Generalized Frölicher spectral sequence

Jiahao Hu

Let X be an almost complex manifold and A be its de Rham algebra of complex valued differential forms. Cirici and Wilson defined a filtration on (A, d) by

$$F^{p}A^{n} = \ker \overline{\mu} \cap A^{p,n-p} \bigoplus \bigoplus_{i>p} A^{i,n-i}$$

This filtration then yields a spectral sequence converging to the (complex) de Rham cohomology of X. The purpose of this note is to compute its E_0 - and E_1 -page.

To begin with, let us describe E_0 -page. By definition

$$E_0^{p,q} = F^p(A^{p+q})/F^{p+1}(A^{p+q}) = \ker \overline{\mu} \cap A^{p,q} \oplus \frac{A^{p+1,q-1}}{\ker \overline{\mu}} \cong (\ker \overline{\mu})^{p,q} \oplus (\operatorname{im} \overline{\mu})^{p,q+1}$$

The differential $d_0: E_0^{p,q} \to E_0^{p,q+1}$ is induced from d. Notice for degree reasons E_0 -page does not detect ∂, μ , so d_0 is made from $\overline{\mu}$ and $\overline{\partial}$ only. (Compare this to the complex case where E_0 -page of the Frölicher spectral sequence only detects $\overline{\partial}$.)

So we must compute the effect of $\overline{\mu}$ and $\overline{\partial}$ on ker $\overline{\mu} \cap A^{p,q}$ and $\frac{A^{p+1,q-1}}{\ker \overline{\mu}} \cong (\operatorname{im} \overline{\mu})^{p,q+1}$. Using the relation $\partial \overline{\mu} + \overline{\mu} \partial + \overline{\partial}^2 = 0$ and the isomorphism above, one sees d_0 can be described as

Written in matrix

$$d_0 \cong \begin{pmatrix} \overline{\partial} & \text{id} \\ -\overline{\partial}^2 & -\overline{\partial} \end{pmatrix}$$

Now consider the short exact sequence of cochain complexes

$$0 \to (\operatorname{im}\overline{\mu})^{p,q} \oplus (\operatorname{im}\overline{\mu})^{p,q+1} \to E_0^{p,q} \to H_{\overline{\mu}}^{p,q} = \frac{(\ker\overline{\mu})^{p,q}}{(\operatorname{im}\overline{\mu})^{p,q}} \to 0$$

We claim that $((\operatorname{im} \overline{\mu})^{p,q} \oplus (\operatorname{im} \overline{\mu})^{p,q+1}, d_0)$ is acyclic. Then note it follows from (1) that d_0 descends to $\overline{\partial}$ on $H^{p,q}_{\overline{\mu}}$, so we have

Proposition. $E_1^{p,q} \cong H^q(H^{p,*}_{\overline{\mu}},\overline{\partial}).$

It remains to prove the acyclicity of $((\operatorname{im} \overline{\mu})^{p,q} \oplus (\operatorname{im} \overline{\mu})^{p,q+1}, d_0)$. For this, we apply the following lemma.

Lemma. Let C^{\bullet} be a graded vector space and $\delta : C^{\bullet} \to C^{\bullet}$ an endomorphism of degree 1. Then $C^{\bullet} \oplus C^{\bullet}[1]$ with $d = \begin{pmatrix} \delta & \mathrm{id} \\ -\delta^2 & -\delta \end{pmatrix}$ is an acyclic cochain complex.

Proof. If $(x,y) \in C^k \oplus C^{k+1}$ satisfies d(x,y) = 0, then it is easy to show (x,y) = d(0,x).