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Abstract. In this note, we calculate in details the automorphism group of
the additive (resp. multiplicative) formal group law over Fp and relate it to
Steenrod operations (resp. Adams operations) in topology. I do not claim
originality of these results except perhaps for formulating the statement of
Theorem 4.2.

1. Introduction

A (one-dimensional commutative) formal group law over a commutative ring R
is a formal power series in two variables F (x, y) ∈ R[[x, y]] that behaves like a
(commutative) group multiplication. More precisely, F must satisfy

• F (x, 0) = x and F (0, y) = y
• F (x, F (y, z)) = F (F (x, y), z)
• F (x, y) = F (y, x)
• there exists inv(x) ∈ R[[x]] so that F (x, inv(x)) = F (inv(x), x) = 0

For example, Ga(x, y) = x+ y and Gm(x, y) = x+ y+ xy are formal group laws
over Z (and hence over any commutative ring with unit). Ga is called the additive
formal group law, Gm is called the multiplicative formal group for 1 +Gm(x, y) =
(1 + x)(1 + y).

For a more advanced example, let (E,O) be a smooth elliptic curve over R and
let x be a local parameter near O, then the abelian group structure on E induces a
formal group law over R. If one allows singularity, then if O is a nodal (resp. cusp)
point, then the formal group law produced from E at O is isomorphic to Gm (resp.
Ga). In general, the formal group laws arising from elliptic curves are much more
complicated.

Given a formal group law F over R, an endomorphism of F is a change of variable
that preserves F . More precisely, an endomorphism is a power series h ∈ R[[x]]
such that F (h(x), h(y)) = h(F (x, y)). It is easy to see that h cannot have nonzero
constant term, for 2c = c implies c = 0 in any ring (even in F2!).

We say an endomorphism is an automorphism if it is invertible as power series,
or equivalently its coefficient of linear term is invertible in R. Denote the set of
endomorphisms (resp. automorphisms) of F by EndR(F ) (resp. AutR(F )).

Our goal of this note is to determine AutR(Ga) and AutR(Gm) over the ring
R = Fp where p is a prime, and relate them to Steenrod operations and Adams
operations, both of which arise as cohomology operations, Steenrod for singular
cohomology with Fp-coefficients and Adams for complex K-theory.
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2. Automorphism of additive group Ga

We must solve the equation

f(x+ y) = f(x) + f(y)

for power series f(x) = a0x + a1x
2 + a3x

3 + . . . . This is equivalent to finding
a0, a1, a2, . . . so that

an

!
n+ 1

k

"
= 0

for all n ≥ 0 and all 1 ≤ k ≤ n.
By Bezout’s theorem, for each n, the above is equivalent to

an · gcd1≤k≤n

!
n+ 1

k

"
= 0

where gcd1≤k≤n

#
n+1
k

$
is the greatest common divisor of

#
n+1
1

$
,
#
n+1
2

$
, . . . ,

#
n+1
n

$
.

It is an elementary (but quite non-trivial to me) fact that

gcd1≤k≤n

!
n+ 1

k

"
=

%
q, if n+ 1 = qs for some prime q;

1, otherwise.

Now that we are working over Fp, gcd1≤k≤n

#
n+1
k

$
is invertible unless n+ 1 is a

power of p. So f must have the form

f(x) = a0x+ ap−1x
p + ap2−1x

p2

+ ap3−1x
p3

+ · · ·
Rewrite apk−1 =: ξk, k = 0, 1, 2, . . . , then we have

f(x) = ξ0x+ ξ1x
p + ξ2x

p2

+ · · ·+ ξkx
pk

+ · · ·

is a (infinite) linear combination of powers of the Frobenius map x $→ xp. Since the
Frobenius map preservesGa, the coefficients ξk can be arbitrarily chosen. Therefore,
we have proven:

Proposition 2.1.

EndFp(Ga) ≃ SpecFp[ξ0, ξ1, ξ2, . . . ]

and

AutFp(Ga) ≃ SpecFp[ξ0, ξ
−1
0 , ξ1, ξ2, . . . ].

Since AutFp(Ga) is a group (under composition of power series), its group mul-
tiplication corresponds to a diagonal homomorphism

Fp[ξ0, ξ
−1
0 , ξ1, ξ2, . . . ] → Fp[ξ0, ξ

−1
0 , ξ1, ξ2, . . . ]⊗ Fp[ξ0, ξ

−1
0 , ξ1, ξ2, . . . ]

We shall describe the group structure on the subgroup SAutFp(Ga) that consists
of all automorphism of Ga whose linear term is x, i.e. ξ0 = 1. Then it is clear
SAut(Ga)Fp ≃ SpecFp[ξ1, ξ2, ξ3, . . . ] and we have a natural (split) exact sequence

1 → SAutFp(Ga) → AutFp(Ga)
ξ0−→ F∗

p → 1.

As before, the group multiplication on SAutFp(Ga) corresponds to a diagonal
morphism

∆ : Fp[ξ1, ξ2, . . . ] → Fp[ξ1, ξ2, . . . ]⊗ Fp[ξ1, ξ2, . . . ].
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To determine ∆, we must calculate the composition of two automorphisms of

Ga. Let f(x) = ξ0x + ξ1x
p + ξ2x

p2

+ · · · and g(x) = ξ′0x + ξ′1x
p + ξ′2x

p2

+ · · · be
two automorphism of Ga, then

g ◦ f(x) = f(x) + ξ′1f(x)
p + ξ′2f(x)

p2

+ · · ·

= x+ (ξ′1 + ξ1)x
p + (ξ′2 + ξp1ξ1 + ξ2)x

p2

+ (ξ′3 + ξp
2

1 ξ′2 + ξp2ξ
′
1 + ξ3)x

p3

+ · · ·

=

∞&

k=0

(

k&

i=0

ξp
i

k−iξ
′
i)x

k (recall ξ0 = 1)

Therefore, we have

(1) ∆ξk =

k&

i=0

ξp
i

k−i ⊗ ξi.

The group inversion on SAutFp(Ga) corresponds to a morphism

c : Fp[ξ1, ξ2, . . . ] → Fp[ξ1, ξ2, . . . ].

To determine c, we assume g as above is the inverse of f , then we have

k&

i=0

ξp
i

k−iξ
′
i = 0 for k ≥ 1.

Therefore, c is inductively determined by the relations

(2)

k&

i=0

ξp
i

k−i · c(ξi) = 0

Proposition 2.2. Fp[ξ1, ξ2, ξ2 . . . ] is naturally a Hopf algebra whose co-multiplication
is given by ∆ and anti-automorphism is given by c. Moreover, it is commutative,
co-associative but not co-commutative (as SAutFp(Ga) is not commutative).

I shall leave the calculation for AutFp
(Ga) to the interested reader (since I am

lazy, sorry, but you know what to do).

3. Automorphism of multiplicative group Gm

Similarly, we must solve the equation

f(x+ y + xy) = f(x) + f(y) + f(x)f(y)

for power series f(x) = a1x + a2x
2 + a3x

3 + · · · . (Warning: here the coefficient
of x is denoted as a1, different from the notation used in the last section.) This is
equivalent to solve the equation

1 + f(x+ y + xy) = (1 + f(x))(1 + f(x)).

Now

(1 + f(x))(1 + f(y)) = (

∞&

n=0

anx
n)(

∞&

m=0

amxm) (a0 = 0 is understood)

=
&

n,m≥0

anamxnym
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and

1 + f(x+ y + xy) = 1 +

∞&

n=1

an(x+ y + xy)n

= 1 + a1(x+ y) + a2x
2 + (a1 + 2a2)xy + a2y

3 + a3x
3

+ (2a2 + 3a3)x
2y + (2a2 + 3a3)xy

2 + a3y
3 + · · ·

Comparing the coefficients of the first several terms, we can see

• a21 = a1 + 2a2, or equivalently 2a2 = a21 − a1
• a2a1 = 2a2 + 3a3, or equivalently 3a3 = a2a1 − 2a2

Therefore, if we work over Q, a2 is determined by a1 and a3 is determined by
a1, a2. We may guess over Q all the an are inductively determined by a1, also
notice one shouldn’t expect to determine all the an from a1 if we work over Fp. For
instance, reduce modulo 3, there’s no restriction on the choice of a3.

The interesting inductive relations listed above arise from the coefficients of
xy and xy2 (also x2y since x, y are symmetric). This hints us to calculate the
coefficients of xyk.

There are only two possible ways to produce xyk from the powers of (x+y+xy)n.
One is xyk = (xy) · yk−1 from

(x+ y + xy)k = kxyk + other terms,

the other is xyk = x · yk from

(x+ y + xy)k+1 = (k + 1)xyk + other terms.

Therefore, we have
kak + (k + 1)ak+1 = a1ak.

If we work over Q, then we can write ak+1 = (a1−k)ak

k+1 , thus the power series f
is completely determined by the choice of a1. If a1 = r ∈ Q, then

a2 =
(r − 1)r

2
, a3 =

(r − 2)(r − 1)r

3 · 2 , . . . , ak =

!
r

k

"
, . . .

Therefore, the corresponding automorphism is fr(x) := (1 + x)r − 1. (It is not
hard to verify fr is indeed an automorphism of Gm.) For instance, if r = −1, then
f−1(x) = (1 + x)−1 − 1 = −x+ x2 − x3 + x4 + . . . .

We have thus proven:

Theorem 3.1.

Q∗ → AutQ(Gm), r $→ fr(x) = (1 + x)r − 1

is an isomorphism. Consequently,

Z∗ → AutZ(Gm), r $→ fn(x) = (1 + x)n − 1

is an isomorphism.

Proof. The second statement follows from the first and that a1 must be some integer
n. □

Let’s go back to work over Fp. Recall we have

(k + 1)ak+1 = (a1 − k)ak

so as long as k + 1 is not divisible by p, ak+1 is determined by ak. The above
relation reduced modulo p has a p-periodicity, more precisely we have
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• a1 =?, a2 =
#
a1

2

$
, a3 =

#
a1

3

$
, . . . , ap−1 =

#
a1

p−1

$

• ap =?, ap+1 =
#
a1

2

$
ap, ap+2 =

#
a1

3

$
ap, . . . , a2p−1 =

#
a1

p−1

$
ap

• a2p =?, a2p+1 =
#
a1

2

$
a2p, . . .

Therefore, we see (over Fp)

1 + f(x) = (1 + a1x+

!
a1
2

"
x2 +

!
a1
3

"
x3 + · · ·+

!
a1

p− 1

"
xp−1)(1 + apx

p + a2px
2p + · · · )

= (1 + x)a1(1 + apx
p + a2px

2p + · · · )

Denote g(x) = apx+ a2px
2 + a3px

3 + · · · , then
1 + f(x) = (1 + x)a1(1 + g(xp)).

From (1 + f(x))(1 + f(y)) = 1 + f(x+ y + xy) we have

(1 + x)a1(1 + y)a1(1 + g(xp))(1 + g(yp)) = (1 + x+ y + xy)a1(1 + g((x+ y + xy)p))

hence (1 + g(xp))(1 + g(yp)) = 1 + g((x+ y + xy)p) = 1 + g(xp + yp + xpyp).
Denote xp = x′, yp = y′, we thus have

(1 + g(x′))(1 + g(y′)) = 1 + g(x′ + y′ + x′y′).

That is to say, g is an endomorphism of Gm over Fp. So by the same analysis as
before for f ,

g(x) = (1 + x)aph(xp)

for some h.
Inductively, we see

f(x) = (1 + x)a1(1 + xp)ap(1 + xp2

)ap2 · · ·

=

∞'

k=0

(1 + xpk

)ak+1 =

∞'

k=0

(1 + x)ak+1p
k

= (1 + x)
!∞

k=0 ak+1p
k

Notice that if there’s only finitely many nonzero ak, then
(∞

k=0 ak+1p
k is some

integer n and ak+1 is the k-th digit of its p-adic representation. The set of the
formal sum

(∞
k=0 ak+1p

k, where 0 ≤ ak+1 ≤ p − 1, is precisely the p-adic integers
Zp.

So we have proven:

Theorem 3.2. The embedding

Z → EndFp(Gm), n $→ fn(x) = (1 + x)n − 1

naturally extends to an isomorphism

Zp ≃ EndFp(Gm), np = (· · · a3a2a1)p $→ (1 + x)a1(1 + xp)a2 · · ·− 1.

Consequently, AutFp(Gm) ≃ Z∗
p.

Let SAutFp
(Gm) be the subgroup of AutFp

(Gm) generated by those f(x) =

a1x+ a2x
2 + . . . with a1 = 0, then we have a split exact sequence

0 → SAutFp(Gm) → AutFp(Gm)
a1−→ F∗

p → 0

Therefore,

AutFp(Gm) ≃ SAutFp(Gm)⊕ F∗
p
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Remark 3.3. In general, given a split exact sequence 1 → N → G → H → 1 one
cannot deduce G = N ×H. But this is true when the groups are abelian.

It is also clear from the above analysis that if a1 = 0 then f(x) = g(xp) and
there’s no restriction on the coefficients of g, so

SAutFp
(Gm) ≃ End(Gm) ≃ Zp.

We thus recover the well-known isomorphism:

Corollary 3.4.
Z∗
p ≃ Zp ⊕ Z/(p− 1)

As a byproduct, we also have

Proposition 3.5. For integers 0 ≤ k ≤ n, we have
!
n

k

"
=

!
al+1

bl+1

"!
al
bl

"
· · ·

!
a1
b1

"
(mod p)

where n = (al+1 . . . a2a1)p, k = (bl+1 . . . b2b1)p are the p-adic representations of
n, k.

Proof. Over Fp we have (1 + x)n = (1 + x)a1(1 + xp)a2 · · · (1 + xpl

)al+1 . □

Corollary 3.6. Let n, k be as in Proposition 3.5, if bi > ai for some i, then
#
n
k

$
is

divisible by p.

For instance, if n = (100 . . . 0)p is a power of p, then
#
n
k

$
is divisible by p for

0 < k < n.

4. Steenrod operations and Adams operations

This section assumes certain familiarity with cohomology operations and K-
theory.

4.1. AutFp
(Ga) and Steenrod algebra. Let p be an odd prime.

Theorem 4.1 (Milnor). The dual Steenrod algebra is a free commutative graded
algebra over Fp generated by even degree elements ξ1, ξ2, ξ3, . . . and odd degree el-
ements τ0, τ1, τ2, . . . . Moreover, it is a Hopf algebra whose co-multiplication ∆ is
given by

∆ξk =

k&

i=0

ξp
i

k−i ⊗ ξi, ∆τk = τk ⊗ 1 +

k&

i=0

ξp
i

k−i ⊗ τi

and anti-automorphism c is given by

k&

i=0

ξp
i

k−i · c(ξi) = 0, τk +

k&

i=0

ξp
i

k−i · c(τi) = 0.

Theorem 4.2. The dual Steenrod algebra modulo can be naturally identified with
the coordinate ring of the tangent bundle of AutFp(Ga) restricted to SAutFp(Ga).

Sketch of proof. This follows immediately from Proposition 2.2 and the observation
that dξk behaves the same as τk. □
Remark 4.3. I think the statement of Theorem 4.2 can be improved, for instance
degree of ξk is not discussed yet. The appropriate way is to view ξk as coordinate
of a weighted projective space and then ξ0 = 1 is an affine chart. There’s certainly
more to say.



STEENROD AND ADAMS OPERATIONS FROM EASY ALGEBRA 7

4.2. AutFp(Gm) and Adams operations. Recall that Adams operations Ψn are
natural (as in topology with respect to continuous maps) ring homomorphisms
characterized by

• Ψn(line bundle η) = ηn = η ⊗ η ⊗ · · · ⊗ η (n-times). It follows Ψn acts on
K(CP∞) = Z[x] as Ψn(x) = (1 + x)n − 1.

• Ψn ◦Ψm = Ψnm

It directly follows from Theorem 3.2 that,

Theorem 4.4. The Adams operations on p-completed K-theory can be naturally
identified with EndFp(Gm).


