Four components of d on almost complex manifolds^{*}

Jiahao Hu

Abstract

The exterior differential d on complex-valued differential forms of complex manifolds decomposes into the Cauchy-Riemann operator and its complex conjugate. Meanwhile on almost complex manifolds, the exterior d in general has two extra components, thus decomposes into four operators. In this talk, I will introduce these operators and discuss the structure of the (graded) associative algebra generated by these four components of d, subject to relations deduced from d squaring to zero. Then I will compare this algebra to the corresponding one in the complex (i.e. integrable) case, we shall see they are very different strictly speaking but similar in a weak sense (quasi-isomorphic). This is based on joint work with Shamuel Aueyung and Jin-Cheng Guu[AGH22].

1 Decomposition of *d* on almost complex manifolds

Given a complex manifold M of complex dimension n, locally it admits complex coordinates $z^i = x^i + \sqrt{-1}y^i$, i = 1, ..., n. Its tangent space locally is spanned by $\partial/\partial x^i$, $\partial/\partial y^i$ and its complexified tangent space is spanned by $\partial/\partial z^i$ and $\partial/\partial \overline{z}^i$. Let $T^{1,0}M$ denote the span of $\partial/\partial \overline{z}^i$'s and $T^{0,1}M$ the span of $\partial/\partial \overline{z}^i$'s. Thus we have

$$TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$$

The two subspaces $T^{1,0}$ and $T^{0,1}$ of complexified tangent bundle can be characterized without coordinates as follows. Consider the linear map $J: TM \to TM$ defined by

$$J(\partial/\partial x^i) = \partial/\partial y^i, \quad J(\partial/\partial y^i) = -\partial/\partial x^i$$

It turns out J is globally defined and satisfies $J^2 = -1$. Then $T^{1,0}$ and $T^{0,1}$ are eigenspaces of J with eigenvalue $\pm \sqrt{-1}$.

Dually, the complexified cotangent space admits a decomposition

$$T^*M \otimes \mathbb{C} = T^*_{0,1}M \oplus T^*_{1,0}M$$

where locally $T_{1,0}^*$ and $T_{0,1}^*$ are spanned by dz^i 's and $d\overline{z}^i$'s respectively. The above decomposition yields a decomposition

$$\Lambda^k T^* M \otimes \mathbb{C} = \bigoplus_{p+q=k} \Lambda^p T^*_{1,0} M \otimes \Lambda^q T^*_{0,1} M$$

and consequently the Hodge decomposition¹

$$\Omega^k(M) = \bigoplus_{p+q=k} \Omega^{p,q}(M)$$

where Ω^k means group of complex valued differential k-forms and $\Omega^{p,q}$ the group of smooth sections of $\Lambda^p T_{1,0}^* M \otimes \Lambda^q T_{0,1}^* M$, usually referred to as the (p,q)-forms.

Note that the Hodge decomposition of differential forms does not rely on the complex coordinates on M, but rather only depends on the linear map $J: TM \to TM$. We call a (real) manifold M equipped with such a linear map an almost complex manifold and such J is called its almost complex structure.

^{*}This is an informal note, citations are not carefully put

¹this is not a standard terminology

Now we would like to understand the chain complex $(\Omega^{\bullet}(M), d)$ with respect to the Hodge decomposition. First of all, $\Omega^{\bullet}(M)$ is a (graded) algebra when equipped with wedge product, called the de Rham algebra, on which d is a derivation. Since the de Rham algebra is generated by 0-forms (smooth functions) and 1-forms, it suffices to understand the action of d on 0-forms and 1-forms. It follows that d decomposes, with respect to the Hodge decomposition as

$$d = \overline{\mu} + \overline{\partial} + \partial + \mu$$

It is better to write this pictorially as

 $d^2 =$

Then d^2 pictorially is

The equation $d^2 = 0$ is equivalent to the vanishing of the following diagrams

If our almost complex manifold (M, J) actually admits complex coordinates, i.e. complex/holomorphic, then it is well-known that d has only two components $\overline{\partial}, \partial$:

subject to relations given by the vanishing of

2 Algebra generated by the components of d

From the above discussion, the relations among the four components of d looks to be rather complicated. We would like to clarify what the relations "mean". More precisely, consider the algebra

$$A = \frac{\text{free associative algebra generated by } \overline{\mu}, \partial, \partial, \mu}{\text{relations given above by } d^2 = 0}$$

Question. What is the structure of the algebra A?

This is a somewhat vague question, a more precise one can be: what is the dimension of A in each degree? Our answer to the above question is based on a sequence of observations.

Observation 1. The relations among $\overline{\mu}, \overline{\partial}, \partial, \mu$ can be written using (graded) Lie brackets.

Indeed, $d^2 = 0$ is equivalent to $[d, d] = 2d^2 = 0$. The relations can be written as

$$\begin{split} [\overline{\mu}, \overline{\mu}] &= 0, & [\mu, \mu] = 0; \\ [\overline{\mu}, \overline{\partial}] &= 0, & [\mu, \partial] = 0; \\ [\overline{\mu}, \partial] &= -\frac{1}{2} [\overline{\partial}, \overline{\partial}], & [\mu, \overline{\partial}] = -\frac{1}{2} [\partial, \partial]; \\ [\overline{\mu}, \mu] &= -[\overline{\partial}, \partial]. \end{split}$$
(1)

Theorem 1. $A = U\mathfrak{g}$ where \mathfrak{g} is the graded Lie algebra generated by $\overline{\mu}, \overline{\partial}, \partial, \mu$ and U means universal enveloping algebra.

Proof. Observe A is a primitively generated Hopf algebra in which $\overline{\mu}, \overline{\partial}, \partial, \mu$ are primitive. Then apply Milnor-Moore.

Therefore, determining the structure of A amounts to determining that of \mathfrak{g} . Note that \mathfrak{g} is much smaller than A in the following sense. If β_1, β_2, \ldots are Betti numbers of \mathfrak{g} , that is $\beta_d = \dim \mathfrak{g}_d$ the degree d subspace of \mathfrak{g} , then those of A can be read off from its Poincaré series

$$\prod_{i} \frac{(1+x^{2i+1})^{\beta_{2i+1}}}{(1-x^{2i})^{\beta_{2i}}}$$

Observation 2. There are no relations between *only* $\overline{\partial}$ and ∂ in (1).

Theorem 2. The Lie subalgebra \mathfrak{h} of \mathfrak{g} generated by $\overline{\partial}$ and ∂ is free.

The proof of this theorem actually requires an understanding of the role played by $\overline{\mu}$, μ -they are derivations on \mathfrak{h} and \mathfrak{g} is a "semi-direct product" of \mathfrak{h} and $\overline{\mu}$, μ .

Observation 3. (The adjoint actions of) $\overline{\mu}$ and μ take $\overline{\partial}, \partial$ into \mathfrak{h} .

Theorem 3. \mathfrak{h} is a Lie ideal of \mathfrak{g} . Moreover, $\mathfrak{g} = \mathfrak{h}$ in degrees ≥ 2 .

Proof. The second assertion follows from an easy induction.

At this point, we have a rather satisfying understanding of \mathfrak{g} through the exact sequence

$$0 \to \mathfrak{h} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{h} \to 0$$

Here \mathfrak{h} is the free Lie algebra generated by $\overline{\partial}, \partial$, and $\mathfrak{g}/\mathfrak{h}$ is an abelian Lie algebra generated by $\overline{\mu}, \mu$. The extension is through the derivation action of $\overline{\mu}, \mu$ on \mathfrak{h} .

Now let us compare the situation to the complex case. There is a corresponding algebra A_{hol} and Lie algebra \mathfrak{g}_{hol} where

$$\mathfrak{g}_{hol} = \frac{\text{free graded Lie algebra generated by } \overline{\partial}, \overline{\partial}}{[\overline{\partial}, \overline{\partial}] = [\overline{\partial}, \overline{\partial}] = [\partial, \overline{\partial}] = 0}$$

That is to say, \mathfrak{g}_{hol} is the abelian Lie algebra generated by $\overline{\partial}, \partial$ and thus A_{hol} is the exterior algebra generated by $\overline{\partial}, \partial$.

The natural quotient map

 $\mathfrak{g}
ightarrow \mathfrak{g}_{hol}$

has a gigantic kernel. Indeed, the difference is roughly (or precisely in degrees ≥ 2) the difference between free Lie algebra and abelian Lie algebra.

3 Cohomology

The Lie algebra \mathfrak{g} is equipped with a natural differential [d, -]. As we have pointed out, \mathfrak{g} and \mathfrak{g}_{hol} are very different, so the following fact is surprising to us:

Theorem 4. The quotient map $\mathfrak{g} \to \mathfrak{g}_{hol}$ is a quasi-isomorphism.

Let us unwind the statement. Notice that \mathfrak{g}_{hol} is concentrated in degree 1 and [d, -] vanishes on \mathfrak{g}_{hol} as it is abelian, we see the cohomology of \mathfrak{g}_{hol} is itself, concentrated in degree 1. So the theorem actually says $H^k(\mathfrak{g}, [d, -])$ vanishes for $k \geq 2$. Since one can explicitly verify the quotient map yields an isomorphism on H^1 , the essence of this theorem is the vanishing of higher cohomologies.

The geometric meaning of the above theorem is, any differential operator of order ≥ 2 constructed from $\overline{\mu}, \overline{\partial}, \partial, \mu$, if commutes with d, is of the form [d, D] for some operator D.

Proof sketch. From the exact sequence

$$0 \to \mathfrak{h} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{h} \to 0$$

The vanishing of higher (degree> 2) cohomologies of \mathfrak{g} is equivalent to the same vanishing for \mathfrak{h} . Then by the generalized Frölicher spectral sequence of Cirici-Wilson [CW21], it suffices to prove $H^k(\mathfrak{h}, [\overline{\mu}, -]) = 0$ for k > 2 and $H^2(\mathfrak{g}, [\overline{\mu}, -]) = 0$. Then one passes to universal enveloping algebra of \mathfrak{h} , i.e. the free associative algebra generated by $\overline{\partial}, \partial$ and apply induction.

Proof of vanishing $\overline{\mu}$ -cohomology for \mathfrak{h} . First of all, we note $\mathrm{ad}_{\overline{\mu}} \overline{\partial} = 0$ and

$$\mathrm{ad}_{\overline{\mu}}[\partial,\overline{\partial}] = [\mathrm{ad}_{\overline{\mu}}\,\partial,\overline{\partial}] - [\partial,\mathrm{ad}_{\overline{\mu}}\,\overline{\partial}] = -\frac{1}{2}[[\overline{\partial},\overline{\partial}],\overline{\partial}] = 0.$$

We leave it to the reader to check when $k = 1, 2, H^k(\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$ is one-dimensional and spanned by (the equivalence class of) $\overline{\partial}$ and $[\partial, \overline{\partial}]$ respectively. Next we observe $H(\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$ is a Lie algebra and $H^1(\mathfrak{h}) \oplus H^2(\mathfrak{h})$ forms an *abelian* Lie subalgebra since $[\overline{\partial}, \overline{\partial}] = -2[\overline{\mu}, \partial]$ is $\mathrm{ad}_{\overline{\mu}}$ -exact, and $[\overline{\partial}, [\overline{\partial}, \overline{\partial}]] = 0, [[\partial, \overline{\partial}], [\partial, \overline{\partial}]] = 0$ by Jacobi identities.

Now consider the universal enveloping algebra $UH(\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$ of $H(\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$. It contains the universal enveloping algebra of the abelian Lie subalgebra $H^1(\mathfrak{h}) \oplus H^2(\mathfrak{h})$, which is the free graded commutative algebra $\Lambda(\overline{\partial}, [\partial, \overline{\partial}])$ generated by $\overline{\partial}$ and $[\partial, \overline{\partial}]$. Meanwhile, since the universal enveloping algebra functor commutes with cohomology, we have $UH(\mathfrak{h}, \mathrm{ad}_{\overline{\mu}}) = H(U\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$ where $\mathrm{ad}_{\overline{\mu}}$ on $U\mathfrak{h}$ is the extended adjoint action. So we get

$$\Lambda(\overline{\partial}, [\partial, \overline{\partial}]) \subset H(U\mathfrak{h}, \mathrm{ad}_{\overline{\mu}}).$$

By Poincaré-Birkhoff-Witt theorem, our proposition is equivalent to $\Lambda(\overline{\partial}, [\partial, \overline{\partial}]) = H(U\mathfrak{h}, \mathrm{ad}_{\overline{\mu}})$. This equality clearly holds in degrees ≤ 2 . We plan to prove this by induction on degree, but we need to make some preparations.

For simplicity of notation, denote $B = U\mathfrak{h}$, which is the free tensor algebra on $\overline{\partial}, \partial$. Under the isomorphism

$$\phi: B_{k-1} \oplus B_{k-1} \cong B_k, (x, y) \mapsto \partial x + \overline{\partial} y,$$

the differential $\operatorname{ad}_{\overline{\mu}}|_{B_k}$ can be written as the matrix

$$\mathrm{ad}_{\overline{\mu}}|_{B_{k}} \cong \begin{pmatrix} -\operatorname{ad}_{\overline{\mu}}|_{B_{k-1}} & 0\\ -\overline{\partial}|_{B_{k-1}} & -\operatorname{ad}_{\overline{\mu}}|_{B_{k-1}} \end{pmatrix}$$
(2)

by using the relations (1). To see this, we compute for $x, y \in B_{k-1}$

$$\begin{split} [\overline{\mu}, \partial x + \overline{\partial}y] &= \overline{\mu}\partial x - (-1)^k \partial x \overline{\mu} + \overline{\mu}\overline{\partial}y - (-1)^k \overline{\partial}y \overline{\mu} \\ &= -\overline{\partial}^2 x - \partial \overline{\mu}x - (-1)^k \partial x \overline{\mu} - \overline{\partial}\overline{\mu}y - (-1)^k \overline{\partial}y \overline{\mu} \\ &= -\partial \left(\overline{\mu}x - (-1)^{k-1} x \overline{\mu}\right) - \overline{\partial} \left(\overline{\partial}x + \overline{\mu}y - (-1)^{k-1} y \overline{\mu}\right) \\ &= -\partial [\overline{\mu}, x] - \overline{\partial}(\overline{\partial}x + [\overline{\mu}, y]). \end{split}$$

In particular, by setting x = 0, we see $\mathrm{ad}_{\overline{\mu}}$ skew commutes with $\overline{\partial}$. This means both $\pm \overline{\partial}$ are morphisms of cochain complexes $\pm \overline{\partial} : B_{\bullet} \to B_{\bullet}[1]$, where $B_{\bullet} = (B, \mathrm{ad}_{\overline{\mu}})$. Moreover, (2) shows the mapping cone of $-\overline{\partial}$ is isomorphic to $B_{\bullet}[2]$ by ϕ . Then the inclusion of $B_{\bullet}[1]$ into the mapping cone of $-\overline{\partial}$ is identified with $\overline{\partial} : B_{\bullet}[1] \to B_{\bullet}[2]$, and the projection from the mapping cone of $-\overline{\partial}$ onto $B_{\bullet}[1]$ is identified with $\delta : B_{\bullet}[2] \to B_{\bullet}[1]$ which takes $\partial x + \overline{\partial} y$ to x. It follows we have an exact triangle

$$B_{\bullet} \xrightarrow{-\partial} B_{\bullet}[1] \xrightarrow{\partial} B_{\bullet}[2] \xrightarrow{\delta} B_{\bullet}[1]$$

This exact triangle induces a long exact sequence in cohomology

$$\cdots \to H^{k-2}(B_{\bullet}) \xrightarrow{-\overline{\partial}} H^{k-1}(B_{\bullet}) \xrightarrow{\overline{\partial}} H^k(B_{\bullet}) \xrightarrow{\delta} H^{k-1}(B_{\bullet}) \xrightarrow{-\overline{\partial}} H^k(B_{\bullet}) \to \cdots$$

Now we can inductively prove $H(B_{\bullet}) = \Lambda(\overline{\partial}, [\partial, \overline{\partial}])$. We note $\Lambda(\overline{\partial}, [\partial, \overline{\partial}])$ is one-dimensional in each degree and spanned by powers of $[\partial, \overline{\partial}]$ and $\overline{\partial}$ times powers of $[\partial, \overline{\partial}]$. Assume the desired equality is proved in degrees $\langle k$. Observe that $\overline{\partial}$ vanishes on $(\Lambda(\overline{\partial}, [\partial, \overline{\partial}]))^{\text{odd}}$, so if k is even then from the above long exact sequence we have $\delta : H^k(B_{\bullet}) \to H^{k-1}(B_{\bullet})$ is an isomorphism. On the other hand, if k is odd, then $\overline{\partial} : H^{k-1}(B_{\bullet}) \to H^k(B_{\bullet})$ is monic since $\overline{\partial}$ takes $(\Lambda(\overline{\partial}, [\partial, \overline{\partial}]))^{\text{even}}$ injectively into $(\Lambda(\overline{\partial}, [\partial, \overline{\partial}]))^{\text{odd}} \subset H^{\text{odd}}(B_{\bullet})$ and thus the above long exact sequence implies $\overline{\partial} : H^{k-1}(B_{\bullet}) \to H^k(B_{\bullet})$ is an isomorphism. So in either case we have $H^k(B_{\bullet}) \cong H^{k-1}(B_{\bullet})$, and in particular $H^k(B_{\bullet})$ is one-dimensional. But $H^k(B_{\bullet}) \supset (\Lambda(\overline{\partial}, [\partial, \overline{\partial}]))^k$, therefore $H^k(B_{\bullet})$ must be equal to $(\Lambda(\overline{\partial}, [\partial, \overline{\partial}]))^k$. This finishes the inductive step and thus completes the proof. \Box *Proof of vanishing of* H^2 for \mathfrak{g} . One can compute $H^2(\mathfrak{g}, [\overline{\mu}, -]) = 0$ and apply the spectral sequence of Cirici-Wilson. \Box

Observation 4. There are many inner differentials on g.

For example $[\overline{\mu}, -]$ and $[\mu, -]$ are inner differentials on \mathfrak{g} .

Question. ² Find all inner differentials on \mathfrak{g} .

This amounts to solving the equation [a, a] = 0 for $a \in \mathfrak{g}_1$. Writing $a = x\overline{\mu} + y\overline{\partial} + z\partial + w\mu$ we have

$$xz - y^{2} = 0,$$

$$yw - z^{2} = 0,$$

$$xw - yz = 0.$$

Denote the set of solutions $MC(\mathfrak{g}) = \{a \in \mathfrak{g}_1 : [a, a] = 0\}.$

²This question is also addressed in [TT20].

Theorem 5. $\mathbb{P}MC(\mathfrak{g})$ is the twisted cubic in \mathbb{P}^3 , parametrized by

$$\mathbb{P}^1 \to \mathbb{P}MC(\mathfrak{g}), [s:t] \mapsto d_{s,t} = s^3\overline{\mu} + s^2t\overline{\partial} + st^2\partial + t^3\mu$$

Proposition 6. For $(s,t) \neq (0,0)$, $H^1(\mathfrak{g},[d_{s,t},-])$ is spanned by $\frac{\partial}{\partial s}d_{s,t}$ and $\frac{\partial}{\partial t}d_{s,t}$.

Proof. $[d_{s,t}, d_{s,t}] = 0$ implies $0 = \frac{\partial}{\partial s}[d_{s,t}, d_{s,t}] = 2[d_{s,t}, \frac{\partial}{\partial s}d_{s,t}]$. Similar for t. The fact that they span can be proved by explicit computation or deduced from deformation theory (cf. Goldman-Milson).

Corollary 7. For $st \neq 0$, $H^1(\mathfrak{g}, [d_{s,t}, -])$ is spanned by $d_{s,t}$ and

$$d_{s,t}^J = \sqrt{-1}(3s^3\overline{\mu} + s^2t\overline{\partial} - st^2\partial - 3t^3\mu)$$

The operator $d^J = \sqrt{-1}(3\overline{\mu} + \overline{\partial} - \partial - 3\mu)$ is in fact the commutator [d, J] where J is extended as a derivation on the de Rham algebra.

Corollary 8. The quotient map $\mathfrak{g} \to \mathfrak{g}_{hol}$ is a quasi-isomorphism with respect to $[d_{s,t}, -]$ for $st \neq 0$.

Proof. $d_{s,t}$ is conjugate to d by multiplication by $s^{p+2q}t^{2p+q}$ on bidegree (p,q) subspace.

4 Interpretations and comments

4.1 Deformation theory

It is expected from deformation theory that the first cohomology $H^1(\mathfrak{g}, [d_{s,t}, -])$ is the Zariski tangent space of $MC(\mathfrak{g})$ at $d_{s,t}$. Also the quasi-isomorphism should yield a bijection between $MC(\mathfrak{g}, [d, -])$ and $MC(\mathfrak{g}_{hol}, [d, -])$. But the former is isomorphic to $MC(\mathfrak{g})$ and the latter is isomorphic to \mathbb{A}^2 .

4.2 Rational homotopy theory

The subalgebra \mathfrak{h} is isomorphic to the homotopy Lie algebra of $\mathbb{CP}^1 \vee \mathbb{CP}^1$ and the subalgebra of \mathfrak{g}_{hol} generated by $\overline{\partial}, \partial$, which is \mathfrak{g}_{hol} itself, is isomorphic to the homotopy Lie algebra of $\mathbb{CP}^\infty \times \mathbb{CP}^\infty$. So the difference between \mathfrak{g} and \mathfrak{g}_{hol} is captured by higher dimensional cells of $\mathbb{CP}^\infty \times \mathbb{CP}^\infty$. For example, the 4-dimensional cell corresponds to $[\partial, \overline{\partial}]$. The quotient

$$\mathfrak{g}/([\partial,\overline{\partial}]=0)$$

is 6-dimensional whose subalgebra generated by $\partial, \overline{\partial}$ is isomorphic to the homotopy Lie algebra of $\mathbb{CP}^1 \times \mathbb{CP}^1$.

4.3 Representation theory

The ultimate goal is through the understanding of A and its representations, we can understand almost complex manifolds better. But the representation theory for A or equivalently for \mathfrak{g} looks to be very complicated.

This is a faithful representation of $\mathfrak{g}/[\partial,\overline{\partial}]$. We remark that $\mathfrak{g}/[\partial,\overline{\partial}]$ contains two (or three) copies of graded Heisenberg Lie algebra.

One might wish to design certain cohomology groups that are able to distinguish different representations of \mathfrak{g} . My suggestion is to consider the role of d^J and define

$$H_{BC}^{\bullet} = \frac{\ker d}{\operatorname{im} dd^J}$$

and its dual notion

$$H_A^{\bullet} = \frac{\ker dd^J}{\operatorname{im} d}$$

The catch of this definition is that H_{BC} is graded, real, but not multiplicative because $(d^J)^2 \neq 0$ in general. One might say the failure of H_{BC} to be multiplicative measures the failure of J to be integrable.

We note there are other definitions of Bott-Chern and Aeppli cohomology for almost complex manifolds. See [CPS21] for example.

One probably should justify either of the definition by relating those groups to geometry like Bott and Chern did, or to quantities from representations of \mathfrak{g} .

References

- [AGH22] Shamuel Auyeung, Jin-Cheng Guu, and Jiahao Hu. On the algebra generated by $\overline{\mu}, \overline{\partial}, \partial, \mu, 2022.$
- [CPS21] Rui Coelho, Giovanni Placini, and Jonas Stelzig. Maximally non-integrable almost complex structures: an *h*-principle and cohomological properties, 2021.
- [CW21] Joana Cirici and Scott O. Wilson. Dolbeault cohomology for almost complex manifolds. Adv. Math., 391:107970, 52, 2021.
- [TT20] Nicoletta Tardini and Adriano Tomassini. Differential operators on almost-hermitian manifolds and harmonic forms. *Complex Manifolds*, 7(1):106–128, 2020.