the strata of B (resp. Q) near b (resp. q) are indexed by the faces of
ZB,b (resp. ZQ,q) and that the stratum of Q corresponding to a face F ⊆ ZQ,q maps to the
stratum of B corresponding to F ∩ ZB,b ⊆ ZB,b. There are thus precisely three strata of Q
lying over the stratum of b, namely those corresponding to zero and to the two distinguished
rays inside ZQ,q. The stratum Qq of Q corresponding to the zero face of ZQ,q is precisely the
singular locus near q. The stalks of ZQ at nearby singular points are identified canonically,
so they have ‘the same’ distinguished rays. In particular, every component of the singular
locus of Qb determines a ray in ZB,b.

Given this knowledge of the structure of the map ZB,b → ZQ,q for singular points q ∈ Qb,
we can now give an ‘intrinsic’ construction of local charts (2.8.104.1) near such q. Suppose
x, y : (Q, q)→ (′R≥0, 0) and λ : (B, b)→ (′R≥0, 0) are maps whose classes in ZQ,q and ZB,b
generate the distinguished rays in these polyhedral cones. We therefore have λ = efxayb
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for some smooth f : M → R and some real numbers a, b > 0. By replacing (x, y) with
(ef/2xa, ef/2yb), we may achieve that λ = xy on M , and hence that we have a diagram of the
following form.

Q ′R2
≥0

B ′R≥0

(2.8.104.4)

Now fix in addition a function on the singular stratum of Q to Rk which is a local diffeomor-
phism, and extend it to a smooth function on a neighborhood of q. The resulting diagram
(with ′R2

≥0×Rk in the upper right corner) is a pullback square: the pullback B×′R≥0

′R2
≥0×Rk

exists since the map being pulled back is an exact submersion, and the inverse function
theorem (2.8.76) guarantees that the map from Q to this pullback is an isomorphism (its
derivative at q is an isomorphism by construction).

Now let us extract from the fiber Qb the data necessary to define a standard gluing chart
(2.8.103). The map b : ∗ → B is a map of topological spaces, but not of log smooth manifolds
unless b lies in the interior B◦, so the fiber Qb = Q×B ∗ is merely a topological space. We can,
however, refine the topological fiber Qb to a log smooth manifold Q̃b (the ‘normalized fiber’)
mapping to Qb (2.8.98). To do this, we use the strata functor (2.8.66). There is a unique
point b̃ ∈ S(B)◦ lying over b ∈ B (namely, it is the inverse image of b corresponding to the
local stratum of B containing b). The normalized fiber Q̃b is the fiber of S(Q)→ S(B) over
b̃, which is a log smooth manifold since it is a pullback of the exact submersion S(Q)→ S(B)
(2.8.94)(2.8.80).

There is an evident map of topological spaces Q̃b → Qb (induced by S(Q) → Q and
S(B)→ B), and we can describe it concretely as follows (by inspection). Near a non-singular
point of Qb, the map Q̃b → Qb is a homeomorphism and Q̃b is a smooth manifold (and this
coincides with the smooth manifold structure on Qb defined above). A singular point of Qb

has three inverse images in Q̃b, corresponding to the three local strata of Q lying over the
stratum of b ∈ B. This decomposes Q̃b into the union of a smooth manifold N/σ (in bijection
with the singular points of Qb) and a log smooth manifold Mpre

0 of depth one whose ideal
locus N = (Mpre

0 )id has a free involution σ with quotient N/σ.
Now let M → ′Rπ0N/σ

≥0 denote the gluing family (2.8.103) associated to the data (Mpre
0 , σ)

defined above, and let us construct a pullback diagram of the desired shape.

Q M

B ′Rπ0N/σ
≥0

λ

(2.8.104.5)

We have already seen how to construct such pullback diagrams locally on Q, so we just need
to globalize. Each component of π0N/σ (i.e. the singular locus of Qb) gives a distinguished
ray in ZB,b, and we fix any bottom map λ inducing the same rays. To define a lift Q→M in
a neighborhood of the singular locus of Qb, we should first construct functions x, y : Q→ ′R≥0
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satisfying λ = xy (of course, really (x, y) is an unordered pair of functions indexed by the
two local branches of Mpre

0 ⊆ Q̃b, but we will stick with the abuse of notation for simplicity).
We can certainly fix functions x, y : Q→ ′R≥0 in a neighborhood of the singular locus of Qb

whose classes lie in the two relevant distinguished rays in ZQ,q for singular points q, and as
before we have λ = efxayb for locally constant a, b : Q → R>0 and smooth f : Q → R, so
replacing (x, y) with (ef/2xa, ef/2yb) we may achieve λ = xy on Q. A choice of local retraction
Q→ N/σ (construct it locally and then average (2.6.29)) completes the data of a lift Q→M
near the singular locus of Qb. Finally, to extend the lift Q→M to a neighborhood the rest
of Qb, we patch together local retractions Q→Mpre

0 as in the proof of Ehresmann for smooth
manifolds (2.6.30). As we already saw above, the resulting diagram is a pullback square by
the inverse function theorem.

2.8.105 Exercise. Let Q→ B be a proper simply-broken submersion, and let B → XP be
strict. Show that Q→ B is, locally on the target, the pullback of a standard gluing family
along a monomial map XP → ′Rn

≥0 (note that in the above construction of such pullbacks
(2.8.104.5), the map λ : B → ′Rπ0N/σ

≥0 just needs to induce the correct rays in ZB,b).

2.8.106 Definition (Gluing coordinates with vector bundles). The gluing construction
(2.8.103) may be enhanced to carry along vector bundles. Recall that the input to the gluing
construction is a log smooth manifold Mpre

0 of depth one (let N = (Mpre
0 )id denote its ideal

locus, in this case a smooth manifold), a collar N × ′R≥0 ↪→ Mpre
0 , and a free involution

σ : N → N . The output is a family M → ′Rπ0N/σ
≥0 . Now enhance everything with a vector

bundle: fix a vector bundle V pre
0 →Mpre

0 (its restriction to the ideal locus denoted W → N),
an isomorphism W = V pre

0 over the collar, and a lift of the involution σ to W . Such data
evidently gives rise to a vector bundle V →M .
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2.9 Topological sites
In (2.3), we studied sheaves on the category of topological spaces. Later, we will want to
consider sheaves on other similar categories (e.g. smooth manifolds) which share a common
fundamental structure: their objects are topological spaces X equipped with some extra
structure SX of a local nature, and their morphisms are maps of underlying topological spaces
f : X → Y together with some correspondence between SX and SY over f , also of a local
nature. We formulate the notion of a perfect topological site which is a precise axiomatization
of this idea. It makes sense to consider sheaves on any such category, and we show how to
carry over elements of the theory of topological stacks (2.3) to this setting. The reader who
desires even more abstraction is referred to the notion of a Grothendieck site from [1, Exposé
II] and the notion of a ‘geometry’ from Lurie [57] (neither of which we will need here).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Any functor |·| : C→ Top may be regarded as specifying an ‘underlying topological space’
for each object of C (and an ‘underlying continuous map’ for every morphism). Such data is
not particularly useful without additional axioms. We introduce the relevant axioms one by
one.

2.9.1 Definition (Open embedding). Let C be an ∞-category equipped with a functor?

|·| : C→ Top. An open embedding in C is a morphism which is cartesian (??) over an open
embedding in Top. An open covering of X ∈ C is a collection of open embeddings into X
which after applying |·| becomes an open covering of |X|.

In other words, a morphism U → X in C is an open embedding when |U | → |X| is an open
embedding and U represents the functor of maps to X which upon applying |·| factor through
|U | ⊆ |X|. Open embeddings are closed under composition (since cartesian morphisms are
closed under composition (??) and open embeddings in Top are closed under composition).

2.9.2 Definition (Topological site). A topological site is a pair (C, |·| : C→ Top) which has?

enough open embeddings, meaning that for every X ∈ C, every open subset of |X| is realized
by an open embedding U → X in C (in other words, every map (∆1, 1) → (Top,C) whose
underlying morphism in Top is an open embedding has a cartesian lift).

In any topological ∞-site C, the functor

(C ↓opemb X)→ (Top ↓opemb |X|) = Open(|X|) (2.9.2.1)

is an equivalence (??) since Copemb → Topopemb is cartesian.

2.9.3 Exercise. Show that the following are topological sites.
(2.9.3.1) The category Top of topological spaces with |·| the identity functor.
(2.9.3.2) The category of open subsets of any fixed topological space.
(2.9.3.3) The category Sm of smooth manifolds with the underlying topological space functor.
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(2.9.3.4) The category of pairs (X,ωX) where X ∈ Sm and ωX a closed 3-form on X and
morphisms (X,ωX)→ (Y, ωY ) given by smooth maps f : X → Y satisfying f ∗ωY = ωX .

(2.9.3.5) The category Vecto Top whose objects are pairs (X, V ) where X is a topological
space and V → X is a vector bundle, and in which a morphism (X, V )→ (Y,W ) is a
continuous map X → Y covered by a map of vector bundles V → W (with underlying
topological space functor (X, V ) 7→ X).

(2.9.3.6) The arrow category Fun(∆1,Top) with the functor Fun(∆1,Top)→ Top sending an
arrow to its target (that is, (X → Y ) 7→ Y ).

(2.9.3.7) The category Top/X of topological spaces over a fixed topological space X.
(2.9.3.8) The category of sets.
(2.9.3.9) The category whose objects are pairs (I, {Xi}i∈I) where I is a set andXi is a pointed

topological space for every i ∈ I and whose morphisms (I, {Xi}i∈I)→ (J, {Yj}j∈J) are
maps f : I → J with finite fibers together with pointed maps

∏
f(i)=j Xi → Yj for every

j ∈ J (with underlying topological space functor (I, {Xi}i∈I) 7→ I).
(2.9.3.10) The category of schemes.
(2.9.3.11) The ∞-category Copemb for any topological ∞-site C.
(2.9.3.12) The ∞-category CC for any ∞-category C with underlying topological space

functor sending the cone point to ∅ and sending all objects of C to ∗.
(2.9.3.13) Any full subcategory C− ⊆ C of a topological ∞-site C with the property that if

X ∈ C− and U → X is an open embedding in C, then U ∈ C−.
(2.9.3.14) An ∞-category E with a cartesian fibration E → C where C is a topological
∞-site (more generally, it is enough to assume that every map (∆1, 1)→ (C,E) whose
underlying morphism in C is an open embedding has a cartesian lift). For example, this
applies to P(−)op oTop and Shv(−)op oTop (2.2.15). Which of the above examples are
special cases of this?

2.9.4 Lemma. Let C be an ∞-category with a functor |·| : C→ Top. Consider a square

X ′ Y ′

X Y

(2.9.4.1)

in C whose bottom arrow is an open embedding and whose image in Top is a pullback. In this
case, the diagram (2.9.4.1) is a pullback iff X ′ → Y ′ is an open embedding.

Proof. This is simply a special case of (1.5.85).

2.9.5 Lemma. Open embeddings in a topological ∞-site are preserved under pullback, and
|·| sends pullbacks of open embeddings in C to pullbacks of open embeddings in Top.

Proof. While (1.5.86) does not apply directly since the functor |·| : C→ Top is not cartesian,
its proof applies without change (the only cartesian lifting problems encountered are over
open embeddings in Top).
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2.9.6 Exercise. Conclude from the description of pullbacks of open embeddings (2.9.5) that
open coverings are preserved under pullback in any topological ∞-site.

2.9.7 Exercise. Conclude from (2.9.5) that a fiber product of open embeddings U, V → X in
a topological ∞-site is the open embedding corresponding to the intersection |U | ∩ |V | ⊆ |X|.

2.9.8 Exercise. Consider the cartesian fibration Open o Top → Top where Open o Top is
the full subcategory of Fun(∆1,Top) spanned by open embeddings and the map to Top is
evaluation at 1 ∈ ∆1. This cartesian fibration encodes the functor Open : Topop → Po ⊆ Cat
(where Po is partially ordered sets (1.1.31)).

Now let C be a topological ∞-site, and consider the pullback Open(|−|) o C = (Openo
Top) ×Top C. There is an evident forgetful functor from the full subcategory of Fun(∆1,C)
spanned by open embeddings to this pullback. Show that this forgetful functor is a trivial
Kan fibration by lifting (∆1, 1)# ∧ (∆k, ∂∆k) against (C, opemb)→ (Top, opemb). Conclude
that Funopemb(∆1,C)→ C (evaluate at 1 ∈ ∆1) is a cartesian fibration encoding the functor
Open(|·|) : Cop → Po.

Many notions and constructions in the context of topological spaces depend only on the
notions of open embeddings and open coverings, hence make sense in any topological ∞-site.
For example, a morphism X → Y in a topological∞-site is called a local isomorphism (2.1.4)
when there exists an open cover X =

⋃
i Ui such that each composition Ui → X → Y is an

open embedding. Of central importance is the notion of a sheaf: a presheaf on a topological
∞-site C is called a sheaf when it sends open coverings to limits (equivalently, when its
pullback to Open(|X|) = (C ↓opemb X) (2.9.2.1) is a sheaf on |X| for every X ∈ C).

On the other hand, the axioms of a topological ∞-site do not guarantee that morphisms
are of a local nature. Rather, this is an additional (very important) property called being
‘subcanonical’. While most topological ∞-sites of interest are subcanonical, various key
foundational constructions will involve non-subcanonical topological ∞-sites in an important
way.

2.9.9 Definition (Subcanonical). A topological site C is called subcanonical when every?

Yoneda presheaf C(−, X) ∈ P(C) is a sheaf (equivalently, when open coverings are colimits
(??)).

2.9.10 Exercise. Which of the topological sites in (2.9.3) are subcanonical?

2.9.11 Exercise. Show that a morphism X → Y in a subcanonical topological ∞-site is an
isomorphism iff it is an isomorphism locally on the target.

2.9.12 Exercise (Coproducts in a subcanonical topological ∞-site). Let X be an object of
a subcanonical topological ∞-site C. Let X =

⋃
i Ui be a cover by open embeddings. Show

that if the |Ui| are disjoint, then X =
⊔
i Ui is their coproduct in C. In particular, if |X| = ∅,

then X is an initial object of C.

2.9.13 Exercise. Show that every subcanonical topological site for which the essential image
of |·| is {∅, ∗} ⊆ Top is of the form (2.9.3.12).
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2.9.14 Exercise. Let D : K → C be a diagram in a subcanonical topological ∞-site C and
suppose that limK |D| = ∅. Show that the limit limK D = ∅ (the initial object).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.9.15 Definition (Topological functor). Let (C, |·|C) and (D, |·|D) be topological sites. A?

topological functor (C, |·|C)→ (D, |·|D) is a functor f : C→ D preserving open embeddings,
together with a natural transformation π : |f(·)|D → |·|C which sends open embeddings to
pullbacks.

C C×∆1 C

D Top

f

×0

π

×1

|·|C
|·|D

(2.9.15.1)

A topological functor (f, π) is called strict when π is a natural isomorphism. Topological
functors from C to D form an ∞-category denoted Top(C,D), namely the full subcategory
Fun(C,D)(|·|D◦−)/|·|C spanned by those pairs (f, π) for which f preserves open embeddings and
π sends open embeddings to pullbacks.

2.9.16 Exercise. Show that the following are topological functors.
(2.9.16.1) The forgetful functor Sm→ Top.
(2.9.16.2) The functor |·| : C→ Top for any topological site C.
(2.9.16.3) The functor Vecto Top→ Top sending (X, V ) to the total space of V .
(2.9.16.4) The forgetful functor Smn → Smm for n ≥ m, where Smk denotes the category of

Ck-manifolds (i.e. with transition maps of class Ck rather than smooth).
(2.9.16.5) The inverse image functor f−1 = Open(f) : Open(Y )→ Open(X) associated to a

continuous map of topological spaces f : X → Y .
(2.9.16.6) The functor Top→ Top given by sending a topological space to its underlying set

equipped with the discrete topology.
(2.9.16.7) The functor Top→ Top given by X 7→ X × A (any fixed topological space A).
(2.9.16.8) The functor Sm→ Sm given by X 7→ TX (the tangent bundle).
(2.9.16.9) The functor Smlociso → Smlociso given by sending a smooth manifold to its frame

bundle.

2.9.17 Exercise. Show that a topological functor preserves pullbacks of open embeddings.

2.9.18 Exercise. Show that a natural transformation of topological functors f → g sends
open embeddings to pullbacks.

2.9.19 Exercise. Show that a topological functor preserves open coverings, and hence that
presheaf pullback along a topological functor sends sheaves to sheaves.

2.9.20 Exercise. Let f : C → D be a strict topological functor. Show that the essential
image of f is a topological site and that the functors C → im(f) → D are both strict
topological.
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2.9.21 Exercise. Let (f, π) : (C, |·|C)→ (D, |·|D) be a topological functor. Since f preserves
open embeddings, it restricts to a functor (C ↓opemb X)→ (D ↓opemb f(X)). Show that under
the identifications (C ↓opemb X) = Open(|X|) and (D ↓opemb f(X)) = Open(|f(X)|), this
functor is canonically identifed with Open(πX).

2.9.22 Lemma (Deducing a universal property in the realm of topological ∞-sites from a
universal property in the realm of ∞-categories). Let i : C→ C be a strict topological functor,
and let E be a topological ∞-site. Let α and β (resp. α and β) be conditions on functors
from C (resp. C) to E and Top (respectively). Suppose (as summarized in (2.9.22.1)) that
composition with |·|E sends α (resp. α) functors to β (resp. β) functors, the functors |·|C
and |·|C satisfy β and β (respectively), that i∗ : Funα(C, E)→ Funα(C,E) is an equivalence,
and that i∗ : Funα(C,Top) → Funα(C,Top) has a right adjoint i∗ for which the unit map
|·|C → i∗i

∗|·|C = i∗|·|C is an isomorphism.

Funα(C,E) Funβ(C,Top) 3 |·|C

Funα(C,E) Funβ(C,Top) 3 |·|C

i∗∼

|·|E◦−

i∗

|·|E◦−

i∗
(2.9.22.1)

In this case, the induced pullback map

i∗ : Funα(C,E)(|·|E◦−)/|·|C
∼−→ Funα(C,E)(|·|E◦−)/|·|C (2.9.22.2)

is an equivalence. Now suppose the following additional condition is satisfied:
(2.9.22.3) For all f : C → E satisfying α and all π : |·|E ◦ f → |·|C, if f and π send open

embeddings in C to open embeddings and pullbacks (respectively), then they do the same
for open embeddings in C.

In this case, pullback under i induces an equivalence on ∞-categories of topological functors
Topα(C,E)→ Topα(C,E) satisfying α and α.

Proof. To upgrade the equivalence i∗ : Funα(C, E)→ Funα(C,E) to the equivalence of slice
categories (2.9.22.2), it suffices to show that for f : C→ E satisfying α, the tautological map

HomFunβ(C,Top)(|f(·)|E, |·|C)→ HomFunβ(C,Top)(|f(·)|E, |·|C) (2.9.22.4)

is a homotopy equivalence. By the adjunction (i∗, i∗), the right side may also be written as
HomFunβ(C,Top)(|f(·)|E, i∗|·|C), and the map is then identified with composition with the unit
map |·|C → i∗i

∗|·|C = i∗|·|C, which is an isomorphism by hypothesis.
To conclude the equivalence of∞-categories of topological functors Topα(C,E)→ Topα(C,E),

we note that these are full subcategories of the domain and target of (2.9.22.2), and the
assertion that they coincide under i∗ is precisely the condition (2.9.22.3).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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We have already seen how the category of presheaves P(C) is a useful enlargement of a
category C. We now explore this construction in the case that C is a topological site.

2.9.23 Definition. Let C be a topological ∞-site. We equip the ∞-category of presheaves
P(C) with the functor |·|P(C) defined as the composition

P(C)
|·|C!−−→ P(Top)

colim−−−→ Top (2.9.23.1)

of left Kan extension along |·|C and the colimit functor. Thus |·|P(C) : P(C) → Top is left
adjoint to the composition |·|∗C ◦ YTop : Top→ P(C) which we will usually abbreviate as |·|∗C.

The following technical characterization of open embeddings in P(C) will be very useful.

2.9.24 Lemma. Let C be a topological∞-site. For a morphism F → G in P(C), the following
are equivalent:
(2.9.24.1) F → G is an open embedding with respect to |·|P(C) in the sense of (2.9.1).
(2.9.24.2) |F |P(C) → |G|P(C) is an open embedding and the unit map from F → G to
|·|∗C(|F |P(C) → |G|P(C)) is a pullback.

(2.9.24.3) F → G is a pullback of |·|∗C of an open embedding in Top.
(2.9.24.4) F → G is an open embedding in the sense of (1.1.92) (the pullback F ×G c→ c

is an open embedding in C for every c ∈ C and every map c→ G).
(2.9.24.5) F → G is a colimit in Fun(∆1,P(C)) of a diagram K → Fun(∆1,C) which sends

vertices to open embeddings and sends edges to pullbacks.

Proof. The equivalence (2.9.24.1)⇔(2.9.24.2) is a general categorical fact (1.5.84) (using the
fact that |·|∗C : Top→ P(C) is right adjoint to |·|P(C)). Certainly (2.9.24.2)⇒(2.9.24.3).

Let us show (2.9.24.3) =⇒ (2.9.24.4). Property (2.9.24.3) is certainly preserved under
pullback, so it suffices to show that if G is representable and F → G is a pullback of |·|∗C of
an open embedding in Top, then F → G is an open embedding in C. This holds since C has
enough open embeddings.

Let us show (2.9.24.4) =⇒ (2.9.24.5). Write G as the colimit G = colimK p in P(C)
of a diagram p : K → C. Since presheaf pullback is cocontinuous (??), we have F =
colimK (p×G F ). Thus (F → G) is the colimit in Fun(∆1,P(C)) of the diagram p×G (F →
G) : K → Fun(∆1,C). This diagram sends vertices in K to open embeddings in C by
hypothesis, and it sends edges in K to pullbacks by construction.

Let us show (2.9.24.5) =⇒ (2.9.24.2). Suppose F → G is a colimit in Fun(∆1,P(C)) of a
diagram p : K → Fun(∆1,C) which sends vertices to open embeddings and sends edges to
pullbacks. The functor |·|C preserves open embeddings and pullbacks of open embeddings
(2.9.5), so the diagram |p| : K → Fun(∆1,Top) has the same property. It follows from the
explicit description of colimits of topological spaces that (|F | → |G|) = colimK |p|C is an
open embedding of topological spaces and that the map from |p(k)| to this open embedding
is a pullback for every vertex k ∈ K. It follows that the map from p(k) to |·|∗C|F | → |·|∗C|G| is
a pullback for every k ∈ K. Since presheaf pullback is cocontinuous (??), we conclude that
the map from F → G to |·|∗C|F | → |·|∗C|G| is a pullback.
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2.9.25 Corollary. The ∞-category of presheaves P(C) with the functor |·|P(C) is a topological
∞-site.

Proof. We must show that P(C) has enough open embeddings. Let G ∈ P(C), and write G
as the colimit G = colimK p in P(C) of a diagram p : K → C. By the explicit description
of colimits of topological spaces, an open subset of |G| = colimK |p| is the same as a choice
of open subset of |p(k)| for every k ∈ K, compatible with pullback along every edge of
K. Since C has enough open embeddings, we can promote such a collection to a diagram
p : K → Fun(∆1,C) satisfying (2.9.24.5). The resulting open subset of |G| is the one we
started with by construction.

2.9.26 Exercise (Coarse local isomorphism). The notion of a local isomorphism in C induces
a notion of a local isomorphism in P(C) via pullback (1.1.92). The topological∞-site structure
on P(C) also gives rise to a notion when a morphism in P(C) is to be called a local isomorphism
(2.1.4), which to distinguish from the former notion we will a coarse local isomorphism. Show
that a coarse local isomorphism is a local isomorphism, but that the converse need not hold.

2.9.27 Lemma. The Yoneda functor C → P(C) of any topological ∞-site C is a strict
topological functor.

Proof. There is a tautological isomorphism |YC(·)|P(C) = |·|C. An open embedding in C
remains an open embedding in P(C) by (2.9.24.5).

Recall that for any functor f : C→ D, the presheaf pullback f ∗ : P(D)→ P(D) has a left
adjoint called left Kan extension f! : P(C)→ P(D) (??).

2.9.28 Lemma. Let f : C→ D be a topological functor. The left Kan extension functor f! :
P(C)→ P(D) is topological when equipped with the unique transformation |f!(·)|P(D) → |·|P(C)

restricting to the given transformation |f(·)|D → |·|C. If f is strict then so is f!.

Proof. The functors |·|P(C), |·|P(D), and f! are cocontinuous, so by the universal property of
presheaf categories (??), natural transformations |f!(·)|P(D) → |·|P(C) are the same as natural
transformations |f(·)|D → |·|C (and moreover this correspondence respects isomorphisms).

Now let us show that f! sends open embeddings to open embeddings and |f!(·)|P(D) → |·|P(C)

sends open embeddings to pullbacks. Write an open embedding F → G in P(C) as a colimit
of a diagram p : K → Fun(∆1,C) of open embeddings in C as in (2.9.24.5). The pushforward
f!F → f!G is the colimit of f(p), from which the result follows by inspection.

2.9.29 Lemma. Let f : C → D be a strict topological functor. The pulback functor f ∗ :
P(D) → P(C) is topological when equipped with the natural transformation |f ∗(·)|P(C) =
|f!f

∗(·)|P(D) → |·|P(D) induced by the adjunction (f ∗, f!).

Proof. Let F → G be an open embedding in P(D). Every such open embedding is a pullback
of |·|∗D(U → X) for some open embedding of topological spaces U → X (2.9.24.3). We have
f ∗|·|∗D = |·|∗C since f is strict, so we may apply f ∗ (which is continuous) to see that f ∗F → f ∗G
is a pullback of |·|∗C(U → X), hence is an open embedding. Now we saw in (2.9.24) that
moreover |F |P(D) → |G|P(D) and |f ∗F |P(C) → |f ∗G|P(D) are both pullbacks of U → X. By
cancellation (1.1.52), this implies |f ∗(·)|P(C) → |·|P(D) sends F → G to a pullback.
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The ∞-category of presheaves P(C) on an ∞-category C satisfies a purely categorical
universal property (??). When C is a topological ∞-site, so is P(C), and it is natural to ask
whether the topological functor C ↪→ P(C) satisfies a universal property which characterizes
P(C) uniquely as a topological ∞-site. Let us now deduce such a universal property.

2.9.30 Exercise. Let C be a topological ∞-site. Show that the colimit of any diagram
K → Fun(∆1,P(C)) sending vertices to open embeddings and edges to pullbacks is an open
embedding.

2.9.31 Proposition (Universal property of presheaves on a topological ∞-site). Let C be a
topological ∞-site. Let E be a cocomplete topological ∞-site for which |·|E is cocontinuous and
for which the colimit of any diagram K → Fun(∆1,E) sending vertices to open embeddings and
edges to pullbacks is an open embedding. Pullback along the strict topological functor C→ P(C)
induces an equivalence between the∞-categories of cocontinuous topological functors P(C)→ E
and topological functors C→ E.

Proof. We apply (2.9.22).
Properties α and β are vacuous, and properties α and β are cocontinuous. Pullback i∗ is

an equivalence by the category theoretic universal property of C→ P(C) (??). The functor
|·|P(C) is cocontinuous by definition, and composition with |·|E preserves cocontinuity since
|·|E is assumed cocontinuous. Since i∗ is an equivalence, it has the required right adjoint and
the unit map is an isomorphism.

It remains to verify (2.9.22.3). Fix f : P(C)→ E cocontinuous and π : |·|E ◦ f → |·|C, and
suppose f and π send open embeddings in C to open embeddings and pullbacks (respectively).
Express an open embedding F → G in P(C) as the colimit of a diagram K → Fun(∆1,C)
sending vertices to open embeddings and edges to pullbacks (2.9.24.5). Since f is cocontinuous,
the map f(F → G) is the colimit of the diagram K → Fun(∆1,E) obtained by composing
with f . Since (f, π)|C is a topological functor, this composed diagram also sends vertices
to open embeddings and edges to pullbacks, hence its colimit is an open embedding by
hypothesis on E. The square π(F → G) is a pullback by inspection (using the fact that π
sends open embeddings in C to pullbacks and the explicit description of colimits of topological
spaces).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now establish some basic properties of the ∞-category of sheaves Shv(C) ⊆ P(C) on a
topological ∞-site C.

2.9.32 Proposition (Universal property of sheaves on a topological ∞-site). Let C be a?

topological ∞-site. For any cocomplete ∞-category E, pullback along the functors C YC−→
P(C) #−→ Shv(C) defines equivalences between the following ∞-categories of functors:
(2.9.32.1) Cocontinuous functors Shv(C)→ E.
(2.9.32.2) Cocontinuous functors P(C)→ E which send sheafifications to isomorphisms.
(2.9.32.3) Cocontinuous functors P(C)→ E which send Čech nerves N(X, {Ui}i)→ X to

isomorphisms.
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(2.9.32.4) Cosheaves C→ E.

Proof. The reasoning given for the case C = Top (2.3.2) applies without change.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.9.33 Definition. Let C be a topological ∞-site. We equip the ∞-category of sheaves
Shv(C) with the functor |·|Shv(C) defined as the restriction of |·|P(C) to the full subcategory
Shv(C) ⊆ P(C). Note that |·|Shv(C) is cocontinuous since |·|P(C) is cocontinuous and |·|C sends
open coverings to colimits (2.9.32).

2.9.34 Lemma. Let C be a topological ∞-site. The ∞-category of sheaves Shv(C) with the?

functor |·|Shv(C) is a topological ∞-site, and the adjoint pair i : Shv(C)� P(C) : # are strict
topological functors.

Proof. If G ∈ Shv(C) and F → G is an open embedding in P(C), then F is a sheaf. Indeed,
we saw in (2.9.25) that such an open embedding is a pullback of |·|∗C(U → X) for some open
embedding of topological spaces U → X, and this expresses F as a fiber product of sheaves
|·|∗CU ×|·|∗CX G which is thus itself a sheaf (??). It follows that Shv(C) ⊆ P(C) is a topological
∞-site and that its inclusion functor i is a strict topological functor.

Now let us show that sheafification # is topological. If F → G is an open embedding
in P(C), then it is a pullback of |·|∗C(U → X) for some open embedding of topological
spaces U → X. Sheafification preserves finite limits (??), so F# → G# is also a pullback
of |·|∗C(U → X), hence is also an open embedding. Thus sheafification preserves open
embeddings. Finally, we should show that the canonical map |·|P(C) → |#(·)|Shv(C) arising
from the sheafification adjunction (#, i) is an isomorphism. That is, we should show that
|·|P(C) sends sheafifications to isomorphisms. By (2.9.32), this is equivalent to |·|C : C→ Top
being a cosheaf. Now |·|C sends open coverings to open coverings, and open coverings in Top
are colimits.

2.9.35 Definition (Sheaf left Kan extension). Let f : C→ D be a topological functor. Since?

presheaf pullback f ∗ sends sheaves to sheaves (2.9.19) and sheaves are a reflective subcategory
of presheaves (2.2.13), it follows that the adjunction (f!, f

∗) of functors f! : P(C)� P(D) : f ∗

descends to the reflective subcategories of sheaves (1.1.87), producing an adjunction (f!, f
∗) of

functors f! : Shv(C)� Shv(D) : f ∗. Explicitly, sheaf pullback f ∗ is simply presheaf pullback
restricted to sheaves, and sheaf left Kan extension f! is presheaf left Kan extension followed
by sheafification (note that this notation is somewhat hazardous, as sheaf pushforward f! does
not coincide with the restriction of presheaf pushforward f! to sheaves). Sheaf pushforward
and presheaf pushforward are related by the following commuting diagram.

C P(C) Shv(C)

C P(D) Shv(D)

YC

f

#

f! f!

YD #

(2.9.35.1)
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Sheaf pushforward f! is a topological functor by (2.9.28)(2.9.34). When f is strict, sheaf
pushforward f! is strict and sheaf pullback f ∗ is also a topological functor (2.9.29).

2.9.36 Exercise. Explain why f ∗ sending sheaves to sheaves implies that the right square
in (2.9.35.1) commutes.

2.9.37 Lemma. If f : C→ D is strict, then presheaf pullback f ∗ commutes with sheafification
(i.e. sends sheafifications to sheafifications).

Proof. For any X ∈ C, consider the functor Open(|X|)→ C and its composition with C→ D.
Pullback under Open(|X|) → C and the composition Open(|X|) → D both commute with
sheafification by (??) (using, in the latter case, the fact that f is strict). Since the joint
pullback under the functors Open(|X|)→ C for all X ∈ C together reflect isomorphisms, this
implies pullback under C→ D also commutes with sheafification.

2.9.38 Exercise. Conclude from (2.9.37) that if f : C → D is strict then sheaf pullback
f ∗ : Shv(D)→ Shv(C) is cocontinuous.

2.9.39 Lemma. The topological ∞-site Shv(C) is subcanonical.

Proof. We should show that for every open cover of a C-stack X =
⋃
i Ui, the map

Shv(C)

colim
∆op

N(X, {Ui}i)→ X (2.9.39.1)

is an isomorphism, where we have used the notation

N(X, {Ui}i) =
(
· · · →→→→

∐
i,j,k

Ui ×X Uj ×X Uk →→→
∐
i,j

Ui ×X Uj →→
∐
i

Ui

)
(2.9.39.2)

for the Čech simplicial object (2.2.14). Recall that Ui = X ×|·|∗|X| |·|∗|Ui|, and observe that

N(X,X ×|·|∗|X| |·|∗|Ui|}i) = X ×|·|∗|X| |·|∗N(|X|, {|Ui|}i). (2.9.39.3)

Now the operation X×|·|∗|X| commutes with colimits of spaces (??), hence with colimits
of presheaves since these are computed pointwise, hence with colimits of sheaves since
sheafification preserves finite limits (??). We are thus reduced to showing that the map

Shv(C)

colim
∆op
|·|∗N(|X|, {|Ui|}i)→ |·|∗|X| (2.9.39.4)

is an isomorphism. The sheaf pullback functor |·|∗ : Shv(Top) → Shv(C) is cocontinuous
(2.9.38), so it suffices to show that the map

Shv(Top)

colim
∆op

N(|X|, {|Ui|}i)→ |X| (2.9.39.5)

is an isomorphism, which is a special case of (1.5.103)(??).
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2.9.40 Lemma. If a topological functor f : C → D preserves finite products, then f! :
Shv(C)→ Shv(D) does as well.

Proof. Recall that if f : C → D preserves finite products then f! : P(C) → P(D) preserves
finite products (??). Now write sheaf left Kan extension f! as the composition # ◦ f! ◦ i
(where f! is presheaf left Kan extension), and note that i preserves all limits (??) and #
preserves finite limits (??).

2.9.41 Lemma. If f : C→ D is fully faithful and strict, then f! : Shv(C)→ Shv(D) is fully
faithful.

Proof. This is a special case of (1.1.88), recalling that f strict implies f ∗ commutes with
sheafification (2.9.37).

2.9.42 Lemma. Let f : C → D be a topological functor, and let P and Q be properties of
morphisms in C and D (respectively) preserved under pullback. Suppose that D is perfect
and Q is local on the target (2.1.5). If f sends pullbacks of P-morphisms to pullbacks of
Q-morphisms, then so does the left Kan extension functor f! : Shv(C)→ Shv(D).

Proof. It was shown in (1.5.115) that the presheaf left Kan extension functor f! : P(C)→ P(D)
sends pullbacks of P-morphisms to pullbacks of Q-morphisms. Now the inclusion of sheaves
into presheaves is continuous, and sheafification preserves all finite limits (??). It follows
that the sheaf left Kan extension f! : Shv(C)→ Shv(D) sends pullbacks of P-morphisms to
pullbacks. To show that sheaf left Kan extension f! sends P-morphisms to Q-morphisms,
it suffices to show that sheafification P(D) → Shv(D) preserves Q-morphisms. Consider a
Q-morphism F → G in P(D), and let us show that F# → G# is also a Q-morphism. Fix
a map d → G# from some d ∈ D, and let us show F# ×G# d → d has Q. Since D is
perfect and Q is local on the target, we may wlog replace d with the elements of an open
cover. In particular, we may assume wlog that the morphism d→ G# lifts to G (??). Since
sheafification preserves pullbacks, we have F#×G# d = (F ×G d)# → d# = d. The morphism
F ×G d→ d in P(D) lies in the full subcategory D ⊆ P(D) and has Q, so sheafification does
nothing since D is subcanonical.

We saw just above that the ∞-category of sheaves Shv(C) on a topological ∞-site C
satisfies a purely categorical universal property (2.9.32). It is natural to ask whether the
topological functor C ↪→ Shv(C) satisfies a universal property which characterizes Shv(C)
uniquely as a topological ∞-site (like we proved just above for presheaves (2.9.31)).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.9.43 Definition (Morita equivalence). A topological functor f : C→ D is called a Morita
equivalence when f! : Shv(C)→ Shv(D) (equivalently, its right adjoint f ∗ : Shv(D)→ Shv(C))
is an equivalence of ∞-categories. A strict topological functor which is a Morita equivalence
is called a strict Morita equivalence.
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2.9.44 Example. Let f : X → Y be a continuous map of topological spaces whose inverse
image map f−1 = Open(f) : Open(Y )→ Open(X) is an isomorphism. In this case Open(f)
is a Morita equivalence, though it is only strict when f itself is an isomorphism (which is not
implied by Open(f) being an isomorphism).

2.9.45 Exercise. Show that if f is a strict Morita equivalence, then f! and f ∗ are equivalences
of topological ∞-sites (that is, they are both strict).

2.9.46 Definition (Topologically fully faithful). Let f : C→ D be a topological functor. For
given c ∈ C, we may consider the map of presheaves Y(c) = Hom(−, c)→ Hom(f(−), f(c)) =
f ∗Y(f(c)) = f ∗f!Y(c) on C. When this map induces an isomorphism on sheafifications, we
say that f is topologically fully faithful.

2.9.47 Lemma. Let f : C → D be a strict topological functor. The sheaf pushforward
f! : Shv(C)→ Shv(D) is fully faithful iff f is topologically fully faithful.

Proof. The left adjoint f! is fully faithful iff the unit map 1→ f ∗f! is an isomorphism (??).
Since f is strict, the sheaf pullback f ∗ is cocontinuous (2.9.38), so the unit map 1→ f ∗f! is a
natural transformation between cocontinuous functors. Every object of Shv(C) is a colimit of
objects in the image of sheafified Yoneda #Y : C→ Shv(C), so the unit map is an isomorphism
iff its pullback under #Y is an isomorphism. The pullback of the unit map under #Y being
an isomorphism is exactly what it means for f to be topologically fully faithful (2.9.46).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.9.48 Definition (Perfect). A subcanonical topological site C is called perfect when every?

C-stack which admits an open covering by objects of C is itself an object of C.

The subcanonical topological site Top is perfect. This was proven in (??) and amounts to
the fact that topological spaces can be glued together along open sets. The same argument
shows that Sm is perfect, as is the category Vecto Top of topological spaces equipped with a
vector bundle (2.9.3.5).

Given a perfect topological ∞-site C, the ∞-category of C-stacks Shv(C) provides a useful
context in which to make constructions which may not a priori work in C itself. For example,
while C need not be complete, the ∞-category Shv(C) is always complete, and the inclusion
C ↪→ Shv(C) reflects and lifts limits (these assertions hold for presheaves, hence also for the
reflective subcategory of sheaves (1.1.79)). Thus when studying limits in C, it is often useful
to enlarge our focus to Shv(C). Note that we cannot use this strategy for colimits since the
opposite of a topological ∞-site is not a topological ∞-site.

2.9.49 Example (Locality of limits). Let C be a perfect topological site, and let us consider
the question of whether a given limit limαXα exists in C or not. This limit certainly exists
in Shv(C), so it is a question of whether this limit in Shv(C) is representable. Since C is
perfect, it is enough to show that limShv(C)

α Xα is locally representable. Given a map of
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diagrams Uα → Xα (over the same indexing shape) where all but finitely many of the
constituent maps Uα → Xα are isomorphisms and all are open embeddings, the resulting map
limα Uα → limαXα of limits in Shv(C) is an open embedding (it is a finite iterated pullback
of the open embeddings Uα → Xα). In view of the canonical map |limShv(C)

α Xα| → limα |Xα|,
a collection of such ‘open subdiagrams’ will cover limαXα provided the open embeddings
limα |Uα| → limα |Xα| cover.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.9.50 Definition (Perfection). Let C be a topological ∞-site. Its perfection C# ⊆ Shv(C)
is the full subcategory spanned by those objects which admit an open covering by objects
which are in the essential image of the sheafified Yoneda functor

C
Y
↪→ P(C)

#−→ Shv(C). (2.9.50.1)

Sheafified Yoneda #Y is a strict topological functor (2.9.25)(2.9.34), so C# is a topological
∞-site and C → C# is a strict topological functor (2.9.20). The topological ∞-site C# is
perfect by (??).

Concretely, morphisms in C# are obtained from morphisms in C by sheafifying. Indeed,
using the adjunction (#, i) and the Yoneda Lemma (??), we have

HomC#(X, Y ) = HomShv(C)(#YX,#YY ) (2.9.50.2)
= HomP(C)(YX,#YY ) = (#Y(Y ))(X). (2.9.50.3)

That is, we obtain HomC#(X, Y ) by sheafifying the presheaf HomC(−, Y ) on C (equivalently,
on (C ↓opemb X) = Open(|X|)) and evaluating it on X.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now show how to freely adjoin finite cosifted limits (equivalently, freely adjoin finite
limits modulo preserving finite products) to any topological∞-site C admitting finite products
(this is an adaptation of the purely categorical construction (1.5.112)). Note that while the
constructions C ↪→ P(C) and C ↪→ Shv(C) for topological ∞-sites adjoin certain colimits
(2.9.31)(??), the present discussion of adjoining limits need not be related, as the notion of a
topological ∞-site is not invariant under passing to opposites.

2.9.51 Definition (Extension of |·| to formal limits). Let C be a topological ∞-site. We
equip the ∞-category Lim(C) = Fun(C, Spc)op of ‘formal limits in C’ (??) with the unique
continuous functor |·|Lim(C) : Lim(C)→ Top (??) extending |·|C.

C Lim(C)

Top

|·|C
|·|Lim(C)

(2.9.51.1)
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Concretely, if p : K → C is a diagram, then |p|Lim(C) = limK |p|C. We may also drop the
subscripts C and Lim(C), in which case we will write lim |p| for |p|Lim(C), while |p| denotes the
pushforward of p under (|·|C)! : Lim(C)→ Lim(Top).

A formal limit p ∈ Lim(C) in a topological∞-site C may be nontrivial yet have lim |p| = ∅.
The next definition describes formal limits p which are, in a certain precise sense, ‘germs’
around the space lim |p|.

2.9.52 Definition (Corporeal). Let p ∈ Lim(C) be a formal limit in a topological ∞-site C.?

For any open embedding U ↪→M in C, we may consider the following diagram.

Hom(p, U) Hom(p,M)

Hom(lim |p|, |U |) Hom(lim |p|, |M |)

(2.9.52.1)

When this diagram is a pullback for every open embedding U ↪→ M in C, we say that the
formal limit p ∈ Lim(C) is corporeal. We denote the full subcategory spanned by corporeal
formal limits by Limcp(C) ⊆ Lim(C).

2.9.53 Exercise. Show that all objects of C ⊆ Lim(C) are corporeal (use the definition of
open embeddings).

2.9.54 Exercise. Show that the formal fiber product R×R2 R ∈ Lim(Top) of the two axes
R ↪→ R2 ←↩ R is not corporeal. Show that the formal inverse limit lim←−n(− 1

n
, 1
n
) ∈ Lim(Top)

is corporeal.

While corporeality of a formal limit (2.9.52) is not quite a special case of locality in the
sense of (1.5.100), we will see that the∞-category of corporeal formal limits Limcp(C) ⊆ Lim(C)
satisfies many of the same properties as local presheaves do.

2.9.55 Lemma. The functor C→ Limcp(C) preserves open embeddings and their pullbacks.

Proof. Let U ↪→M be an open embedding in C. To say that U ↪→M is an open embedding in
Limcp(C) is the assertion that for any corporeal p ∈ Lim(C), the map Hom(p, U)→ Hom(p,M)
is the pullback of Hom(lim |p|, |U |)→ Hom(lim |p|, |M |), which is exactly what it means for
p to be corporeal.

Now suppose X ′ → Y ′ is the pullback of an open embedding X → Y in C. For
q ∈ Lim(C), applying Hom(q,−) → Hom(lim |q|, |−|) to this pullback square produces a
cube. The Hom(lim |q|, |−|) face of the cube is a pullback since |·|C preserves pullbacks
of open embeddings (2.9.5). If q is corporeal, two other faces are pullbacks by definition
(2.9.52.1). Using cancellation (1.1.52), we deduce that the Hom(q,−) face is a pullback for q
corporeal.

2.9.56 Lemma. The full subcategory of corporeal diagrams Limcp(C) ⊆ Lim(C) is coreflective,?

and for any topological functor f : C → D, the functor f(−)cp : Lim(C) → Limcp(D) sends
corporealizations to isomorphisms.
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Proof. Let p : K → C be a diagram, and let us construct its corporealization pcp.
Let |p| : K → Top denote the composition of p with the forgetful functor |·| : C→ Top,

and let lim |p| denote its limit. For any vertex α ∈ K, let (lim |p| ↓ Open(p(α))) denote the
category of open subsets of |p(α)| which contain the image of the map lim |p| → p(α). We
will show that the corporealization of p is the diagram

pcp : (lim |p| ↓ Open(p)) oK → C (2.9.56.1)

where a map Z → (lim |p| ↓ Open(p)) o K is a map f : Z → K together with, for every
vertex z ∈ Z, a choice of open set lim |p| → Uz ⊆ p(f(z)), such that for every edge e : z → z′,
we have Uz ⊆ (p(f(e)) : p(f(z)) → p(f(z′)))−1(Uz′), and pcp sends such a map out of Z
to the evident diagram Z → C given by z 7→ Uz (2.9.8). There is an evident inclusion
K ⊆ (lim |p| ↓ Open(p)) oK given by taking Uz = p(f(z)) for all z, giving a map of formal
limits pcp → p. Note that the natural map lim |pcp| → lim |p| is an isomorphism.

Let us show that pcp is corporeal. That is, we should show that for any open embedding
U ↪→M in C and any map f : lim |p| → U , the map

colim
((lim |p|↓Open(p))oK)op

Hom(p, U)f → colim
((lim |p|↓Open(p))oK)op

Hom(p,M)f (2.9.56.2)

is an isomorphism, where Homf ⊆ Hom denotes the maps whose pullback to lim |p| is f .
Since the map π : (lim |p| ↓ Open(p)) o K → K is a cartesian fibration (??) (inspection),
these colimits may be expressed as colimits over Kop of the fiberwise colimit pushforwards
under π (??). We claim that the map between fiberwise colimits (diagrams over Kop) is
already an isomorphism. That is, we claim that for every X ∈ C, every subset A ⊆ |X|, and
every function f : A→ |U |, the map

colim
(A↓Open(|X|))op

Hom(−, U)f → colim
(A↓Open(|X|))op

Hom(−,M)f (2.9.56.3)

is an isomorphism. This is evident since both sides are the set of germs of maps near A
agreeing with f .

Now we claim that pcp → p is the corporealization of p. That is, we claim that for any
corporeal diagram q : L→ C, the composition map

HomLim(C)(q, pcp)→ HomLim(C)(q, p) (2.9.56.4)

is an isomorphism. Both sides map to (the discrete set) Hom(lim |q|, lim |p|), so we may
restrict to the fiber Homf ⊆ Hom over a particular map f : lim |q| → lim |p|. This restriction
may be written as

lim
(lim |p|↓Open(p))oK

HomLim(C)(q, pcp(−))f → lim
K

HomLim(C)(q, p(−))f . (2.9.56.5)

We claim that after pushing forward the diagram on the left to K (fiberwise limit), we obtain
an isomorphism of diagrams over K (and hence the map above is an isomorphism). It is
enough to show that for any open embedding U ↪→M and any map f : lim |q| → U , the map

HomLim(C)(q, U)f → HomLim(C)(q,M)f (2.9.56.6)
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is an isomorphism. That this is an isomorphism now follows from the fact that q is corporeal
(2.9.52.1).

2.9.57 Exercise (A formal limit and its corporealization are ‘topologically’ equivalent). Use?

the fact that Limcp(C) ⊆ Lim(C) is coreflective (2.9.56) and contains C ⊆ Lim(C) (2.9.53)
to show that the map lim pcp → lim p is an isomorphism for every formal limit p ∈ Lim(C)
(in the sense that if either exists, then so does the other, and in this case the map is an
isomorphism). Use the fact that cp ◦ f! sends corporealizations to isomorphisms (2.9.56) to
conclude that |·|Limcp(C) is continuous and that a topological functor f : C→ D preserves the
limit of p ∈ Lim(C) iff if preserves the limit of pcp.

2.9.58 Exercise. Note that open embeddings in Limcp(C) are preserved under pullback by
(2.9.4) since |·|Limcp(C) preserves pullbacks (in fact, preserves all limits (2.9.57)).

2.9.59 Lemma. A left fibration p : K → C is corporeal iff it satisfies the right lifting property
with respect to pairs (∆1, 1) ∧ (∆k, ∂∆k) mapping to C via the projection to ∆1 followed by
an open embedding ∆1 → C, say denoted U →M , for which (and this only has content when
k = 0) the induced map lim |p| → |M | lands inside the open set |U | ⊆ |M |.

Proof. This is a direct translation of the condition that (2.9.52.1) be a pullback (compare
(1.5.101)).

2.9.60 Lemma. The corporealization functor Lim(C)→ Limcp(C) sends a diagram in C to
the result of applying the small object argument to the lifting problems in (2.9.59) (as in
(1.5.101)).

Proof. Following the proof of (1.5.101), it suffices to check that if K → C is any diagram
and K̂ → C denotes the result of forming the pushout of a lifting problem as in (2.9.59),
then for any left fibration E → C satisfying the lifting property (2.9.59), the simplicial
mapping space from K̂ to E over C maps via a trivial Kan fibration to the simplicial mapping
space from K to E over C. To see this, it is enough to argue that the smash product
(∆1, 1) ∧ (∆k, ∂∆k) ∧ (∆r, ∂∆r) is filtered by pushouts of (∆1, 1) ∧ (∆a, ∂∆a) (mapping to C
as in (2.9.59)).

Recall the full subcategory Cosif(C) ⊆ Lim(C) of formal cosifted limits (1.5.112).

2.9.61 Lemma. The corporealization functor Lim(C)→ Limcp(C) restricts to an endofunctor
of the full subcategory Cosif(C) ⊆ Lim(C) of formal cosifted limits.

Proof. Let p : K → C be a cosifted diagram, and let us show that its corporealization pcp

is cosifted. The domain of the corporealization pcp (2.9.56.1) is (lim |p| ↓ Open(p)) o K.
The functor (lim |p| ↓ Open(|p|)) o K → K is cartesian (2.9.8) and K is cosifted, so it
suffices to show its fibers are cosifted (??). The fiber over α ∈ K is the poset category
(lim |p| ↓ Open(p(α))), which is a cofiltered poset (by intersection of open sets), hence cosifted
(??).
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2.9.62 Definition (Cosifcp(C)). For a topological ∞-site C, we let Cosifcp(C) = Limcp(C) ∩?

Cosif(C) ⊆ Lim(C), and we denote by Cosifcp,fin(C) ⊆ Cosifcp(C) the full subcategory spanned
by finite limits of objects of C.

Let us summarize what we know about Cosifcp(C) so far. Since the corporealization
functor Lim(C)→ Limcp(C) preserves cosiftedness (2.9.61), it restricts to a coreflection of the
inclusion Cosifcp(C) ⊆ Cosif(C). Hence Cosifcp(C) ⊆ Lim(C) is a coreflective subcategory, with
coreflection given by the coreflection of Cosif(C) ⊆ Lim(C) (??) followed by (the restriction
of) corporealization. We have C ⊆ Cosifcp(C) (2.9.52).

The ∞-category Cosifcp,fin(C) has all finite limits of objects of C, essentially by definition.
To show that it has all finite limits is more subtle and relies on the following key observation.

2.9.63 Corollary. For any finite diagram p : K → C, every morphism to the associated
object p ∈ Cosifcp,fin(C) from another object of Cosifcp,fin(C) is induced from a finite diagram
q : L→ C, an inclusion K ↪→ L, and an isomorphism q|K = p.

Proof. Given the lifting property characterization of Cosifcp(C) (1.5.112)(1.5.101)(2.9.59), we
may proceed as in (1.5.98).

We equip Cosifcp(C) with the functor |·|Cosifcp(C) given by the restriction of |·|Lim(C). The
restriction |·|Cosif(C) preserves cosifted limits since Cosif(C) ⊆ Lim(C) is closed under cosifted
limits (??). Since |·|Lim(C) sends corporealizations to isomorphisms (??) and the coreflection
Cosif(C)→ Cosifcp(C) is the restriction of corporealization Lim(C)→ Limcp(C) (2.9.61), we
conclude that the restriction |·|Cosifcp(C) also preserves cosifted limits. We note that it need
not preserve all limits (e.g. finite products in C remain products in Cosifcp(C), and |·|C need
not preserve finite products). However, if |·|C does preserve finite product, then |·|Cosif(C)

preserves all limits (??), hence so does |·|Cosifcp(C).

2.9.64 Lemma. Cosifcp,fin(C) is a topological∞-site, and every open embedding in Cosifcp,fin(C)?

is a pullback in Limcp(C) of an open embedding in C.

Proof. Fix X ∈ Cosifcp,fin(C), and let us show how to realize every open subset of lim |X| by
an open embedding in Cosifcp,fin(C) which is a pullback in Limcp(C) of an open embedding in C.
Represent X as the corporealization X = pcp of an object p ∈ Cosiffin(C). Every p ∈ Cosiffin(C)
is a truncated cosimplicial object p : ∆→ C (??). Now we have lim |X| = lim |pcp| = lim |p|
which is a subspace of |p0|. Hence every open subset of lim |X| is the pullback of an open
subset of |p0|. Lift this open subset to an open embedding U0 ↪→ p0 in C, and consider the
truncated cosimplicial object U• = p•×p0U0 : ∆→ C and its associated object U ∈ Cosiffin(C)
(??) (to see that U• is truncated, note that any limit of d-truncated objects is d-truncated,
since the inclusion of d-truncated objects is right adjoint to truncation (1.3.13)). Note that
U i = pi×p0U0 in Limcp(C) since C→ Limcp(C) preserves pullbacks of open embeddings (2.9.55).
Thus by taking the limit in Limcp(C), we find that Ucp → pcp is the pullback of U0 → p0

in Limcp(C). Now open embeddings in Limcp(C) are preserved under pullback (2.9.58) and
such pullbacks are preserved by |·|Limcp(C). Thus Ucp → pcp is an open embedding in Limcp(C),
hence also in Cosifcp,fin(C), corresponding to the correct open subset of lim |X| = lim |p|cp.
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2.9.65 Lemma. Let i : C → C be a strict topological functor, and suppose every open
embedding in C is a pullback of an open embedding in C. For all f : C → E preserving
pullbacks and all π : |·|E ◦ f → |·|C, if f and π send open embeddings in C to open embeddings
and pullbacks (respectively), then they do the same for open embeddings in C.

For example, the inclusion C→ Cosifcp,fin(C) is a strict topological functor, and every open
embedding in Cosifcp,fin(C) is a pullback of one in C (2.9.64).

Proof. Fix f : C → E satisfying α and π : |·|E ◦ f → |·|C. Suppose that f and π send open
embeddings in C to open embeddings and pullbacks (respectively), and let us show they do
the same for open embeddings in C. Fix an open embedding X → Y in C, and express it as
the pullback of an open embedding U →M in C.

X Y

U M

(2.9.65.1)

Since f preserves pullbacks, we see that f(X)→ f(Y ) is a pullback of f(U)→ f(M). The
latter is an open embedding by hypothesis on f , hence so is the former since open embeddings
are preserved under pullback in any topological ∞-site E (2.9.5). Applying π to the pullback
square (2.9.65.1) yields a cubical diagram.

|f(X)|E |f(Y )|E

|X|C |Y |C

|f(U)|E |f(M)|E

|U |C |M |C

(2.9.65.2)

By hypothesis on π, the lower square π(U → M) is a pullback. The squares |·|C(2.9.65.1)
and |f(·)|E(2.9.65.1) are pullbacks since |·|C and |·|E preserve pullbacks of open embeddings
(2.9.5). It follows from cancellation (1.1.52) that the top square π(X → Y ) is a pullback.

2.9.66 Definition (Derived smooth manifold). The topological∞-site Der of derived smooth?

manifolds is the perfection (2.9.50) of the topological ∞-site Cosifcp,fin(Sm).

2.9.67 Theorem. The ∞-category of derived smooth manifolds (2.9.66) satisfies the axioms?

(2.10.2).

Proof.
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2.10 Derived smooth manifolds
The∞-category of derived smooth manifolds Der is an enlargement of the category of smooth
manifolds Sm, obtained by formally adjoining finite limits, modulo transverse limits in Sm
(equivalently, formally adjoining cosifted limits as in (??)) within the realm of topological
∞-sites. For example, every diagram of smooth manifolds X → Y ← Z has a fiber product
X ×Y Z in the category of derived smooth manifolds. When the diagram is transverse, this
is simply the usual fiber product; otherwise it is a more exotic sort of object. The theory of
derived smooth manifolds originates in work of Spivak [83, 84] with further developments
by Joyce [39, 43] and many others. It is a homotopical analogue of the theory of locally
finitely presented C∞-schemes [16, 65, 42] and falls within the general framework of derived
geometry of Lurie [56] and Toën–Vezzosi [87, 88]. We introduce a new axiomatic approach to
the ∞-category of derived smooth manifolds.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The∞-category of derived smooth manifolds is best understood through certain properties
it satisfies. It is not hard to see that these properties characterize it uniquely, so they may be
regarded as the definition of derived smooth manifolds, modulo a proof of existence. Recall
the notion of a ‘perfect topological∞-site’ (2.9) which is an ‘∞-category of topological spaces
equipped with additional local structure’.

2.10.1 Definition (Topological preservation of limits). Let C be a topological ∞-site, and?

recall that to each sheaf F : Cop → Spc we may associate a strict topological functor
F : C→ Shv(−)opoTop lifting |·| : C→ Top (??). Given a limit in C which is preserved by |·|,
we say that F topologically preserves this limit when its associated functor C→ Shv(−)opoTop
preserves said limit (equivalently, sends it to a relative limit (1.5.87) over Top).

Concretely, a diagram KC → Shv(−)op o Top encoding a diagram of sheaved topological
spaces (Xα, Fα) all receiving a map from a sheaved topological space (X,F ) is a relative limit
diagram when the natural map

colim
α

π∗αFα → F (2.10.1.1)

is an isomorphism (that is, relative limits in Shv(−)op o Top → Top are limits in fibers
(??)(2.2.15)).

2.10.2 Definition (Derived smooth manifold). The ∞-category Der of derived smooth?

manifolds together with the functor Sm→ Der is defined by the following properties:
(2.10.2.1) Sm→ Der is a strict topological functor between perfect topological ∞-sites (2.9).
(2.10.2.2) Sm→ Der is fully faithful and preserves finite products.
(2.10.2.3) Der has finite limits, and every object of Der is locally isomorphic to a finite limit

of smooth manifolds.
(2.10.2.4) |·| : Der→ Top preserves finite limits.
(2.10.2.5) For any N ∈ Sm, the Yoneda sheaf Hom(−, N) ∈ Shv(Der) topologically preserves

finite cosifted limits (??).
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(2.10.2.6) (Universal Property) For every complete perfect topological site E, the∞-category
of topological functors Der → E preserving finite cosifted limits is equivalent via
restriction to the ∞-category of topological functors Sm→ E.

The universal property (??) evidently characterizes the functor Sm → Der uniquely up to
contractible choice, provided it exists. The existence of this functor (satisfying all the above
properties) shown in (2.9.67) below.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now discuss the notion of transversality for diagrams of smooth manifolds.

2.10.3 Definition (Transverse diagram of vector spaces). A diagram of vector spaces?

D : K → Vect is called transverse when the canonical map

Vect

lim
K
D →

K(Vect)

lim
K

D (2.10.3.1)

(from the limit of D in the category of vector spaces to the limit of D in the ∞-category of
complexes of vector spaces (??)) is an isomorphism. Transversality of D evidently depends
only on its class in Lim(Vect).

Since K≥0(Vect) ⊆ K(Vect) is closed under limits, we could just as well replace the limit in
K(Vect) with the limit in K≥0(Vect) in the definition of transversality. Since Vect ⊆ K≥0(Vect)
is a coreflective subcategory, the comparison map from the limit in Vect to the limit in
K≥0(Vect) is an isomorphism iff the limit in K≥0(Vect) lies in the full subcategory Vect ⊆
K≥0(Vect). In other words, a diagram D : K → Vect is transverse iff its limit in K≥0(Vect)
lies in Vect ⊆ K≥0(Vect) (equivalently, has no higher cohomology).

It may help to recall that the limit of a diagram D : K → K≥0(Vect) is given explicitly by
the total complex∏

σ:[0]→K

D(σ(0))→
∏

σ:[1]→K

D(σ(1))⊗ o(1)∨ →
∏

σ:[2]→K

D(σ(2))⊗ o(2)∨ → · · · (2.10.3.2)

which may be regarded as ‘simplicial cochains on K with coefficients in D’ (??). Also recall
that the limit of a cosimplicial vector space p : ∆→ Vect is the object of K≥0(Vect) associated
to p by the Dold–Kan correspondence (??).

2.10.4 Exercise. Show that a diagram of vector spaces V → W ← U is transverse iff the
sum map V ⊕ U → W is surjective.

The notion of transversality for a diagramD evidently depends only on the ‘formal∞-limit’
represented by D, namely its limit in the ∞-category Lim(C) = P(Cop)op = Fun(C, Spc)op of
formal ∞-limits (??). Indeed, recall that every object of Lim(C) is represented by a diagram
K → C, and two diagrams represent the same object iff they are related by pullback under
initial functors. Thus a property of objects of Lim(C) (i.e. a property of formal ∞-limits in
C) is a property of diagrams in C which is invariant under pullback under initial functors.
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2.10.5 Lemma. A formal limit of vector spaces is transverse iff its cosiftedization is trans-
verse.

Proof. The functor Vect→ K≥0(Vect) preserves finite products, hence commutes with cosifte-
dization (??).

2.10.6 Definition (Transverse diagram of smooth manifolds). Let D : K → Sm be a?

diagram. A point

p ∈
Top

lim
K
D (2.10.6.1)

of the limit of D in the category of topological spaces determines a lift of D to Sm∗ (pointed
smooth manifolds and basepoint preserving maps).

Sm∗

K SmD

Dp (2.10.6.2)

We can now compose this lift Dp with the ‘tangent space at the basepoint’ functor T∗ : Sm∗ →
VectR to obtain a diagram

TpD : K → VectR. (2.10.6.3)

We say that D is transverse at p when TpD is transverse (2.10.3), and we say that D is
transverse when it is transverse at every point of its topological limit limTop

K D. Transversality
of D evidently depends only on its class in Lim(Sm).

2.10.7 Lemma. Show, using the corresponding statement for vector spaces (2.10.5), that a
formal limit of smooth manifolds is transverse iff its cosiftedization is transverse.

2.10.8 Exercise. Show that a diagram of smooth manifolds D : J → Sm with only 0-cells
and 1-cells is transverse in the sense of (2.10.6) iff it is transverse in the sense of (2.6.8).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now study presentations of derived smooth manifolds by cosimplicial smooth manifolds.
The relation between cosimplicial smooth manifolds csSm and derived smooth manifolds
Der is analogous to the relation between the category of complexes Kom≥0(Vect) (1.1.99)(??)
and the ∞-category of complexes K≥0(Vect) (??). Recall that a cosimplicial object is called
n-truncated when its matching maps in degrees > n are isomorphisms (1.3.13)(1.3.16) and is
called truncated when it is n-truncated for some n <∞.

2.10.9 Lemma (Existence of cosimplicial presentations). Any derived smooth manifold may?

be expressed locally as the limit of a truncated cosimplicial smooth manifold. Any map of
derived smooth manifolds may be expressed locally as a levelwise submersive map of truncated
cosimplicial smooth manifolds.
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Proof. Every derived smooth manifold is locally the limit of a finite diagram of smooth
manifolds. Since Sm → Der preserves finite products, this limit unchanged by applying
cosiftedization, which turns a finite diagram into a truncated cosimplicial diagram (??).

Every map of derived smooth manifolds is locally the map from the limit of a finite
diagram of smooth manifolds to the limit of a subdiagram thereof (??), and upon applying
cosimplicialization this becomes a levelwise submersion of truncated cosimplicial smooth
manifolds.

Recall that a cosimplicial object is called Reedy P when its matching maps have P (1.3.17)
(any property of morphisms P). We saw earlier that a map of cosimplicial vector spaces
V • → W • is Reedy surjective iff the corresponding map of chain complexes is surjective
(1.3.26). Recall that a ‘point’ x of a cosimplicial smooth manifold X• means a point of its
topological limit limTop

∆ X• or, equivalently, a map x : ∗ → X• from the constant cosimplicial
smooth manifold ∗. Thus for a point x of a cosimplicial smooth manifold X•, a map X• → Y •

is levelwise submersive at x iff it is Reedy submersive at x.
Let us now see how to upgrade levelwise (equivalently, Reedy) submersivity over the

topological limit to (true) levelwise submersivity and Reedy submersivity over an open
cosimplicial submanifold containing the topological limit.

2.10.10 Exercise. LetX• be a cosimplicial smooth manifold. Given an open subset V k ⊆ Xk,
consider the cosimplicial smooth manifold U• with a levelwise open embedding U• → X•

defined by
U j =

⋂
f :[j]→[k]

(Xj f∗−→ Xk)−1(V k). (2.10.10.1)

Show that if M iX• exists, then so does M iU• and the map M iU• → M iX• is an open
embedding. Show that if i > k, then the induced square of matching maps

U i X i

M iU• M iX•

(2.10.10.2)

is a pullback (so, in particular, if the ith matching map of X• is an isomorphism, then so is
that of U•).

2.10.11 Corollary. Every map of derived smooth manifolds X → Y is, locally near any
point x ∈ X, a finite composition X = ZN → · · · → Z0 → Z−1 = Y in which Zi → Zi−1 is
locally a pullback of the ith diagonal of Rai for some integers ai ≥ 0.

Proof. Realize our given map X → Y (locally) as a levelwise submersion of truncated
cosimplicial smooth manifolds X• → Y • (2.10.9). By replacing X• with an open cosimplicial
submanifold thereof, we may assume X• → X• is also Reedy submersive (??). Since
X• → Y • is Reedy submersive, its relative matching maps all exist (1.3.18). Now for any
map of cosimplicial objects X• → Y •, the induced map on totalizations X = lim∆X• →
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lim∆ Y • = Y factors canonically as a (co-transfinite) composition X = lim←−i Zi → · · · → Z2 →
Z1 → Z0 → Z−1 = Y where each map Zi → Zi−1 is a pullback of the ith diagonal of the
ith matching map X i →M iX• ×M iY • Y

i (??). In our case, the inverse limit is achieved at
some finite i (indeed, X• and Y • are both k-truncated for some k <∞, so their ith matching
maps are isomorphisms for i > k (1.3.16), so the inverse limit is achieved at all i ≥ k). The
ith matching map is submersive at x since X• → Y • is Reedy submersive, and the diagonal
of a pullback is a pullback of the diagonal (1.1.60).

A given cosimplicial presentation of a derived smooth manifold (or of a morphism of
derived smooth manifolds) may be much larger than necessary. Our next goal is to show
(2.10.16) how to transform a given cosimplicial presentation into one which is ‘minimal’ in
the following sense.

2.10.12 Definition (Minimal). A cosimplicial vector space will be called minimal when the?

associated complex of vector spaces (1.3.20) has vanishing differential. A cosimplicial smooth
manifold X• will be called minimal at a point x ∈ X• when the cosimplicial vector space
TxX

• is minimal. More generally, a levelwise submersion of cosimplicial smooth manifolds
X• → Y • will be called minimal at x ∈ X• when the cosimplicial vector space Tx(X•/Y •) is
minimal. The term ‘minimal’ without qualification means minimal at all points.

Recall that the chain complex [Z[k + 1]→ Z[k]] ∈ Kom≥0(Ab) corresponds under Dold–
Kan (1.3.20) to the simplicial abelian group Ck

cell(∆
•) (1.3.23.1). In what follows, we will

default to real coefficients, so Ck
cell(∆

•) = Ck
cell(∆

•;R) corresponds to [R[k + 1]→ R[k]]. The
dual cosimplicial vector spaces Ccell

k (∆•) will be of interest to us as cosimplicial smooth
manifolds. The augmented cosimplicial diagram ∗ → Ccell

k (∆•) is a transverse limit diagram
in Sm since the complex of vector spaces corresponding to the cosimplicial vector space
Ccell
k (∆•) is acyclic.

2.10.13 Lemma. For every k ≥ 0, the augmented cosimplicial diagram ∗ → Ccell
k (∆•) is a

limit diagram in Der.

Proof. It suffices to show that they have the same space of maps to R. The space of maps from
lim∆Ccell

k (∆•) to R is the colimit colim∆C∞(Ccell
k (∆•))0 by (2.10.2.5) (where the subscript

0 indicates taking germs near zero). Thus we should show that the augmented simplicial
diagram C∞(Ccell

k (∆•))0 → R is a colimit diagram. Note that this augmented simplicial
diagram can really just be denoted C∞(Ccell

k (∆•))0 if we follow the convention that ∆−1 = ∅.
It suffices to prove the extension property for maps from (∆r, ∂∆r) to C∞(Ccell

k (∆•))0. That
is, given a collection of smooth functions fI : Ccell

k (∆I) → R (or rather germs near zero of
such) for every I $ {0, . . . , r}, we should produce a function Ccell

k (∆r)→ R whose restriction
to ∆I ⊆ ∆r is fI for every I $ {0, . . . , r} (the case I = ∅ corresponds to ∆−1). We can take
the function ∑

J${0,...,r}

(−1)r−1−|J |fJ ◦ (∆J → ∆r)! (2.10.13.1)

where (∆J → ∆r)! : Ccell
k (∆r)→ Ccell

k (∆J) is the brutal restriction of chains (simply throw
away any k-simplices not contained in ∆J ⊆ ∆r). We should check that evaluating this



CHAPTER 2. TOPOLOGY 151

function on Ccell
k (∆I) ⊆ Ccell

k (∆r) yields fI for every I $ {0, . . . , r}. It suffices to consider
the case I = {0, . . . , r} \ a for some 0 ≤ a ≤ r. The term J = I gives the desired result, and
the remaining terms cancel in pairs with the same intersection J ∩ I.

2.10.14 Definition (Elementary derived open embedding). A map of truncated cosimplicial
smooth manifolds X• → Y • will be called an elementary derived open embedding when it is a
finite composition of the following sorts of maps:
(2.10.14.1) A levelwise open embedding X• → Y •.
(2.10.14.2) A levelwise submersive pullback

X• Y •

0 Ccell
k (∆•)

for some k ≥ 0.
If X• → Y • is an elementary derived open embedding, then the induced map on derived limits
lim∆X• → lim∆ Y • is an open embedding since Sm→ Der preserves submersive pullbacks
(??) and lim∆Ccell

k (∆•) = ∗ (2.10.13).

2.10.15 Exercise. Show that for any elementary derived open embedding f : X• → Y •,
the induced map on tangent spaces TxX• → Tf(x)Y

• corresponds to a quasi-isomorphism of
cochain complexes under Dold–Kan (note the use of (1.3.24)).

2.10.16 Proposition (Existence of minimal cosimplicial presentations). Let X• → Y • be?

a levelwise submersion of cosimplicial smooth manifolds, and suppose X• is truncated. For
every point x ∈ X•, there exists an elementary derived open embedding U• → X• and a lift
of x to u ∈ U• such that the composition U• → Y • is submersive and minimal (2.10.12) at u.

Proof. Suppose that f is non-minimal at x. That is, the simplicial vector space T ∗x (X•/Y •) is
non-minimal, meaning that the corresponding chain complex N•T ∗x (X•/Y •) has non-vanishing
differential. Intuitively, this means that there are some ‘transverse directions’ of X• at x
which we can ‘cancel’ (take transverse limit in Sm) while preserving submersivity of f .

Fix an injective map [R[k + 1] → R[k]] → N•T
∗
x (X•/Y •) for some k ≥ 0. Denote by

C∞(X•, x) ⊆ C∞(X•) the smooth functions vanishing at x, and let us try to find a lift
[R[k + 1]→ R[k]]→ N•C

∞(X•, x).

N•C
∞(X•, x)

[R[k + 1]→ R[k]] N•T
∗
x (X•/Y •)

(2.10.16.1)

The maps C∞(X•, x)→ T ∗xX
• → T ∗x (X•/Y •) are levelwise surjective, so the corresponding

maps of complexes N•C∞(X•, x) → N•T
∗
xX

• → N•T
∗
x (X•/Y •) are degreewise surjective
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(1.3.24), hence the desired lift exists. This lift corresponds to a linear map Ck
cell(∆

•) →
C∞(X•, x) (1.3.23.1), which is equivalently a smooth map

(X•, x)→ (Ccell
k (∆•), 0). (2.10.16.2)

By construction, the derivative of this map at x is the map Ck
cell(∆

•) → T ∗x (X•/Y •) cor-
responding to our chosen injection [R[k + 1] → R[k]] → N•T

∗
x (X•/Y •). The derivative

Ck
cell(∆

•) → T ∗x (X•/Y •) is thus also injective (1.3.24), so our map (2.10.16.2) is levelwise
submersive at x.

We would now like to form the pullback of 0→ Ccell
k (∆•) under our map (2.10.16.2).

U• X•

0 Ccell
k (∆•)

(2.10.16.3)

Since X• → Ccell
k (∆•) is submersive at x, we may use (??) to replace X• by an open

cosimplicial submanifold thereof over which the map X• → Ccell
k (∆•) is levelwise submersive,

thus ensuring that the pullback U• exists.
The map U• → Y • is levelwise submersive at u = x ×0 0 by construction. Applying

(??) again, we may find inside U• an open cosimplicial submanifold over which this map is
levelwise submersive. Finally, the rank of the differential of N•Tx(U•/Y •) is one less than
that of N•Tx(X•/Y •), so by iterating this construction we eventually reach a U• which is
minimal over Y • at u.

2.10.17 Corollary (Finite products generate finite transverse limits). The category of smooth?

manifolds Sm has all finite transverse limits (2.10.6), and a topological functor Sm → C
preserves finite transverse limits iff it preserves finite products of copies of R. In particular,
Sm→ Der preserves finite transverse limits.

Proof. Due to the local nature of limits in topological ∞-sites (2.9.49), a topological functor
Sm→ C preserves finite products iff it preserves finite products of copies of R. By the universal
property of Sm→ Der (??), a topological functor Sm→ C preserving finite products extends
uniquely to a topological functor Der → C preserving finite limits. It therefore suffices to
show that Sm has finite transverse limits and that they are preserved by Sm→ Der.

Fix a finite transverse diagram of smooth manifolds D : J → Sm, and let us show that
limD exists in Sm and is preserved by Sm→ Der. Since Sm has finite products and Sm→ Der
preserves finite products, we may wlog replace D with its cosiftedization, which is represented
by a truncated cosimplicial object X• : ∆ → Sm (??). We may moreover assume X• is
minimal by (2.10.16) (noting that an elementary derived open embedding also induces an
open embedding on limits in Sm provided these exist, and that it preserves transversality
(2.10.15)). Now if X• is minimal at x ∈ X• and transverse, we can construct an open
embedding covering x which is constant. Indeed, just work by induction applying (2.10.10)
to replace each level Xn with an open subset over which the nth matching map is an open
embedding; this makes all matching maps isomorphisms, hence we win.
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The functor Sm→ Der preserves finite products (2.10.2.2), hence preserves finite transverse
limits.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We saw earlier that every morphism of derived smooth manifolds is, locally on the source,
a finite composition of maps which are, locally on the source, a pullback of R→ ∗ or one of
its iterated diagonals (2.10.11). The ‘amplitude’ of a morphism of derived smooth manifolds
records which iterated diagonals are relevant.

2.10.18 Definition (Amplitude). Let I ⊆ Z≥0. A morphism of derived smooth manifolds?

is said to have amplitude ⊆ I when it is, locally on the source, a finite composition of
maps which are, locally on the source, a pullback of the ith diagonal (1.1.57) of R for some
non-negative integer i ∈ I.

Let us get a handle on the iterated diagonals of R→ ∗. The first diagonal is R→ R× R,
which is a pullback of ∗ → R, and conversely ∗ → R is a pullback of R → R × R; both
are transverse pullbacks in Sm, hence are pullbacks in Der as well. Now the diagonal of a
pullback is a pullback of the diagonal (1.1.60), so being a pullback of the kth diagonal of
R→ ∗ is, for k ≥ 1, equivalent to being a pullback of the (k−1)st diagonal of ∗ → R. The
ath iterated diagonal of ∗ → R is ∗ → ΩaR, where Ωa is the ath based loop space in the
∞-categorical sense, namely the limit over the Da-shaped diagram in Der taking the value ∗
on the boundary and the value R in the interior.

2.10.19 Exercise. Show that having amplitude ⊆ I is preserved under pullback and closed
under composition. Show that if X → Y has amplitude ⊆ I, then its relative diagonal
X → X×Y X has amplitude ⊆ I + 1. Formulate the resulting cancellation (1.1.62) statement
for amplitude. Conclude, in particular, that every morphism of smooth manifolds has
amplitude ≤ 1. Unwind the reasoning to explicitly express any morphism of smooth manifolds
as the composition of an immersion followed by a submersion.

2.10.20 Definition (Submersion). A morphism of derived smooth manifolds is called a
submersion when it has amplitude 0 (equivalently, when it is, locally on the source, a pullback
of Ra → ∗).

We now explain the notion of a vector bundle on a derived smooth manifold. Since
this is an ∞-categorical context, a certain amount of abstraction is required to describe the
relevant systems of higher homotopies in a manageable way. Explicitly, a vector bundle on a
derived smooth manifold X is an open cover X =

⋃
i Ui, integers ni ≥ 0, transition functions

ϕij : Ui ∩ Uj → Hom(Rnj ,Rni) (ϕii = 1), homotopies ϕijk : ϕijϕjk → ϕik over Ui ∩ Uj ∩ Uk,
and higher homotopies ϕi0···ip over Ui0 ∩ · · · ∩ Uip for all p ≥ 3; morphisms of vector bundles
may be defined similarly. It becomes prohibitively complex to manipulate explicitly such
systems of homotopies, so a more categorical perspective is required.
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2.10.21 Definition (Tangent complex). The tangent complex functor on derived smooth?

manifolds is a section T : Der → Perf≥0 o Der of the cartesian functor Perf≥0 o Der → Der
encoding the functor Perf≥0 : Der → Cat∞. In other words, it assigns to each derived
smooth manifold X a perfect complex TX ∈ Perf≥0(X), to each morphism of derived smooth
manifolds f : X → Y a morphism TX → f ∗TY , and coherent homotopies for every chain of
morphisms X0 → · · · → Xp with p ≥ 2.

The tangent complex functor is defined uniquely up to contractible choice by the require-
ment that it preserve finite limits and that the following diagram commute.

Vecto Sm Perf≥0 o Der

Sm Der

T T
(2.10.21.1)

In other words, the tangent functor on derived smooth manifolds preserves finite limits and
solves the following lifting problem.

Sm Perf≥0 o Der

Der Der

(2.10.21.2)

The tangent bundle functor on smooth manifolds T : Sm → Vect o Sm (2.6.10) preserves
finite products, as do the inclusions Vecto Sm ↪→ Vecto Der ↪→ Perf≥0 o Der, hence so does
their composition Sm→ Perf≥0 oDer. Now the universal property of Sm ↪→ Der, namely that
it freely adjoins finite limits modulo preserving finite products within the realm of perfect
topological sites, implies the space of lifts (??) is contractible.

Concretely, the tangent complex of a derived smooth manifold X may be described as
follows. Suppose X is the limit of a finite diagram p : K → Sm of smooth manifolds. The pair
(TX,X) ∈ Perf≥0 o Der is then the limit of Tp : K → Vecto Sm ⊆ Perf≥0 o Der. This limit
may be computed by first taking the limit in Der and then taking the relative limit (1.5.87)
in Perf≥0 o Der→ Der, which in this case is the limit in a fiber (??). Thus TX ∈ Perf≥0(X)
is the limit of the diagram K → Vect(X) ⊆ Perf≥0(X) obtained by pulling back the diagram
Tp to X.

2.10.22 Example. Consider a finite diagram of smooth manifolds p : K → Sm, and consider
its derived limit limDer

K p. The fiber of the tangent complex of limDer
K p at a point x is the limit

lim
K≥0(Vect)
K Txp (since the ‘fiber at x’ functor Perf≥0(X)→ Perf≥0(∗) = K≥0(Vect) preserves

finite limits (??)). Recall that the diagram p is called transverse at x precisely when this
limit lies in Vect ⊆ K≥0(Vect) (2.10.6). Thus if p is not transverse, then the tangent complex
of limDer

K p is not concentrated in degree zero, and so the derived limit limDer
K p is not a smooth

manifold. Thus the result that Sm→ Der preserves transverse limits (2.10.17) is sharp: if p
is non-transverse, then its derived limit does not lie in the full subcategory Sm ⊆ Der.
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2.10.23 Exercise. Let X = s−1(0) be the derived zero set of a section s : M → E of a
vector bundle E over a smooth manifold M . The map of vector bundles ds : TM → E on M
depends on a choice of connection on E. Fixing any choice of connection, show that the cone
of this map, restricted to X, is the tangent complex TX.

2.10.24 Exercise. Show that for any point x of a derived smooth manifold X, there exists
a function (X, x)→ (R, 0) with any prescribed derivative T 0

xX → R at x.

2.10.25 Definition (Relative tangent complex). For any map of derived smooth manifolds
f : X → Y , the relative tangent complex TX/Y is the fiber product

TX/Y TX

0 f ∗TY

Tf (2.10.25.1)

in Perf≥0(X) (in other words, it is the cone TX/Y = [TX → f ∗TY [−1]]).

2.10.26 Proposition (Minimal amplitude factorization). Every map of derived smooth?

manifolds X → Y is, locally near any point x ∈ X, a finite composition X = ZN → · · · →
Z0 → Z−1 = Y in which Zi → Zi−1 is locally a pullback of the ith diagonal of T ix(X/Y ).

Proof. Recall the argument of (2.10.11), which showed that presenting our input map X → Y
by a submersive and Reedy submersive map of cosimplicial smooth manifolds X• → Y •

(such a presentation always exists) gives rise to a factorization in which Zi → Zi−1 is a
pullback of the ith diagonal of (the vertical tangent space of) the ith relative matching
map X i → M iX• ×M iY • Y

i. The key to the present result is the fact that every Reedy
submersive presentationX• → Y • can be refined to one which is minimal at x (2.10.16), which
we recall means that the cosimplicial vector space Tx(X•/Y •) maps under the Dold–Kan
correspondence to a cochain complex with vanishing differential.

It suffices therefore to match the vertical tangent space of the ith relative matching
map of X• → Y • at x with T ix(X/Y ) when X• → Y • is minimal at x; this is now simply
a matter of unwinding definitions. The vertical tangent space of the ith matching map of
X• → Y • is the kernel of the ith matching map of TxX• → TxY

• (the pullbacks involved
in the construction (1.3.18) of the matching map of X• → Y • are all submersive, so they
are preserved by passing to the tangent space at x). The kernel of the ith matching map
of TxX• → TxY

• is in turn identified (1.3.26) with the kernel of the map on normalized
cochain complexes N•TxX• → N•TxY

• in degree i. Now X• → Y • is levelwise submersive,
so N•TxX• → N•TxY

• is degreewise surjective (1.3.24), so its kernel is its fiber in K≥0(Vect).
Since X• → Y • is minimal, the kernel of N•TxX• → N•TxY

• has vanishing differential, so
the space in question is thus H i(N•TxX

• → N•TxY
•[−1]). The normalized cochain complex

of a cosimplicial vector space is the same as its limit in K≥0(Vect) (??), so this is the same as
the ith cohomology of [lim∆ TxX

• → lim∆ TxY
•[−1]] = Tx(X/Y ) as desired.

2.10.27 Definition (Derived Lie group). A derived Lie group is a group object (??) in the?

∞-category of derived smooth manifolds Der.
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A derived Lie group is Hausdorff and paracompact for the same reason as a Lie group
(2.6.26).

2.10.28 Definition (Universal tangent vector τ). We denote by τ the derived zero set of?

the function x2, namely the fiber product

τ ∗

R R

0

x 7→x2

(2.10.28.1)

in the category Der.

2.10.29 Proposition. Let M be a smooth manifold, and consider the derived zero set
s−1(0) ∈ Der of a function s : M → R whose (topological) zero set has empty interior. The
sheaf C∞s−1(0) of real valued functions on s−1(0) is the quotient (as a sheaf of sets) C∞M/s of
the sheaf C∞M of real valued functions on M by the equivalence relation of equality modulo s.

Proof. We present the derived zero set s−1(0) as a cosimplicial smooth manifold as follows.
The point ∗ is the limit of the cosimplicial smooth manifold Ccell

0 (∆•) (2.10.13), and the
augmentation map Ccell

0 (∆•)→ R is surjective, hence submersive, by inspection. Hence

M ×R 0 = M ×R lim
∆
Ccell

0 (∆•) = lim
∆

(M ×R C
cell
0 (∆•)) (2.10.29.1)

is a cosimplicial smooth manifold presenting the derived zero set s−1(0). It is truncated since
Ccell

0 (∆•) is truncated. Formation of the sheaf of smooth functions commutes with totalizations
of truncated cosimplicial objects (by axiom (2.10.2.5) of derived smooth manifolds), so we
obtain

C∞s−1(0) = colim
∆

C∞M×RCcell
0 (∆•)|s−1(0). (2.10.29.2)

Recall that the colimit functor colim∆ : sSet→ Spc simply amounts to regarding a simplicial
set as a space in the obvious way (??).

Explicitly, the cosimplicial smooth manifold M ×R C
cell
0 (∆•) is as follows.

M M × R M × R2 M × R3 · · ·
(p,s(p))
(p,0)

(p,s(p),x)
(p,x,x)
(p,x,0)

(p,s(p),x,y)
(p,x,x,y)
(p,x,y,y)
(p,x,y,0)

(p,s(p),x,y,z)
(p,x,x,y,z)
(p,x,y,y,z)
(p,x,y,z,z)
(p,x,y,z,0)

(2.10.29.3)

Every function on M × R is uniquely of the form f(p) + x(g(p) + (x − s(p))h(p, x))) by
Hadamard’s Lemma (2.6.33) (applied twice). Such a function pulls back under the maps
M →→ M × R to a pair of functions on M of the form (f(p), f(p) + s(p)g(p)). Thus two
elements of C∞(M) are joined by an edge in C∞(M ×R C

cell
0 (∆•)) iff they are congruent

modulo s. We conclude that π0C
∞(M ×R C

cell
0 (∆•)) = C∞(M)/s.
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Now it remains to show that πkC∞(M ×R C
cell
0 (∆•)) = 0 for k > 0. This is a simpli-

cial abelian group, hence a Kan complex (1.4.13), so it suffices to show that every map
(∆k, ∂∆k)→ (C∞(M ×R C

cell
0 (∆•)), 0) for k > 0 is null-homotopic. Such a map consists of a

function F : M × Rk → R whose the restrictions

F (p, s(p), y1, . . . , yk−1) (2.10.29.4)
F (p, y1, y1, . . . , yk−1) (2.10.29.5)

...
F (p, y1, . . . , yi, yi, . . . , yk−1) (2.10.29.6)

...
F (p, y1, . . . , yk−1, yk−1) (2.10.29.7)
F (p, y1, . . . , yk−1, 0) (2.10.29.8)

all vanish. By Hadamard’s Lemma (2.6.33), the last of these vanishing conditions implies that
F (p, x1, . . . , xk) = xkG(p, x1, . . . , xk) for some smooth G. Now consider the (k + 1)-simplex
given by (zk − zk+1)G(p, z1, . . . , zk). Its face zk+1 = 0 is our given simplex ∆k, so it suffices
to show that all other faces are zero. That is, we should show that

G(p, s(p), y1, . . . , yk−1) (2.10.29.9)
G(p, y1, y1, . . . , yk−1) (2.10.29.10)

...
G(p, y1, . . . , yi, yi, . . . , yk−1) (2.10.29.11)

...
G(p, y1, . . . , yk−1, yk−1) (2.10.29.12)

all vanish. These are the same pullbacks which are known to annihilate F . The difference is
that now we have divided by xk, so it suffices to show that the inverse image of the locus
{xk = 0} along all such pullbacks is nowhere dense. When k > 1, every such inverse image
is simply {yk−1 = 0}, which is evidently nowhere dense. For k = 1, the inverse image is
s−1(0) ⊆M , which is nowhere dense by hypothesis.

2.10.30 Exercise. Deduce from (2.10.29) (formally, without repeating the proof) a similar
characterization of the sheaf of maps to any smooth manifold N (use Hadamard’s Lemma
(2.6.33) to show that there is a well defined notion of ‘equality modulo s’ for maps to N ,
independent of the choice of coordinate charts of N used to define it).

2.10.31 Proposition. The functor Hom(τ,−) : Der→ Der exists and is canonically isomor-?

phic to the tangent functor T : Der→ Der.

Proof. For smooth manifolds M and N , the sheaf of functions M × τ → N is computed in
(2.10.29) to equal the sheaf of functions M × R→ N modulo x2 (indeed, M × τ →M × R
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is the derived zero set of the function (p, x) 7→ x2 and has empty interior). The sheaf of
functions M × R→ N modulo x2 is in turn identified with the sheaf of functions M → TN
by taking derivative in the x direction by Hadamard’s Lemma (2.6.33). These identifications
are functorial in M , hence exhibit TN as representing the functor Hom(τ,N) on Sm. They
are also functorial in N , hence define in fact an isomorphism Hom(τ,−) = T of functors
Sm→ Sm.

Now the Hom(τ,−) and YDer ◦ T are both topological functors Der → Shv(Der) which
preserve finite limits. The isomorphism between their restrictions to Sm extends uniquely to
Der by the universal property of Sm→ Der (??).

2.10.32 Definition (Tangent functor T : Shv(Der) → Shv(Der)). The tangent functor on?

derived smooth stacks T : Shv(Der)→ Shv(Der) is the unique cocontinuous extension (2.9.32)
of the tangent functor on derived smooth manifolds T : Der→ Der (2.10.21).

Der Der

Shv(Der) Shv(Der)

TDer

TShv(Der)

(2.10.32.1)

In other words, TShv(Der) is the left Kan extension (TDer)! of TDer : Der → Der (2.9.35).
Alternatively, TShv(Der) is the sheaf pullback functor (−× τ)∗ : Shv(Der)→ Shv(Der) under
multiplication by the universal tangent vector ×τ : Der→ Der (2.10.28). Indeed, the sheaf
pullback functor (−× τ)∗ is cocontinuous since ×τ preserves underlying topological spaces
(2.9.38), and its restriction to Der ⊆ Shv(Der) is canonically identified with T : Der → Der
(2.10.31). This description shows that TShv(Der) is continuous (every sheaf pullback functor is
continuous (2.9.35)).

2.10.33 Exercise (Tangent space of Sec). Recall that TQ/M is the pullback of TQ→ TM
under the zero section M → TM . Conclude that a map Z → TQ/M from a derived smooth
manifold Z is a diagram of the following shape.

Z × τ Q

Z M

pZ (2.10.33.1)

Conclude that a map Z → Sec(M,TQ/M) is the same as a diagram

Z ×M × τ Q

Z ×M M

pZ×M

pM

(2.10.33.2)

which in turn is the same as a map Z × τ → Sec(M,Q), thus identifying TSec(M,Q) =
Sec(M,TQ/M). Generalize this argument to show that T (SecB(M,Q)/B) = SecB(M,TQ/M).
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

It is sometimes possible to deduce statements about derived smooth manifolds as a formal
consequence of the special case of smooth manifolds. The underlying engine behind such
results is the left Kan extesion functor Shv(Sm) ↪→ Shv(Der) (fully faithful since Sm ↪→ Der is
fully faithful (2.9.41)) and a characterization of its essential image based on (2.10.2.5). Stated
informally, a sheaf F : Derop → Spc is left Kan extended from Sm when every morphism
Q→ F from a derived smooth manifold Q factors, uniquely up to contractible choice, through
a smooth manifold Q→M → F . Formulated in this way, it is not so surprising that certain
F ∈ Shv(Der) being left Kan extended from Sm allows us to deduce results about derived
smooth manifolds from the special case of smooth manifolds.

2.10.34 Proposition. The essential image of the left Kan extension functor?

(Sm→ Der)! : Shv(Sm)→ Shv(Der) (2.10.34.1)

consists precisely of those sheaves on Der which topologically preserve (2.10.1) finite cosifted
limits (??) (equivalently, finite cosifted limits of smooth manifolds).

Proof. Yoneda functors Hom(−, N) for N ∈ Sm topologically preserve finite cosifted limits
by definition (2.10.2.5). The essential image of left Kan extension is the closure of such
Yoneda functors under colimits (??). We claim that the collection of sheaves on Der which
topologically preserve finite cosifted limits is closed under colimits. It suffices to show that
for any fixed diagram KC → Top, the collection of lifts to Shv(−)op o Top which are relative
limit diagrams is closed under limits inside the ∞-category of all lifts. Since relative limits
are limits in fibers (functorially) (??) and the pullback functors between sheaf categories
preserve colimits (being left adjoints), we are reduced to the fact (??) that limit diagrams
inside Fun(KC,E) are closed under limits for any ∞-category E (in this case E = Shv(X) for
X ∈ Top the cone point of our fixed diagram KC → Top).

We have thus shown that if F ∈ Shv(Der) is left Kan extended from Sm then F topologically
preserves finite cosifted limits. To show the converse, it suffices (1.1.81) to check that if
F,G ∈ Shv(Der) both topologically preserve finite cosifted limits, then a morphism F → G is
an isomorphism iff its restriction to Sm is an isomorphism. This fact follows immediately
from the fact that every derived smooth manifold is locally a finite cosifted limit of smooth
manifolds (2.10.2.3) (a finite limit of smooth manifolds is also a finite cosifted limit by
applying cosiftedization, since Sm→ Der preserves finite products (2.10.2.2)(??))—that is
just axiom (2.10.2.5).

We now argue that certain stacks of interest on Der are left Kan extended from Sm using
the criterion (2.10.34). This will allow us to deduce facts about derived smooth manifolds as
formal consequences of corresponding facts about smooth manifolds.

2.10.35 Proposition. Let M be a compact Hausdorff derived smooth manifold, and let N
be a smooth manifold. The derived smooth stack Hom(M,N) is left Kan extended from Sm.
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2.10.36 Corollary. The stack of proper submersions on Der is left Kan extended from Sm.

Proof. Proper submersions in Sm and Der are locally trivial (2.6.30)(??). It follows that the
stack of proper submersions (on both Sm and Der) is the disjoint union over all diffeomorphism
classes of compact Hausdorff smooth manifolds F of the stack quotient

∗/Diff(F ) = colim
(
· · · →→→ Diff(F )2 →→ Diff(F )→ ∗

)
(2.10.36.1)

where Diff(F ) ⊆ Hom(F, F ) denotes the open substack of diffeomorphisms. Left Kan
extension preserves Hom(F, F ) (2.10.35), open substacks (2.9.35), finite products (2.9.40),
and colimits (since it is a left adjoint).
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2.11 Derived smooth stacks
We now study derived smooth stacks, seeking a theory parallel to that of smooth stacks (2.7).

2.11.1 Definition (Submersive atlas). A submersive atlas on a derived smooth stack X is a
representable submersion U → X from a derived smooth manifold U .

Here is a generalization of (2.7.10).

2.11.2 Lemma. Let X be a derived smooth stack, and let U → X be a submersion from
a derived smooth manifold U . For x ∈ X, consider the map U ×X x → U (from a smooth
manifold to a derived smooth manifold). This map factors locally as the composition of a
surjective submersion with vertical tangent space ker((TU/X)u → T 0U) and a map from the
resulting quotient manifold with tangent space im((TU/X)u → T 0U) to U acting on tangent
spaces via the tautological inclusion.

Proof. The relative tangent bundle of the map U ×X x → U is the cone of TU/X → TU
and is identified with (the pullback of) the relative tangent bundle of ∗ → X, namely the
constant bundle with fiber TxX[−1]. It follows that the rank of the tangent cohomology T iU
is constant over U ×X x as is the rank of the map (TU/X)u = T (U ×X u)→ T 0U . Now we
can express U (locally) as the limit of a cosimplicial smooth manifold U•, and the functor of
maps from smooth manifolds to U is (by the universal property of limits) the functor of maps
to U0 which land inside |U | ⊆ |U0|. The structure theorem for maps of smooth manifolds
with constant rank derivative thus applies to the map U ×X x→ U .

2.11.3 Definition (Minimal atlas). Given a derived smooth stack X with a submersive atlas,
a submersion U → X from U ∈ Der is called minimal at u ∈ U when the map TU/X → TU
vanishes at u.

2.11.4 Lemma (Proper atlas from proper diagonal). Let X be a derived smooth stack with
proper diagonal, and let U → X be a submersion which is minimal at p ∈ U . For every
sufficiently small open neighborhood p ∈ V ⊆ U , we have p ×X p = p ×X V and the map
V → X is proper over an open substack of X containing the image of p.

Proof. Given the purely topological result (2.3.17), it suffices to show that p×X p ⊆ p×X U
is open, which follows from minimality (2.11.2).

2.11.5 Lemma (Existence of a minimal atlas). Let X be a derived smooth stack, and let
x ∈ X be a point. If X admits an submersive atlas, then it admits a submersive atlas which
is minimal at some lift of x.

Proof. Begin with an arbitrary submersive atlas U → X and a lift u ∈ U of x. If V ⊆ U is
the zero set of a map U → Rk, then V → X is a submersion iff the relative tangent complex
TV/X is supported in degree zero. This relative tangent complex is the cone [TU/X → Rk[−1]]
of the composition TU/X → TU → Rk, so V → X is a submersion iff this composition is
surjective over V . Now the image of the map TU/X → TU at u is some subspace of T 0

uU .
Choose a map U → Rk vanishing at u whose derivative at u restricted to this subspace T 0

uU
is an isomorphism (2.10.24). Now the resulting submersion V → X is minimal.
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2.12 Hybrid categories
In this section, we introduce ‘hybrid categories’. The simplest of these is the category we
denote by TopSm, whose objects we will call topological-smooth spaces. Topological-smooth
spaces are locally modelled on products Z × Rn for topological spaces Z. Morphisms of
topological-smooth spaces, called continuous-smooth maps, are maps Z × Rn → Z ′ × Rn′

which locally preserve the decomposition into ‘leaves’ z × Rn and whose derivatives to all
orders along the leaves (i.e. in the Rn coordinate) exist and are continuous. This category
allows one to make sense of notions such as ‘a family of smooth manifolds parameterized by a
topological space’. It also provides a context in which to define topological spaces Hom(X, Y )
of smooth maps between smooth manfolds X and Y via a universal property analogous to
that used to define the topological spaces Hom(X, Y ) of continuous maps between topological
spaces X and Y (2.4.1).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Let us now introduce the category of topological-smooth spaces TopSm.

2.12.1 Definition (Continuous-smooth map). Let Z be a topological space and let n ≥ 0.
We consider maps defined on the product Z × Rn or any open subset thereof.

A map f : Z × Rn → Z ′ (any topological space Z ′) will be called continuous-smooth
when it is, locally on the source, the composition of the projection Z × Rn → Z and a
continuous map Z → Z ′. A map f : Z × Rn → R will be called continuous-smooth iff its
derivative Dαf : Z × Rn → R exists and is continuous for every multi-index α on Rn. A
map f : Z × Rn → Z ′ × Rn′ will be called continuous-smooth when its coordinate factors
Z × Rn → Z ′ and Z × Rn → R are all continuous-smooth.

The notion of a continuous-smooth map manifestly depends on the expression of its source
and target as the product of a topological space and a Euclidean space.

2.12.2 Exercise. Determine what are the continuous-smooth maps

|Rn| × ∗ → |Rn| × ∗ ∗ × Rn → |Rn| × ∗ (2.12.2.1)
|Rn| × ∗ → ∗ × Rn ∗ × Rn → ∗× Rn (2.12.2.2)

where we write |Rn| to denote the topological space underlying the smooth manifold Rn (so
as to distinguish the topological and smooth factors). Do the same with the domains replaced
with arbitrary open subsets thereof.

2.12.3 Lemma. A composition of continuous-smooth maps is continuous-smooth.

Proof. We consider a composition Z × Rn → Z ′ × Rn′ → Z ′′ × Rn′′ . It evidently suffices to
consider the case that the target is simply Z ′′ or R.

The case of the target Z ′′ is evident: the map Z ′ × Rn′ → Z ′′ locally factors through the
projection to Z ′, and the map Z × Rn → Z ′ locally factors through the projection to Z, so
we are done.
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Now consider a composition h = f ◦ (t; g1 . . . , gn′) with target R.

Z × Rn (t;g1,...,gn′ )−−−−−−→ Z ′ × Rn′ f−→ R (2.12.3.1)

By the chain rule, the derivative Dαh is a continuous function of the derivatives of g1, . . . , gn′
and f . That is, Dαh is the composition of a continuous function with the product of the
continuous functions

Z × Rn (t;g1,...,gn′ )−−−−−−→ Z ′ × Rn′ Dγf−−→ R (2.12.3.2)

Z × Rn Dβgi−−−→ R (2.12.3.3)

for multi-indices β and γ. It is thus continuous, as desired.

2.12.4 Definition (Category of topological-smooth spaces TopSm). A topological-smooth?

space is a topological space X equipped with an atlas of charts (as in (2.6.1)) from open
subsets of products Z × Rn for topological spaces Z and integers n ≥ 0, whose transition
maps are continuous-smooth. A morphism of topological-smooth spaces is a continuous map
of topological spaces which, when viewed via the charts, is continuous-smooth. The category
of topological-smooth spaces is denoted TopSm.

There are tautological fully faithful embeddings of the categories of topological spaces
Top and smooth manifolds Sm into the category of topological-smooth spaces TopSm.

Top ↪→ TopSm←↩ Sm (2.12.4.1)

2.12.5 Exercise. Show that Z×Rn ∈ TopSm is the categorical product of Z ∈ Top ⊆ SmTop
and Rn ∈ Sm ⊆ SmTop.

2.12.6 Exercise. Show that the embedding Top ⊆ TopSm has right adjoint given by the
underlying topological space functor |·| : TopSm→ Top and left adjoint given by the ‘collapse
leaves’ functor TopSm→ Top.

2.12.7 Exercise (Locally connected). Show that for a topological space X, the following
are equivalent (in which case X is called locally connected):
(2.12.7.1) Every open subset of X is a disjoint union of connected open subsets.
(2.12.7.2) Every point x ∈ X has arbitrarily small connected open neighborhoods.

2.12.8 Exercise (Leaf structure). Consider the presheaf on Topopemb (topological spaces
and open embeddings) defined as follows. To a topological space X we associate the set
of equivalence relations on X all of whose equivalence classes are connected and locally
connected subspaces of X. Such an equivalence relation on X restricts to an equivalence
relation on any open subset U ⊆ X all of whose equivalence classes are locally connected,
but not necessarily connected. Splitting each such naively restricted equivalence class into
its connected components (2.12.7.1) defines the restriction operation for our presheaf. Show
that this presheaf is separated. A section of its sheafification is called a leaf structure.
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2.12.9 Definition (Submersion). A map of topological-smooth spaces is called a submersion
when it is locally on the source a pullback of Rn → ∗.

Since the category TopSm is a topological site (??), we can form the category of topological-
smooth stacks Shv(TopSm).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Now let us define a category LogTopSm of log topological-smooth spaces. The local
models of such spaces are fiber products Q×B Z where Q→ B is a submersion of log smooth
manifolds (2.8.78) and Z is an arbitrary log topological space mapping to B. Recall that a
submersion of log smooth manifolds is locally monomial (2.8.81), so this class of local models
is equivalent to XQ ×XP Z for injective maps of polyhedral cones P → Q and maps Z → XP .
In applications, we will only ever need the case that Q→ B is an exact submersion (2.8.91),
but this assumption is unnecessary for setting up the general theory (the reader is warned
that submersions of log smooth manifolds are not preserved under pullback (??), in contrast
to exact submersions (2.8.97)).

2.12.10 Definition (Log continuous-smooth map). Given π : Q → B a submersion of
log smooth manifolds and w : Z → B a map from an arbitrary log topological space
Z, we introduce a formal symbol Q ×B Z. Associated to such a formal symbol is an
‘underlying log topological space’ |Q ×B Z| given by the indicated fiber product in the
category of log topological spaces. We wish to define a notion of ‘log continuous-smooth
map’ Q ×B Z → Q′ ×B′ Z ′ between such formal symbols; such a map will, in particular,
specialize to a log map on underlying log topological spaces. A log continuous-smooth map
Q×B Z → Q′ ×B′ Z ′ is, by definition, given locally by a diagram

|Q×B Z| |Q′ ×B′ Z ′|

Z Z ′

(2.12.10.1)

satisfying a certain differentiability property in the vertical direction. More formally, a map
Q ×B Z → Q′ ×B′ Z ′ defined over an open subset U ⊆ |Q ×B Z| consists of a section of
the sheaf Hom(−, |Q′ ×B′ Z ′|)×Hom(−,Z′) p

∗
ZHom(−, Z ′) (where Hom denotes morphisms in

LogTop) over U whose associated map |Q×B Z| → Q′ is ‘vertically smooth’ in the sense we
are about to define.
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3.1 Function spaces
We recall various standard function spaces and their basic properties. References include
[75, 2, 33, 91]. By ‘(smooth) manifold’ we mean ‘paracompact Hausdorff smooth manifold’,
and by ‘vector bundle’ we mean ‘finite-dimensional smooth real (or complex) vector bundle’.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We begin with some generalities about topological vector spaces.

3.1.1 Definition (Topological vector space). A (real or complex) topological vector space?

is a (real or complex) vector space V whose addition V × V → V and scalar multiplication
R× V → V (or C× V → V ) are continuous.

3.1.2 Exercise. Show that the category of topological vector spaces and continuous linear
maps has all limits and that these limits are preseved by the forgetful functor to topological
spaces.

3.1.3 Exercise (Vector space topology generated by neighborhoods of the origin). Let V be
a real vector space, and let {Uα ⊆ V }α be a collection of subsets containing zero satisfying
the following axioms:
(3.1.3.1) There is at least one α.
(3.1.3.2) For every pair α, β, there exists γ such that Uγ ⊆ Uα ∩ Uβ.
(3.1.3.3) For every α, there exists β such that Uβ + Uβ ⊆ Uα.
(3.1.3.4) For every α, there exists β such that (−1, 1) · Uβ ⊆ Uα.
(3.1.3.5) For every α and every v, there exists ε > 0 such that (−ε, ε) · v ⊆ Uα.
Declare a set U ⊆ V to be open iff for every u ∈ U we have u+ Uα ⊆ U for some α. Show
that this defines the coarsest vector space topology on V in which every Uα is a neighborhood
of the origin. Show that, conversely, given any vector space topology on V , the collection of
all neighborhoods of the origin satisfies the above axioms, and generates the input topology
in the above sense.

3.1.4 Definition (Semi-norm). A semi-norm on a real (resp. complex) vector space V is
a map ‖·‖ : V → R≥0 satisfying linearity ‖av‖ = |a|‖v‖ for a ∈ R (resp. a ∈ C) and the
triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

3.1.5 Definition (Norm). A norm is a semi-norm for which ‖v‖ = 0 implies v = 0.

3.1.6 Definition (Complete topological vector space). Let V be a topological vector space. A
swarm (2.1.20) v : S∗ → V is called Cauchy when for every neighborhood of zero 0 ∈ U ⊆ V ,
there exists a neighborhood of the basepoint A ⊆ S such that v(a) − v(a′) ∈ U for all
a, a′ ∈ A∗. A topological vector space is called complete when every Cauchy swarm has a
unique limit.

3.1.7 Exercise. Show that a complete topological vector space is Hausdorff.
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3.1.8 Definition (Smooth map to a complete topological vector space). Let V be a complete
topological vector space, and let us define a notion of when a map from a smooth manifold
to V is smooth. A continuous map f : Z → V from a smooth manifold Z is said to
be of class C1 (continuously differentiable) when the map Z × Z × (R \ 0) → V given
by (x, y, t) 7→ t−1(f(x) − f(y)) extends continuously to the ‘deformation to the tangent
bundle’ P(Z) (2.6.36), in which case the restriction to TZ ⊆ P(Z) of this (necessarily unique)
continuous extension is called the derivative Tf : TZ → V of f . For k ≥ 2, we say f is
of class Ck when it is of class C1 and its derivative Tf is of class Ck−1. Note that the
derivative Tf : TZ → V is automatically linear (every relation x + y = z in TZ is a limit
of triples (p, q, t), (q, r, t), and (p, r, t) in P(Z)). This notion of smoothness is respected
by pre-composition with smooth maps of smooth manifolds and by post-composition with
continuous linear maps of complete topological vector spaces.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3.1.9 Definition (Multi-index notation). Let V be a finite-dimensional real vector space.
The symmetric algebra SymV =

⊕
r≥0 Symr V (where Symr V = (V ⊗r)Sr) is the space of

translation invariant differential operators on V . Given a basis v1, . . . , vn ∈ V , there is an
induced basis SymV consisting of all possible monomials in v1, . . . , vn. These monomials are
in natural bijection with multi-indices α = (α1, . . . , αn) ∈ Zn≥0; the degree of a multi-index α
is denoted |α| =

∑n
i=1 αi. The differential operator associated to a multi-index α is denoted

Dα. Usually V = Rn with the standard basis.

3.1.10 Definition (Smooth functions C∞loc and C∞c ). Let M be a manifold, and let E/M be?

a vector bundle. The space of smooth sections f : M → E is denoted

C∞loc(M,E). (3.1.10.1)

We denote by C∞c ⊆ C∞loc the subspace of functions which are compactly supported, and we
denote by C∞K ⊆ C∞loc the subspace of functions supported inside a given compact set K ⊆M .
The corresponding spaces of k times continuously differentiable are denoted by Ck with the
same subscripts.

3.1.11 Definition (C∞loc-topology and Ck
loc-topology). For any integer k ≥ 0, the Ck-norm?

of a smooth function f on Rn is the supremum of the sum of the absolute values of its
derivatives (in the principal coordinate directions) of order ≤ k.

‖f‖Ck(Rn) = sup
x∈Rn

∑
|α|≤k

|Dαf(x)| (3.1.11.1)

Now let M be a manifold and E/M a vector bundle. Given a coordinate chart α : Rn ⊇
U ↪→M , a smooth section ϕ : α(U)→ E∗ of compact support, and an integer k ≥ 0, we may
consider the semi-norm f 7→ ‖α∗(ϕf)‖Ck(Rn) on Ck

loc(M,E). A Ck
loc-semi-norm is a semi-norm

of this form (or one which is bounded by a finite sum of semi-norms of this form). The
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topology generated by the family of all Ck
loc-semi-norms is called the Ck

loc-topology (concretely,
it is the topology of uniform convergence of all derivatives of order ≤ k over compact subsets).
A C∞loc-semi-norm is a Ck

loc-semi-norm for some k <∞. The topology generated by the family
of all C∞loc-semi-norms is called the C∞loc-topology (concretely, it is the topology of uniform
convergence of all derivatives over compact subsets).

3.1.12 Exercise. Show that Ck
loc(M,E) is complete with respect to the Ck

loc-topology for all
k ≥ 0 as well as for k =∞. Show that Ck

K ⊆ Ck
loc is a closed subspace with respect to the

Ck
loc-topology (hence complete in the subspace topology). Show that Ck

c ⊆ Ck
loc is a dense

subspace with respect to the Ck
loc-topology.

3.1.13 Exercise. Let k ≥ 0 be an integer. Fix a collection of coordinate charts αi : Rn ⊇
Ui ↪→M and smooth sections ϕi : αi(Ui)→ E∗ of compact support. Show that if the values
ϕi(x) ∈ E∗x span for every x ∈M , then every Ck

loc-semi-norm is bounded by a finite sum of
the Ck

loc-semi-norms f 7→ ‖α∗i (ϕif)‖Ck(Rn).

3.1.14 Lemma (C∞c -topology). The directed colimit?

C∞c = colim−−−→
K compact

C∞K (3.1.14.1)

exists in the category of locally convex topological vector spaces and commutes with the forgetful
functor to vector spaces; we call this the C∞c -topology. The C∞c -topology is complete and is
generated by the family of semi-norms

∑
i‖ϕif‖Cki (which we call C∞c -semi-norms) associated

to locally finite collections of smooth functions ϕi and integers ki <∞.

Proof.

3.1.15 Definition (Bundle of densities). We denote by ΩM the bundle of densities on M .
It is a smooth real line bundle defined by the existence of a canonical integration map∫
M

: C∞c (M,ΩM )→ R. In fact, it is the line bundle associated to a principal R>0-bundle, so
it has powers Ωt

M for any t ∈ R.

3.1.16 Example (Delta function). The delta function δp ∈ C−∞c (Rn) is the distribution
given by the linear functional ‘evaluate at p ∈ Rn’. On a manifold, the delta function is
naturally a distribution valued in densities δp ∈ C−∞c (M,ΩM).

3.1.17 Definition (Schwartz functions S). The space of Schwartz functions S(Rn) consists
of those infinitely differentiable functions all of whose norms

‖f‖S,A,B = sup
x∈Rn

(1 + |x|A)
∑
|α|≤B

|Dα
xf(x)| (3.1.17.1)

are finite. The space S is complete with respect to this family of norms.
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3.1.18 Definition (Fourier transform). The Fourier transform is a linear map S(Rn,C)→
S(Rn,C) denoted f 7→ f̂ and given by the formula

f̂(ξ) =

∫
e−2πi〈ξ,x〉f(x) dx. (3.1.18.1)

The Fourier transform is continuous: the required decay properties of f̂ and its derivatives
follow from integration by parts. Intrinsically speaking, the Fourier transform of a function
on a finite-dimensional real vector space V is a function on its dual V ∗ valued in det(V ).

The Fourier transform also makes sense for Schwartz functions valued in a complex vector
space E. When E is a real vector space, the Fourier transform maps S(Rn, E) to the subspace
of S(Rn, E ⊗R C) consisting of those functions g satisfying g(−ξ) = g(ξ) (and conversely, the
Fourier transform of such a function g lies in the subspace S(Rn, E) ⊆ S(Rn, E ⊗R C)).

3.1.19 Exercise. Show that
∫
Rn e

−π|x|2 dx = 1 by reducing to the case n = 2 and using polar
coordinates.

3.1.20 Lemma (Fourier inversion). For f ∈ S(Rn), we have ˆ̂
f(x) = f(−x).

Proof. Note that f̂(ξ)e−π(ξ/N)2 → f̂(ξ) in S(Rn) as N →∞. It thus suffices to show that∫
e2πi〈ξ,x〉f̂(ξ)e−π(ξ/N)2

dξ → f(x). (3.1.20.1)

The left hand side may be written as∫∫
e2πi〈ξ,x−y〉f(y)e−π(ξ/N)2

dy dξ =

∫ (∫
e−π(ξ/N)2+2πi〈ξ,z〉 dξ

)
f(x+ z) dz. (3.1.20.2)

Now we may compute the inner integral of ξ by completing the square, moving the contour,
and appealing to the identity

∫
e−πx

2
dx = 1 (3.1.19). The result is Nne−π(Nz)2 , making the

desired convergence to f(x) clear upon appealing to (3.1.19) for a second time.

3.1.21 Exercise (Fourier transform and convolution). Show that for f, g ∈ S(Rn), we have
f̂∗g = f̂ ĝ, where (f∗g)(x) =

∫
f(y)g(x− y) dy denotes convolution. Using Fourier inversion,

conclude that f̂ g = f̂∗ĝ, and specialize this to conclude that
∫
fg =

∫
f̂ ĝ, so in particular

‖f‖L2 = ‖f̂‖L2 (Plancherel’s formula).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3.1.22 Definition (Sobolev spaces Hs). The Sobolev Hs-norm of a function f ∈ S(Rn) is?

‖f(x)‖Hs(Rn) =
∥∥(1 + |ξ|2)s/2f̂(ξ)

∥∥
L2(Rn)

. (3.1.22.1)

When s is a non-negative integer, differentiation under the integral sign and Plancherel
(3.1.21) imply that the Hs-norm is equivalent to

∑
|α|≤s‖Dαf‖L2(Rn).
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Now let M be a manifold and let E/M be a vetor bundle. Given a coordinate chart
α : Rn ⊇ U ↪→ M and a smooth section ϕ : α(U) → E∗ of compact support, we may
consider the semi-norm f 7→ ‖α∗(ϕf)‖Hs(Rn), which we call an Hs

loc-semi-norm. The topology
generated by the set of all Hs

loc-semi-norms is called the Hs
loc-topology. The description of

generating families as in (3.1.13) for C∞loc-semi-norms continues to hold, though the proof is
more complicated, see (3.1.29) below.

3.1.23 Exercise (Dual norm). Recall the dual norm (??): for any norm on C∞c (M,E), we
can take its dual ‖·‖′ on C∞c (M,E∗ ⊗ ΩM) given by

‖f‖′ = sup
‖g‖≤1

∫
fg. (3.1.23.1)

Show that if ‖f‖′ <∞ for all f , then ‖·‖′ is a norm and ‖·‖′′ ≤ ‖·‖.

3.1.24 Exercise. Show using the Cauchy–Schwarz inequality that the L2-norm on Rn is
self-dual (where we implicitly trivialize ΩRn by dx1 · · · dxn). More generally, show that for
any positive function w : Rn → R>0, the dual of the L2

w(Rn)-norm f 7→ (
∫
w|f |2)1/2 is the

L2
w−1-norm. Conclude that the dual of the Hs(Rn)-norm is the H−s(Rn)-norm.

3.1.25 Definition (Interpolation norm). Let a < b < c ∈ R. Given norms ‖·‖a and ‖·‖c on?

a vector space X, we define a third norm ‖·‖b by the formula

‖v‖b =

(
N−1
a,b,c

∫ ∞
−∞

inf
x+y=v

(
e2(b−a)t‖x‖2

a + e2(b−c)t‖y‖2
c

)
dt

)1/2

, (3.1.25.1)

where Na,b,c =
∫

infx+y=1

(
e2(b−a)tx2 + e2(b−c)ty2

)
dt is a normalization factor. This is known,

more precisely, as the K-interpolation norm at q = 2.

3.1.26 Exercise. Show that∫ ∞
−∞

inf
x+y=1

(
e2(b−a)tr2ax2 + e2(b−c)tr2cy2

)
dt = Na,b,cr

2b (3.1.26.1)

by reparameterizing t (any r > 0). Use this to show that

‖v‖a ≤Mra

‖v‖c ≤Mrc

}
=⇒ ‖v‖b ≤Mrb (3.1.26.2)

or equivalently that

‖v‖b ≤ ‖v‖
c−b
c−a
a ‖v‖

b−a
c−a
c (3.1.26.3)

with equality with dimX = 1 (to prove this, consider the infimum over x and y both multiples
of v).
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3.1.27 Exercise. Consider interpolation triples (‖·‖a, ‖·‖b, ‖·‖c) on vector spaces X and Y ,
and consider a linear map A : X → Y which is (a, a)-bounded and (c, c)-bounded. Show that
A is (b, b)-bounded with (b, b)-norm bounded by

‖A‖(b,b) ≤ ‖A‖
c−b
c−a
(a,a)‖A‖

b−a
c−a
(c,c) . (3.1.27.1)

To show this, bound the infimum over A(v) = z + w (appearing in ‖A(v)‖b) by the infinum
over v = x+ y (taking z = A(x) and w = A(y)), and then reparameterize the integral over t
to obtain the desired constant factor times ‖v‖b.

3.1.28 Lemma (Interpolation for Sobolev norms). For a < b < c ∈ R, the Hb-norm is the?

interpolation of the Ha-norm and Hc-norm on S(Rn).

Proof. The square of the Hb-norm of u may be written using the identity (3.1.26.1) as

N−1
a,b,c

∫∫
inf

x+y=û(ξ)

(
e2(b−a)t(1 + |ξ|2)a|x|2 + e2(b−c)t(1 + |ξ|2)c|y|2

)
dt dξ. (3.1.28.1)

The square of the interpolation of the Ha-norm and Hc-norm may be written as

N−1
a,b,c

∫
inf

f+g=u

[∫ (
e2(b−a)t(1 + |ξ|2)a|f̂(ξ)|2 + e2(b−c)t(1 + |ξ|2)c|ĝ(ξ)|2

)
dξ

]
dt. (3.1.28.2)

The inequality (3.1.28.1) ≤ (3.1.28.2) is immediate. To show equality, it suffices to note
that the pointwise minimizing pair (x(ξ), y(ξ)) with x + y = û from (3.1.28.1) can be well
approximated by pairs of the form (f̂(ξ), ĝ(ξ)) with f + g = u.

3.1.29 Example. Consider the operator Mf : C∞c (Rn)→ C∞c (Rn) given by multiplication
by a smooth function f : Rn → R all of whose derivatives are bounded. Direct calculation
shows that Mf is bounded Hs → Hs for every integer s ≥ 0. It follows from interpolation
(3.1.27)(3.1.28) that Mf is bounded Hs → Hs for real s ≥ 0. The adjoint of Mf is itself, so
it follows from duality (3.1.24)(??) that Mf is bounded Hs → Hs for all s.

Now let φ : Rn → Rn be a compactly supported diffeomorphism, and consider the
pushforward map φ∗ : C∞c (Rn)→ C∞c (Rn). This operator φ∗ is bounded Hs → Hs for integer
s ≥ 0 by direct calculation, hence for all real s ≥ 0 by interpolation. The same applies to
pullback φ∗ since φ∗ = (φ−1)∗. The adjoint of φ∗ is MdetDφ ◦ φ∗, so by duality we conclude
that φ∗ (hence also φ∗) is bounded Hs → Hs for all s.

3.1.30 Exercise (Sobolev norm on a manifold). Let M be a manifold, and let E/M be a?

vector bundle. Given a coordinate chart Rn ⊇ U ⊆ M and a smooth function of compact
support ϕ : U → E∗, we may consider the semi-norm u 7→ ‖ϕu‖Hs(Rn) on C∞loc(M,E). These
are called Sobolev Hs

loc-semi-norms on C∞loc(M,E), and the topology they generate is called
the Hs

loc-topology (also called the Hs-topology when M is compact). Show that the Hs
loc-semi-

norms associated to a particular collection of pairs (Rn ⊇ Ui ⊆ M,ϕi : Ui → E∗) generate
the Hs

loc-topology provided the ϕi(x) span E∗x at every point x ∈M (note that it suffices to
show that any single semi-norm ‖ψu‖Hs(Rn) is bounded by a sum of semi-norms ‖ϕiui‖Hs(Rn),
and then prove this using (3.1.29)).
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3.1.31 Lemma (Sobolev embedding). For integer k ≥ 0 and real s > k + n
2
, we have?

‖u‖Ck ≤ constK,k,s‖u‖Hs for suppu ⊆ K (K compact).

Proof. Differentiation Dα on Rn is bounded Hs → Hs−|α| by direct calculation for integer
s ≥ |α|, hence for all real s ≥ |α| by interpolation (3.1.27)(3.1.28). It therefore suffices to
treat the case k = 0, where we are supposed to show that

|u(0)|2 =

∣∣∣∣∫ e2πi〈ξ,x〉û(ξ) dξ

∣∣∣∣2 ≤ consts

∫
|û(ξ)|2(1 + |ξ|)2s dξ. (3.1.31.1)

This follows from Cauchy–Schwarz provided
∫

(1 + |ξ|)−2s dξ <∞, which is the case for s > n
2

(using polar coordinates, it is equivalent to
∫∞

1
r−2srn−1 dr <∞).

3.1.32 Lemma (Sobolev restriction). For a codimension d submanifold N ⊆ M , we have
‖u|N‖s ≤ constK,s‖u‖s+d/2 for suppu ⊆ K (K compact) and s > 0.

Proof. It suffices to show that restriction of smooth functions Rn to Rn−1 × 0 is bounded
Hs+1/2(Rn)→ Hs(Rn−1) provided s > 0.

Fix coordinates (x, y) ∈ Rn−1 × R and dual coordinates (ξ, η) ∈ Rn−1 × R. The Fourier
transform of the restriction f(x, 0) is the integral

∫
f̂(ξ, η) dη. Our desired estimate is thus∫

(1 + |ξ|2)s
∣∣∣∣∫ f̂(ξ, η) dη

∣∣∣∣2 dξ ≤ consts

∫
(1 + |ξ|2 + |η|2)s+

1
2 |f̂(ξ, η)|2 dη dξ. (3.1.32.1)

Cauchy–Schwarz gives∣∣∣∣∫ f̂(ξ, η) dη

∣∣∣∣2 ≤ ∫ (1 + |ξ|2 + |η|2)−s−
1
2 dη

∫
(1 + |ξ|2 + |η|2)s+

1
2 |f̂(ξ, η)|2 dη, (3.1.32.2)

so it suffices to show that∫
(1 + |ξ|2 + |η|2)−s−

1
2 dη ≤ consts(1 + |ξ|2)−s. (3.1.32.3)

Writing 1 + |ξ|+ |η| = (1 + |ξ|)(1 + |η|
1+|ξ|) and performing the change of variables η = (1 + |ξ|)t,

we are reduced to the inequality
∫

(1 + |t|)−2s−1 dt ≤ consts, which holds since s > 0.

3.1.33 Rellich Lemma ([77, 48]). For every s < t ∈ R and every ε > 0, there exists a finite
list of functions ρ1, . . . , ρN ∈ C∞c (Rn) such that we have

‖u‖s ≤ ε‖u‖t +
∑
i

∣∣∣∣∫ ρiu

∣∣∣∣ (3.1.33.1)

for all u ∈ C∞(Rn) supported inside the unit ball. The same holds for any manifold M and
functions supported in any given compact set K ⊆M .
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Proof. For functions on the torus M = Rn/Zn, the Sobolev norm is expressible in Fourier
series ‖u‖2

s =
∑

m|û(m)|2(1 + |m|2)s, so we may take ρ1, . . . , ρN to be large multiples of the
Fourier modes e2πimx for |m|2 ≤M for suitable M <∞ depending on ε > 0. By embedding
the unit ball into the torus, we conclude the case of the unit ball as well. The Sobolev
norm on a general manifold is defined in terms of the Sobolev norm on the unit ball using a
partition of unity (3.1.30), so the case of the unit ball implies the general case.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The next result allows us to define Sobolev spaces of maps to non-linear targets (i.e.
manifolds) whenever Hs ⊆ C0 and s is an integer.

3.1.34 Proposition (Moser [67, §2]). Let s ≥ 0 be an integer for which Hs ⊆ C0, and
suppose F : Rn → R is smooth and vanishes at the origin. For compact K ⊆ Rm, we have

‖F (g)‖Hs ≤ constK,s‖F‖Cs(g(K))‖g‖Hs (3.1.34.1)

for supp g ⊆ K.

Proof. Derivatives of F (g) of order ≤ s are sums of terms of the form

(DαF )(g)

|α|∏
i=1

Dβig (3.1.34.2)

with |βi| ≥ 1 and
∑

i|βi| ≤ s (in particular, |α| ≤ s). In the case α = 0, we note that
‖F (g)‖L2 is bounded by a constant times ‖g‖L2 since F (0) = 0. For |α| ≥ 1, the factor
(DαF )(g) is bounded uniformly by ‖F‖Cs(K), so it suffices to show that∥∥∥∥∥

|α|∏
i=1

Dβig

∥∥∥∥∥
L2

≤ constK,s‖g‖Hs . (3.1.34.3)

Using Hölder’s inequality (??) and compactness of K, it suffices to show ‖Dβg‖L2s/|β| ≤
constK,s‖g‖Hs . That is, we should show thatHs−r → L2s/r is bounded for integers r = 1, . . . , s.
For r = 0, this is the assumption that Hs → C0 is bounded, and for r = s this is the definition
H0 = L2. It thus follows for general r ∈ [0, s] by interpolation (3.1.27)(3.1.28)(??).

3.1.35 Corollary. In the setup of (3.1.34), if F vanishes to order m ≥ 1 at the origin and
‖g‖C0 ≤ 1, then ‖F (g)‖Hs ≤ constK,s,m‖F‖Cmax(s,m)(B(‖g‖C0 ))‖g‖m−1

C0 ‖g‖Hs.

Proof. Let Fε(x) = ε−mF (εx), and note that

‖Fε‖Cs(B(1)) ≤ consts,m‖F‖Cmax(s,m)(B(ε)) (3.1.35.1)

for all 0 < ε ≤ 1 since F vanishes to order m at the origin. Now take ε = ‖g‖C0 and write

‖F (g)‖Hs = εm‖Fε(ε−1g)‖Hs

(3.1.34)
≤ consts · εm‖Fε‖Cs(B(1))‖ε−1g‖Hs (3.1.35.2)

which combines with (3.1.35.1) to give the desired bound.
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3.1.36 Exercise (Hs ⊆ C0 is an algebra). Suppose Hs ⊆ C0. Use (3.1.34) and rescaling as in
(3.1.35) to show that ‖fg‖Hs ≤ constK,s(‖f‖C0‖g‖Hs + ‖f‖Hs‖g‖C0) for supp f, supp g ⊆ K.

3.1.37 Exercise. Suppose Hs ⊆ C0. Show that if A vanishes along Rn×Rm×0 and vanishes
to order two along Rn × 0× 0, then

‖A(x, f(x), g(x))‖Hs ≤ constK,s‖A‖Cmax(s,2)(B(1))·
(‖f‖Hs‖g‖C0 + (‖f‖C0 + ‖g‖C0)‖g‖Hs) (3.1.37.1)

for ‖f‖C0 , ‖g‖C0 ≤ 1 and supp f, supp g ⊆ K (split into the two cases ‖f‖C0 ≥ ‖g‖C0 and
‖f‖C0 ≤ ‖g‖C0 , and use (3.1.34) and rescaling as in (3.1.35)). Make a change of variables to
conclude that if B vanishes along Rn ×∆Rm and to order two along Rn × 0× 0, then

‖B(x, f(x), g(x))‖Hs ≤ constK,s‖B‖Cmax(s,2)(B(1))·
((‖f‖Hs + ‖g‖Hs)‖f − g‖C0 + (‖f‖C0 + ‖g‖C0)‖f − g‖Hs) (3.1.37.2)

for ‖f‖C0 , ‖g‖C0 ≤ 1 and supp f, supp g ⊆ K.
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3.2 Differential operators
3.2.1 Definition (Differential operator). On a manifold M carrying vector bundles E and?

F , a differential operator L : C∞loc(M,E)→ C∞loc(M,F ) of order ≤ m is a map which is given
in local coordinates M ⊇ U ⊆ Rn by an expression of the form

Lf =
∑
|α|≤m

cαD
αf (3.2.1.1)

where cα are smooth functions taking values in Hom(E,F ) (an operator being of this form is
evidently preserved by diffeomorphisms).

The order m terms transform under diffeomorphisms independently of the others, so a
differential operator L of order ≤ m has a well-defined order m term. Intrinsically, this order
m term is an element of Hom(E,F )⊗ (TM⊗m)Sm or, equivalently, a homogeneous degree m
polynomial map T ∗M → Hom(E,F ) called the order m symbol of L.

It is evident that for a differential operator L of order ≤ m, we have for all compact
K ⊆M that

‖Lu‖Ck ≤ constL,K,k‖u‖Ck+m (3.2.1.2)

for suppu ⊆ K. To interpret this estimate, we remind the reader of our convention for norms
of functions on manifolds. Such a norm depends on a choice of covering family of charts and
subordinate partition of unity, and is well-defined only up to constant factor. The constant
appearing in estimates such as (3.2.1.2) thus depends on the choice of data used to define
the Ck

K-norm on M , although we systematically omit this dependence from the notation (it
can be regarded as part of the explicitly indicated dependence on k).

3.2.2 Definition (Formal adjoint). For a differential operator L : C∞loc(M,E)→ C∞loc(M,F ),
its formal adjoint is the differential operator

L∗ : C∞loc(M,F ∗ ⊗ ΩM)→ C∞loc(M,E∗ ⊗ ΩM) (3.2.2.1)

defined by the property
∫
M
〈u, Lv〉 =

∫
M
〈L∗u, v〉 (say for u and v of compact support), where

ΩM denotes the bundle of densities on M . In other words, L∗ is obtained from L by formally
integrating by parts.

3.2.3 Exercise. Show that a differential operator L : C∞loc(M,E) → C∞loc(M,F ) admits a
unique continuous extension L : C−∞loc (M,E)→ C−∞loc (M,F ).

3.2.4 Exercise. Let w ∈ C−∞loc (Rn) be a distribution supported (in the sense of (??)) at the
origin. Show that w is a linear combination of the delta function (3.1.16) and its derivatives.

3.2.5 Exercise. Let ∆ = ∂2
x + ∂2

y on R2, and show that ∆(log r) = 2πδ0 (after first making
precise how the function log r defines a distribution on R2).

3.2.6 Exercise. Let ∂z̄ = 1
2
(∂x + i∂y) on C, and show that ∂z̄(z−1) = πδ0 (after first making

precise how the function z−1 defines a distribution on C).
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3.2.7 Proposition. Let L : E → F be a differential operator on M of order ≤ m. For any?

compact K ⊆M , we have ‖Lu‖s ≤ constL,K,s‖u‖s+m for suppu ⊆ K.

Proof. The statement is local, so it suffices to consider the case of differential operators on
M = Rn and functions u supported inside the unit ball.

We begin by considering the case that L has constant coefficients, namely L : C∞loc(Rn, E)→
C∞loc(Rn, F ) for vector spaces E and F takes the form Lf =

∑
|α|≤m cαD

αf for constants
cα ∈ Hom(E,F ). In this case, we have

L̂u(ξ) = P (2πiξ)û(ξ) (3.2.7.1)

for P (ξ) =
∑
|α|≤m cαξ

α. Since P is a polynomial of degree ≤ m, we conclude that ‖Lu‖s ≤
constL,s‖u‖s+m for all u on Rn.

We now consider the general case of variable coefficient operators L on Rn. Since we
are considering functions u supported inside a fixed compact set, we may assume the same
for L. Write Lf =

∑
|α|≤m cαD

αf for functions cα supported in the unit ball, and let
P (x, ξ) =

∑
|α|≤m cα(x)ξα, so we have

Lu(x) =

∫
e2πi〈ξ,x〉P (x, 2πiξ)û(ξ) dξ (3.2.7.2)

by differentiating under the integral sign. We may thus calculate

L̂u(ζ) =

∫
e−2πi〈ζ,x〉

∫
e2πi〈ξ,x〉P (x, 2πiξ)û(ξ) dξ dx (3.2.7.3)

=

∫
û(ξ)

∫
e2πi〈ξ−ζ,x〉P (x, 2πiξ) dx dξ (3.2.7.4)

=

∫
KP (ζ, ξ)û(ξ) dξ for KP (ζ, ξ) =

∫
e2πi〈ξ−ζ,x〉P (x, 2πiξ) dx (3.2.7.5)

where the interchange of integrals is justified by the fact that the x-support of P is compact
and û(ξ) is rapidly decaying. Note that the kernel KP is bounded by

|KP (ζ, ξ)| = constL,N · (1 + |ξ − ζ|)−N · (1 + |ξ|)m (3.2.7.6)

for any N <∞ (integrate by parts N times in the direction of ξ − ζ if |ξ − ζ| ≥ 1).
We now claim that the desired bound∫

|L̂u(ζ)|2(1 + |ζ|2)s dζ ≤ constL,s

∫
|û(ξ)|2(1 + |ξ|2)s+m dξ (3.2.7.7)

follows from the estimate (3.2.7.6) on the kernel KP (ζ, ξ). First of all, we have

|L̂u(ζ)|2 =

(∫
KP (ζ, ξ)û(ξ) dξ

)2

(3.2.7.8)

≤ constL,N

(∫
|û(ξ)|(1 + |ξ|)m(1 + |ζ − ξ|)−N dξ

)2

(3.2.7.9)

≤ constL,N

∫
|û(ξ)|2(1 + |ξ|)2m(1 + |ξ − ζ|)−N dξ (3.2.7.10)
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by Cauchy–Schwarz. Now multiply this by (1 + |ζ|2)s and integrate
∫
dζ. Then apply the

bound
∫

(1 + |ξ − ζ|)−N(1 + |ζ|2)s dζ ≤ consts,N(1 + |ξ|2)s on the right to obtain (3.2.7.7).

3.2.8 Exercise. Prove (3.2.7) using interpolation and duality as in (3.1.29).
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3.3 Elliptic operators
We review the theory of elliptic operators. References include Lawson–Michelsohn [52, III],
Atiyah–Bott [5, §§3,6], Wells [91, IV 3–4], and Egorov–Schulze [17, §§1–4].

3.3.1 Definition (Elliptic operator). A differential operator of order ≤ m is called elliptic?

of order m when its order m symbol T ∗M → Hom(E,F ) sends nonzero elements ξ ∈ T ∗M
to invertible elements of Hom(E,F ).

3.3.2 Example. The operator
∑

i ∂
2
xi

on functions Rn → R is elliptic (its symbol is
∑

i ξ
2
i ).

The operators ∂x ± i∂y on functions R2 → C are elliptic (their symbols are ξ1 ± iξ2).

Roughly speaking, an operator is elliptic when it is ‘invertible on high frequencies’ (indeed,
the symbol of an operator describes, to leading order, its action on a given frequency). We
shall see below that this implies elliptic operators are ‘almost invertible’, in the sense that
every order m elliptic operator L has a parametrix Q, which is an operator of ‘order −m’
such that both operators 1 − LQ and 1 − QL have ‘order −∞’. Having ‘order r’ in the
relevant sense, to be made precise below, means, in particular, being bounded Hs → Hs−r.
The existence of parametrices leads to many strong results about elliptic operators.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Parametrices are not differential operators, rather they belong to the broader class of
‘semi-local’ operators which we now define.

3.3.3 Definition (Support of an operator). Let Q : C∞c (M)→ C∞loc(M
′) be a linear operator.

The support of Q is the closed subset suppQ ⊆ M ′ × M defined by the property that
(p′, p) /∈ suppQ iff there exist neighborhoods U,U ′ of p, p′ such that suppu ⊆ U implies
Qu|U ′ ≡ 0.

3.3.4 Exercise. Show that the support of a differential operator on M is contained in the
diagonal of M ×M .

3.3.5 Exercise. Let Q : C∞c (M) → C∞(M ′) be a linear operator. Show that suppQu is
contained in the image of Q×M suppu→M ′.

3.3.6 Exercise. Let Q : C∞c (M)→ C∞loc(M
′) be a linear operator. Show that:

(3.3.6.1) If suppQ is proper over M , then Q : C∞c → C∞c .
(3.3.6.2) If suppQ is proper over M ′, then Q has a canonical extension C∞loc → C∞loc.
(3.3.6.3) If suppQ is compact, then Q : C∞loc → C∞c .

We say that Q is semi-local when suppQ is proper over both M and M ′.

3.3.7 Exercise. Let P : C∞c (M)→ C∞loc(M
′) and Q : C∞c (M ′)→ C∞loc(M

′′) be operators for
which suppQ×M ′ suppP →M ′′ ×M is proper. Show that there is a canonical ‘composition’
QP : C∞c (M)→ C∞loc(M

′′) whose support is contained in the image of this map. Conclude
that any composition of semi-local operators is defined and semi-local.
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3.3.8 Definition (Operator of order ≤ m). A linear operator Q : C∞c (M) → C∞loc(M
′) is?

said to have order ≤ m iff for every compact set K ⊆M , every compactly supported smooth
ϕ : M ′ → R, and every s ∈ R, we have

‖ϕ ·Qu‖s ≤ constK,ϕ,s‖u‖s+m (3.3.8.1)

for suppu ⊆ K. A smoothing operator is an operator of order −∞, meaning order ≤ −N for
every N <∞.

3.3.9 Exercise. Let L be a differential operator. We saw in (3.2.7) that if L has order ≤ m
as a differential operator, then it has order ≤ m in the sense of (3.3.8). Show the converse,
namely that if L has order ≤ m in the sense of (3.3.8), then it has order ≤ m as a differential
operator.

3.3.10 Exercise. Show that order is subadditive under composition, namely that if Q and
Q′ have order ≤ m and ≤ m′ and satisfy the criterion for existence of the composition QQ′
(3.3.7), then QQ′ has order ≤ m+m′.

3.3.11 Definition (Parametrix). Let L be an elliptic operator of order m. A parametrix?

for L is a semi-local operator Q of order ≤ −m for which 1 − QL and 1 − LQ are both
smoothing operators (thus a parametrix is an ‘inverse modulo smoothing operators’). The
analogous notion of a left (resp. right) parametrix requires that only 1−QL (resp. 1− LQ)
be a smoothing operator.

3.3.12 Exercise. Fix an elliptic operator L of order m. Show that if Q is a left parametrix
for L and Q′ −Q is a smoothing operator, then Q′ is a left parametrix for L. Show that if
Q is a left parametrix and Q′ is a right parametrix, then Q − Q′ is a smoothing operator
(consider Q(1− LQ′)− (1−QL)Q′), and hence both Q and Q′ are parametrices for L.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To construct parametrices for elliptic operators with variable coefficients, we will study
the following general class of operators.

3.3.13 Definition (Pseudo-differential operator). A pseudo-differential operator TA : C∞c (Rn)→?

C∞c (Rn) is an operator of the form

(TAu)(x) =

∫
e2πi〈ξ,x〉A(x, ξ)û(ξ) dξ. (3.3.13.1)

where A has compact x-support and is a symbol of order ≤ m, meaning that |Dα
xD

β
ξA(x, ξ)| ≤

constα,β · (1 + |ξ|)m−|β|.

3.3.14 Example. Compactly supported differential operators on Rn of order ≤ m are
precisely the pseudo-differential operators (3.3.13.1) in which A =

∑
|α|≤k cα(x)(2πiξ)α is

a polynomial of degree ≤ k in ξ with coefficients which are smooth compactly supported
functions of x.
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3.3.15 Lemma. If A is a symbol of order ≤ m, then TA is an operator of order ≤ m.

Proof. The reasoning used to treat the special case of differential operators (3.2.7) applies
with little change. We have

T̂Au(ζ) =

∫
KA(ζ, ξ)û(ξ) dξ where KA(ζ, ξ) =

∫
e2πi〈ξ−ζ,x〉A(x, ξ) dx. (3.3.15.1)

The fact that A is a symbol of order ≤ m with compact x-support implies that

|KA(ζ, ξ)| ≤ constA,N · (1 + |ξ − ζ|)−N · (1 + |ξ|)m (3.3.15.2)

for all N <∞ by integrating by parts. This bound on KA implies the desired estimate as in
(3.2.7).

3.3.16 Proposition (Composition of pseudo-differential operators). Fix operators TA and?

TB of the form (3.3.13.1) where A and B are symbols of order ≤ mA and ≤ mB, respectively,
of compact spatial support. We have TA ◦ TB = TC where C is a symbol of order ≤ mA +mB

and has asymptotic expansion

C(x, ξ) ∼
∑
α

Dα
ξA(x, ξ)Dα

xB(x, ξ)

α!(2πi)|α|
(3.3.16.1)

where α! =
∏

i αi!. The meaning of this asymptotic expansion (3.3.16.1) is that the difference
between C and the sum of terms on the right with |α| < N is a symbol of order mA +mB−N .

Proof. As we have seen, the action of an operator of the form TA on Fourier transforms is
given by integration against a corresponding kernel KA (3.3.15.1). The decay properties of
these kernels (3.3.15.2) justify the exchange of integrals needed to show that a composition
of such operators is given by the composition of their kernels:

(TATBu)∧(η) =

∫
KC(η, ξ)û(ξ) dξ for KC(η, ξ) =

∫
KA(η, ζ)KB(ζ, ξ) dζ. (3.3.16.2)

Now let us write the composed kernel KC as follows.

KC(η, ξ) =

∫∫∫
e2πi〈ζ−η,y〉A(y, ζ)e2πi〈ξ−ζ,x〉B(x, ξ) dy dx dζ (3.3.16.3)

=

∫
e2πi〈ξ−η,y〉

[∫∫
e2πi〈ζ−ξ,y−x〉A(y, ζ)B(x, ξ) dx dζ

]
dy (3.3.16.4)

=

∫
e2πi〈ξ−η,y〉

[∫∫
e−2πi〈β,t〉A(y, ξ + β)B(y + t, ξ) dt dβ

]
dy (3.3.16.5)

At least formally, the bracketed expression in the middle will be our new symbol C, however
we still need to justify the interchange of order of integration. We begin with the first triple
integral (3.3.16.3). It is not absolutely convergent: it is defined (so that it equals the integral
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of KA against KB) by first integrating with respect to x and y (in which the integrand has
compact support) to get something with rapid decay in ζ, and then integrating dζ. However,
merely doing first the integral dx already gives us rapid decay in ζ, so we can interchange
the y integral and ζ integral. This justifies the integral manipulation above. Now we define

C(y, ξ) =

∫∫
e−2πi〈β,t〉A(y, ξ + β)B(y + t, ξ) dt dβ (3.3.16.6)

(note the order of integration: after doing the integral dt, we have rapid decay in β), so we
have TA ◦ TB = TC .

It remains to show that C admits the asymptotic expansion (3.3.16.1) (and thus is a
symbol of order ≤ mA + mB). The key to proving the asymptotic expansion of C is to
consider the Taylor expansion

A(y, ξ + β) ∼
∑
α

Dα
ξA(y, ξ)

α!
βα. (3.3.16.7)

If in the definition of C we replace A(y, ξ+β) by this Taylor expansion, we obtain precisely the
asymptotic expansion (3.3.16.1) (we have

∫∫
e−2πi〈β,t〉βαB(y + t, ξ) dt dβ = (2πi)−αDα

yB(y, ξ)
by Fourier inversion and integration by parts). It thus suffices to show that the error in the
Taylor expansion above contributes a symbol of order ≤ mA +mB −N to C.

We wish to show that the expression

R(y, ξ) =

∫ [∫
e−2πi〈β,t〉B(y + t, ξ) dt

](
A(y, ξ + β)−

∑
|α|<N

Dα
ξA(y, ξ)

α!
βα
)
dβ, (3.3.16.8)

is a symbol of order ≤ mA +mB −N . That is, we should show that Dγ
yD

δ
ξR(y, ξ) is bounded

by constγ,δ · (1 + |ξ|)mA+mB−N−|δ|. Now note that the derivatives Dγ
y and Dδ

ξ fall on A and B,
producing symbols whose orders sum to mA +mB − |δ|. The estimate for general (γ, δ) thus
follows from the special case of γ = δ = 0 (for different A and B). It therefore suffices to
show that |R(y, ξ)| ≤ const(1 + |ξ|)mA+mB−N .

The function R(y, ξ) is an integral dβ of a product of two factors, which we bound
separately. The first factor (bracketed integral dt) is bounded by constM (1+ |ξ|)mB(1+ |β|)−M
for any M < ∞ since B is a symbol of order mB (3.3.15.2). The second factor (Taylor
remainder in parentheses) is bounded by constN |β|N(1 + |ξ| + |β|)mA−N by the Taylor
remainder theorem since A is a symbol of order mA. We are therefore left with showing that∫

(1 + |β|)−M(1 + |ξ|+ |β|)mA−N dβ ≤ constN(1 + |ξ|)mA−N (3.3.16.9)

for some M < ∞. Over the locus |β| ≥ |ξ|, the integrand is bounded by (1 + |β|)mA−N−M
(up to constant factor), hence the integral decays faster than any power of |ξ| by taking M
large. Over the locus |β| ≤ |ξ|, the integrand is bounded by (1 + |β|)−M (1 + |ξ|)mA−N (up to
constant factor), hence has integral bounded by (1 + |ξ|)mA−N .
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We now explain how the existence of parametrices for elliptic operators is straightforward
given the asymptotic composition formula (3.3.16). We consider the generality of symbols
defined not on all of Rn, rather on open subsets thereof.

3.3.17 Definition (Spaces of symbols Sm, S, S−∞). For any domain Ω ⊆ Rn, denote by
Sm(Ω) the space of symbols of order ≤ m, namely smooth functions A on Ω× Rn satisfying
|Dα

xD
β
ξA(x, ξ)| ≤ constα,β · (1 + |ξ|)m−|β|. Denote by Smc (Ω) ⊆ Sm(Ω) the symbols supported

inside K × Rn for some compact K ⊆ Ω. Let S =
⋃
m S

m be the ascending union of the
spaces Sm, and let S−∞ :=

⋂
m S

m be their intersection.

Associated to a symbol in S(Ω) (resp. Sc(Ω)) is a pseudo-differential operator C∞c (Ω)→
C∞loc(Ω) (resp. C∞c (Ω)→ C∞c (Ω). The operator associated to a symbol of order ≤ m has order
≤ m by (3.3.15). Composition of compactly supported symbols is defined by composition of
operators (3.3.16).

3.3.18 Definition (ϕ-parametrix). Let L be an elliptic operator of order m and let ϕ be a
smooth function of compact support. A left (resp. right) ϕ-parametrix for L is a compactly
supported (3.3.6.3) operator Q of order ≤ −m for which ϕ−QL (resp. ϕ−LQ) is a smoothing
operator.

3.3.19 Corollary. Every elliptic operator L on an open set Ω ⊆ Rn has left and right
ϕ-parametrices for every ϕ ∈ C∞c (Ω).

Proof. By (??), there exists a symbol Q ∈ S−m(Ω) which is inverse to L modulo smoothing
operators. Also denote by Q the associated pseudo-differential operator C∞c (Ω)→ C∞loc(Ω).
Now for ψ ∈ C∞c (Ω) satisfying ψ ≡ 1 over a neighborhood of suppϕ, we claim that the
operators ϕQψ, ψQϕ : C∞loc(Ω)→ C∞c (Ω) are our desired left and right parametrices. Indeed,
the identities ϕQψL ∼ ϕ ∼ LψQϕ follow by inspecting composition of symbols.

3.3.20 Corollary. Every elliptic operator L of order m has a parametrix Q.

Proof. Let M =
⋃
i Ui be a locally finite open cover by Euclidean charts, and let ϕi : M → R

be a subordinate partition unity. By (3.3.19), there exist left and right ϕi-parametrices
Qi, Q

′
i : C∞loc(Ui) → C∞c (Ui) of order ≤ −m. Their sums Q =

∑
iQi and Q′ =

∑
iQ
′
i are

thus left and right parametrices for L. It follows formally (see (3.3.12)) that their difference
Q−Q′ is a smoothing operator and hence that both Q and Q′ are parametrices for L.
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We now explore the consequences of the existence of parametrices for elliptic operators
(3.3.20).

3.3.21 Corollary (Elliptic estimate). Let L be an elliptic operator of order m. We have

‖u‖s ≤ constL,K,s‖Lu‖s−m + constL,K,N,s‖u‖s−N (3.3.21.1)

for u supported inside compact K ⊆M and any N <∞.
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Proof. Let Q be a parametrix for L (3.3.20). Write u = QLu + (1 − QL)u, and note that
‖Q‖(s−m,s) ≤ constL,K,s and ‖1−QL‖(s−N,s) ≤ constL,K,N,s.

3.3.22 Corollary (Kernel and cokernel of an elliptic operator). For an elliptic operator L
of order m, the natural inclusions between the two-term complexes

C∞loc(M,E)
L−→ C∞loc(M,F ) (3.3.22.1)

Hs
loc(M,E)

L−→ Hs−m
loc (M,F ) (3.3.22.2)

C−∞loc (M,E)
L−→ C−∞loc (M,F ) (3.3.22.3)

are all quasi-isomorphisms. We denote by kerL and cokerL the kernel and cokernel of these
operators; we have kerL ⊆ C∞loc(M,E) and C∞loc(M,F ) � cokerL. The same holds for the
action of L on C∞c ⊆ Hs

c ⊆ C−∞c , giving spaces kerc L and cokerc L.

Proof. Consider the case Hs ↪→ H t for s ≥ t (the others are identical). It suffices to show
that the total complex of the double complex

Hs
loc(M,E) Hs−m

loc (M,F )

H t
loc(M,E) H t−m

loc (M,F )

L

1 1

L

(3.3.22.4)

is acyclic. The endomorphism of this double complex given by

Hs
loc(M,E) Hs−m

loc (M,F )

H t
loc(M,E) H t−m

loc (M,F )

Q

Q

1−QL 1−LQ (3.3.22.5)

is a chain homotopy between the identity map and the zero map (which implies acyclicity).
Note that in writing the vertical arrows above, we are appealing to the fact that 1− LQ and
1−QL are smoothing operators. In the case of compactly supported functions, note that Q
is semi-local.

3.3.23 Corollary. Let L be an elliptic operator of order m on a compact manifold M . If L
is an isomorphism, then

‖L−1‖(s,s+m) ≤ constM,L,s,a,b‖L−1‖(a,b) (3.3.23.1)

for any s, a, b ∈ R. The same holds for a right inverse P provided a ≤ s and for a left inverse
P ′ provided b ≥ s+m.

Proof. Let Q be a parametrix for L, and write L−1 = (1−QL)L−1(1−LQ) + 2Q−QLQ or
P = (1−QL)P +Q or P ′ = P ′(1− LQ) +Q.
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3.3.24 Corollary. Let L be an elliptic operator of order m on M . For every s ∈ R and
every compact K ⊆M , there exist finitely many smooth functions ρ1, . . . , ρN such that

‖u‖s ≤ constL,K,s‖Lu‖s−m +
N∑
i=1

∣∣∣∣∫ ρiu

∣∣∣∣ (3.3.24.1)

for u supported inside K.

Proof. Begin with the elliptic estimate ‖u‖s ≤ constL,K,s‖Lu‖s−m+ constL,K,s‖u‖s−1 (3.3.21),
and apply the Rellich Lemma (3.1.33) to bound constL,K,s‖u‖s−1 by 1

2
‖u‖s+

∑N
i=1

∣∣∫ ρiu∣∣.
3.3.25 Corollary (Kernel finiteness). The kernel of an elliptic operator on a compact
manifold is finite-dimensional.

Proof #1. The estimate (3.3.24) implies that ‖u‖s ≤
∑N

i=1

∣∣∫ ρiu∣∣ for all u ∈ kerL, so the
map kerL→ RN given by u 7→ (

∫
ρiu)i is injective.

Proof #2. It suffices to show that there exists a finite collection of points P ⊆M such that
an element of kerL which vanishes on P must be zero. Take P to be any set of points such
that the ε-balls centered at P cover M (we will choose ε > 0 later). Thus ϕ|P = 0 implies
that ‖ϕ‖C0 ≤ ε‖ϕ‖C1 . On the other hand, ϕ ∈ kerL implies that ‖ϕ‖C1 ≤ constL‖ϕ‖C0

since L is elliptic (3.3.21). Thus if ϕ|P = 0 and ϕ ∈ kerL, then these combine to give
‖ϕ‖C0 ≤ ε · constL‖ϕ‖C0 , which implies ϕ = 0 provided we choose ε > 0 sufficient small.

3.3.26 Exercise. Explain the relation between the two proofs of kernel finiteness (3.3.25).
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3.4 Rough coefficients
In the study of smooth non-linear elliptic equations, it is often necessary to have estimates
for linear elliptic equations with non-smooth coefficients. We now generalize some of the
results from (3.2)–(3.3) about linear differential operators with smooth coefficients to the
setting of coefficients in some Sobolev space.
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3.5 Ellipticity in cylindrical ends
In this section, we study cylindrical and asymptotically cylindrical elliptic operators. This
means operators on a cylinder R×N which are R-equivariant; more generally, on a manifold
M with ends modelled asymptotically on R × N , an asymptotically cylindrical operator
is one which is asymptotically R-equivariant in the ends. The reference for this section is
Lockhart–McOwen [55].

3.5.1 Definition (Cylinder). A ‘cylinder’ is a product R × N . The adjective ‘cylindrical’
when applied to objects living on a cylinder means R-equivariant. For example, a cylindrical
vector bundle on R×N is one identified with the pullback of a vector bundle on N , and on such
vector bundles we can consider cylindrical (i.e. R-equivariant) operators C∞loc(R×N,E)→
C∞loc(R×N,F ).

3.5.2 Definition (Manifold with asymptotically cylindrical ends). A manifold with asymp-?

totically cylindrical ends M is a paracompact Hausdorff space with an atlas of charts from
open subsets of (0,∞]× Rn whose transition functions take the form

(t, x) 7→ (t+ a(x) + o(1)C∞ , φ(x) + o(1)C∞) as t→∞ (3.5.2.1)

for smooth φ : N → N and a : N → R. Points of M at infinity (in the t coordinate) are
called ‘ideal points’ and form a closed subset M id ⊆M , which is a manifold. The complement
M \M id is called the ‘interior’ M◦ ⊆M . A cylinder R×N is the interior of a manifold with
asymptotically cylindrical ends [−∞,∞]×N .

The adjective ‘asymptotically cylindrical’ means built using functions of the form f(x) +
o(1)C∞ on charts (0,∞]×Rn. Asymptotically cylindrical objects onM ‘restrict’ to cylindrical
objects on R×M id (their ‘asymptotic limit’). Objects (vector bundles, almost complex struc-
tures, etc.) on asymptotically cylindrical manifolds are by default asymptotically cylindrical
unless specified otherwise.

Asymptotic cylindricity is a special case of ‘log smoothness’ (2.8.69), so a manifold with
asymptotically cylindrical ends is the same thing as a log smooth manifold of depth one
(2.8.53), and asymptotically cylindrical objects (functions, vector bundles, etc.) are the same
as log smooth objects.

Beware that one must be careful with the term ‘compact’ in the context of manifolds
with asymptotically cylindrical ends. For example, if M is a manifold with asymptotically
cylindrical ends, then compactness of M is distinct from compactness of M◦ (which implies
M id = ∅, hence is a rather vacuous setting for our present discussion). Also contrast
compactly supported functions on M with compactly supported functions on M◦.

3.5.3 Example. Let C be a Riemann surface, and let p ∈ C be a point. Given any local
holomorphic chart (D2, 0) → (C, p), we may glue C \ p together with (0,∞] × S1 via the
identification of z = e−t−iθ ∈ D2 with (t, θ) ∈ (0,∞]×S1. The coordinate change between any
two such local holomorphic charts has the form (t, θ) 7→ (t+ a+O(e−t)C∞ , θ+ b+O(e−t)C∞)
as t → ∞ (by analyticity of holomorphic functions). These charts thus define a manifold
with asymptotically cylindrical ends BlpC with interior (BlpC)◦ = C \ p.
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Let us now recall Sobolev norms on manifolds with asymptotically cylindrical ends.

3.5.4 Definition (Sobolev spaces Hs). Let M be a manifold with asymptotically cylindrical?

ends carrying a vector bundle E. Given a coordinate chart α : (0,∞]× Rn ⊇ U ↪→M and
a smooth function of compact support ϕ : α(U) → E∗, we may consider the semi-norm
u 7→ ‖α∗(ϕu)‖Hs(R×Rn) on C∞c (M,M id). We call these Hs

loc-semi-norms and the induced
topology the Hs

loc-topology with completion Hs
loc(M,M id;E). The description of generating

families of semi-norms from (3.1.30) continues to hold, for the same reason.

Here is an alternative presentation of the Sobolev norm on Rn. Essentially it is a repeat
of the argument given earlier for well definedness of Sobolev norms on manifolds (3.1.30)
keeping track of constants.

3.5.5 Lemma. A bound on the geometry of a collection of smooth functions ϕi : Rn → R is
a sequence of constants N,M0,M1, . . . <∞ with the following properties:
(3.5.5.1) ‖ϕi‖Ck ≤Mk for all i and all k <∞.
(3.5.5.2) Every ball of unit radius intersects suppϕi for at most N indices i.

For such a collection of functions, the maps

C∞c (Rn)→
⊕
i

C∞c (Rn)
⊕
i

C∞c (Rn)→ C∞c (Rn) (3.5.5.3)

u 7→
(
ϕiu
)
i

(ui)i 7→
∑
i

ϕiui (3.5.5.4)

are bounded in terms a bound on the geometry of the collection (ϕi)i and s ∈ R, where we
equip C∞c (Rn) with the norm u 7→ ‖u‖s and we equip the direct sum

⊕
iC
∞
c (Rn) with the

norm (ui)i 7→
(∑

i‖ui‖2
s

)1/2.

Proof. For integer s ≥ 0, express the Hs-norm squared as an integral of squares of derivatives
of orders ≤ s, and note that there is a pointwise bound of integrands on Rn (for both maps).
This implies boundedness for real s ≥ 0 by interpolation (3.1.27)(3.1.28). The result follows
for s ≤ 0 by duality (3.1.24)(??) since the two maps in question are adjoint.

3.5.6 Corollary. Let ϕi : Rn → R be a collection of smooth functions with geometry
bounded by N,M0,M1, . . . < ∞ in the sense of (3.5.5). If in addition supi|ϕ|i ≥ N−1 > 0

pointwise, then the norms ‖u‖s and
(∑

i‖ϕiu‖2
s

)1/2 are commensurate on C∞c (Rn), with
constant depending on N,M0,M1, . . . <∞.

Proof. The inequality
(∑

i‖ϕiu‖2
s

)1/2 ≤ constN,M‖u‖s is boundedness of the first map in
(3.5.5). For the reverse inequality, we appeal to boundedness of the second map in (3.5.5) for a
different collection of functions ψi : Rn → R. The hypothesis supi|ϕ|i ≥ N−1 > 0 implies that
there exists a collection of functions ψi : Rn → R with a bound on their geometry depending
on N,M0,M1, . . . and with the property that

∑
i ψiϕi ≡ 1. Boundedness of the second map in

(3.5.5) for the collection ψi gives the desired inequality ‖u‖s ≤ constN,M
(∑

i‖ϕiu‖2
s

)1/2.
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3.5.7 Exercise. Conclude from (3.5.6) that the Hs
loc(M,M id)-topology is generated by the

semi-norms u 7→
(∑

i‖ϕiu‖2
s

)
1/2 for any collection of functions ϕi : M◦ → R of compact

support which have combined support contained in a compact subset of M (hence the norms
‖·‖s can be taken with respect to any given finite collection of cylindrical charts covering this
compact subset of M , and the result is well defined to overall constant) and which in local
cylindrical coordinates on M have bounded geometry in the sense of (3.5.5).

3.5.8 Definition (Spaces C∞2 ). Let M be a manifold with asymptotically cylindrical ends.?

We define
C∞2,loc(M,M id) =

⋂
s

Hs
loc(M,M id) ⊆ C∞loc(M,M id) (3.5.8.1)

to be the space of smooth functions on M which vanish on M id and such that in local
cylindrical coordinates on M , all their derivatives are square integrable. The C∞2,loc-topology
is that generated by all C∞2,loc-semi-norms, which are simply all the Hs

loc-semi-norms for all s.

3.5.9 Proposition. Let L be an asymptotically cylindrical differential operator of order ≤ m?

on a manifold with asymptotically cylindrical ends M . For any compact K ⊆ M , we have
‖Lu‖s ≤ constL,K,s‖u‖s+m for u ∈ C∞K (M,M id).

Proof. Express the Hs-norm squared as a sum of local pieces using a partition of unity of
bounded geometry (in cylindrical coordinates) as in (3.5.7). This reduces us to the local case
on Rn (3.2.7) since L has bounded geometry in cylindrical coordinates.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The definition of ellipticity (3.3.1) makes sense as written for asymptotically cylindrical
operators.

3.5.10 Exercise. Show that an asymptotically cylindrical operator L on a manifold with
asymptotically cylindrical ends M is elliptic of order m iff its restriction to the interior M◦ is
elliptic of order m and its asymptotic limit Lid on R×M id is elliptic of order m.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3.5.11 Definition (Reduction). Let L : E → F be a cylindrical operator on R×N . If we
restrict L to R-invariant sections, we obtain an operator

L0 : C∞(N,E) = C∞(R×N,E)R → C∞(R×N,F )R = C∞(N,F ) (3.5.11.1)

called the reduction of L.
More generally, we may consider those sections on R×N which transform under translation

by the character ezt for any complex number z. This defines operators Lz : C∞(N,E) →
C∞(N,F ) called twisted reductions of L. If L =

∑
i,α ci,α(x)Di

tD
α
x in coordinates (t, x) ∈

R×N , then Lz =
∑

i,α z
ici,α(x)Dα

x (hence this gives a bijection between cylindrical differential
operators on R×N and differential operators on N depending polynomially on a parameter
z).

An asymptotically cylindrical operator L on M has an associated cylindrical operator Lid

on R×M id, whose reductions Lid
z on M id may also simply be denoted Lz.
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3.5.12 Exercise. Show that any twisted reduction of an elliptic operator is elliptic.

3.5.13 Definition (Twist). Given a cylindrical vector bundle V on R × N , its twist τzV
by a complex number z ∈ C is obtained by multiplying the R-translation action on V by
ezt. Multiplication by ezt thus defines an isomorphism V → τzV . The twist of a cylindrical
differential operator L : E → F is given by τzL = eztLe−zt : Ez → Fz (explicitly, if
L =

∑
i,α ci,α(x)Di

tD
α
x then τzL =

∑
i,α ci,α(x)(Dt − z)iDα

x ). Twisting and reduction are
compatible in the evident way: (τzL)w = Lw−z.

The twist of an asymptotically cylindrical vector bundle V on M may be defined by the
property that τzV = V over M◦ and a map V → τzV over M◦ extends smoothly to M if it
is given over M◦ by multiplication by a function f which in cylindrical charts (0,∞] × U
has the form f(x, t) = ezt(m(x) + o(1)C∞) for some nonzero smooth function m. To ensure
such τzV exists, we should note that coordinate changes between cylindrical charts (3.5.2.1)
preserve the class of functions of the form (x, t) 7→ ezt(m(x) + o(1)C∞) and that for any
two such functions f and g, their ratio f/g extends smoothly on M . An asymptotically
cylindrical operator L : E → F evidently induces a twisted operator τzL : τzE → τzF by
conjugating L by the isomorphisms E = τzE and F = τzF over M◦ (noting that the result
of such conjugation on M◦ extends smoothly to M).

Beware that twisting a cylindrical vector bundle or operator by z corresponds to twisting
by z at +∞ and by −z at −∞.

3.5.14 Definition (Non-degenerate cylindrical elliptic operator). Let L be a cylindrical?

elliptic operator on R×N where N is compact. We say L is non-degenerate when its twisted
reductions Liξ are invertible for all ξ ∈ R. An asymptotically cylindrical elliptic operator L
is called non-degenerate when its asymptotic limit Lid is non-degenerate.

3.5.15 Proposition. A non-degenerate cylindrical elliptic operator is invertible.?
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3.6 Elliptic boundary conditions
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3.7 Families of elliptic operators
In this section, we study how the results of the previous sections on elliptic operators (3.3)–
(3.6) apply in families. Our objects of study are proper submersions π : Q→ B equipped with
vertical (i.e. fiberwise) elliptic operators L. The main result is that such a family determines
a (homotopically) canonical two-term complex of vector bundles π∗L on B whose cohomology
at b ∈ B is identified with the kernel and cokernel of Lb (??). In particular, the set of b ∈ B
for which Lb is surjective is open, and over this open set π∗L is a vector bundle.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Due to the categorical nature of the following definition, it makes sense in quite a number
of different contexts (namely any setting with a reasonable notion of submersion and vertical
differential operator).

3.7.1 Definition (Pushforward). Let π : Q→ B be a submersion, and let L : E → F be a?

vertical elliptic operator on Q. The pushforward π∗L is the fiber product

π∗L = SecB(Q,E)×SecB(Q,F ) 0, (3.7.1.1)

where Sec is the stack of sections (2.4.14). It is evident that (π∗L) ×B B′ = π′∗L
′, where

π′ : Q′ → B′ and L′ : E ′ → F ′ denote the pullback of (π, L) under a map B′ → B.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We first study vertical elliptic operators on proper submersions of smooth manifolds. In
this context, the most immediate interpretation of the pushforward (3.7.1) is as a smooth
stack. Namely a map Z → π∗L from a smooth manifold Z is, by definition (3.7.1.1)(2.4.14),
a pair (f, u) consisting of a map f : Z → B and a section u : Q×B Z → E satisfying Lu = 0.
The following is the key analytic result from which everything else about π∗L follows formally.

3.7.2 Proposition (Fiberwise isomorphism implies isomorphism). Let L be a vertical elliptic
operator on a proper submersion Q→ B of smooth manifolds.
(3.7.2.1) The set of b ∈ B for which Lb is an isomorphism is open.
(3.7.2.2) If Lb is an isomorphism for every b ∈ B, then L : SecB(Q,E)→ SecB(Q,F ) is an

isomorphism of smooth stacks.

Proof. The desired assertion is local on B. By Ehresmann (2.6.30), the family Q → B is
locally trivial on the base. The same argument applies moreover to the vector bundles E and
F on the total space. We are therefore in the setting of a compact Hausdorff smooth manifold
M and a family of elliptic operators Lb : E → F on M depending smoothly on b ∈ B. In this
context, the set of b ∈ B for which Lb is an isomorphism is open by (??). It thus remains to
prove that if Lb is an isomorphism for every b ∈ B, then L : SecB(Q,E)→ SecB(Q,F ) is an
isomorphism of smooth stacks.

Now a map Z → SecB(Q,E) is the same thing as a map Z → B and a section of E over
Z ×M . By replacing B with Z, we reduce (3.7.2.2) to the following concrete assertion.
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(3.7.2.3) If f : B ×M → F is smooth, then L−1f : B ×M → E is also smooth (under the
assumption that every Lb is an isomorphism, which thus defines L−1f fiberwise).

Let us now prove (3.7.2.3), which we note is a local assertion on B. Fix a basepoint 0 ∈ B,
and note that L−1

b may be described in terms of L−1
0 by the usual series

L−1
b f =

∞∑
i=0

L−1
0 (1− LbL−1

0 )if, (3.7.2.4)

provided we can appropriately estimate its convergence. The series (3.7.2.4) converges in
the fiberwise Hs-norm over a given b provided ‖1− LbL−1

0 ‖(s,s) < 1. We have 1− LbL−1
0 =

(L0 − Lb)L
−1
0 , so this norm is bounded by ‖L−1

0 ‖(s,s+m) (constant) times ‖Lb − L0‖(s+m,s)

(small provided b is sufficiently close to 0 (3.2.7)). We thus conclude that (3.7.2.4) converges
exponentially in Hs(M) for any fixed b, uniformly over a neighborhood of 0 ∈ B (depending
on s). By Sobolev embedding (3.1.31), this implies the same for Ck(M) in place of Hs(M).
It follows that arbitrary derivatives of L−1f in the M direction are continuous on B ×M .

To treat the derivatives in the B direction, we simply differentiate each term of the series
(3.7.2.4) with respect to b. A derivative with respect to b applied to a term (1− LbL−1

0 )if
will hit either Lb or f . Differentiating ` times leaves at least i− ` factors of 1− LbL−1

0 , so
the series remains exponentially convergent in fiberwise Ck(M) for every k <∞, uniformly
over a neighborhood of 0 ∈ B depending on k. It follows that L−1f is smooth on B ×M .

We now unfold the consequences of the key analytic result (3.7.2).

3.7.3 Corollary (Fiberwise surjective implies π∗L is a vector bundle). Let L be a vertical
elliptic operator on a proper submersion π : Q→ B of smooth manifolds.
(3.7.3.1) The set of b ∈ B for which Lb is surjective is open.
(3.7.3.2) If Lb is surjective for every b ∈ B, then π∗L is a vector bundle.

The same holds for matrix operators as in (??).

Proof. Fix a basepoint b ∈ B for which Lb is surjective, and let us show that b has a
neighborhood over which every Lb′ is surjective and over which π∗L is a vector bundle.

Since Lb is elliptic and Qb is compact, the kernel of Lb is finite-dimensional (3.3.25). Fix
a map βb : C∞(Qb, Eb) → Rk whose restriction to kerLb is an isomorphism (equivalently,
for which Lb ⊕ βb is an isomorphism). Extend βb to a map β : SecB(Q,E) → Rk

B over B
(possibly after replacing B with a neighborhood of the point b); for example, a choice of local
trivialization of Q→ B induces such an extension. Now (3.7.2.1) implies that Lb′ ⊕ βb′ is
an isomorphism (and hence that Lb′ is surjective) for all b′ in a neighborhood of b. Over such
a neighborhood, the next part (3.7.2.2) says L⊕ β is an isomorphism of stacks, which gives
π∗L = Rk

B. Now π∗L has fiberwise scaling and addition maps induced by the same such maps
for the stacks SecB. The entire construction respects such maps (‘linear structure’), hence so
does the resulting identification π∗L = Rk

B, and so π∗L is a vector bundle as desired.
The same argument applies to matrix operators.
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3.7.4 Proposition (Fiberwise isomorphism implies isomorphism). Let L be a vertical elliptic
operator on a proper simply-broken submersion Q→ B of log smooth manifolds.
(3.7.4.1) If Lb is an isomorphism and non-degenerate for some b ∈ B, then Lb′ is an

isomorphism and non-degenerate for all b′ in a neighborhood of b.
(3.7.4.2) If Lb is an isomorphism and non-degenerate for every b ∈ B, then L : SecB(Q,E)→

SecB(Q,F ) is an isomorphism of log smooth stacks.

Proof. It suffices to show that if L0 is an isomorphism for some basepoint 0 ∈ B, then after
replacing B with a neighborhood of said basepoint, every Lb is an isomorphism and for smooth
f : Q→ F , the map L−1f : Q→ E (defined fiberwise since every Lb is an isomorphism) is
also smooth. This assertion is manifestly local on B.

By (2.8.104), our proper simply-broken submersion Q→ B is, locally on B, a pullback
of a standard gluing family M → Rπ0N/σ

≥0 (2.8.103) associated to a tuple (Mpre
0 , N, i, σ). The

same argument shows that every vector bundle on Q is the pullback of a vector bundle on M
obtained via gluing from a vector bundle on Mpre

0 which over the image of i is the pullback
of a σ-equivariant vector bundle on N . We may thus identify fibers Qb of our family Q→ B
with fibers Mλ(b) of the standard gluing family M → Rπ0N/σ

≥0 .
Now let us consider the operator L0 on Q0 = M0 which is an isomorphism, and let us show

that the nearby operator Lb on Qb = Mλ(b) is an isomorphism provided b is sufficiently close
to zero (hence λ(b) is arbitrarily close to zero). To do this, we will construct an approximate
inverse to Lb using L−1

0 and certain maps

break : C∞(Mλ)� C∞(M0) : glue (3.7.4.3)

which express C∞(Mλ) as a retract of C∞(M0) (smooth sections of E and F , though this is
omitted from the notation).

We now define the gluing and breaking maps (3.7.4.3). Away from a small neighborhood
of the ‘singular locus’ N × (0, 0) ⊆ N × ′R2

≥0 ⊆ M , the fibers M0 and Mλ are identified
by construction (2.8.103), and glue and break are both the ‘identity’. Near the singular
locus, the maps glue and break will depend only on the ′R2

≥0 coordinate, hence the vector
bundles E and F may be ignored since they are pulled back from N . Denote the fiber of the
multiplication map ′R2

≥0 → ′R≥0 over λ ∈ ′R≥0 by Aλ.

A0

Aλ↓ ↑break glue

(3.7.4.4)

We will use both the natural coordinates (x, y) ∈ ′R2
≥0 (say x, y ≤ 1) and the shifted log (aka

cylindrical) coordinates sx = −`− log x and sy = −`− log y (where ` = − log λ1/2 > 0). Thus
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the two ‘branches’ of A0 have separate coordinates sx, sy ∈ [−`,∞), while on Aλ we have
coordinates sx, sy ∈ [−`, `] which are negatives of each other. We thus have, in some sense,
a common coordinate system on A0 and Aλ, which away from (x, y) = (0, 0) is compatible
with the identification of M0 and Mλ away from the singular locus.

sx = −`
sy = `

sx = `
sy = −`

Aλ

}
A0

(3.7.4.5)

Now the gluing and breaking maps (3.7.4.3) are defined in terms of an arbitrary choice of
smooth cutoff functions α and β as follows.

β(sx/`)

β(sy/`)

Aλ

}
A0

α(sx/`) α(sy/`)

↑ break↓ glue

(3.7.4.6)

break(f)(sx) = α(sx/`)f(sx) (3.7.4.7)
break(f)(sy) = α(sy/`)f(sy) (3.7.4.8)

glue(f) = β(sx/`)f(sx) + β(sy/`)f(sy) (3.7.4.9)

α : R→ [0, 1] α(s) =

{
1 s ≤ −1

5

0 s ≥ 1
5

α(s) + α(−s) = 1 (3.7.4.10)

β : R→ [0, 1] β(s) =

{
1 s ≤ 3

5

0 s ≥ 4
5

(3.7.4.11)

It is evident that glue ◦ break = 1.
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5.1 Symplectic and almost complex structures
We begin with the linear story.

5.1.1 Definition. Let V be a finite-dimensional real vector space.
(5.1.1.1) A complex structure on V is an endomorphism J : V → V satisfying J2 = −1

(equivalently, it is a lift of V to a complex vector space).
(5.1.1.2) A symplectic form on V is an anti-symmetric pairing ω : V ⊗ V → R which is

non-degenerate, meaning that the induced map V → V ∗ is an isomorphism.
(5.1.1.3) A metric on V is a symmetric pairing g : V ⊗ V → R which is positive definite,

meaning that g(v, v) > 0 for v 6= 0.
(5.1.1.4) A pair (J, ω) is called compatible when g(v, w) = ω(v, Jw) is a metric (i.e. is

symmetric and positive definite).
(5.1.1.5) A pair (J, ω) is called tame when ω(v, Jv) > 0 for v 6= 0. Compatible pairs are

evidently tame. A tame pair also determines a metric g(v, w) = ω(v, Jw) + ω(w, Jv).
More generally, these notions apply (fiberwise) to any vector bundle V over a smooth manifold.

5.1.2 Exercise. Let V be a symplectic vector space. Show that if a subspace P ⊆ V is
symplectic, then its ω-orthogonal subspace P⊥ (v ∈ P⊥ iff ω(v, p) = 0 for all p ∈ P ) is also
symplectic and is a complement of P . Conclude that there exists a basis v1, . . . , vn, w1, . . . , wn
of V satisfying ω(vi, vj) = ω(wi, wj) = 0 and ω(vi, wj) = δij.

5.1.3 Lemma. Let V be a finite-dimensional real vector space. The maps

{(ω, J) compatible}

{ω} {J}

{(ω, J) tame}

(5.1.3.1)

are homotopy equivalences.

Proof. For fixed J , the space of tame (resp. compatible) ω is convex and non-empty, hence
contractible. It thus suffices to show that for fixed ω, the space of compatible J is contractible,
which goes as follows. Fix v ∈ V arbitrarily. The value of J(v) must lie in {w ∈ V :
ω(v, w) > 0}, which is convex and non-empty, hence contractible. For v, w ∈ V with
ω(v, w) > 0, a compatible J satisfying J(v) = w stabilizes the ω-orthogonal complement
of span(v, w) ⊆ V . The space of compatible almost complex structures on this orthogonal
complement is contractible by induction on the dimension of V .

5.1.4 Definition. Let V be a symplectic vector space. For a subspace P ⊆ V , denote by
P⊥ ⊆ V its ω-orthogonal, consisting of the vectors v for which ω(v, p) = 0 for all p ∈ P .
(5.1.4.1) P is called isotropic when P ⊆ P⊥.
(5.1.4.2) P is called co-isotropic when P ⊇ P⊥.
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(5.1.4.3) P is called Lagrangian when P = P⊥.

5.1.5 Definition. Let V be a complex vector space. A subspace P ⊆ V is called totally real
when P ∩ JP = 0 and P + JP = V (equivalently, when the natural map P ⊗R C→ V is an
isomorphism).

5.1.6 Exercise. Let V be a symplectic vector space equipped with a tame almost complex
structure. Show that a Lagrangian subspace P ⊆ V is totally real.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now continue on to the setting of manifolds.

5.1.7 Definition. Let M be a smooth manifold.
(5.1.7.1) A metric on M is a smooth fiberwise metric on TM .
(5.1.7.2) An almost symplectic form on M is a smooth fiberwise symplectic form on TM . A

symplectic form is an almost symplectic form ω satisfying dω = 0.
(5.1.7.3) An almost complex structure on M is a smooth fiberwise complex structure on

TM . A complex structure is an almost complex structure which is locally isomorphic
to (Cn, Jstd = i); such almost complex structures are also called integrable.

5.1.8 Definition. Let M be a symplectic manifold. A submanifold L ⊆ M is called
Lagrangian when TL ⊆ TM is Lagrangian at every point of L.

5.1.9 Definition. Let M be an almost complex manifold. A submanifold L ⊆M is called
totally real when TL ⊆ TM is totally real at every point of L.
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5.2 Pseudo-holomorphicity
In this section, we recall the pseudo-holomorphic map equation and the various geometric
settings in which this equation and its variants are defined.

5.2.1 Definition (Pseudo-holomorphic map). A map u : C → X from a Riemann surface?

C to an almost complex manifold X is called pseudo-holomorphic when its differential
du : TC → u∗TX is complex linear.

A pair (C,X) as above is the simplest instance of what we will call a pseudo-holomorphic
map problem. The pseudo-holomorphic maps u : C → X are called the solutions of this
pseudo-holomorphic map problem. We will see pseudo-holomorphic map problems which
involve sections, allow domains with boundary (paired with appropriate boundary conditions),
impose point constraints, and allow varying domains and targets.

5.2.2 Definition (Complex conjugate vector space). For a complex vector space V , we
denote by V its complex conjugate, namely its pullback under the conjugation automorphism
of C. Concretely, V = V as sets; for v ∈ V , the corresponding element of V is denoted v; and
the vector space structure on V is that suggested by the notation, namely v + w = v + w

and λv = λv. There is an evident identification V = V . A complex linear map V → W is
the same as a complex conjugate linear map V → W .

5.2.3 Definition (Decomposition of the complexification of a complex vector space). Let V
be a complex vector space, and consider V ⊗R C, regarded as a complex vector space via the
second factor. There is a canonical map

V ⊗R C→ V ⊕ V , (5.2.3.1)
v ⊗ λ 7→ λv ⊕ λ̄v̄, (5.2.3.2)

of complex vector spaces. In fact, this map is an isomorphism, with inverse given by

V ⊕ V → V ⊗R C, (5.2.3.3)
v ⊕ w̄ 7→ 1

2
(v ⊗ 1− iv ⊗ i) + 1

2
(w ⊗ 1 + iw ⊗ i). (5.2.3.4)

5.2.4 Definition (Identifying the real dual and the complex dual). Let V be a complex
vector space. It has both a complex dual and a real dual

V ∗C = HomC(V,C) and V ∗R = HomR(V,R). (5.2.4.1)

The complex dual V ∗C is evidently a complex vector space. We equip the real dual V ∗R with
the complex structure ξ 7→ J∗ξ. We identify V ∗R = V ∗C via the inverse pair of complex linear
isomorphisms given by

HomR(V,R)→ HomC(V,C), HomC(V,C)→ HomR(V,R), (5.2.4.2)

ξ 7→ 1

2
(ξ − iJ∗ξ), ζ 7→ 2 Re ζ, (5.2.4.3)

and henceforth we will simply write V ∗ for V ∗R = V ∗C except when there is a need to
distinguish between the two.
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5.2.5 Exercise. Let V andW be complex vector spaces. Show that writing a real linear map
f : V → W as the sum f = f 1,0 + f 0,1 of the complex linear map f 1,0 = 1

2
(f − i ◦ f ◦ i) and

the complex conjugate linear map f 0,1 = 1
2
(f + i ◦ f ◦ i) defines a direct sum decomposition

HomR(V,W ) = HomC(V,W )⊕ HomC(V ,W ). (5.2.5.1)

Moreover, show that the following diagram of isomorphisms defined thus far

HomR(V,W ) V ∗R ⊗R W

V ∗C ⊗R W

V ∗C ⊗R C⊗C W

HomC(V,W )⊕ HomC(V ,W ) (V ∗C ⊕ V ∗C)⊗C W

(5.2.5.2)

commutes. Conclude that the equation asserting pseudo-holomorphicity of a smooth map
u : C → X thus reads (du)0,1 = 0 in the space of sections of u∗TX ⊗ T ∗C over C.

5.2.6 Definition (Pseudo-holomorphic section). Let π : W → C be an almost complex?

submersion over a Riemann surface C (meaning W is an almost complex manifold and dπ is
complex linear). Such a map W → C is a pseudo-holomorphic map problem whose solutions
are the pseudo-holomorphic sections u : C → W .

5.2.7 Exercise. Show that for any smooth section u : C → W of an almost complex
submersion, the anti-holomorphic derivative (du)0,1 takes values in u∗TW/C ⊗ T ∗C.

5.2.8 Exercise (Adding an inhomogeneous term). Let C be a Riemann surface and X an
almost complex manifold. Consider almost complex structures on C × X for which the
projection to C and the inclusions of the fibers c×X are pseudo-holomorphic. Show that
such almost complex structures are in natural bijection with sections γ : C×X → TX⊗T ∗C.
Show that the graph of u : C → X is pseudo-holomorphic for such an almost complex
structure iff (du)0,1 + γ(u) = 0.

5.2.9 Exercise (Linear almost complex structures are real Cauchy–Riemann operators). Let
E → C be a complex vector bundle over a Riemann surface. Show that real Cauchy–Riemann
operators D : C∞(C,E)→ C∞(C,E⊗T ∗C) (??) are in natural bijection with almost complex
structures on E for which the vector bundle structure maps E → C, · : C × E → E, and
+ : E ×C E → E are pseudo-holomorphic. Show that a section of E lies in the kernel of D iff
it is pseudo-holomorphic.

5.2.10 Definition (Point constraint). A single point constraint on a pseudo-holomorphic
section problem W → C is a smooth manifold A with a map f : A→ W . A solution to the
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constrained section problem (W → C,A→ W ) is a pseudo-holomorphic section u : C → W
along with a point a ∈ A such that u(C) contains f(a).

More generally, we can consider constraints on the derivatives of the map u. Such a
constraint is a map f : A → Jk(W/C) (recall the jet bundle (??)), to which a solution is
a pseudo-holomorphic section u : C → W along with a point a ∈ A such that Jku : C →
Jk(W/C) passes through f(a). A constraint A→ Jk(W/C) is evidently ‘equivalent’ to the
constraint A×Jk(W/C) J

k+1(W/C)→ Jk+1(W/C).
Multiple simultaneous point constraints may be specified by a map A→ Jk(W/C)n whose

composition to Cn lands inside the locus of n-tuples of distinct points.

Here is a slight generalization of the pseudo-holomorphic curve equation which we will be
relevant later as an auxiliary tool for reasons explained in (??). Recall the notion of the jet
space of a submersion (??).

5.2.11 Definition (Quasi-holomorphic sections). Consider a triple (W → C,H, ϕ) where C
is a smooth surface, π : W → C is a submersion, H/W is a real vector bundle, and

ϕ : J1(W/C)→ H (5.2.11.1)

is an affine linear map over W (recall that J1(W/C)→ W is a torsor for Hom(π∗TC, TW/C))
which is ‘elliptic’ in the following sense (5.2.11.2).
(5.2.11.2) An affine linear map ϕ : J1(W/C) → H is called elliptic when its linear part

Hom(π∗TC, TW/C)→ H sends nonzero elements of π∗TC to isomorphisms TW/C → H.
A section u : C → W is then called quasi-holomorphic iff ϕ(du) = 0. The quasi-holomorphic
sections are the solutions of the quasi-holomorphic map problem (W → C,H, ϕ).

5.2.12 Example (Pseudo-holomorphicity as quasi-holomorphicity). If W → C is an almost
complex fibration and we set H = TW/C ⊗ T ∗C and ϕ(α) = α0,1, then the quasi-holomorphic
section equation ϕ(du) = 0 becomes the pseudo-holomorphic section equation (du)0,1 = 0.

The relevant generalization of the notion of a pseudo-holomorphic map to the setting
of bordered Riemann surfaces is that of a pseudo-holomorphic map satisfying totally real
boundary conditions.

5.2.13 Definition (Totally real boundary conditions). Given a bordered Riemann surface?

(C, ∂C) and an almost complex manifold X with a totally real submanifold L ⊆ X, we may
consider pseudo-holomorphic maps u : (C, ∂C)→ (X,L) (the pair notation indicating that
u : C → X and u(∂C) ⊆ L). More generally, given a totally real immersion L→ X, we may
consider diagrams

∂C L

C X

∂u

u

(5.2.13.1)

in which u is pseudo-holomorphic. Such pairs (u, ∂u) : (C, ∂C)→ (X,L) are the solutions of
the problem (C, ∂C,X,L).
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Similarly, a pseudo-holomorphic section problem over a bordered Riemann surface (C, ∂C)
consists of an almost complex submersion π : W → C and a submersion K → ∂C along with
a totally real immersion K → ∂W = π−1(∂C) over ∂C. A solution of such a problem is then
a diagram

∂C K

C W

∂u

u

(5.2.13.2)

in which u is pseudo-holomorphic and both u and ∂u are sections.

5.2.14 Exercise. Show that, in the context of the definition of a pseudo-holomorphic section
problem over a bordered Riemann surface, the immersion K → ∂W is totally real iff its fibers
Kp → Wp (for p ∈ ∂C) are totally real.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

There is a natural notion (which we now make precise) of a family of pseudo-holomorphic
map problems (in any of the senses considered thus far) parameterized by a smooth manifold
B. Such a family {Pb}b∈B is itself a pseudo-holomorphic map problem, which we call a
parameterized pseudo-holomorphic map problem, a solution to which is a pair (b, u) consisting
of a point b ∈ B and a solution u of Pb.

5.2.15 Definition (Parameterized pseudo-holomorphic map problem). Let B be a smooth?

manifold. We introduce various sorts of pseudo-holomorphic map problems over B.
A pseudo-holomorphic section problem over by B consists of a pair of submersions

W → C → B where C → B has fiber dimension two, both C → B and W → B are equipped
with relative almost complex structures (i.e. TC/B and TW/B have complex structures), and the
map W → C is almost complex relative B (i.e. its derivative TW/B → TC/B is complex linear).
A solution of the problem W → C → B is a point b ∈ B along with a pseudo-holomorphic
section u : Cb → Wb (where Cb = C ×B b and Wb = W ×B b denote the fibers over b).

A quasi-holomorphic section problem over B is a pair of submersions W → C → B along
with a vector bundle H/W and an affine linear map ϕ : J1

B(W/C)→ H (recall the relative
jet space (??)) which is elliptic (5.2.11.2). A solution of such a problem is a point b ∈ B
along with a quasi-holomorphic section u : Cb → Wb.

Allowing domains with boundary in the parameterized context means that we allow
C → B to be a submersion-with-boundary (??) (though W → C remains a submersion), and
we impose boundary conditions taking the form of a submersion K → ∂C and an immersion
K → W over C whose fibers Kb → Wb over points b ∈ B are totally real (5.2.13) (or, in the
quasi-holomorphic setting, elliptic (??)).

Parameterized problems in all the above senses pull back under maps B′ → B.

5.2.16 Example (Family of inhomogeneous terms). Let C be a Riemann surface and X an
almost complex manifold. We saw earlier (5.2.8) that almost complex structures on X × C
for which the fiber inclusions X = X × c ⊆ X × C and the projection X × C → C are
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both almost complex are in natural bijection with sections γ : C ×X → TX ⊗ T ∗C, and
that pseudo-holomorphicity of a section (u,1) : C → X × C with respect to such an almost
complex structure amounts to the equation (du)0,1 + γ(u) = 0 for the map u : C → X. Now
fix a smooth manifold E and a section γ : C ×X × E → TX ⊗ T ∗C. This gives rise to a
pseudo-holomorphic section problem C ×X ×E → C ×E → E to which a solution is a pair
(e ∈ E, u : C → X) satisfying (du)0,1 + γ(u, e) = 0.

In fact, all that is really required to make sense of the various sorts of parameterized
problems defined in (5.2.15) is a suitable notion of submersion (or submersion-with-boundary).
Thus, the base B could in fact be a log smooth manifold (2.8), a derived smooth manifold
(2.10), or an object of one of the ‘hybrid categories’ discussed in (2.12). It could also be any
stack over these categories.

We will adopt the following definition of a point constraint for parameterized map problems.
At first glance, it appears much less general than the class of point constraints considered
earlier (5.2.10), but we will see that in fact it is not.

5.2.17 Definition (Parameterized point constraints). A point constraint for a parameterized
section problem W → C → B is a map f : A→ JkB(W/C) (recall the relative jet space (??))
whose composition A→ C is a closed embedding and whose composition A→ B is a proper
local isomorphism (2.1.28). A solution to the constrained problem is a solution (b, u : Cb →
Wb) of the unconstrained problem whose k-jet Jku : Cb → Jk(Wb/Cb) = JkB(W/C)b agrees
with f under pullback to Ab.

5.2.18 Example. Consider a single point constraint in the sense of (5.2.10) for a section
problem W → C, namely a smooth manifold A with a map A → Jk(W/C). Such a
constrained problem is ‘equivalent’ to the parameterized problem W × A → C × A → A
equipped with the single point constraint induced by the map A→ Jk(W/C) regarded as a
section of Jk(W/C)× A = JkA((W × A)/(C × A))→ A.

More generally, given a parameterized problem W → C → B and a map f : A →
JkB(W/C), we may wish to consider solutions (b, u : Cb → Wb) together with a point a ∈ A such
that the image of Jku contains f(a). This is equivalent to the pullbackW×BA→ C×BA→ A
equipped with the point constraint in the sense of (5.2.17) induced by f .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The theory of pseudo-holomorphic maps becomes most interesting when we allow domains
and targets with cylindrical structure (2.8.41)(3.5.2) and when we allow them to degener-
ate/break and glue as the base parameter b ∈ B is varied. To describe such domains/targets
and families thereof, we will use the language of log smooth manifolds developed in (2.8).
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5.3 Moduli stacks
In the previous section (5.2), we introduced various sorts of pseudo-holomorphic map problems
and solutions thereof (pseudo-holomorphic maps satisfying the relevant boundary conditions,
point constraints, etc.). The goal of the present section is to formalize various notions
(continuous, smooth, and otherwise) of families of solutions of such problems.

The moduli stack HolB(C,W ) associated to a given pseudo-holomorphic map problem
℘ = (W → C → B) associates to an object Z of the relevant geometric category (Top, Sm,
Der, etc.) the collection of families of solutions of ℘ parameterized by Z. Being a sheaf on a
topological (∞-)site (2.9) such as Top, Sm, Der, etc., the moduli stack may be regarded as a
geometric object. To distinguish between the moduli stacks on different categories, we will
say ‘topological moduli stack’ HolB(C,W )Top, ‘smooth moduli stack’ HolB(C,W )Sm, etc.

It will help to be familiar with mapping stacks (2.4).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The definition of the moduli stack on smooth manifolds Sm is straightforward.

5.3.1 Definition (Smooth moduli stack). Fix a quasi-holomorphic section problem (W →?

C → B,H, ϕ) (5.2.15). Recall that this means B is a smooth manifold, the map C → B is a
submersion with two-dimensional fibers, W → C is a submersion, H/W is a vector bundle,
and ϕ : J1(W/C) → H is an affine linear map which is elliptic in the sense of (5.2.11.2);
more generally, the map C → B can be a submersion-with-boundary, in which case suitable
boundary conditions are imposed; we can also include point constraints (5.2.17).

The smooth moduli stack HolB(C,W ) associated to the problem (W → C → B,H, ϕ)
assigns to a smooth manifold Z the set of pairs (f, u) consisting of a smooth map f : Z → B
and a smooth map u : C ×B Z → W over C whose specialization uz : Cz → Wz is quasi-
holomorphic for every point z ∈ Z.

W

C ×B Z C

Z B

u

f

(5.3.1.1)

The map u is subject to whatever boundary conditions or point constraints exist in the input
problem.

5.3.2 Example. Let C be a Riemann surface and X an almost complex manifold. A map
Z → Hol(C,X) is a map Z × C → X whose restriction to each fiber z × C is pseudo-
holomorphic.

5.3.3 Exercise. Let (W → C → B,H, ϕ) be a quasi-holomorphic section problem, and let
(W ′ → C ′ → B′, H ′, ϕ′) be its pullback under a map of smooth manifolds B′ → B. Define a
tautological isomorphism HolB′(C

′,W ′) = HolB(C,W )×B B′.
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The definition of the moduli stack HolB(C,W ) makes sense more generally for any smooth
stack B.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now define the moduli stack on topological spaces Top. Its definition depends on the
‘hybrid category’ of topological-smooth spaces TopSm (2.12).

5.3.4 Definition (Topological moduli stack). Given a quasi-holomorphic section problem?

(W → C → B,H, ϕ), a map Z → HolB(C,W ) from a topological space Z is defined by
replacing the category Sm in the definition of the moduli stack on Sm (5.3.1) with the category
of topological-smooth spaces TopSm. That is, a map Z → HolB(C,W ) is a diagram (5.3.1.1)
in TopSm in which the specialization of the map u to the fiber over every point z ∈ Z is
quasi-holomorphic (and satisfies the relevant boundary conditions and point constraints, if
any).

In this definition, the base B does not need to be a smooth manifold, rather it can be
any topological-smooth space or every topological-smooth stack (in which case the maps
W → C → B must be submersive in the relevant sense (2.12.9)). The topological stack
HolB(C,W ) is evidently unchanged by pulling back the moduli problem under (Top →
TopSm)!(Top → TopSm)∗B → B (indeed, formation of the moduli stack is compatible
with pullback (2.4.16.2), and the operation ×B(Top→ TopSm)!(Top→ TopSm)∗B is trivial
over Top ⊆ TopSm). Thus for the purpose of defining the topological moduli stack, we
lose no generality by restricting consideration to bases B ∈ Shv(Top) ⊆ Shv(TopSm). We
are, in fact, usually interested in the case of smooth stacks B ∈ Shv(Sm), which thus
for the purpose of defining the topological moduli stack can be replaced by their image
|B|! = (Sm→ Top)!B ∈ Shv(Top) (recall that (Top ↪→ TopSm)∗ = (TopSm

|·|−→ Top)! (??)).
We will use subscripts to distinguish the moduli stacks on different categories. This

notation is, in particular, essential when discussing comparison maps between them.

5.3.5 Definition (Comparing smooth and topological moduli stacks). Amap Z → HolB(C,W )Sm?

determines, by forgetting structure, a map |Z| → HolB(C,W )Top. This defines a tautolog-
ical map HolB(C,W )Sm → (Sm → Top)∗HolB(C,W )Top for any smooth stack B. More
geometrically significant is the associated (by adjunction) ‘comparison map’

(Sm→ Top)!HolB(C,W )Sm → HolB(C,W )Top. (5.3.5.1)

Generally speaking, an ‘open substack’ of a moduli stack HolB(C,W ) refers to an open
substack of the topological moduli stack HolB(C,W )Top. Such an open substack determines
(by pulling back under the comparison map) corresponding open substacks of all other flavors
of moduli stacks we consider. These other moduli stacks may have open substacks which
do not arise like this (see (2.6.7) for example), but they are not of much relevance. The
terms ‘open covering’ and ‘locally’ are to be understood accordingly. Open substacks (and
open coverings) of HolB(C,W ) usually arise via pullback from open substacks/coverings of
SecB(C,W ).
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The moduli stacks presented thus far admit evident fiber product presentations. Due to
the ‘diagrammatic’ nature of these presentations, they are valid independent of which flavor
of moduli stack is being considered.

5.3.6 Definition (Moduli stacks as fiber products). Given a quasi-holomorphic section?

problem (W → C → B,H, ϕ), there is a (quite tautological) pullback square presentation
of the moduli stack HolB(C,W ) in terms of the stacks of smooth sections SecB(C,W ) and
SecB(C,H).

HolB(C,W ) SecB(C,W )

SecB(C,W ) SecB(C,H)

u7→(u,0)

u7→ϕ(du)

(5.3.6.1)

In the presence of boundary conditions (W,K) → (C, ∂C), we consider the stacks of
sections SecB((C, ∂C), (W,K)) which parameterize diagrams (5.2.13.2), meaning a map
Z → SecB((C, ∂C), (W,K)) is a diagram of the following shape.

K W

∂CZ CZ ∂C C

Z B

(5.3.6.2)

For SecB(C,H) with boundary conditions, only the map to W is lifted to H.
Point constraints (5.2.17) may also be imposed via fiber product. Namely, for a point

constraint f : A→ JkB(W/C), we have the following fiber product presentation of the moduli
stack HolB(C,W )f of solutions to the constrained problem.

HolB(C,W )f B

HolB(C,W ) SecB(A, JkB(W/C))

f (5.3.6.3)

The bottom map is the composition HolB(C,W ) → SecB(C,W ) → SecB(C, JkB(W/C)) →
SecB(A, JkB(W/C)) sending a map u to its k-jet restricted to A ⊆ C.

5.3.7 Corollary. The map HolB(C,W )→ SecB(C,W ) is a closed embedding of topological
stacks.

Proof. It is a pullback (5.3.6.1) of ‘zero’ map SecB(C,W )→ SecB(C,H), which is a closed
embedding of topological stacks since W → H is a closed embedding and C → B is open
(2.4.19).
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5.3.8 Corollary. The map HolB(C,W )→ B is separated (as a map of topological stacks) if
W → C is separated.

Proof. Since HolB(C,W )→ SecB(C,W ) is a closed embedding, it is separated, so it is enough
to know that SecB(C,W )→ B is separated, which is (2.4.21).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now define the moduli stack on the ∞-category of derived smooth manifolds Der.
In this context, vertical quasi-holomorphicity (i.e. vanishing of ϕ(du)) is not a fiberwise
condition (a real valued function on a derived smooth manifold may be nonzero yet vanish at
every point). In fact, it is not a condition at all, rather it is the extra data of a path between
ϕ(du) and zero in the space of sections over the total space of the family. For this reason, the
most transparent definition of the derived smooth moduli stack of quasi-holomorphic maps is
via the fiber product presentation (5.3.6) (in other words, vertical quasi-holomorphicity is
expressed diagrammatically).

5.3.9 Definition (Derived smooth moduli stack). The moduli stack HolB(C,W ) on the?

∞-category of derived smooth manifolds is defined as the fiber product (5.3.6) of derived
smooth stacks, where the stacks of sections SecB(C,W ) have their usual categorical meaning
(2.4) (which is purely diagrammatic hence applies in any ∞-category). The bottom map
u 7→ ϕ(du) in (5.3.6.1) is defined using the tangent functor on derived smooth manifolds
(the tangent functor gives a map of derived smooth stacks SecB(C,W )→ SecB(C, J1(W/C))
sending u 7→ du). Point conditions are also imposed by fiber product against the relevant
evaluation map(s), i.e. diagrammatically.

5.3.10 Definition (Comparing moduli functors over Sm, Der, Top). There are tautological
maps

HolB(C,W )Sm → HolB(C,W )Der → HolB(C,W )Top (5.3.10.1)

where the notion of a map from X ∈ Shv(C) to Y ∈ Shv(D) over a topological functor
f : C → D is defined via the adjunction (f!, f

∗) (2.9.35), namely it is a map f!X → Y
or equivalently a map X → f ∗Y . Indeed, the functors Sm → Der → Top induce such
comparison maps on stacks of sections Sec, which induce the same on the stacks Hol via
their definition in terms of fiber products. Concretely, this just amounts to noting that
the functors Sm → Der → Top send families of quasi-holomorphic sections to families of
quasi-holomorphic sections, since the notion of such a family is defined diagrammatically and
these functors are compatible with the relevant tangent functors.
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5.4 Tangent complexes
Every moduli stack Hol(C,W ) carries a family of elliptic operators on C (called the ‘defor-
mation operators’) which describes the first order deformation theory of quasi-holomorphic
sections of W → C. This family of operators is termed the analytic tangent complex of
Hol(C,W ). The ‘total space’ of this complex is itself a moduli stack of quasi-holomorphic
sections Hol(C, TW/C), whose underlying quasi-holomorphic section problem TW/C → C
we term the tangent moduli problem associated to original problem W → C. A point of
Hol(C,W ) is called regular when its analytic tangent cohomology is concentrated in degree
zero (i.e. when its deformation operator is surjective). By semi-continuity of the cohomology
of elliptic operators, the regular locus is an open substack Hol(C,W )reg ⊆ Hol(C,W ).

It turns out that the setting of derived smooth stacks provides a precise sense in which
the moduli stack Hol(C, TW/C) associated to the tangent moduli problem is the tangent space
of the original moduli stack Hol(C,W ). Indeed, every derived smooth stack has a tangent
complex in the sense of left Kan extension T! : Shv(Der)→ Shv(Der) along the tangent complex
functor T : Der→ Der, and there is a canonical identification T!Hol(C,W ) = Hol(C, TW/C).
This has an important consequence: if Hol(C,W ) is representable by a derived smooth
manifold, then its geometric tangent complex (i.e. the tangent complex of this representing
object) is automatically identified with its analytic tangent complex, for essentially formal
reasons.

This discussion of tangent complexes generalizes readily to the parameterized setting.
Moduli stacks HolB(C,W ) carry families of elliptic operators termed the relative (or vertical)
analytic tangent complex of HolB(C,W )→ B. When B is a (derived log) smooth manifold
(or sufficiently nice stack), there is also a notion of absolute analytic tangent complex of
HolB(C,W ), which maps to TB with fiber the relative analytic tangent complex. There
are correspondingly two notions of regularity for points of HolB(C,W ) depending on which
analytic tangent complex is being considered: ‘regular’ means the absolute analytic tangent
complex vanishes in degrees > 0 (this locus is denoted HolB(C,W )reg), while ‘regular relative
B’ means the same for the analytic tangent complex relative B (this locus is denoted
HolB(C,W )reg/B). The tangent moduli problem T℘ of ℘ is also defined in the parameterized
setting, as is the canonical identification T!Hol(℘) = Hol(T℘) (in both absolute and relative
flavors). A subtlety is that the absolute tangent moduli problem in the parameterized setting
is not canonically defined, rather it depends on a choice of connection on W → B. It is also
this absolute tangent moduli problem which forces us into the setting of quasi-holomorphic
section problems rather than just pseudo-holomorphic section problems.

This discussion would apply equally well in any other non-linear elliptic Fredholm setting.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Recall the tangent functor T : Shv(Der)→ Shv(Der) on derived smooth stacks (2.10.32).
This functor is the left Kan extension T! of the tangent functor T : Der → Der on derived
smooth manifolds. It is also the pullback (−× τ)∗ along the multiplication by the universal
tangent vector functor ×τ : Der→ Der. The tangent functor T : Shv(Der)→ Shv(Der) is both
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continuous and cocontinuous. There is a natural identification TSec(C,W ) = Sec(C, TW/C)
and, more generally, T (SecB(C,W )/B) = SecB(C, TW/C) (2.10.33).

5.4.1 Definition (Tangent space of Hol(C,W )). Let (W → C,H, ϕ) be a quasi-holomorphic
section problem. To understand the tangent space THol(C,W ), we apply the tangent
functor T to the fiber product presentation of Hol(C,W ) (5.3.6), resulting in a fiber product
presentation of THol(C,W ) (since T preserves fiber products).

THol(C,W ) TSec(C,W )

TSec(C,W ) TSec(C,H)
T (u7→ϕ(du))

(5.4.1.1)

Given the natural identifications TSec(C,W ) = Sec(C, TW/C) (2.10.33), this may be rewritten
as follows.

THol(C,W ) Sec(C, TW/C)

Sec(C, TW/C) Sec(C, TH/C)
T (u7→ϕ(du))

(5.4.1.2)

Here the variation of ϕ(du) induced by a section (u, u̇) of TW/C → C takes the form Tϕ(d(u, u̇))
for the affine linear map TCϕ : TJ1(W/C)/C = J1(TW/C/C) → TH/C over TW/C (the vector
bundle structure on TH/C → TW/C comes from vertical differentation of the vector bundle
H → W ). We have thus identified THol(C,W ) with the moduli stack Hol(C, TW/C) of
solutions to the tangent moduli problem (TW/C → C, TH/C , Tϕ) obtained by simply applying
the tangent functor to the input moduli problem (W → C,H, ϕ) in the appropriate way.

The tangent moduli problem (TW/C → C, TH/C , Tϕ) is ‘linear’ over (W → C,H, ϕ), in
the sense that it encodes, quite directly, a family of elliptic operators over Hol(C,W ) whose
stack of solutions is Hol(C, TW/C)→ Hol(C,W ). Indeed, at any point u ∈ Hol(C,W ), there
is a first order differential operator

Du : C∞(C, u∗TW/C)→ C∞(C, u∗H) (5.4.1.3)

which measures the variation in ϕ(du) induced by variations of u. This deformation operator
Du can be obtained formally by linearizing the triple (W → C,H, ϕ) around u to obtain
(u∗TW/C → C, u∗H,Tϕ(u, ·)). The operators Du form a family of operators over Hol(C,W ),
and its solution stack (3.7.1) coincides (by construction) with Hol(C, TW/C) → Hol(C,W ).
The symbol σ(Du) : T ∗C → Hom(u∗TW/C , u

∗H) of the deformation operator Du is simply
the linear part of ϕ pulled back under u, hence Du is elliptic by hypothesis on ϕ (5.2.11.2).
The solution stack of a family of elliptic operators is a perfect complex on the base (3.7), so
this upgrades THol(C,W ) = Hol(C, TW/C)→ Hol(C,W ) to an object of Perf [0 1](Hol(C,W )).
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5.5 Elliptic bootstrapping
We now come to the first bit of analysis in our discussion of pseudo-holomorphic maps: elliptic
boostrapping, which is a generalization of the linear elliptic estimates discussed in (3.3)–(3.6) to
the present non-linear setting of pseudo-holomorphic (and more generally quasi-holomorphic)
maps. Elliptic bootstrapping refers to estimates of the form

‖u‖s+1 ≤ Fs(‖u‖s) (5.5.0.1)

for some functions Fs (depending on the geometry of the source and target), under the
assumption that u satisfies some particular (possibly non-linear) elliptic equation. While for
linear elliptic operators (with smooth coefficients) such estimates hold for all s and with Fs
linear, in the present non-linear setting they only hold for sufficiently large s and with not
necessarily linear Fs.

5.5.1 Exercise. Let Ω ⊆ Rn be open and let f : Ω → R satisfy ‖f‖Ck+1 ≤ M . Show that
for every ε > 0 there exists δ = δ(ε,M) > 0 such that if ‖f‖C0 ≤ δ then ‖f‖Ck ≤ ε. (Prove
the case k = 1 directly and then use induction.)
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5.6 Regularity
In this section, we show that the regular loci in smooth moduli spaces of pseudo-holomorphic
curves are regular. The reasoning would apply equally well in any other non-linear elliptic
Fredholm setting.

5.6.1 Regularity Theorem. For any quasi-holomorphic section problem (W → C →
B,H, ϕ) over a log smooth manifold B, the regular locus HolB(C,W )reg

Sm ⊆ HolB(C,W )Sm is
representable and the comparison map (Sm → Top)!HolB(C,W )reg

Sm → HolB(C,W )reg
Top is an

isomorphism.

The Regularity Theorem is a non-linear generalization of the results about kernels of
elliptic operators (3.3)–(3.7), and its proof follows the same outline just in a non-linear setting.
For the sake of exposition, we prove the Regularity Theorem in stages of ever increasing
generality (5.6.6)(5.6.8)(5.6.10).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We begin our treatment of the Regularity Theorem (5.6.1) with the ‘absolute’ case of
Hol(C,W ).

It is convenient to work here with affine vector spaces and bundles as it eliminates the
distraction caused by irrelevant choice of zero. The functor (‘linear part’) from affine vector
spaces to vector spaces is denoted with a subscript 0.

The first step is to fix local linear coordinates on the target.

5.6.2 Definition (Linear model). A linear model quasi-holomorphic section problem is a
quasi-holomorphic section problem (W → C,H, ϕ) together with the structure of an affine
vector bundle onW → C and a choice of vector bundle H/C whose pullback toW is identified
with H/W .

If C is compact Hausdorff, then the moduli stack Hol(C,W ) has an open cover by moduli
stacks associated to linear models. Indeed, we saw earlier a corresponding result for the stack
of all sections Sec(C,W ) (2.6.28). The only difference here is that we must in addition ensure
that H|W ◦ is pulled back from C, and we leave it as an exercise to upgrade the argument of
(2.6.27) to take care of this.

Thus to prove any local result about Hol(C,W ) for C compact Hausdorff, it suffices to
prove it in the case that (W → C,H, ϕ) is a linear model.

5.6.3 Definition (Linear projection). Let (W → C,H, ϕ) be a linear model quasi-holomorphic
section problem. Let

λ : C∞(C,W )→ K (5.6.3.1)
be a continuous affine linear map to a finite-dimensional affine vector space K (recall that
such λ induces maps of topological and smooth stacks Sec(C,W ) (??)(??)). We will be
interested in the composition

Hol(C,W )→ C∞(C,W )
λ−→ K (5.6.3.2)

which we refer to as a linear projection on Hol(C,W ).
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5.6.4 Definition (λ-regular locus). Let (W → C,H, ϕ) be a linear model quasi-holomorphic
section problem and λ : C∞(C,W )→ K a linear projection. Consider the restriction of the
linear part λ0 : C∞(C,W0)→ K0 of λ (a distribution λ0 ∈ C−∞(C,ΩC ⊗ Hom(W0, K0))) to
kerD.

kerD C∞(C, TW/C) C∞(C,W0) K0

Hol(C,W ) C∞(C,W )

λ0

(5.6.4.1)

The upper middle horizontal map comes from the identification TW/C = W ×W0 coming
from the affine vector bundle structure on W → C. Over the regular locus Hol(C,W )reg ⊆
Hol(C,W ), where kerD is a vector bundle (3.7), we have defined a map of vector bundles
kerD → K0. The λ-regular locus Hol(C,W )λ-reg ⊆ Hol(C,W )reg is the locus where this map
kerD → K0 is an isomorphism.

5.6.5 Exercise. Show that Hol(C,W )reg =
⋃
λ Hol(C,W )λ-reg.

5.6.6 Proposition. For any quasi-holomorphic section problem (W → C,H, ϕ) with C
compact Hausdorff, the regular locus Hol(C,W )reg

Sm ⊆ Hol(C,W )Sm is representable and the
comparison map (Sm→ Top)!Hol(C,W )reg

Sm → Hol(C,W )reg
Top is an isomorphism.

Proof. The desired assertion is local, so we may assume wlog that the section problem in
question (W → C,H, ϕ) is a linear model (5.6.2). Since the regular locus is covered by the
λ-regular loci for linear projections λ : C∞(C,W )→ K (5.6.5), it suffices to show that the
restriction λ|Hol(C,W )λ-reg is a local isomorphism of both topological and smooth stacks.

Fix a basepoint in Hol(C,W )λ-reg around which we shall show the restriction of λ is a
local isomorphism. Declare this basepoint to be the zero section of W → C.

Fix the notation

D : Sec(C,W )→ Sec(C,H) (5.6.6.1)
ξ 7→ ϕ(dξ) (5.6.6.2)

which is a map of topological stacks. We have Hol(C,W ) = D−1(0) = Sec(C,W )×Sec(C,H) 0
by definition.

Denote by D : C∞(C,W )→ C∞(C,H) the linearization of D at zero, which is a linear
elliptic operator (hence also a map of topological stacks). Since the zero section is λ-regular,
the map D ⊕ λ0 : C∞(C,W ) → C∞(C,H) ⊕ K0 is an isomorphism of topological vector
spaces (hence also of topological and smooth stacks). Its linear inverse Q ⊕ α enjoys the
bound ‖Q‖(s,s+1) <∞ for sufficiently large s (depending on λ) by elliptic regularity (??).
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0
C∞(C,W )

λ

K

Hol(C,W )

kerλ0 = imQ

(5.6.6.3)

We now consider the endomorphism

R : C∞(C,W )→ C∞(C,W ) (5.6.6.4)
ξ 7→ ξ −QDξ (5.6.6.5)

which is a map of topological stacks (the point of this map is that R(ξ) is ‘closer’ to lying
in D−1(0) than ξ is since Q is right inverse to the linearization of D). Since imQ ⊆ kerλ0,
the map R restricts to an endomorphism of each fiber λ−1(k). The identity Dξ = DQDξ =
D(ξ −R(ξ)) implies the estimate

‖Dξ‖s−1 ≤ ‖D‖(s,s−1)‖ξ −Rξ‖s. (5.6.6.6)

In particular, a point ξ ∈ C∞(C,W ) lies in Hol(C,W ) iff R(ξ) = ξ.
We wish to show that in a neighborhood of zero, the restriction of R to any fiber λ−1(k)

is a contraction mapping in a certain precise sense. To prove this, we should bound, for
ξ − ζ ∈ kerλ0, the quantity

Rξ −Rζ = (ξ − ζ)− (QDξ −QDζ) (5.6.6.7)
= −Q(Dξ −Dζ −D(ξ − ζ)) (5.6.6.8)

(note the use of ξ − ζ ∈ kerλ0 = imQ to write ξ − ζ = QD(ξ − ζ)). The expression
A(ξ, ζ) = Dξ − Dζ − D(ξ − ζ) is a non-linear first order differential operator applied to
(ξ, ζ). That is, we have A(ξ, ζ) = B(J1ξ, J1ζ) for some smooth function B over C. Since
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A(ξ, ξ) = 0, it follows that the function B vanishes along the diagonal. Since A(ξ, ζ) vanishes
to second order at ξ = ζ = 0 (because D is the derivative of D at zero), it follows that B
vanishes to second order along the zero section. Together, these imply (3.1.37) the estimate

‖B(α, β)‖s ≤ consts‖α− β‖s(‖α‖s + ‖β‖s) (5.6.6.9)

provided Hs ⊆ C0 and ‖α‖C0 , ‖β‖C0 ≤ 1. We thus have the following quadratic estimate

‖Dξ −Dζ −D(ξ − ζ)‖s−1 = ‖B(J1ξ, J1ζ)‖s−1

≤ consts‖ξ − ζ‖s(‖ξ‖s + ‖ζ‖s) (5.6.6.10)

provided Hs−1 ⊆ C0 and ‖ξ‖s, ‖ζ‖s ≤ 1. This implies our desired contraction estimate

‖Rξ −Rζ‖s ≤ ‖Q‖(s−1,s)‖Dξ −Dζ −D(ξ − ζ)‖s−1

≤ consts‖ξ − ζ‖s(‖ξ‖s + ‖ζ‖s) (5.6.6.11)

provided we also have ‖Q‖(s−1,s) <∞ (which hold for sufficiently large s). Note that this is
a nontrivial Hs-bound only over a neighborhood of zero depending on s.

We now define a local inverse to λ|Hol(C,W ) near zero by iterating the map R. Let
N0 : K → C∞(C,W ) be any linear section of λ, and inductively define Ni := R(Ni−1) for
i ≥ 1. Since R is a map of topological stacks, so is each Ni. We have the contraction estimate
‖Ni+1(k)−Ni(k)‖s ≤ 1

2
‖Ni(k)−Ni−1(k)‖s by (5.6.6.11) provided ‖Ni(k)‖s and ‖Ni−1(k)‖s

are sufficiently small, hence we have by induction that

‖Ni+1(k)−Ni(k)‖s ≤ const 2−i (5.6.6.12)

over a neighborhood of zero in K (depending on s); note this implies ‖DNi(k)‖s ≤ const 2−i

as well by (5.6.6.6). By completeness of Hs, we conclude that the limit N∞ : K → Hs(C,W )
exists in a neighborhood of zero (depending on s) and satisfies DN∞ = 0. Now elliptic
boostrapping for quasi-holomorphic sections implies that each N∞(k) is in fact smooth
(??) and hence that N∞ : K → C∞(C,W ) is continuous (5.5.1). Now fix s so that
N∞ : K → C∞(C,W ) exists and is continuous in a fixed neighborhood of zero. The
composition λ ◦ N∞ : K → K is the identity map by construction (indeed λ ◦ Ni is the
identity for every i ≥ 0). The other composition N∞ ◦ λ|Hol(C,W ) : Hol(C,W )→ Hol(C,W ) is
the identity map in an Hs-neighborhood of the origin by the contraction estimate (5.6.6.11)
which implies that N∞(k) is the unique zero of D in an Hs-neighborhood of zero lying over k.

We have shown that λ|Hol(C,W )λ-reg is a local isomorphism of topological stacks. It remains
to show that it is a local isomorphism of smooth stacks. Concretely, this means we should
show that the local inverse λ|−1

Hol(C,W )λ-reg , regarded as a map K × C → W , is smooth.
We will make an inductive argument based on the tangent moduli problem THol(C,W ) =

Hol(C, TW/C) (5.4). The local linear projection on Hol(C,W ) naturally induces one on
Hol(C, TW/C), in the sense that the affine linear map λ : C∞(C,W ) → K has a derivative
Tλ : C∞(C, TW/C) → TK giving a linear projection Tλ|Hol(C,TW/C). If u ∈ Hol(C,W ) is
λ-regular, then (u, 0) ∈ Hol(C, TW/C) is Tλ-regular (the derivative of Tλ is an extension of
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two copies of the derivative of λ). Thus Tλ|Hol(C,TW/C) is a local isomorphism of topological
stacks at (u, 0), hence has a local inverse Tλ|−1

Hol(C,TW/C). Now the key is to prove (at λ-regular
points) that λ|−1

Hol(C,W ) is differentiable and that its derivative is given by

T (λ|−1
Hol(C,W )) = (Tλ)|−1

Hol(C,TW/C). (5.6.6.13)

This implies smoothness of λ|−1
Hol(C,W ) by induction (if λ|−1

Hol(C,W ) is always of class C
k, then in

particular (Tλ)|−1
Hol(C,TW/C) is of class C

k, so the identity (5.6.6.13) implies that T (λ|−1
Hol(C,W ))

is of class Ck and hence that λ|−1
Hol(C,W ) is always of class C

k+1).
It thus remains to prove the tangent identity (5.6.6.13), which will see is a consequence

of the quadratic estimate (5.6.6.10). It suffices to verify it at a single point, which we may
assume wlog is the zero section of W → C (and mapped to the zero of K by λ). It then
amounts to proving that

‖λ|−1
Hol(C,W )(k)− λ|−1

kerD(k)‖s = o(|k|) as k → 0 (5.6.6.14)

for all s <∞. Rewriting this in terms of ξ = λ|−1
Hol(C,W )(k), we should show that

‖ξ − α(λ(ξ))‖s = o(|λ(ξ)|) as ξ → 0 and D(ξ) = 0, (5.6.6.15)

where we recall that Q ⊕ α : C∞(C,H) ⊕ K → C∞(C,W ) is the inverse of D ⊕ λ :
C∞(C,W )→ C∞(C,H)⊕K. Now the left hand side is commensurate with the Hs−1-norm
of (D⊕λ)(ξ−α(λ(ξ))) = D(ξ) sinceD⊕λ andQ⊕α are boundedHs → Hs−1 andHs−1 → Hs.
Similarly, the quantity |λ(ξ)| is commensurate with the Hs-norm of α(λ(ξ)) = (1−QD)λ. It
is thus equivalent to show that

‖D(ξ)‖s−1 = o(‖(1−QD)ξ‖s) as ξ → 0 and D(ξ) = 0. (5.6.6.16)

Now the quadratic estimate (5.6.6.10) implies ‖D(ξ)‖s−1 ≤ consts‖ξ‖2
s for D(ξ) = 0 and

‖ξ‖s ≤ 1, from which the estimate above follows immediately.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now treat the Regularity Theorem (5.6.1) for parameterized moduli problems over a
smooth manifold. Compared with the absolute case discussed just above, not much more is
needed other than upgrading the notation.

5.6.7 Definition (Linear model over a smooth base). A linear model quasi-holomorphic
section problem over a smooth manifold is one of the form (W → C,H/C)×B whereW → C
is an affine vector bundle and B is an affine vector space. Note that ϕ : J1(W/C)×B → H
is not assumed independent of the B-coordinate.

If C → B is proper, then the moduli stack HolB(C,W ) has an open cover by moduli
stacks associated to linear models. Indeed, we saw earlier a corresponding result for the stack
of all sections SecB(C,W ) (2.6.32), and we leave it as an exercise to upgrade the argument
to ensure H is pulled back from C.
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5.6.8 Proposition. The Regularity Theorem (5.6.1) holds for B a smooth manifold.

Proof. We follow the same basic argument used above for the case B = ∗ (5.6.6).
It suffices to consider the case of a linear model quasi-holomorphic section problem (5.6.7).

A linear projection in this case is the restriction to HolB(C,W ) ⊆ C∞(C,W ) × B of a
continuous affine linear map

λ : C∞(C,W )×B → K. (5.6.8.1)

The λ-regular locus of HolB(C,W ) is the subset of the regular locus where λ defines an
isomorphism from the (absolute) analytic tangent space to K0; equivalently, this is where the
linearization

C∞(C,W0)⊕B0 = C∞(C, u∗TW/C)⊕ TbB → C∞(C,H)⊕K0 (5.6.8.2)

is an isomorphism. It suffices to show that λ|HolB(C,W )λ-reg is a local isomorphism of topological
and smooth stacks.

Fix a basepoint in HolB(C,W )λ-reg around which to show λ|HolB(C,W )λ-reg is a local iso-
morphism, and declare this point to be the zero section of W → C and the zero of B. We
consider the map D : SecB(C,W ) = Sec(C,W )×B → Sec(C,H) given by D(ξ, b) = ϕb(dξ).
The derivative of D at the origin is denoted D; this operator is surjective, and the restriction
of λ0 to its kernel is an isomorphism. We let Q : C∞(C,H) → C∞(C,W ) ⊕ B denote the
right inverse to D with image kerλ0.

We again consider the endomorphism R(ξ) = ξ − QDξ of C∞(C,W ) × B. To prove
the contraction estimate for R, we should estimate the quantity Dξ −Dζ − D(ξ − ζ) for
ξ, ζ ∈ C∞(C,W )×B. More precisely, writing instead (ξ, b) and (ζ, c), this is the quantity

ϕb(dξ)− ϕc(dζ)−D(ξ − ζ)− ϕ̇b−c(0). (5.6.8.3)

The bound (5.6.6.11) applies to ϕ0(dξ)− ϕ0(dζ)−D(ξ − ζ), so the remaining quantity we
need to bound here is

(ϕb − ϕ0)(dξ)− (ϕc − ϕ0)(dζ)− ϕ̇b−c(0) (5.6.8.4)

which equals (ϕb − ϕ0)(dξ − dζ) + (ϕb − ϕc)(dζ − 0) + (ϕb − ϕc)(0)− ϕ̇b−c(0). The first two
terms are both bounded quadratically as desired. The remainder (ϕb − ϕc)(0)− ϕ̇b−c(0) is
simply a smooth function in (b, c) which vanishes along the diagonal b = c and to second
order at (0, 0), hence is also bounded as desired.

The rest of the proof is the same.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now treat the Regularity Theorem (5.6.1) for parameterized moduli problems over a
log smooth manifold (2.8). Recall this means C → B is a proper simply-broken submersion
and W → C is a strict submersion.
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5.6.9 Definition (Linear model over a log smooth base). A linear model quasi-holomorphic
section problem over a log smooth manifold is one of the form WB → CB → B where:
(5.6.9.1) B = V ×XP where V is an affine vector space and P is sharp.
(5.6.9.2) (WB → CB → B,H/WB) is the pullback of (W → C → ′Rn

≥0, H/C) under a
monomial map XP → ′Rn

≥0.
(5.6.9.3) (W → C → ′Rn

≥0, H/C) is a standard gluing family (2.8.106) associated to a
two-dimensional log smooth manifold of depth one Cpre

0 carrying an affine vector bundle
W pre

0 → Cpre
0 and a vector bundle Hpre

0 → Cpre
0 , together with a collar and involution of

the ideal locus (thus W → C is an affine vector bundle).
Every quasi-holomorphic section problem over a log smooth manifold has an open cover by
linear models. Indeed, after fixing local coordinates B = V ×XP , every proper simply-broken
submersion over B is pulled back under a monomial map XP → ′Rn

≥0 of a standard gluing
family (2.8.105), and every section of a strict submersion over such a family is covered by the
desired vector bundle coordinates (??) (so every moduli stack SecB(C,W ) has an open cover
by moduli stacks associated to linear model section problems).

Note that this argument proves a stronger result, namely that every point of SecB(C,W )
is covered by a linear model SecB◦(C

◦,W ◦) in which its image in XP is the cone point.
For such points (i.e. lying over the cone point of XP ), regularity is equivalent to regularity
relative XP (??), so we conclude that HolB(C,W )reg is the union of HolB◦(C

◦,W ◦)reg/XP

where W ◦ → C◦ → B◦ ranges over local linear models for W → C → B.

5.6.10 Proposition. The Regularity Theorem (5.6.1) holds for B a log smooth manifold.

Proof. We modify the arguments of (5.6.6) and (5.6.8) as appropriate.
It suffices to consider linear models and to treat the regular locus relative XP (5.6.9) (we

shall show that HolB(C,W )reg/XP is represented by a strict submersion over XP ).
Let us describe the relevant notion of linear projection. Begin with a continuous affine

linear map
λpre

0 : C∞(Cpre
0 ,W pre

0 )× V → K (5.6.10.1)

whose linear part, regarded as a distribution on Cpre
0 valued in K0⊗(W pre

0 )∗, is supported away
from the ideal locus. Thus λpre

0 depends only on the restriction of the map Cpre
0 → W pre

0 to some
fixed compact subset of the interior of Cpre

0 , so it determines a map λ : Sec′RN≥0
(C,W )×V → K,

whose pullback to B we denote by

λB : SecB(CB,WB) = SecXP (C,W )× V → Sec′RN≥0
(C,W )× V → K. (5.6.10.2)

The restriction of λB to HolB(CB,WB) is our linear projection.
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5.7 Derived Regularity
Here we prove the Derived Regularity Theorem (0.0.1) (see (5.7.10) below), which states that
every quasi-holomorphic section problem is ‘derived regular’ in the following sense.

5.7.1 Definition (Derived Regular). A quasi-holomorphic section problem ℘ = (W →
C → B) over a derived smooth stack B is called derived regular when the morphism
Hol(℘)Der → B is representable and the comparison map (Der→ Top)!Hol(℘)Der → Hol(℘)Top

is an isomorphism.

5.7.2 Exercise (Locality of derived regularity). Show that derived regularity is a local
property in the sense that if ℘ is derived regular over each of a collection of open substacks
Ui ⊆ Hol(℘)Top, then it is derived regular over their union

⋃
i Ui ⊆ Hol(℘)Top.

In brief, the proof we are about to give of the Derived Regularity Theorem proceeds as
follows. Recall the Regularity Theorem (5.6.1), which asserts that Hol(℘)reg

Sm is representable
and that (Sm → Top)!Hol(℘)reg

Sm → Hol(℘)reg
Top is an isomorphism. The Derived Regularity

Theorem is stronger in two respects: it concerns the entire moduli stack rather than just
the regular locus, and it concerns the derived smooth moduli stack rather than just the
smooth moduli stack. The first difference is easily dealt with: since derived regularity is
preserved under pullback, a standard thickening argument (5.7.6) shows that it is enough
to prove the Derived Regularity Theorem over the regular locus. To prove the Derived
Regularity Theorem over the regular locus (which is the main difficulty), it suffices (given the
Regularity Theorem) to show that the comparison map (Sm→ Der)!Hol(℘)reg

Sm → Hol(℘)reg
Der

is an isomorphism (5.7.9). The analogous comparison map for the stack SecB(C,W ) of all
sections is an isomorphism by (2.10.35)(??), and the moduli stack HolB(C,W ) is a fiber
product of these. Now left Kan extension (Sm→ Der)! does not preserve all pullbacks, but it
does preserve submersive pullbacks, and the Regularity Theorem implies that the relevant
pullback is submersive over HolB(C,W )reg, so we are done.

It is remarkable that this argument reveals the Derived Regularity Theorem to be a formal
(yet nontrivial) consequence of the Regularity Theorem! At no point in the argument do
we need to contemplate the meaning of, or do any hard analysis (such as invoking Sobolev
spaces or elliptic regularity) with, a family of quasi-holomorphic sections parameterized by a
derived smooth manifold. This was quite a welcome surprise to the present author.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We begin our treatment of the Derived Regularity Theorem with some initial reductions.

5.7.3 Lemma (Pullback and descent for derived regularity). Let ℘ be a quasi-holomorphic
section problem over a derived smooth stack B ∈ Shv(Der).
(5.7.3.1) If ℘ is derived regular, then so is its pullback ℘′ = ℘ ×B B′ under any map of

derived smooth stacks B′ → B.
(5.7.3.2) If the pullback ℘′ is derived regular for every map B′ → B from a derived smooth

manifold B′, then ℘ is derived regular.
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Proof. It follows directly from the definition that Hol(℘′) = Hol(℘)×B B′.

Hol(℘′) Hol(℘)

B′ B

(5.7.3.3)

Thus representability of Hol(℘)→ B implies representability of the pullback Hol(℘′)→ B′,
and representability of the pullback Hol(℘′)→ B′ for all maps from derived smooth manifolds
B′ → B implies representability of Hol(℘)→ B.

Now let us compare the comparison maps (between derived smooth and topological
moduli stacks) associated to ℘ and its pullback ℘′. Let us abbreviate |·|! = (Der → Top)!,
and recall that Hol(℘)Top = Hol(℘ ×B |B|!), so the comparison map for ℘ takes the form
|Hol(℘)|! → Hol(℘ ×B |B|!). Now the comparison maps for ℘ and ℘′ fit into a commuting
diagram of the following shape.

|Hol(℘′)|! |Hol(℘)|!

Hol(℘′ ×B′ |B′|!) Hol(℘×B |B|!)

|B′|! |B|!

(5.7.3.4)

The bottom square is a fiber square since the formation of Hol is compatible with pullback (by
inspection). The composite square is a pullback provided Hol(℘)→ B is representable, since
left Kan extension (Der→ Top)! preserves pullbacks of representable morphisms (2.9.42). It
thus follows from cancellation (1.1.52) that the top square is a pullback (when Hol(℘)→ B
is representable).

Now if Hol(℘)→ B is representable and the comparison map for ℘ is an isomorphism, it
follows that the comparison map for ℘′ is an isomorphism (since the top square in (5.7.3.4)
above is a pullback). Conversely, suppose Hol(℘′)→ B′ is representable and the comparison
map of ℘′ is an isomorphism, for all maps from derived smooth manifolds B′ → B. We already
saw that this means Hol(℘)→ B is representable, so the top square in (5.7.3.4) is a pullback
for all B′ → B. To check that the comparison map for ℘ is an isomorphism, it suffices to
check that it pulls back to an isomorphism under any map from a topological space Z → |B|!
(1.1.95). By the definition of left Kan extension |·|! = (Der→ Top)! : Shv(Der)→ Shv(Top),
such a map locally factors through the map |B′|! → |B|! associated to some map from a derived
smooth manifold B′ → B. Now the comparison map of ℘ pulls back to an isomorphism under
any such map by assumption.

5.7.4 Lemma (Reduction to smooth bases). If every quasi-holomorphic section problem
over a smooth manifold is derived regular, then every quasi-holomorphic section problem over
a derived smooth manifold is derived regular.
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Proof. LetW → C → B be a quasi-holomorphic section problem over a derived smooth mani-
fold B. The construction of an open cover of HolB(C,W ) by linear models (5.6.2)(5.6.7)(5.6.9)
given earlier in the case B is a smooth manifold applies without change in the case B is a
derived smooth manifold. Since derived regularity is local on HolB(C,W ), we may assume
wlog that our quasi-holomorphic section problem W → C → B is a linear model.

Since derived regularity is preserved under pullback (5.7.3.1), it suffices to show that every
linear model quasi-holomorphic section problem over a derived smooth manifold B is, locally
on B, a pullback of a quasi-holomorphic section problem over a smooth manifold. In fact,
something much stronger is true, namely that the stack of linear model quasi-holomorphic
section problems over derived smooth manifolds B is left Kan extended from smooth manifolds
(??).

5.7.5 Exercise (Derived regularity and point conditions). Fix a morphism A → S in
(Shv(Der) ↓ Shv(Top)) (meaning A = (ADer, ATop) consists of a pair of derived smooth and
topological stacks together with a comparison map (Der→ Top)!ADer → ATop, etc.). Consider
a pullback diagram of the following shape.

HolB(C,W )′ A

HolB(C,W ) S

(5.7.5.1)

Recall that left Kan extension Shv(Der) → Shv(Top) preserves pullbacks of representable
morphisms (2.9.42), and conclude that if the comparison maps of A and S are isomorphisms
and ADer → SDer (hence also ATop → STop) is representable, then derived regularity of
HolB(C,W ) implies the same for HolB(C,W )′.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The following (trivial) result is quite useful for proving results about moduli stacks of
pseudo-holomorphic maps/sections.

5.7.6 Proposition (Reduction to the regular locus). A condition on solutions to quasi-?

holomorphic section problems over log smooth manifolds which is preserved under pullback
and holds over the regular locus holds everywhere.

Proof. It suffices (in fact, is equivalent) to show that for any quasi-holomorphic moduli
problem ℘ over a log smooth manifold B, we have

Hol(℘) =
⋃

℘=℘̃×B̃B

Hol(℘̃)reg ×B̃ B (5.7.6.1)

where the union (of open substacks of Hol(℘)) is over all maps of log smooth manifolds
B → B̃, all quasi-holomorphic moduli problems ℘̃ over B̃, and all isomorphisms ℘ = ℘̃×B̃ B.
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Let ℘ = (W → C → B,H, ϕ), and fix a point (b ∈ B, u : Cb → Wb) ∈ Hol(℘) which we
would like to show lies in the union (5.7.6.1) above. Let B̃ = B × Rk ⊇ B × 0 = B. Define
℘̃/B̃ as the pullback of ℘ under the projection B̃ → B, except that instead of taking

ϕ̃ : J1
B̃

(W̃/C̃) = J1
B(W/C)× Rk → H (5.7.6.2)

to simply equal ϕ, we add to it some linear map α : Rk → H over W (evidently ℘̃×B̃ B = ℘).
The point (b, u) ∈ Hol(℘) = Hol(℘̃)×B̃ B will lie in Hol(℘̃)reg ×B̃ B iff the composition

Rk α−→ C∞(W,H)
u∗b−→ C∞(Cb, u

∗H)� T 1
uHol(Cb,Wb)� T 1

(u,b)HolB(C,W ) (5.7.6.3)

is surjective. In fact, we can choose α so that a fortiori the composition Rk → T 1
uHol(Cb,Wb)

is surjective, since C∞(Cb, u
∗H)� T 1

uHol(Cb,Wb) is the cokernel of an elliptic operator on
Cb (5.4), hence is finite-dimensional since Cb is compact (3.3)–(3.5)–(3.6).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We now come to the main point in the proof of the Derived Regularity Theorem, namely
the proof that the comparison map (Sm→ Der)!Hol(℘)reg

Sm → Hol(℘)reg
Der is an isomorphism for

any quasi-holomorphic section problem ℘ over a smooth manifold B (5.7.9). In other words,
families of regular quasi-holomorphic sections parameterized by derived smooth manifolds are
completely classified by such families over smooth manifolds. It is quite surprising that this
turns out to be a formal consequence of the fact that Hol(℘′)reg

Sm is representable (5.6.1) for
all moduli problems ℘′ over smooth manifolds. The key inputs are the fact that Sm→ Der
preserves submersive pullbacks, hence so does (Sm→ Der)! : Shv(Sm)→ Shv(Der) (2.9.42),
and the fact that the comparison map for stacks of all sections (Sm→ Der)!SecB(C,W )Sm →
SecB(C,W )Der is an isomorphism (??).

To make the argument, we need a technical fact, namely we need to realize HolB(C,W )
as a fiber of a map of stacks of smooth sections (note that the most apparent fiber product
presentation of HolB(C,W ) (5.3.6) is not of this form).

5.7.7 Lemma. Let (W → C → B,H, ϕ) be quasi-holomorphic section problem. If H/W is
the pullback of H0/C, then there is a fiber diagram

HolB(C,W ) SecB(C,W )

B SecB(C,H0)

(5.7.7.1)

for all flavors of moduli stacks.

Proof. We have H = W ×C H0 as a fiber product in Sm (and also in Der since Sm →
Der preserves transverse fiber products (2.10.2.2)(2.10.17)). We thus have SecB(C,H) =
SecB(C,W )×B SecB(C,H0) (this is a purely categorical consequence of H = W ×CH0). Now
HolB(C,W ) → SecB(C,W ) is by definition a pullback of the zero section SecB(C,W ) →
SecB(C,H) = SecB(C,W )×B SecB(C,H0), which is a pullback of B → SecB(C,H0).
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The presentation (5.7.7) is ‘better’ than the fiber product presentation (5.3.6) in that one
of the factors is B. We need to improve it further to make this factor as small as possible.

5.7.8 Lemma. In the setup of (5.7.7), if H0 → C → B is the pullback of H ′0 → C ′0 → B′

under a map B → B′, then there is a fiber diagram

HolB(C,W ) SecB(C,W )

B′ SecB′(C
′, H ′0)

(5.7.8.1)

for all flavors of moduli stacks.

Proof. We have (by cancellation (1.1.52)) a pair of fiber squares.

B SecB(C,H0) B

B′ SecB′(C
′, H ′0) B′

(5.7.8.2)

Stacking the left square with the square (5.7.7) gives the desired result.

5.7.9 Proposition. For any quasi-holomorphic section problem ℘ over a smooth manifold,
the comparison map (Sm→ Der)!Hol(℘)reg

Sm → Hol(℘)reg
Der is an isomorphism.

Proof. The desired assertion is local, so we may fix a basepoint of Hol(℘)reg and prove it
just in a neighborhood of this point. There exists a local linear model in which this point
is regular relative XP (5.6.9). We are thus reduced to considering the comparison map for
HolB(CB,WB)reg/XP for a linear model.

By (5.7.8) we have a fiber product presentation of the following form.

HolB(CB,WB) SecB(CB,WB)

XP SecXP (C,H)

(5.7.9.1)

We now consider the (Sm → Der)! comparison cube of this fiber square. The comparison
maps for the parameterized section functors Sec on the right are isomorphisms (??), as is the
comparison map for XP . Thus to show that the comparison map for HolB(CB,WB)reg/XP

is an isomorphism, it suffices to show that (Sm→ Der)!(5.7.9.1) is a fiber square (over the
regular locus relative XP ).

To show that (Sm → Der)!(5.7.9.1) is a fiber square over the regular locus relative
XP , recall that Sm → Der preserves submersive pullbacks (2.10.17), hence so does left
Kan extension (Sm → Der)! (2.9.42). It thus suffices to show that the right vertical map
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SecB(CB,WB) → SecXP (C,H) is submersive over the relative regular locus. For a map
Z → SecXP (C,H) from a log smooth manifold Z, the pullback

HolB×XP Z
(CB×XP Z ,WB×XP Z) SecB(CB,WB)

Z SecXP (C,H)

(5.7.9.2)

is itself a moduli stack of quasi-holomorphic sections over the parameter space B ×XP Z =
V × Z, hence its relative regular locus is submersive over Z by the Regularity Theorem
(5.6.1). Thus SecB(CB,WB)→ SecXP (C,H) is submersive over the relative regular locus, as
desired.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We may now conclude with the proof of the Derived Regularity Theorem (0.0.1).

5.7.10 Theorem (Derived Regularity Theorem (0.0.1)). Every quasi-holomorphic section
problem over a derived smooth stack is derived regular.

Proof. By our initial reductions (5.7.3.2)(5.7.4), it suffices to consider quasi-holomorphic
section problems over smooth manifolds. Derived regularity is a local property on Hol(℘),
so we may consider the maximal open subset Hol(℘)dreg ⊆ Hol(℘) which is derived regular.
Derived regularity is preserved under pullback (5.7.3.1), so by reduction to the regular locus
(5.7.6), to show that Hol(℘)dreg = Hol(℘) it suffices to show that Hol(℘)dreg contains Hol(℘)reg,
which follows from the Regularity Theorem (5.6.1) and the fact that the comparison map
(Sm→ Der)!HolB(C,W )reg

Sm → HolB(C,W )reg
Der is an isomorphism (5.7.9).
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5.8 A priori estimates
We now provide a treatment of the standard a priori estimates on pseudo-holomorphic maps.

It is difficult to trace the origin of the results in this section. Many appear in some form
in Gromov [26], where they were considered too trivial to require anything more than a very
brief justification. Subsequent work of many authors has supplied various different ways
turning Gromov’s brief hints into complete proofs.

5.8.1 Definition (Bound on geometry). Let (X, g) be a Riemannian manifold. A bound?

on the geometry of (X, g) at a point p ∈ X is a collection of real numbers M0,M1, . . . <∞
such that there exists a smooth map Φ : (B(1), 0) → (X, p) with Φ∗g ≥ M−1

0 gstd and
‖Φ∗g‖Ck ≤Mk for all k. A bound on the geometry of (X, g) (resp. over a subset A ⊆ X) is a
collection (M0,M1, . . .) which bound the geometry of X at every point (resp. of A). A bound
on the geometry and injectivity radius means that in addition Φ is required to be injective
(beware that in standard terminology, a ‘bound on the geometry’ is usually taken to mean
what we have decided to call a ‘bound on the geometry and injectivity radius’).

A bound on the geometry of (X, g, τ) for some additional structure τ (e.g. a symplectic
form, almost complex structure, or any combination thereof) means that ‖Φ∗τ‖Ck ≤ Mk

as well. When the data τ itself determines a Riemannian metric gτ (e.g. a tame pair (J, ω)
determining the metric ω(v, Jw)+ω(w, Jv)), we may simply say (X, τ) has bounded geometry
to mean that (X, gτ , τ) has bounded geometry.

We say that a constant ‘depends on the geometry of X (resp. over a A ⊆ X)’ to mean
that said constant may be bounded in terms of a bound on the geometry of X (resp. over A).

5.8.2 Definition (Energy). Let (X, g) be a Riemannian manifold, and let C be a Riemann?

surface. The energy of a map u : C → (X, g) is the integral

E(u) =

∫
C

1
2
|du|2 (5.8.2.1)

where the integrand 1
2
|du|2 is by definition 1

2
(|ux|2 + |uy|2) dx dy = g(uz, uz̄) i dz dz̄ in local

holomorphic coordinates.

5.8.3 Exercise. Show that if u : C → (X, J) is pseudo-holomorphic and J is compatible
with ω, then u∗ω = 1

2
|du|2, so we have E(u) =

∫
C
u∗ω.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5.8.4 Proposition (Gradient bounds imply C∞ bounds). Let u : D2 → (X, J, g) be a?

pseudo-holomorphic map. If sup |du| ≤M , then

|Dku(0)| ≤ const · E(u)1/2 (5.8.4.1)

for some const <∞ depending on k <∞, M <∞, and the geometry of (X, J, g) over the
image of u.
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Proof. Choose local linear coordinates on the target X. Write the pseudo-holomorphic map
equation in local coordinates as ux + J(u)uy = 0. Applying d

dx
− d

dy
J(u) to this equation

yields the higher order equation

uxx + uyy = J̇(u, uy)ux − J̇(u, ux)uy, (5.8.4.2)

which has the virtue that its leading order terms have constant coefficients.
We now bound theW k,2-norm of u (over any compact subset of (D2)◦) using two successive

bootstrapping arguments based on (5.8.4.2). The first bounds ‖u‖k,2 by some (unspecified)
function of M . The second bounds ‖u‖k,2 by E(u)1/2 times some (unspecified) function of M
(which is enough by Sobolev embedding (3.1.31)).

For the first bootstrap, we note that L2-norm of the right side of (5.8.4.2) is bounded in
terms of M , so by elliptic regularity (3.3) we have a bound on the W 2,2-norm of u in terms
of M . This implies a W 1,2-bound on the right side of (5.8.4.2) (inspect its derivative) in
terms of M , hence by elliptic regularity we have a bound on the W 3,2-norm of u in terms
of M . Now we claim that for k ≥ 3, a bound on the W k,2-norm of u implies a bound on
the W k+1,2-norm of u. Indeed, the right side of (5.8.4.2) is a smooth function vanishing at
zero applied to (u,Du), hence since W k−1,2 ⊆ C0 for k ≥ 3 (3.1.31), the W k−1,2-norm of the
right side is bounded in terms of the W k−1,2-norm of (u,Du) (3.1.34), thus in terms of the
W k,2-norm of u. By induction, the W k,2-norm of u is bounded in terms of M for all k <∞.

Now we do the second bootstrap. We know from the first bootstrap that the derivatives
of u are bounded in terms of M . In particular, the factors J̇(u, ux) and J̇(u, uy) are bounded
in C∞ in terms of M . It follows (3.2.7) that the W k−1,2-norm of the right side of (5.8.4.2)
is bounded linearly in terms of the W k,2-norm of u. Applying elliptic regularity (3.3), we
conclude that the W k+1,2-norm of u is bounded linearly in terms of the W k,2-norm of u. In
the base case k = 1, the W k−1,2-norm of the right side is (by inspection) bounded linearly in
terms of E(u)1/2. By induction, the W k,2-norm of u is bounded linearly in terms of E(u)1/2

for all k <∞.

5.8.5 Exercise. Use a rescaling argument to deduce from (5.8.4) that |Dku(p)| ≤ const ·
d(p, ∂D2)−(k−1) · E(u)1/2 under the same hypotheses.

5.8.6 Hofer’s Lemma ([32, Lemma 3.3]). Let (X, d) be a complete metric space, let f :?

X → R≥0 be locally bounded, and let M < ∞. For every p0 ∈ X, there exists p ∈ X with
f(p) ≥ f(p0) and d(p, p0) ≤ 2M · f(p0)−1 such that d(x, p) ≤M · f(p)−1 =⇒ f(x) ≤ 2f(p).

Proof. If p0 does not satisfy the desired property, then there exists a violation point p1, i.e.
d(p0, p1) ≤M ·f(p0)−1 and f(p1) ≥ 2f(p0). If p1 does not satisfy the desired property, there is
a subsequent violation point p2. We have f(pi) ≥ 2if(p0), hence d(pi, pi+1) ≤ 2−iM · f(p0)−1,
so d(p0, pi) ≤ 2M · f(p0)

−1. This process p0, p1, . . . will eventually terminate at a suitable
point p, since otherwise it would converge (since X is complete) to a point p∞ near which f
is not locally bounded.



CHAPTER 5. PSEUDO-HOLOMORPHIC MAPS 226

5.8.7 Proposition (Small energy bounds imply gradient bounds). Let u : D2 → (X, J, g) be?

a pseudo-holomorphic map. If
∫
D2|du|2 < ε then

|du(0)| ≤ 5 (5.8.7.1)

for some ε > 0 depending on the geometry of (X, J, g) over the image of u.

Proof. If |du(0)| ≥ 5, then we can use Hofer’s Lemma (5.8.6) to find a point p ∈ D2 at
distance at most 2

5
from the origin such that |du| ≤ 2|du(p)| over the disk of radius |du(p)|−1

around p (which is entirely contained in D2 since 2
5

+ 1
5
< 1). Now consider the map

ũ : D2 → (X, J, g) obtained from u by rescaling the disk of radius |du(p)|−1 around p to
the disk D2. We have sup |dũ| ≤ 2 by construction, hence we have C∞ bounds (5.8.4) on ũ
over D2. We also have |dũ(0)| = 1 by construction, which combined with C∞ bounds on ũ
implies a lower bound on the energy of ũ, hence also on the energy of u. Now take ε > 0 to
be smaller than this lower bound.

5.8.8 Proposition (Removable singularity). A pseudo-holomorphic map u : D2 \ 0→ (X, J)
extends smoothly to D2 iff its image is relatively compact in X and it has finite energy.
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