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Abstract

The exterior differential d on complex-valued differential forms of complex manifolds
decomposes into the Cauchy-Riemann operator and its complex conjugate. Meanwhile
on almost complex manifolds, the exterior d in general has two extra components, thus
decomposes into four operators. In this talk, I will introduce these operators and discuss
the structure of the (graded) associative algebra generated by these four components of d,
subject to relations deduced from d squaring to zero. Then I will compare this algebra
to the corresponding one in the complex (i.e. integrable) case, we shall see they are very
different strictly speaking but similar in a weak sense (quasi-isomorphic). This is based on
joint work with Shamuel Aueyung and Jin-Cheng Guu[AGH22].

1 Decomposition of d on almost complex manifolds

Given a complex manifold M of complex dimension n, locally it admits complex coordinates
zi = xi +

√
−1yi, i = 1, . . . , n. Its tangent space locally is spanned by ∂/∂xi, ∂/∂yi and its

complexified tangent space is spanned by ∂/∂zi and ∂/∂zi. Let T 1,0M denote the span of
∂/∂zi’s and T 0,1M the span of ∂/∂zi’s. Thus we have

TM ⊗ C = T 1,0M ⊕ T 0,1M

The two subspaces T 1,0 and T 0,1 of complexified tangent bundle can be characterized without
coordinates as follows. Consider the linear map J : TM → TM defined by

J(∂/∂xi) = ∂/∂yi, J(∂/∂yi) = −∂/∂xi

It turns out J is globally defined and satisfies J2 = −1. Then T 1,0 and T 0,1 are eigenspaces of
J with eigenvalue ±

√
−1.

Dually, the complexified cotangent space admits a decomposition

T ∗M ⊗ C = T ∗
0,1M ⊕ T ∗

1,0M

where locally T ∗
1,0 and T ∗

0,1 are spanned by dzi’s and dzi’s respectively. The above decomposition
yields a decomposition

ΛkT ∗M ⊗ C =
!

p+q=k

ΛpT ∗
1,0M ⊗ ΛqT ∗

0,1M

and consequently the Hodge decomposition1

Ωk(M) =
!

p+q=k

Ωp,q(M)

where Ωk means group of complex valued differential k-forms and Ωp,q the group of smooth
sections of ΛpT ∗

1,0M ⊗ ΛqT ∗
0,1M , usually referred to as the (p, q)-forms.

Note that the Hodge decomposition of differential forms does not rely on the complex co-
ordinates on M , but rather only depends on the linear map J : TM → TM . We call a (real)
manifold M equipped with such a linear map an almost complex manifold and such J is called
its almost complex structure.

∗This is an informal note, citations are not carefully put
1this is not a standard terminology
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Now we would like to understand the chain complex (Ω•(M), d) with respect to the Hodge
decomposition. First of all, Ω•(M) is a (graded) algebra when equipped with wedge product,
called the de Rham algebra, on which d is a derivation. Since the de Rham algebra is generated
by 0-forms (smooth functions) and 1-forms, it suffices to understand the action of d on 0-forms
and 1-forms. It follows that d decomposes, with respect to the Hodge decomposition as

d = µ+ ∂ + ∂ + µ

It is better to write this pictorially as

d =

•

•

• •

•

∂

∂

µ

µ

Then d2 pictorially is

d2 =

•

•

• •

• •

• • •

• •

•

The equation d2 = 0 is equivalent to the vanishing of the following diagrams

• •

• • • •

• • • • •

• • • • •

• • • • • •

• • • • • •

• •

If our almost complex manifold (M,J) actually admits complex coordinates, i.e. complex/holomorphic,
then it is well-known that d has only two components ∂, ∂:

d =

•

• •
∂

∂
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subject to relations given by the vanishing of

•

• • •

• • •

• • •

2 Algebra generated by the components of d

From the above discussion, the relations among the four components of d looks to be rather
complicated. We would like to clarify what the relations “mean”. More precisely, consider the
algebra

A =
free associative algebra generated by µ, ∂, ∂, µ

relations given above by d2 = 0

Question. What is the structure of the algebra A?

This is a somewhat vague question, a more precise one can be: what is the dimension of A
in each degree? Our answer to the above question is based on a sequence of observations.

Observation 1. The relations among µ, ∂, ∂, µ can be written using (graded) Lie brackets.

Indeed, d2 = 0 is equivalent to [d, d] = 2d2 = 0. The relations can be written as

[µ, µ] = 0, [µ, µ] = 0;

[µ, ∂] = 0, [µ, ∂] = 0;

[µ, ∂] = −1

2
[∂, ∂], [µ, ∂] = −1

2
[∂, ∂];

[µ, µ] = −[∂, ∂].

(1)

Theorem 1. A = Ug where g is the graded Lie algebra generated by µ, ∂, ∂, µ and U means
universal enveloping algebra.

Proof. Observe A is a primitively generated Hopf algebra in which µ, ∂, ∂, µ are primitive. Then
apply Milnor-Moore.

Therefore, determining the structure of A amounts to determining that of g. Note that g
is much smaller than A in the following sense. If β1,β2, . . . are Betti numbers of g, that is
βd = dim gd the degree d subspace of g, then those of A can be read off from its Poincaré series

"

i

(1 + x2i+1)β2i+1

(1− x2i)β2i

Observation 2. There are no relations between only ∂ and ∂ in (1).

Theorem 2. The Lie subalgebra h of g generated by ∂ and ∂ is free.

The proof of this theorem actually requires an understanding of the role played by µ, µ–they
are derivations on h and g is a “semi-direct product” of h and µ, µ.

Observation 3. (The adjoint actions of) µ and µ take ∂, ∂ into h.

Theorem 3. h is a Lie ideal of g. Moreover, g = h in degrees ≥ 2.

Proof. The second assertion follows from an easy induction.
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At this point, we have a rather satisfying understanding of g through the exact sequence

0 → h → g → g/h → 0

Here h is the free Lie algebra generated by ∂, ∂, and g/h is an abelian Lie algebra generated by
µ, µ. The extension is through the derivation action of µ, µ on h.

Now let us compare the situation to the complex case. There is a corresponding algebra Ahol

and Lie algebra ghol where

ghol =
free graded Lie algebra generated by ∂, ∂

[∂, ∂] = [∂, ∂] = [∂, ∂] = 0

That is to say, ghol is the abelian Lie algebra generated by ∂, ∂ and thus Ahol is the exterior
algebra generated by ∂, ∂.

The natural quotient map
g → ghol

has a gigantic kernel. Indeed, the difference is roughly (or precisely in degrees ≥ 2) the difference
between free Lie algebra and abelian Lie algebra.

3 Cohomology

The Lie algebra g is equipped with a natural differential [d,−]. As we have pointed out, g and
ghol are very different, so the following fact is surprising to us:

Theorem 4. The quotient map g → ghol is a quasi-isomorphism.

Let us unwind the statement. Notice that ghol is concentrated in degree 1 and [d,−] vanishes
on ghol as it is abelian, we see the cohomology of ghol is itself, concentrated in degree 1. So
the theorem actually says Hk(g, [d,−]) vanishes for k ≥ 2. Since one can explicitly verify the
quotient map yields an isomorphism on H1, the essence of this theorem is the vanishing of higher
cohomologies.

The geometric meaning of the above theorem is, any differential operator of order ≥ 2
constructed from µ, ∂, ∂, µ, if commutes with d, is of the form [d,D] for some operator D.

Proof sketch. From the exact sequence

0 → h → g → g/h → 0

The vanishing of higher (degree> 2) cohomologies of g is equivalent to the same vanishing for
h. Then by the generalized Frölicher spectral sequence of Cirici-Wilson [CW21], it suffices to
prove Hk(h, [µ,−]) = 0 for k > 2 and H2(g, [µ,−]) = 0. Then one passes to universal enveloping
algebra of h, i.e. the free associative algebra generated by ∂, ∂ and apply induction.

Proof of vanishing µ-cohomology for h. First of all, we note adµ ∂ = 0 and

adµ[∂, ∂] = [adµ ∂, ∂]− [∂, adµ ∂] = −1

2
[[∂, ∂], ∂] = 0.

We leave it to the reader to check when k = 1, 2, Hk(h, adµ) is one-dimensional and spanned by
(the equivalence class of) ∂ and [∂, ∂] respectively. Next we observe H(h, adµ) is a Lie algebra
and H1(h) ⊕ H2(h) forms an abelian Lie subalgebra since [∂, ∂] = −2[µ, ∂] is adµ-exact, and
[∂, [∂, ∂]] = 0, [[∂, ∂], [∂, ∂]] = 0 by Jacobi identities.

Now consider the universal enveloping algebra UH(h, adµ) of H(h, adµ). It contains the
universal enveloping algebra of the abelian Lie subalgebra H1(h) ⊕ H2(h), which is the free
graded commutative algebra Λ(∂, [∂, ∂]) generated by ∂ and [∂, ∂]. Meanwhile, since the universal
enveloping algebra functor commutes with cohomology, we have UH(h, adµ) = H(Uh, adµ) where
adµ on Uh is the extended adjoint action. So we get

Λ(∂, [∂, ∂]) ⊂ H(Uh, adµ).

4



By Poincaré-Birkhoff-Witt theorem, our proposition is equivalent to Λ(∂, [∂, ∂]) = H(Uh, adµ).
This equality clearly holds in degrees ≤ 2. We plan to prove this by induction on degree, but
we need to make some preparations.

For simplicity of notation, denote B = Uh, which is the free tensor algebra on ∂, ∂. Under
the isomorphism

φ : Bk−1 ⊕Bk−1
∼= Bk, (x, y) *→ ∂x+ ∂y,

the differential adµ |Bk
can be written as the matrix

adµ |Bk
∼=

#
− adµ |Bk−1

0

−∂|Bk−1
− adµ |Bk−1

$
(2)

by using the relations (1). To see this, we compute for x, y ∈ Bk−1

[µ, ∂x+ ∂y] = µ∂x− (−1)k∂xµ+ µ∂y − (−1)k∂yµ

= −∂
2
x− ∂µx− (−1)k∂xµ− ∂µy − (−1)k∂yµ

= −∂
%
µx− (−1)k−1xµ

&
− ∂

%
∂x+ µy − (−1)k−1yµ

&

= −∂[µ, x]− ∂(∂x+ [µ, y]).

In particular, by setting x = 0, we see adµ skew commutes with ∂. This means both ±∂ are
morphisms of cochain complexes ±∂ : B• → B•[1], where B• = (B, adµ). Moreover, (2) shows
the mapping cone of −∂ is isomorphic to B•[2] by φ. Then the inclusion of B•[1] into the
mapping cone of −∂ is identified with ∂ : B•[1] → B•[2], and the projection from the mapping
cone of −∂ onto B•[1] is identified with δ : B•[2] → B•[1] which takes ∂x + ∂y to x. It follows
we have an exact triangle

B•
−∂−−→ B•[1]

∂−→ B•[2]
δ−→ B•[1].

This exact triangle induces a long exact sequence in cohomology

· · · → Hk−2(B•)
−∂−−→ Hk−1(B•)

∂−→ Hk(B•)
δ−→ Hk−1(B•)

−∂−−→ Hk(B•) → · · ·

Now we can inductively prove H(B•) = Λ(∂, [∂, ∂]). We note Λ(∂, [∂, ∂]) is one-dimensional
in each degree and spanned by powers of [∂, ∂] and ∂ times powers of [∂, ∂]. Assume the desired

equality is proved in degrees < k. Observe that ∂ vanishes on
%
Λ(∂, [∂, ∂])

&odd
, so if k is even then

from the above long exact sequence we have δ : Hk(B•) → Hk−1(B•) is an isomorphism. On the
other hand, if k is odd, then ∂ : Hk−1(B•) → Hk(B•) is monic since ∂ takes

%
Λ(∂, [∂, ∂])

&even

injectively into
%
Λ(∂, [∂, ∂])

&odd ⊂ Hodd(B•) and thus the above long exact sequence implies

∂ : Hk−1(B•) → Hk(B•) is an isomorphism. So in either case we have Hk(B•) ∼= Hk−1(B•), and

in particular Hk(B•) is one-dimensional. But Hk(B•) ⊃
%
Λ(∂, [∂, ∂])

&k
, therefore Hk(B•) must

be equal to
%
Λ(∂, [∂, ∂])

&k
. This finishes the inductive step and thus completes the proof.

Proof of vanishing of H2 for g. One can compute H2(g, [µ,−]) = 0 and apply the spectral se-
quence of Cirici-Wilson.

Observation 4. There are many inner differentials on g.

For example [µ,−] and [µ,−] are inner differentials on g.

Question. 2 Find all inner differentials on g.

This amounts to solving the equation [a, a] = 0 for a ∈ g1. Writing a = xµ+ y∂ + z∂ + wµ
we have

xz − y2 = 0,

yw − z2 = 0,

xw − yz = 0.

Denote the set of solutions MC(g) = {a ∈ g1 : [a, a] = 0}.
2This question is also addressed in [TT20].
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Theorem 5. PMC(g) is the twisted cubic in P3, parametrized by

P1 → PMC(g), [s:t] *→ ds,t = s3µ+ s2t∂ + st2∂ + t3µ

Proposition 6. For (s, t) ∕= (0, 0), H1(g, [ds,t,−]) is spanned by ∂
∂sds,t and

∂
∂tds,t.

Proof. [ds,t, ds,t] = 0 implies 0 = ∂
∂s [ds,t, ds,t] = 2[ds,t,

∂
∂sds,t]. Similar for t. The fact that they

span can be proved by explicit computation or deduced from deformation theory (cf. Goldman-
Milson).

Corollary 7. For st ∕= 0, H1(g, [ds,t,−]) is spanned by ds,t and

dJs,t =
√
−1(3s3µ+ s2t∂ − st2∂ − 3t3µ).

The operator dJ =
√
−1(3µ+∂−∂−3µ) is in fact the commutator [d, J ] where J is extended

as a derivation on the de Rham algebra.

Corollary 8. The quotient map g → ghol is a quasi-isomorphism with respect to [ds,t,−] for
st ∕= 0.

Proof. ds,t is conjugate to d by multiplication by sp+2qt2p+q on bidegree (p, q) subspace.

4 Interpretations and comments

4.1 Deformation theory

It is expected from deformation theory that the first cohomology H1(g, [ds,t,−]) is the Zariski
tangent space of MC(g) at ds,t. Also the quasi-isomorphism should yield a bijection between
MC(g, [d,−]) and MC(ghol, [d,−]). But the former is isomorphic to MC(g) and the latter is
isomorphic to A2.

4.2 Rational homotopy theory

The subalgebra h is isomorphic to the homotopy Lie algebra of CP1 ∨ CP1 and the subalgebra
of ghol generated by ∂, ∂, which is ghol itself, is isomorphic to the homotopy Lie algebra of
CP∞ × CP∞. So the difference between g and ghol is captured by higher dimensional cells of
CP∞ × CP∞. For example, the 4-dimensional cell corresponds to [∂, ∂]. The quotient

g/([∂, ∂] = 0)

is 6-dimensional whose subalgebra generated by ∂, ∂ is isomorphic to the homotopy Lie algebra
of CP1 × CP1.

4.3 Representation theory

The ultimate goal is through the understanding of A and its representations, we can understand
almost complex manifolds better. But the representation theory for A or equivalently for g looks
to be very complicated.

x

µx
∂
2
x

∂x

∂x

µx

∂2x

∂∂x = −∂∂x

µ(∂x) =
!
− 1

2
− α

"
∂
2
x

∂(µx) =
!
− 1

2
+ α

"
∂
2
x

µ(µx) = β∂∂x

µ(µx) = −β∂∂x

µ(∂x) =
!
− 1

2
− γ

"
∂2x

∂(µx) =
!
− 1

2
+ γ

"
∂2x
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This is a faithful representation of g/[∂, ∂]. We remark that g/[∂, ∂] contains two (or three)
copies of graded Heisenberg Lie algebra.

One might wish to design certain cohomology groups that are able to distinguish different
representations of g. My suggestion is to consider the role of dJ and define

H•
BC =

ker d

im ddJ

and its dual notion

H•
A =

ker ddJ

im d

The catch of this definition is that HBC is graded, real, but not multiplicative because (dJ)2 ∕= 0
in general. One might say the failure of HBC to be multiplicative measures the failure of J to
be integrable.

We note there are other definitions of Bott-Chern and Aeppli cohomology for almost complex
manifolds. See [CPS21] for example.

One probably should justify either of the definition by relating those groups to geometry like
Bott and Chern did, or to quantities from representations of g.
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