Generalized Frolicher spectral sequence
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Let X be an almost complex manifold and A be its de Rham algebra of complex valued
differential forms. Cirici and Wilson defined a filtration on (A4, d) by

FPA™ = erfin AP () @y A"

This filtration then yields a spectral sequence converging to the (complex) de Rham cohomology
of X. The purpose of this note is to compute its Ey- and E1-page.
To begin with, let us describe Eyp-page. By definition
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The differential dy : E2¢ — EPIH g induced from d. Notice for degree reasons Eop-page does
not detect 9, u, so dy is made from 7 and O only. (Co_mpare this to the complex case where
Ep-page of the Frolicher spectral sequence only detects 0.)
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So we must compute the effect of 77 and 0 on ker i N AP>? and =~ (im )9+, Using
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the relation O + o + & =0 and the isomorphism above, one sees dy can be described as
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Now consider the short exact sequence of cochain complexes

Written in matrix
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We claim that ((imz)?? @ (imz)»9*!, dy) is acyclic. Then note it follows from (1) that do
descends to 9 on H2, so we have

Proposition. E}'? = HY(HY™,9).

It remains to prove the acyclicity of ((im7)?¢ & (im @)t dy). For this, we apply the
following lemma.

Lemma. Let C* be a graded vector space and § : C* — C*® an endomorphism of degree 1.

Then C*® & C*[1] with d = <_€52 i(g) is an acyclic cochain complex.

Proof. If (z,y) € C* @ C**! satisfies d(x,y) = 0, then it is easy to show (x,y) = d(0, x). dJ



