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Abstract

We review the topological obstructions to resolving singularities and show they all

vanish for low dimensional complex algebraic varieties.
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1 Introduction

What do homology classes look like? From its definition, a singular homology class is
representable by a singular geometric cycle, which could carry singularities as indicated by its
name. Can we find better representatives?

Definition 1.1. Let σn ∈ Hn(X) be an n-dimensional singular homology class in X . We say
σn is representable by manifolds if there exists a continuous map f : Mn → X from a closed
oriented n-manifold into X so that σn = f∗[M] where [M] ∈ Hn(M) is the fundamental class of
M.

Example 1.2. Homology classes up to dimension 6 are representable by manifolds.

Exercise 1.3. Show that all 1-dimensional and 2-dimensional homology classes are repre-
sentable by manifolds.

Problem 1.4 (Steenrod). Can all homology classes be represented by manifolds?
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In 1954, René Thom [Tho54] answered Steenrod’s problem both positively and negatively–
yes, for mod 2 homology classes; but not true in general for integral homology classes. More-
over, he found there are topological obstructions to resolving the singularities of a homology
class, and gave an example of a 7-dimensional homology class on which the obstructions do
not vanish, thus showing it carries non-resolvable singularities.

However, ten years later, Hironaka [Hir64] came along and showed that all complex alge-
braic varieties admits resolutions. This in particular implies that all the obstructions to resolu-
tion of singularities discovered by Thom must vanish on algebraic homology classes.

This note aims to define Thom’s obstructions, and show that they vanish on the funda-
mental classes of low dimensional complex algebraic varieties without referring to Hironaka’s
theorem.

2 Steenrod’s problem and Thom’s solution

A big step in Thom’s approach to Steenrod’s problem is to use duality to turn this homological-
geometric problem into an cohomological-algebraic problem.

To start with, let X be a finite complex embedded into an Euclidean space Rn+q, and let N

be a small closed tubular neighborhood of X with boundary ∂N. Then we have the following
well-known duality, which will be referred to as Alexander duality in this note.

Theorem 2.1 (Alexander-Lefschetz-Poincaré). Hn(X)∼= Hq(N,∂N).

Thom added a brilliant geometric insight into this duality, and used that to characterize
when a homology is representable by manifolds. This has to do with the famous Thom class
and Thom isomorphism.

2.2 Mod 2 homology

For simplicity, we shall for the moment surpress orientations and consider mod 2 homology
classes. Now suppose σn ∈ Hn(X ;Z2) is represented by f : Mn → X from a (not necessarily
orientable) closed manifold into X such that σn = f∗[M]. By abusing the notation, we denote f

followed by the inclusion of X into N by f as well. Moreover, we can choose q large enough
(q > n) so that f is homotopic (via a small perturbation) to an smooth embedding M ↩→ N.
Thus we can think of M as a submanifold of N, and the homology class σn ∈ Hn(X ;Z2) is the
push-forward of [M] ∈ Hn(M;Z2) along M ↩→ N followed by a deformation retract N → X .

Now M has a closed tubular neighborhood ν contained in N. Let g : M → BOq be the map
classifying the normal bundle of M in N, then we have a diffeomorphism of the pairs

(ν ,∂ν)∼= (g∗Dγq,g∗∂Dγq)
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where γ is the universal rank q vector bundle over BOq and Dγq,∂Dγq are the unit closed disk,
unit sphere bundles of γ respectively.

Theorem 2.3 (Universal Thom isomorphism). Let uq be the unique non-zero class in

Hq(Dγq,∂Dγq;Z2)∼= Z2.

Then multiplication by uq yields an isomorphism

H∗(BOq;Z2)∼= H∗+q(Dγq,∂Dγq;Z2).

Proof. Without loss of generality, we can think of BOq as the Grassmannian of q-dimensional
real vector spaces in a d-dimensional Euclidean space for d sufficiently large. Then by Alexan-
der duality we have

H∗+q(Dγq,∂Dγq;Z2)∼= HdimBOq−∗(BOq;Z2).

On the other hand, by Poincaré duality we have

HdimBOq−∗(BOq;Z2)∼= H∗(BOq;Z2).

The class uq, now known as the Thom class, is the Alexandar dual of the fundamental class of
BOq. 

Now we can pull back the Thom class uq to Hq(N,∂N;Z2) via

N/∂N
map N\ν to−−−−−−→

a point
ν/∂ν g−→ Dγq/∂Dγq =: MOq.

Lemma 2.4 (Key lemma). The pull-back of the Thom class is Alexander dual to σn ∈Hn(X ;Z2).
Moreover, a homology class of X is representable by manifolds if and only if its Alexander dual
is the pull-back of the Thom class by some continuous map N/∂N → MOq.

We note here N depends on our choice of the embedding X ⊂ Rn+q, and in fact one is
allowed to vary the embedding in the above formulation, we suppress this point for simplicity.

So now the Steenrod’s problem becomes the following dual problem:

Problem 2.5 (Steenrod’s problem, dual version). Are all cohomology classes of N/∂N pull-
backs of the Thom class?

Notice that the cohomology functor Hq(−;Z2) is representable by the Eilenberg-MacLane
space K(Z2,q). in particular the Thom class uq ∈ Hq(MOq;Z2) corresponds to a (based) map

MOq → K(Z2,q).
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Moreover, the above problem can be rephrased as: Can every map N/∂N → K(Z2,q) be lifted
to MOq?

MOq

N/∂N K(Z2,q)

Thom class

Now this lifting problem is a homotopy theoretical problem, and we can study it through
obstruction theory.

Recall that the obstructions to constructing a section of the fiberation F → E → B are
inductively defined by trying to construct a section skeleton-by-skeleton. If a section has
been constructed on the k-skeleton of B, then the next obstruction is a cohomology class in
Hk+1(B;πkF). The obstructions to a lifting problem

E F

Y B

are similar. If a lifting has been constructed on the k-skeleton of Y , then the next obstruction is
a cohomology class in Hk+1(Y ;πkF).

Thom studied the universal obstructions to constructing a section to the map

MOq
Thom class−−−−−−→ K(Z2,q).

And he showed

Proposition 2.6. There exists a section over the 2q-skeleton of K(Z2,q). Therefore the ob-
structions to our lifting problem appear in H2q+∗ for ∗ ≥ 1.

Corollary 2.7. All mod 2 homology classes are representable by manifolds.

Proof. Notice that H∗(N,∂N) = 0 for ∗ > q+ n for simple dimension reason. So as long as
q+n < 2q, i.e. q > n, there is no obstruction to finding a lifting. 

2.8 Integral homology

Now we take orientations into account and consider integral homology classes. Similarly
we must examine the map

MSOq
Thom class−−−−−−→ K(Z,q).

corresponding to the Thom class of the universal oriented vector bundle. But this time, we al-
most immediately meet obstructions–there are cohomology operations vanishing on the Thom
class but not vanishing on the fundamental class of K(Z,q) (corresponding to the identity map),
βP1 for instance, where P1 is the mod 3 Steenrod first power and β is the mod 3 Bockstein.
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Example 2.9. There is a homology class x1 ∗x5 ∈ H7(K(Z3×Z3,1);Z) whose Alexander dual
is not a pull-back of the Thom class, for βP1 does not vanish on it. The singularity type of this
homology class is a surface times a cone over CP2. See [Sul71].

However, the good news is that all the obstructions are odd-primary torsion! This implies

Theorem 2.10. There exists an odd number Oddn depending on n so that Oddn ·σn is repre-
sentable by manifolds.

3 Vanishing of obstructions for complex algebraic varieties

We caution the reader that, in this section, the symbols X ,M etc. will have different mean-
ings than the previous section.

Let X be a compact (singular) complex algebraic variety of complex dimension n.

Theorem 3.1 (Hironaka). There exists a resolution of X , that is a smooth variety X together
with a morphism X → X which is an isomorphism away from the singular locus of X .

Corollary 3.2. The fundamental class of a complex algebraic variety is always representable
by manifolds. Therefore all Thom’s obstructions discussed in the previous section vanish on
[X ] ∈ H2n(X ;Z).

Hironaka’s argument is quite involved, so one wonders if there is an easier argument show-
ing Thom’s obstructions vanish, which is (presumably much) weaker than Hironaka’s theorem.

In this section, we combine Atiyah and Hirzebruch’s argument in disproving integral Hodge
conjecture [AH62] and some topological facts to show Thom’s obstructions vanish on the fun-
damental classes of low dimensional complex algebraic varieties.

3.3 Complex version of Thom’s obstructions

We adapt Thom’s analysis to our complex algebraic situation by utilizing the complex struc-
ture. First we embed X into a smooth complex variety M of complex dimension n+q, and ask
whether the map induced by the Alexander dual of [X ]

M/(M−X)→ K(Z,2q)

can be lifted to MUq along the map

MUq
Thom class−−−−−−→ K(Z,2q)

corresponding to the Thom class of the universal complex rank q vector bundle.
To analyze the obstructions to this lifting problem, we need some algebraic topology tools.

We localize the problem at an odd prime p, in effect we concentrate on obstructions of order
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powers of p. By a theorem of Quillen [Qui69], after localization the map MUq → K(Z,2q) can
be effectively replaced by a map

BP2q → K(Z(p),2q).

The following are some basic facts about the space BP2q.

(i) The space BP’s are introduced by Brown and Peterson [BP66] so that the mod p stable
cohomology of BP is the mod p Steenrod algebra modulo the two sided ideal generated
by Bockstein.

(ii) The homotopy groups of these spaces are extremely nice

π∗(BP2q) = s2qZ(p)[v1,v2, . . . ]

where vi has degree |vi|= 2(pi −1) and s2q means shift up degree by 2q.

(iii) Later Wilson [Wil75] introduced "quotients" of these BP spaces, denoted by BP〈m〉2q,
whose homotopy groups are quotients of those of BP

π∗BP〈m〉2q = s2qZ(p)[v1, . . . ,vm].

Note in particular BP〈0〉2q = K(Z(p),2q) and BP〈∞〉2q = BP2q.

(iv) Moreover, these Wilson spaces fit into a sequence

BP → · · ·→ BP〈m+1〉 → BP〈m〉 → · · ·→ BP〈0〉.

(v) The fiber of BP〈m+1〉2q → BP〈m〉2q is exactly BP〈m+1〉2q+|vm+1|.

Therefore, the lifting problem of the fiberation BP → BP〈0〉 can be thought of as an induc-
tive lifting problem of the fiberations

BP〈m+1〉2q BP〈m+1〉2q+|vm+1|

BP〈m〉2q

This somewhat simplifies the description of the obstructions (even though still complicated) in
the sense that we know the homotopy groups of the inductive fibers.

Now let us analyze the inductive obstructions. Suppose we have already lifted the map

M/(M−X)→ BP〈0〉2q
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to BP〈m〉2q. Then all the following obstructions appear in

H2q+∗+1 M,M−X ;π2q+∗(BP〈m+ l〉2q+|vm+l |)


for ∗ ≥ |vm+1| and l ≥ 1.

Proposition 3.4. Under the above assumption, if 2n ≤ |vm+1|, then the fundamental class of X

is representable by (stably almost complex) manifolds.

Proof. All the following obstructions appear in dimensions ≥ 2q+ |vm+1|+ 1, but the coho-
mology of M/(M−X) live in dimensions ≤ 2q+2n. 

3.5 Lifting to BP〈1〉

We now show, by combining the above topological facts with Atiyah and Hirzebruch’s
argument in disproving integral Hodge conjecture [AH62], that the map M/(M−X)→BP〈0〉2q

can always be lifted to BP〈1〉2q.
For this, we need the following well-known algebraic geometry lemma.

Lemma 3.6. The sheaf OX of regular functions on X , when treated as a coherent sheaf on M,
admits a locally free resolution of finite length

E • → Ox → 0.

Proof. Finitely generated modules over a regular Noetherian local ring admits a finite free
resolution. 

Since locally free sheaves correspond to vector bundles, we get an element

[OX ] := [E even]− [E odd] ∈ K(M).

Moreover, since OX is supported on X , the sequence E • → 0 is exact on M −X , hence [OX ]

lives in
K(M,M−X)∼= K (M/(M−X)) .

This in turn yields a map
M/(M−X)

g−→ BU.

Furthermore, notice that M/(M−X) is (2q−1)-connected, hence g can be lifted to the (2q−1)-
connected cover BU(2q,∞) of BU .

Lemma 3.7 (Key lemma). The induced map M/(M − X) → BU(2q,∞), up to homotopy,
is independent of our choice of the free resolution, and the pull-back of the generator of
H2q(BU(2q,∞);Z) = Z is Alexander dual to the fundamental class of X .
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Proof. The q-th Chern class of [OX ] is (−1)q−1(q− 1)! times the Alexander dual of X . This
can be proved by Hirzebruch-Riemann-Roch or by an explicit computation on an universal
example where there is a Koszul resolution. Meanwhile by Bott [BM58], the universal q-th
Chern class is precisely divisible by (q−1)! when pullled back onto BU(2q,∞). 

Localized at prime p, a folklore theorem (or perhaps due to Adams?) says the space
BU(2q,∞) splits into a product of BP〈1〉’s.

Theorem 3.8.

BU(2q,∞)(p) ≃
p−2

∏
i=0

BP〈1〉2q+i.

Therefore H2q (BU(2q,∞)) = H2q BP〈1〉2q;Z(p)

= Z(p).

Corollary 3.9. The Alexander dual of the fundamental class of X can always be lifted to BP〈1〉.

Corollary 3.10. All odd primary topological obstructions to resolving singularities vanish
when dimC ≤ 8.

Proof. Note that 8 = 32 −1, and apply Proposition 3.4. 
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