
COMPLEX ORIENTABLE COHOMOLOGY THEORIES

JIAHAO HU

1. Complex orientable theory

Let h be a multiplicative cohomology theory, i.e. h is a generalized cohomology
theory and has a cup product. In particular, h⇤(pt) is a ring.

Definition 1.1. We say h is complex orientable if there is an isomorphism

h⇤(CP1) ' h⇤(pt)[[t]].

This isomorphism is called a complex orientation of h. Or equivalently the map

induced by inclusion h2(CP1) ! h2(CP 1) is surjective.

Note that h might have more than one complex orientations. Once the orien-
tation is fixed, we say h is complex oriented.

Exercise 1.2. Show that h is complex orientable if and only if for any complex

vector bundle ⇠ over base X we have Thom isomorphism h⇤+rk⇠(M⇠) ' h⇤(X).

Example 1.3. Ordinary cohomology (with any coe�cient) is complex orientable.

2. Formal group law

Definition 2.1. Let R be a commutative ring, a formal group law over R is a

formal power series f(u, v) 2 R[[u, v]] such that

(1) f(u, 0) = u = f(0, u)
(2) f(u, f(v, w)) = f(f(u, v), w)
(3) f(u, v) = f(v, u)

Let E be a complex orientable cohomology theory, then the isomorphism
E(CP1) ' E⇤(pt)[[t]] permits us to define Chern class by pull-back of t combining
splitting principle. Then CP1

⇥CP1
! CP1 induced by O = ⇡⇤

1O(1)⌦ ⇡⇤
2O(1)

gives a formal group law

cE1 (O) = f(u = cE1 (⇡
⇤
1O(1)), v = cE1 (⇡

⇤
2O(1))) 2 E⇤(CP1

⇥ CP1) ' E⇤[[u, v]]

(last isomorphism by Atiyah-Hirzebruch spectral sequence) over the coe�cient ring.
For example, c1(L ⌦ L0) = c1(L) + c1(L0) for ordinary Chern class, hence the

formal group law is the additive group law Ga over Z.

3. K-theory is complex orientable

It su�ces to show K-theory admits Thom isomorphism for complex vector
bundles.

Let ⇠ ! X be a U(n)-bundle, let M(⇠) be the Thom space of ⇠, we are to
construct a map K(X) ! K̃(M⇠)) which is an isomorphism, analogous to the
Thom isomorphism H⇤(X) ! H̃⇤(M(⇠)). So similarly, we start by defining a
Thom class T (⇠) 2 K̃(M(⇠)).
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3.1. Thom class in K-theory.

• Thom class T (⇠) is a relative class in K(D(⇠), @D(⇠)).
• The exterior algebra of ⇠ , ^(⇠) = ^

ev(⇠)� ^
od(⇠).

• Pull back ⇠ to a bundle ⇠0 over D(⇠), then ^(⇠0) = ^
ev(⇠0)� ^

od(⇠0)
• Moreover, there is a map � : ^od(⇠0) ! ^

ev(⇠0),

(x, v, Y ) 2 (X,D2n,^od(⇠)) 7! (x, v, (v ^+(v^)⇤)Y ) 2 (X,D2n,^ev⇠).

Notice that � is an isomorphism away from zero section of D(⇠).
• Thus, we define

T (⇠) := (^ev(⇠0),^od(⇠0),�) 2 K(D(⇠), @D(⇠)).

3.2. Thom class in KO-theory. Let ⇠ ! X be an SU(n)-bundle

• If n ⌘ 0 mod 4, then ^⇠ = R(⇠)�R�(⇠) and R(⇠) = Rev(⇠)�Rod(⇠). Pull
back to D(⇠) get

t(⇠) = (Rev(⇠0), Rod(⇠0),�) 2 KO(D(⇠), @D(⇠))

• If n ⌘ 2 mod 4, then

s(⇠) = (^ev(⇠0),^od(⇠0),�) 2 ˜KSP (M(⇠))

3.3. Thom isomorphism. To prove the Thom isomorphism in K-theory, we use
the following theorem of Dold.

Theorem 3.1. Suppose h⇤
is a multiplicative cohomology theory. Let ⇠ be an O(n)-

bundle over a finite CW complex X. Let t 2 hn(D(⇠), @D(⇠)) be such that inclusion

i : (Dn
x , @D

n
x ) ! (D(⇠), @D(⇠)), where Dn

x is the cell over x 2 X, has hn(Dn
x , @D

n
x )

a free h⇤(pt)-module with generator i⇤(t). Then there is an isomorphism

hk(X) ' hk+n(D(⇠), @D(⇠)), a 7! ⇡⇤a · t

Sketch of Proof. The proof is basically the same as the proof of standard Thom
isomorphism, which is an induction on cell and an application of five lemma. ⇤

Applying this theorem, one only needs to check that i⇤T (⇠) is the generator of
K(D2n

x , @D2n
x ) = K̃(S2n), and is the generator of the free K⇤(pt)-module K⇤(S2n).

By Bott periodicity, splitting principle and the fact that M(⇠� ⌘) = M(⇠)^M(⌘),
one su�ces to check n = 1. We then explicitly compute the Thom class of the
universal line bundle.

Proposition 3.2. The tautological U(1)-bundle ⇢n�1 over CPn�1
has Thom space

CPn
, and T (⇢n�1) = 1� ⇢n 2 K(CPn).

Proof. First of all, the projection

CPn
� [0, 0, . . . , 1] ! CPn�1, [z0, . . . , zn�1, zn] 7! [z0, . . . , zn�1]

is the tautological ⇢n�1 (one can see this by explicitly writing down the bundle
transition function), so M(⇢n�1) ' CPn. From the view of Thom isomorphism, we
have H⇤(M(⇢n�1)) = ^(u, ux)/(u2

� ux) = ^(u) where u is the Thom class, this
agrees with the cohomology of CPn.

This is a combination of several facts.

• For any U(1)-bundle ⇠ , M(⇠) is canoniaclly isomorphic to E(⇠)�U(1)/U(1),
where E(⇠) � U(1) is the join of E(⇠) and U(1).

• S2n�1 = U(1) � · · · �U(1), CPn�1 = S2n�1/U(1) = U(1) � · · · �U(1)/U(1).
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• M(⇢n�1) = E(⇢n�1) � U(1)/U(1).

Recall that

T (⇢n�1) = (^ev(⇢0n�1),^
od(⇢0n�1),�) 2 K(D(⇢n�1), @D(⇢n�1)),

and notice that since ⇢n�1 is a line bundle, we have

^
ev(⇢n�1) = ^

0 = trivial bundle,

and
^
od(⇢n�1) = ^

1 = ⇢n�1.

Thus T (⇢n�1) = ("C, [⇡⇤⇢]n�1) = 1�⇡⇤⇢n�1. We claim that ⇡⇤⇢n�1 on M(⇢n�1) =
CPn is the tautological bundle ⇢n, indeed one easily sees this by looking at bundle
transition function. ⇤
Remark 3.3. For n = 1, 1� ⇢1 2 K̃(CP 1) = K̃(S2) is exactly the generator.

Corollary 3.4 (Thom isomorphism inK-theory). For any U(n)-bundle ⇡ : ⇠ ! X,

we have an isomorphism K(X) ' K(D(⇠), @D(⇠)) = K̃(M(⇠)), ⌘ 7! ⇡⇤⌘ ⌦ T (⇠).

Similarly we have Thom isomorphisms for SU(4k) and SU(4k + 2) bundles

• KO(X) ' K̃O(M(⇠)) for SU(4k)-bundle
• KO(X) ' ˜KSp(M(⇠)) for SU(4k + 2)-bundle

4. Complex cobordism theory is complex orientable

This is purely tautologous.

4.1. Computation of universal formal group law on ⌦U
⇤ (pt). Suppose

F⌦(u, v) =
X

arsu
rvs,

then since CP1
⇥ CP1

! CP1 is the limit of Segre map CPn
⇥ CPm

!

CPnm+n+m, the pull-back of a hyperplane in CPnm+n+m is Milnor manifold Hnm,
so we have

[Hnm] =
nX

r=0

mX

s=0

ars[CPn�r][CPm�s].

Therefore one has

H(u, v) =
X

Hnmunvm = F⌦(u, v)CP (u)CP (v).



QUILLEN’S THEOREM ON COMPLEX COBORDISM RING

JIAHAO HU

1. Formal group law, Lazard ring, logarithm

Let R be a commutative ring with unit, recall that a formal group law over R
is a formal power series f(x, y) =

P
ci,jx

i
y
j 2 R[[x, y]] satisfying

(1) f(x, y) = f(y, x)
(2) f(x, 0) = x, f(0, y) = y

(3) f(f(x, y), z) = f(x, f(y, z))

So assigning a formal group law over R amounts to choosing coe�cients cij ’s sat-
isfying certain relations, cij = cji for instance.

We let L = Z[cij ]/ ⇠, called Lazard ring, be the free algebra generated by
variables cij modulo relations so that F (x, y) =

P
ci,jx

i
y
j is a formal group law

over L. It is clear that (L,F ) is universal among the pairs (ring, formal group law) in
the sense that for any such a pair (R, f), there exists a unique ring homomorphism
L ! R that takes F to f .

Among all the formal group laws, the simplest one is the additive formal group
law Ga(x, y) = x+y, and those ones that are isomorphic to Ga. Here f is isomorphic
to f

0 if there exists g(x) = x+ b1x
2 + b2x

3 + · · · 2 R[[x]] such that g�1(f 0(x, y)) =
f(g�1(x), g�1(y)). We note that since the leading term of g is x, g has formal
inverse ”function” g

�1.
Therefore assigning a formal group law overR that is isomorphic toGa amounts

to choose those bi’s. Similarly the ring Z[b1, b2, . . . ] together with formal group law
g(f(g�1(x), g�1(y))) is universal among such kind of pairs.

Since Lazard ring is universal among all formal group laws, there is a natural
morphism � : L ! Z[b1, b2, . . . ]. Now � is not an isomorphism, that is there are
formal group laws that are not isomorphic to Ga. However it is true that over the
rationals every formal group law is isomorphic to Ga. Follow the steps below to
show that �⌦Q is an isomorphism.

(1) consider the di↵erential form !(x) = dx
F2(x,0)

where F2(x, 0) =
@
@y |y=0F (x, y),

show that ! is invariant under translation of F , namely

F
⇤
! = !(x) + !(y)

(2) define logarithm of the formal group law l(x) to be the unique solution to
equation

l
0(x)dx = !(x), l(0) = 0

(3) check that the logarithm for Ga(x, y) = x+y and Gm = x+y+xy are x and
log(1+x) respectively. We remark that log(1+x) has rational coe�cients.

(4) use (1)(2) to show that l(F (x, y)) = l(x) + l(y), thus every formal group
law is isomorphic to additive formal group law after ⌦Q.
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Recall that over the complex cobordism ring MU
⇤, we have the formal group

law

F
U (x, y) =

H(x, y)

CP (x)CP (y)

where CP (x) = 1 + [CP 1]x+ [CP 2]x2 + . . . and H(x, y) =
P

n,m�0[Hn,m]xn
y
m.

It is then an easy exercise (hint: use [H1n] = [CP 1 ⇥ CPn�1]) to show its
logarithm satisfies

l
0(x) = CP (x).

2. MU
⇤ is isomorphic to L

We consider the morphism h : L ! MU
⇤ classifying F

U . To show this is an
isomorphism we need the following facts.

(1) (Thom) MU
⇤ ⌦Q ' Q[CP 1

,CP 2
,CP 3

, . . . ].
(2) (Milnor) MU

⇤ is torsion free and integrally generated by Milnor hypersur-
faces Hnm.

(3) (Lazard) Lazard ring is isomorphic to a polynomial ring over Z with infin-
itely many generators, in particular L is torsion free.

(4) (Exercise) If we write the logarithm of universal formal group law in the
form

P
n�0 pnx

n+1
/(n+1) for some pn 2 L⌦Q, then pn 2 L.(Hint: pn is the

coe�cient of invariant di↵erential form.) Moreover, L⌦Q ' Q[p1, p2, . . . ].
Note pn 6= bn.

Then Quillen argues (e↵ortlessly) as following

(1) It is clear that h takes pn to [CPn] thus h⌦Q is an isomorphism.
(2) Since L is torsion free, h is injective. Meanwhile (exercise) Milnor manifolds

are in the image of h, so h is surjective as well.

3. MU is universal among complex oriented cohomology theories

Now that MU
⇤ is the Lazard ring, it follows that for any complex oriented

cohomology theory E, we have a map MU
⇤ ! E

⇤ = ⇡⇤E. It turns out we can
enhance this map to a ring spectrum map MU ! E. One is suggested to think
about how this is achieved, and discuss with the author during tea.

4. Proof of facts in section 2

Thom’s result follows from the observation that the Hurewicz homomorphism
⇡⇤MU ! H⇤MU is a rational isomorphism, and one can (with a little but not
much e↵ort) use Thom isomorphism to calculate H⇤MU .

Milnor’s result follows from the Adams spectral sequence computation on MU ,
I wish someday we can learn this together.

Lazard’s theorem on the structure of Lazard ring is purely algebraic. For a
complete proof, check Lurie’s lecture notes on chromatic homotopy theory, lecture
2 and 3.



HERE ENTERS ELLIPTIC OBJECTS

JIAHAO HU

1. K-theory, Todd genus and Conner-Floyd theorem

Recall that MU is the universal complex orientable theory, with universal
formal group law. KU is complex orientable, with multiplicative formal group law
Gm.

Thanks to Quillen, there is a ring homomorphism µC : MU
⇤ ! K

0 ' Z

classifying Gm. To understand this map, we work over rationals, i.e. consider
µc ⌦Q : Q[CP 1

,CP
2
, . . . ] ! Q. We see last time that logarithm of Gm is

l(x) = log(1 + x) =
X

(�1)n
1

n+ 1
x
n+1

.

This implies µC([CPn]) = (�1)n = (�1)nTd([CPn]). So µC = ±Td.
Now we consider the functor MU

⇤(�) ⌦L⇤ K
⇤ where K

⇤ is treated as L
⇤-

module via µC . There is a natural transformation MU
⇤(�)⌦L⇤ K

⇤ ! K
⇤(�).

Theorem 1.1 (Conner-Floyd). MU
⇤(�)⌦L⇤ K

⇤ ' K
⇤(�).

Instead of following Conner and Floyd’s original proof, we appeal to Landweber
exactness theorem.

2. Heights of formal group law, Landweber exactness theorem

Let R be a ring and f(x, y) 2 R[[x, y]] be a formal group law.

Definition 2.1. For every n 2 N, we define the n-series [n](t) 2 R[[t]] inductively
to be [n](t) = f([n� 1](t), t).

Since f(x, y) = x+ y + . . . , it immediately follows that [n](t) = nt+O(t2), so
of p = 0 in R, then [p](t) = ct

k+O(tk+1) for some k > 1. It is an algebraic exercise
to show

Proposition 2.2. If p = 0 in R, then either [p](t) = 0 or [p](t) = �t
p
n

+O(tp
n+1)

for some n > 0.

Definition 2.3. Let f be a formal group law over R and fix a prime p. Let vn be

the coe�cient of t
p
n

in p-series [p](t). We say f has height � n if vi = 0 for i < n.

We say f has height exactly n if f has height � n and vn is invertible in R.

Remark 2.4. We always have v0 = p, so f has height � 1 if and only if p = 0 in

R.

Exercise 2.5. Over Z/pZ, Gm has height exactly 1, Ga has height 1.

Height is an invariant of formal group laws. In fact, a quite strong one.

Theorem 2.6 (Lazard). Let k be an algebraically closed field of characteristic p,

then two formal group laws are isomorphic if and only if they have the same heights.

1
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And almost all formal group laws are not isomorphic to the additive formal
group law.

Proposition 2.7. Let f be a formal group law of infinite height over R (necessarily

p = 0), then f is isomorphic to additive formal group law.

It is clear there are universal elements v0 = p, v1, v2, · · · 2 L.

Theorem 2.8 (Landweber exactness). Let M be a (graded) module over the Lazard

ring L, then MU
⇤(�)⌦L M is exact if and only if for each prime p, the sequence

v0, v1, v2, . . . is a regular sequence for M .

Exercise 2.9. Let R = Z[�,��1] with formal group law x+y+�xy. Then Z[�,��1]
is Landweber exact and gives complex K-theory. This proves Conner-Floyd theorem.

3. Elliptic cohomology

We follow Landweber, Ravenel and Stong’s original construction.

3.1. Formal group law of Jacobi quartic. Let �, " be indeterminates of weight
2 and 4, respectively, and introduce the graded polynomial ring

M⇤ = Z[
1

2
][�, "].

The weight refers to the weight of modular forms, as M⇤(�0(2)) = C[�, "]. An
algebraic topologist would assign degree 2k to an element of weight k. Introduce
the di↵erential

! = (1� 2�x2 + "x
4)�

1
2 dx = R(x)�

1
2 dx

on the Jacobi quartic
y
2 = 1� 2�x2 + "

4
,

and the corresponding logarithm

g(x) =

Z
x

0
(1� 2�t2 + "t

4)�
1
2 dt 2 M⇤ ⌦Q[[x]].

A formal group law over M⇤ is defined by FE(x, y) = g
�1(g(x)+g(y)), and one has

Euler’s explicit formula

FE(x, y) =
x
p
R(y) + y

p
R(x)

1� "x2y2
.

The appropriate determinant, of weight 12, is

� = "(�2 � ")2.

It is well-known that formal group laws of elliptic curves are of height 1 or 2.

3.2. Elliptic genera and elliptic cohomology. A multiplicative genus, in Hirze-
bruch’s sense is a ring homomorphism

' : ⌦SO

⇤ ! R

to a commutative algebra over Q, with '(1) = 1. The best examples are the
signature and Â-genus. Evidently, a multiplicative genus is uniquely determined by
its logarithm

g(x) =
X

n�0

'(CP 2n)

2n+ 1
x
2n+1

,
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which can be any odd series in R[[x]] with linear term x.
By an elliptic genus, in Ochanine’s sense, is meant a multiplicative genus ' for

which there are elements �, " 2 R so that the logarithm of ' has the form

g(x) =

Z
x

0
(1� 2�t2 + "t

4)�
1
2 dt.

Exercise 3.1. � = '(CP 2) and " = '(HP
2).

Exercise 3.2. One obtains the signature by taking � = " = 1, and Â-genus by

taking � = � 1
8 and " = 0. Note these are the only two cases, up to scaling, where

� = 0.

It is evident ' maps ⌦SO
⇤ into Q[�, "], but by Euler’s formula ' even takes

value in M⇤ = Z[ 12 ][�, "].

Theorem 3.3 (Landweber, Ravenel, Stong). The functor

⌦SO

⇤ (�)⌦⌦SO
⇤

M⇤[�
�1]

is Landweber exact.



QUANTUM INVARIANTS OF MANIFOLDS
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1. Equivariant index formula for circle action

1.1. Atiyah-Singer index theorem. Arguably this is the best theorem in the
past century.

Theorem 1.1 (Atiyah-Singer). Let X be a closed oriented smooth manifold of
dimension 2n and D = (Di : �Ei ! �Ei+1) an elliptic complex (i = 0, . . . ,m� 1),
associated to the tangent bundle. Then the index of this complex is determined by
the following formula

ind(D) = (�1)n
 ⇣ 1

e(T ⇤X)

mX

i=0

(�1)ich(Ei)
⌘
· td(TX ⌦ C)

!
[X].

Recall that ind(D) is defined to be the Euler characteristic of the elliptic com-
plex D. Since each Di is elliptic, coker(Di) is finite dimensional, so Euler charac-
teristic is well-defined. The proof of Atiyah-Singer index theorem is trivial analysis
plus trivial topology. The topological essence of index theorem is the formula

ch(UK) = ±UH/Td

which we established last time.
For convenience, if we write x1, . . . xn to be the formal Chern roots of TX,

then

ind(D) =

0

@
⇣ mX

i=0

(�1)ich(Ei)
⌘⇣ nY

j=1

xj

1� e�xj
· 1

1� exj

⌘
1

A [X].

One has to use this formula with caution, since the formula is neither symmetric
in x

2
j
nor an invertible power series.

Now let’s discuss several important examples.

1.2. The de Rham complex. Let X be compact smooth of dimension k and T

its tangent bundle. Let Ei = ⇤i(T ⇤⌦C). The exterior derivative d yields an elliptic
complex. From definition, ind(d) =

P
i
dimC H

i

dR
= e(X). On the other hand, we

have

ch

⇣ nX

i=0

(⇤i(T ⇤ ⌦ C)) · yi
⌘
=

nY

j=1

⇣
(1 + ye

xj )(1 + ye
�xj )

⌘
.

1.3. The Dolbeault complex. Let X be a complex n-dimensional manifold, T
the holomorphic tangent bundle, i.e. T = T

0,1. With notation A
p,q = �(⇤p

T
⇤ ⌦

⇤q
T

⇤
). The index of @̄ for fixed p is denoted by �

p, namely

�
p =

nX

q=0

(�1)q · hp,q
.

1
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It then follows from index formula that

�y :=
nX

p=0

�
p · yp =

nY

j=1

⇣
(1 + ye

�xj )
xj

1� e�xj

⌘
[X].

If we replace x by x(1 + y) then an easy exercise shows �y is the genus belonging
to the power series

Q(x) =
x(1 + ye

�x(1+y))

1� e�x(1+y)
.

In particular, �0 is Todd genus or sometimes called arithmetic genus, ��1 is the
Euler characteristic, and �1 is the signature.

1.4. The signature as an index. Let X be compact oriented 4k-dimensional
smooth manifold, let T be its tangent bundle provided with a Riemannian metric.
Recall that Hodge star operator has the property that ?

2 = (�1)i(n�i) · id on
�i(T ⇤ ⌦ C). For this, we define ⌧ = (�1)i(i�1)/2+k

?, then ⌧
2 = id holds. Hence ⌧

decompose ⇤(T ⇤ ⌦ C) into direct sum of sub-bundles E+ with eigenvalue +1 and
E� with eigenvalue �1.

Note that ⌧(d + d
⇤) = �(d + d

⇤)⌧ , one can consider the elliptic operator
d+ d

⇤ : �E+ ! �E�. One can show

ch(E+)� ch(E�) =
2kY

j=1

(exj � e
�xj ).

It then follows that ind(d+ d
⇤) = sign(X).

1.5. The equivariant index. Let X be a compact complex manifold of complex
dimension n, and as before D = (Di : �Ei ! �Ei+1) be an elliptic complex. Let
G be a compact topological group acting on X by holomorphic maps. In addition,
assume G acts on the elliptic complex, i.e. G also acts on the bundle Ei (e.g. if all
bundles Ei are associated to tangent bundle of X) and this action commutes with
the di↵erential operators Di. Then G also acts on the cohomology groups H

i of
the complex.

Definition 1.2. The equivariant index ind(g,D) of D is defined to be

ind(g,D) :=
mX

i=0

(�1)i · tr(g,Hi).

Example 1.3. ind(D) = ind(id,D).

Now we want to compute equivariant index using topological information of
X and the group action. Let X

g = x 2 X : g · x = x denote the fixed point set
of g. This is a complex submanifold of X which is not necessarily connected.
We furthermore decompose X = [Xg

⌫
into connected components. The X

g

⌫
are

connected submanifolds of X of possibly di↵erent dimensions.
Let’s fix such a component Y = X

g

⌫
. For a point p 2 Y , g acts linearly on

the tangent space TpX. There exists a Hermitian metric on TX|Y so that g acts
unitarily on TX|Y . Therefore TpX decomposes into the direct sum of eigenspaces
Np,� for eigenvalues � of modulus one. Since G acts continuously on X, one further
obtains an eigen bundleN� over Y . Indeed, N1 is precisely the tangent bundle TY of
Y . Under the variation of points p in Y , the eigenvalues cannot change since depend
only on the isomorphism type of representation on TpX of the subgroup generated
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by g, and representation ring of this subgroup is discrete. With d� = rkN� we
therefore have:

TX|Y = ��N�, c(N�) =
d�Y

i=1

(1 + x
(�)
i

).

Now we are in position to write down an index formula for ind(g,D), as a sum
of contributions a(Xg

⌫
) corresponding to each components of Xg

⌫
. We recall the

original index formula

ind(D) =

0

@
⇣ mX

i=0

(�1)ich(Ei)
⌘
e(X)

⇣ nY

j=1

1

1� e�xj
· 1

1� exj

⌘
1

A [X].

To obtain the contribution from Y = X
g

⌫
, we replace, in the above formula, X

by Y , exi by �
�1 · exi and e

�xi by � · e�xi (where xi) belongs to the eigenvalue �.
We apply the same process to the terms ch(Ei). This can obviously be done if the
Ei are associated to the tangent bundle of X. For � = 1, the term 1 � �

�1 · exi

is not invertibe; but those xi, which belong to the eigenvalue 1, originate from the
tangent bundle of Y and so cancel with the factor e(Y ).

1.6. The equivariant �y-genus for S
1
-actions. Applying the recipe to the �y-

genus, we obtain from

�y(X) =
nX

p=0

�
p(X) · yp =

nY

i=1

⇣
(1 + ye

�xi)
xi

1� e�xi

⌘
[X]

the equivariant formula

�y(g,X) =
nX

p=0

�
p(g,X) · yp =

X

⌫

a(Xg

⌫
),

where we have for each fixed point component Y = X
g

⌫
:

a(Y ) =
⇣Y

� 6=1

d�Y

i=1

�1 + y · �e�x
(�)
i

1� �e�x
(�)
i

�
·

d1Y

i=1

�
1 + ye

�x
(1)
i
� x

(1)
i

1� e�x
(1)
i

⌘
[Y ].

Now let G = S
1 and let q 2 S

1 be a topological generator. Then we have
X

q = X
S

1

. In this situation, the whole group S
1 acts on the restriction of the

tangent bundle of X to X
q. Recall if S1 acts on a vector space, then one writes

V =
X

k2Z
q
k
Vk

which means that V = �kVk and q acts on Vk as multiplication by q
k. This way,

we have a splitting

TX|Y =
1X

k=�1
q
k
Nk.

The eigenvalues � of q are now all integral powers qk of q, the equivariant �y-genus
is then (dk = rkNk)

�y(q,X) =
X

⌫

a(XS
1

⌫
)
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with

a(XS
1

⌫
) =

⇣ d0Y

i=1

x
(1)
i

1 + ye
�x

(1)
i

1� e�x
(1)
i

Y

k 6=0

dkY

j=1

�1 + y · qke�x
(qk)
j

1� qke
�x

(qk)
j

�⌘
[XS

1

⌫
].

Note that �y(q,X) is a finite Laurent series in q, and it is easy to see

a(XS
1

⌫
)q=0 = �y(X

S
1
⌫ ) · (�y)

P
k<0 dk , a(XS

1

⌫
)q=1 = �y(X

S
1

⌫
) · (�y)

P
k>0 dk .

Hence �y(q,X) is constant in q, and �y(q,X) ⌘ �y(id,X) = �y(X).

1.7. The equivariant signature for S
1
-actions. Now let X be a 2n-dimensional

compact, oriented, di↵erentiable manifold with S
1-action. Note that TX is a real

vector bundle, we have splitting

TX|
XS1

⌫
=
X

k�0

q
k
Nk = TX

S
1

⌫
�
X

k>0

q
k
Nk.

The bundleNk are real bundles, which for k > 0 obtain a complex structure through
the identification with a complex vector bundle. This identification yields a unique
orientation on Nk, in view of the condition k > 0. We orient N0 = TX

S
1

⌫
so that

all orientations taken together yield the orientation of X.
Having made this splitting, the equivariant index theorem yields sign(q,X) =P

⌫
a(XS

1

⌫
) with

a(XS
1

⌫
) =

⇣ d0Y

i=1

x
(1)
i

1 + e
�x

(1)
i

1� e�x
(1)
i

Y

k>0

dkY

j=1

�1 + q
k
e
�x

(qk)
j

1� qke
�x

(qk)
j

�⌘
[XS

1

⌫
].

Since S
1 is connected, it acts trivially on cohomology, therefore the equivariant

signature does not depend on q. We can put q = 0 and have

sign(X) =
X

⌫

sign(XS
1

⌫
).

2. Quantization of classical genera

Let X be a compact, oriented manifold of dimension 4k. The the free loop
space of X is the infinite dimensional manifold

LX = {g : S1 ! X : g di↵erentiable}.

There is a canonical action of S1 on LX, with (LX)S
1

= X as constant loops. It is
not hard to show that at a constant loop g ⌘ p 2 X, Tp(LX) ' L(TpX) where the
S
1 acts canonically on L(TpX). We shall denote TX⌦C by TC, we have a splitting

T (LX)|X = TX �
X

n>0

q
n
TC.

2.1. Quantization of signature-the construction. With the standard notation

p(X) = 1 + p1 + · · ·+ pk = (1 + x
2
1) · · · (1 + x

2
2k)

c(TC) = (1 + x1) · · · (1 + x2k)(1� x1) · · · (1� x2k)

The recipe of the S
1-equivariant signature formula on free loop space yields
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Definition 2.1. The quantum signature of X is

sign(q,LX) :=
2kY

i=1

⇣
xi

1 + e
�xi

1� e�xi
·

1Y

n=1

✓
(1 + q

n
e
�xi)(1 + q

n
e
xi)

(1� qne�xi)(1� qnexi)

◆⌘
[X].

This power series is symmetric in x
2
i
, and after evaluation on X is a power

series in q with rational coe�cients. Recall that

Definition 2.2 (Twisted signature). Let X be an oriented manifold of dimension
2k and W a complex vector bundle over X. Then the signature of X with values
in the vector bundle W is defined as

sign(X,W ) :=
⇣ kY

i=1

xi

1 + e
�xi

1� e�xi
· ch(W )

⌘
[X].

Definition 2.3 (Twisted Â-genus). Let X be an oriented manifold of dimension
2k and W a complex vector bundle over X. Then the Â-genus of X with values in
the vector bundle W is defined as

Â(X,W ) :=
⇣ kY

i=1

xi/2

sinh(xi/2)
· ch(W )

⌘
[X].

Then with an practiced eye, one observes

Theorem 2.4. We have

sign(q,LX) = sign(X,

1O

n=1

SqnTC ⌦
1O

n=1

⇤qnTC).

Therefore sign(q,LX) is a power series in q with integral coe�cients and constant
term (the coe�cient of q0) sign(X).

It is well-known that a product
Q
(1 + ui) converges absolutely provided the

series
P

|ui| converges, hence in our case only for |q| < 1. We have therefore defined
quantum signature formally, but it is meaningful as a power series.

2.2. Quantization of signature-modularity. Notice that quantum signature is
not normalized, in the sense that it has constant term

⇣
2 ·

1Y

n=1

(1 + q
n)2

(1� qn)2

⌘2k
.

Lemma 2.5. The infinite product
⇣
2 ·

1Y

n=1

(1 + q
n)2

(1� qn)2

⌘�4

is a modular form of weight 4 on �0(2), and is indeed precisely our modular form
".

Thus we can rewrite the quantum signature as

sign(q,LX) = '(X) · "�k/2

where '(X) is the genus associated to

x

f(x)
=

1

2

x

tanh(x/2)
·

1Y

n=1

✓
(1 + q

n
e
�xi)(1 + q

n
e
xi)

(1� qne�xi)(1� qnexi)
:
(1 + q

n)2

(1� qn)2

◆
.
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It turns out this is precisely the expansion of x
p
}(x)� e1. Recall that a genus is

elliptic if and only if f(x) = x/Q(x) satisfies (f 0)2 = 1� 2�f2 + "f
4. One can then

check

Corollary 2.6. '(X) is an elliptic genus of X, hence a modular form of weight 2k
on �0(2). The quantum signature sign(q,LX) = '(X) ·"�k/2 is a modular function
on �0(2) for dimX = 4k ⌘ 0(8).

2.3. Quantization of signature-expansion at cusp 0. The modular curve of
�0(2) has two cusps, namely 0 and 1. Both '(X) and " are written in the local
coordinate q at the cusp 1. If we write them in local coordinate q̃ at the cusp 0,
then we have

Proposition 2.7.

'̃(X) · "̃�k/2 = q̃
�k/2 · Â(X,

O

n=2m+1

⇤�q̃nTC ⌦
O

n=2m+2

Sq̃nTC).

2.4. The Witten genus. Let L ⇢ C be a lattice, and let

�L(x) = x ·
Y

!2L\{0}

⇣
(1� x

!
) exp(

x

!
+

x
2

2!2
)
⌘
.

Definition 2.8 (Witten genus). For a compact, orientable smooth manifold X
4k

we define its Witten genus to be

'W (X) =
⇣ 2kY

i=1

xi

�L(xi)

⌘
.

It turns out Witten genus is elliptic, and the power series Q(x) = x

�L(x) has a
beautiful product representation

Q(x) =
x/2

sinh(x/2)
·

1Y

n=1

(1� q
n)2

(1� qnex)(1� qne�x)
e
�G2(⌧)·x2

.

Here G2(⌧) =
1
2

P
!2L0

1
!2 = � 1

24 + q + 3q2 + . . . is the Eisenstein series of weight
2. If we use our standard notation p(X) =

Q
(1 + x

2
i
), then we obtain for Witten

genus

Lemma 2.9.

'W (X) =
⇣ 2kY

i=1

� xi/2

sinh(xi/2)

1Y

n=1

(1� q
n)2

(1� qnexi)(1� qne�xi)

�
e
�G2(⌧)·

P2k
i=1 x

2
i

⌘
[X]

Corollary 2.10. If X is a string manifold, then p1(X) =
P

x
2
i
= 0, hence the

Witten genus

'W (X) = Â(X,

1O

n=1

SqnTC) ·
1Y

n=1

(1� q
n)4k

is a modular form of weight 2k with integral Fourier expansion.


