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Abstract. In this note, we construct Adams spectral sequence and apply it

to compute unoriented ring following Thom.
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1. Introduction

In topology, there are two sets of invariants that are of most interest: homology
groups and homotopy groups. Homology groups is easier to compute by design,
homotopy groups are usually extremely hard to compute but reveal more about
the space. One can then ask, can we extract information from homology to get
homotopy? Adams spectral sequence is invented to serve this purpose, but instead
of homotopy groups we get stable homotopy groups.

In geometry, one wish to classify all manifolds which is very hard. But if one only
wants to classify manifolds up to cobordism, then the problem reduces to compute
the stable homotopy groups of so-called Thom spaces. Then our strategy is to first
understand the homology and cohomology of these Thom spaces and then apply
Adams spectral sequence.

2. Adams spectral sequence

A continuous map f : Y → X induces f∗ : H̃∗(X;Zp) → H̃∗(Y ;Zp), hence we
have a map

φY : [Y,X]→ HomA(H̃∗(X), H̃∗(Y ))

where A is the mod p Steenrod algebra and cohomology are taken to have Zp-
coefficients. Since reduced cohomology and Steenrod powers are stable under sus-
pension, we actually get a map from stable homotopy class of maps from Y to X
to HomA(H̃∗(X), H̃∗(Y )). We shall sighltly abuse the notation and use [Y,X] to
denote the stable homotopy class of maps.

The benefit of passing to stable maps is that now [Y,X] is an abelian group and
φY is a group homomorphism. But in general φY is not an isomorphism, so we
need more information than just HomA(H̃∗(X), H̃∗(Y )).
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Then one realizes that HomA(−, H̃∗(Y )) is just one of a sequence of functors

ExtiA(−, H̃∗(Y )). Now Adams says if we put all those together, then we can get
an approximation to πY∗ (X) where πYk (X) = [ΣkY,X].

Theorem 2.1. If X,Y are reasonable spaces, then there exists a spectral sequence

Es,t2 = Exts,tA (H̃∗(X), H̃∗(Y )) =⇒ πYt−s(X)/non-p-torsion

The second index t merely comes from the grading of H̃∗(X), and one can not
detect non-p-torsion is expected since we are taking Zp-coefficients. We will take
Y = S0 and X = MO,MSO,MU and they are ”reasonable”.

Let’s recall how we compute ExtiR(M,N) in homological algebra. First we take
a free or projective resolution of M

· · · → F2 → F1 → F0 →M → 0

then we apply HomR(−, N) and take cohomology of the sequence

0→ HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ · · ·
we get ExtiR(M,N).

So we wish to construct a ”resolution” of the space X

X → K0 → K1 → K2 → · · ·
so that it induces a free resolution of H̃∗(X)

· · · → H̃∗(K2)→ H̃∗(K1)→ H̃∗(K0)→ H̃∗(X)→ 0

But this is impossible, because cohomology of a space can never be free over A.
The next best thing you have are the Eilenberg-MacLane spaces. H̃∗(K(Zp, n);Zp)
is a free A-module in the stable range, namely from n to 2n. This turns out to be
enough because we are dealing with a stable problem. We inductively define Ki as
follows.

• Find a set of generators αi ∈ H̃∗(X) as A-module. Each αi induces a map
X → K(Zp, ni). Let X0 := X, K0 be the product of these K(Zp, ni)’s.

• Treat X → K0 as an inclusion, let X1 = K0/X. And repeat the above to
get X1 → K1, let X2 = K1/X1.

• Keep doing so.

So we obtain cofibrationsXs → Ks+1 → Xs+1 = Ks+1/Xs thus long exact sequence

· · · → πY∗ (Xs)→ πY∗ (Ks+1)→ πY∗ (Xs+1)→ πY∗−1(Xs)→ · · ·
Therefore ⊕sπY∗ (Xs) and ⊕sπY∗ (Ks) form an exact couple, hence we get a spectral
sequence.

• Es,t1 = πYt (Ks) and d1 : Es,t1 → Es+1,t
1 is induced by the map Ks → Ks+1.

• Consider the map

πYt (Ks)→ HomA(H̃∗(Ks), H̃
∗(ΣtY )) = Homt

A(H̃∗(Ks), H̃
∗(Y ))

Here Homt means map of degree t. This is an isomorphism if H̃∗(Ks) is

free over A. However H̃∗(Ks) is only free in the stable range.
• Now we can suspend X so that X is N -connected, and thus are Ks from

construction so H̃∗(Ks) is free below 2N . Finally we take N → ∞ and

pretend H̃∗(Ks) free over A.

• Therefore Er,t1 ' Homt
A(H̃∗(Ks), H̃

∗(Y )) and Es,t2 ' Exts,t(H̃∗(X), H̃∗(Y )).

If we take Y = S0, then
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Corollary 2.2. There is a spectral sequence

Es,t2 = Exts,tA (H̃∗(X),Zp) =⇒ πst−s(X)

Remark 2.3. I was cheating by taking N → ∞. The proper way is to replace
spaces by spectra. The cohomology of an Eilenberg-MacLane spectrum is indeed free
over A.

3. Determination of unoriented bordism

Let BOn = GrR(n,∞) be the classfying space of On, and EOn the tautological
bundle over BOn. Then put a point at infinity for each fiber of EOn and collapse
all the points at infinity to one point, we get the Thom space MOn. Let MO be
the limit of all MOn under map MOn → MOn+1 induced by the natural map
BOn → BOn+1 classifying EOn ⊕ R.

By Pontryagin-Thom construction, π∗(MO) is isomorphic to the unoriented bor-
dism ring ΩO∗ . Since two times of any manifold M is the boundary of M × [0, 1],
all elements in ΩO∗ are 2-torsion. So we only need to run Adams spectral sequence
at 2. Thus we take Z2-coefficient in this section.

Theorem 3.1 (Thom). H̃∗(MO;Z2) is a free module over mod 2 Steenrod algebra,
hence the Adams spectral sequence collapses on E1-page.

In order to understand H̃∗(MO), we first understand H̃∗(MOn) and take n →
∞.

It is well-known that H∗(BOn;Z2) ' Z2[w1, w2, . . . , wn] where wi is the i-th
Stiefel-Whitney class of EOn. Using splitting principle, we pretend EOn is a direct
sum of rank 1 real bundles with first Stiefel-Whitney classes t1, t2, . . . , tn. Then
wi = σi(t1, . . . , tn) is the i-th symmetric polynomial in t1, . . . , tn. So H∗(BOn) '
Sym(Z2[t1, . . . , tn]).

By Thom isomorphism reduced H∗(MOn) ' u · H̃∗(BOn)/(u · wn = u2) where
u is the Thom class of EOn. Using splitting principle,

H̃∗(MOn) ' t1 · · · tn · Sym(Z2[t1, . . . , tn]) ' Sym≥n[t1, . . . , tn]

The Steenrod algebra module structure on H̃∗(MOn) is determined by

• Sq(ti) = (1 + Sq1 + Sq2 + Sq3 + . . . )(ti) = ti + t2i
• Sq(a · b) = Sq(a) · Sq(b) for all a, b ∈ H̃∗(MOn)

Now we wish to show H̃∗(MOn) is free over A2 in the stable range.

3.1. mod 2 Steenrod algebra. Before we get into the computation, let’s digress
and make a remark on the structure of mod 2 Steenrod algebra. Since A2 is the
limit of H̃∗(K(Z2, n);Z2), we shall describe the algebra H∗(K(Z2, n);Z2).

Definition 3.2. Let I = (i1, i2, . . . , ir) be a sequence of natural numbers.

• |I| = i1 + i2 + · · ·+ ir is called the degree of the sequence.
• I is called admissible, if i1 ≥ 2i2, i2 ≥ 2i3, . . . , ir−1 ≥ 2ir.
• Given an admissible sequence I, its excess e(I) is defined by

e(I) = (i1 − 2i2) + (i2 − 2i3) + · · ·+ (ir−1 − 2ir) + ir

Theorem 3.3 (Serre). The algebra H∗(K(Z2, n);Z2) is the polynomial algebra
generated by the elements SqI(ιn), where ιn is the generator of Hn(K(Z2, n);Z2)
and I runs through the set of all admissible sequences with e(I) < n.
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Sketch of proof. We induct on n. K(Z2, 1) = RP∞ hence H∗(K(Z2, 1);Z2) is poly-
nomial algebra with one generator ι1. For the induction step, we use the fibration
K(Z2, n−1)→ • → K(Z2, n). Now H∗(K(Z2, n−1);Z2) is polynomial algebra gen-
erated by zJ = SqJ(ιn−1), where J runs through the set of all admissible sequences,
and e(J) < n − 1. Let us denote by sJ the degree of zJ , then sJ = n − 1 + |J |.
It is clear that ιn−1 is transgressive element, and that τ(ιn−1) = ιn. Since trans-
gression commutes with Steenrod squares, zJ is transgressive and τ(zJ) = SqJ(ιn).
Then by a (not so easy) Serre spectral sequence argument, H∗(K(Z2, n);Z2) is
polynomial algebra generated by the elements SqL(sJ ,r) ◦ SqJ(ιn), where J runs
through the set of all admissible sequences with e(J) < n − 1 and L(sJ , r) is the
sequence (2r−1sJ , . . . , 2sJ , sJ). To complete the proof, we need the following alge-
braic lemma.

�

Lemma 3.4. For any r ≥ 0, and for any admissible sequence J = (j1, . . . , jk) with
e(J) < n− 1,consider a sequence

I = (2r−1sJ , . . . , 2sJ , sJ , j1, . . . , jk),where sJ = n− 1 + |J |.

Then each admissible sequence I with e(I) < n is listed here exactly once.

Corollary 3.5. For h ≤ n, the rank c(h) of the group Hn+h(K(Z2, n);Z2) is equal
to the number of decompositions of h into summands of type 2m − 1.

Proof. Let θ(Z2, n; t) =
∑
k dimHk(K(Z2, n);Z2)tk, then since H∗(K(Z2, n);Z2)

is a polynomial algebra generated by SqI(ιn), where I admissible and e(I) < n, we
see

θ(Z2, n; t) =
∏

e(I)<n

1

1− tn+|I|
.

In order to simplify this expression, we calculate the number of admissible sequences
I with e(I) < n and |I| = h is fixed. Given I = (i1, . . . , ir), we set α1 = i1 −
2i2, . . . , αr−1 = ir−1 − 2ir, αr = ir. By definition αi ≥ 0 and

∑r
i=1 αi ≤ n − 1.

Clearly, the numbers αi determine uniquely the sequence I. The condition |I| = h
is equivalent to

r∑
i=1

αi(2
i − 1) = h.

Let α0 = n− 1−
∑r
i=1 αi, then

∑r
i=0 αi = n− 1 and

n+ h = 1 +

r∑
i=0

αi · 2i,

or equivalently,

n+ h = 1 + 20 + · · ·+ 20 + 21 + · · ·+ 21 + · · ·+ 2r + · · ·+ 2r,

where 2i occurs αi times. Since
∑r
i=0 αi = n − 1, there are n − 1 powers of 2.

This means that the number of sequence I, satisfying the conditions listed above,
is equal to the number of decompositions of integers h in the form

h = (2m1 − 1) + (2m2 − 1) + · · ·+ (2mn−1 − 1),where m1 ≥ · · · ≥ mn−1 ≥ 0.
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Hence what we want follows from

θ(Z2, n; t) =
∏

m1≥m2≥···≥mn−1≥0

1

tn+(2m1−1)+(2m2−1)+···+(2mn−1−1)

=
∏

m1≥m2≥···≥mn−1≥0

1 + tn · t2
m1−1 . . . t2

mn−1−1 mod t2n+1

= 1 + tn
∑

m1≥m2≥···≥mn−1≥0

t2
m1−1 . . . t2

mn−1−1 mod t2n+1.

�

3.2. Steenrod algebra module structure of H̃∗(MOn). The following is a
sketch of Thom’s computation.

• Let u ∈ H̃n(MOn) be the Thom class, we can show SqI(u) are linearly
independent, where I runs through the set of all admissible sequences
with e(I) < n and |I| < n. Hence the map corresponding to the Thom
class MOn → K(Z2, n) induces injection on cohomology H∗(K(Z2, n)) →
H∗(MOn) in the stable range n ≤ ∗ ≤ 2n.

• Then we peel off the image of H∗(K(Z2, n)) in H∗(MOn), and in the re-
maining we look for the set of linear generators of the smallest degree,
say n1. These then induce a map from MOn to a product of copies of
K(Z2, n1)’s. Similarly we can showH∗(product of K(Z2, n1)’s)→ H∗(MOn)
is again injective in the stable range n ≤ ∗ ≤ 2n.
• You know how the story goes now. Again we peel off those cohomology

classes coming from product of Eilenberg-MacLane spaces and seek for the
smallest degree ones in the remaining, and show that they induce injection
from the cohomology of a product of Eilenberg-MacLane spaces in the stable
range.
• Repeat doing so, we eventually get a map from MOn to a product of

Eilenberg-MacLane spaces which induces isomorphism on cohomology in
the stable range. Pass n → ∞, we see that H∗(MO) is free over mod 2
Steenrod algebra.

Let’s carry out the computation in details.
Note that any class of the type SqI(wk), where the sequence I is not necessarily

admissible, looks like wk ·QI , where QI ∈ Hh(BOn) is a polynomial of total weight
h with respect to wi. One can see this using splitting principle wn = t1 · · · tn. For
example Sqi(wk) = Sqi(t1 · · · tn) = t1 · · · tn ·QI = wn ·QI , and QI is symmetric in
t1, . . . , tn hence a polynomial in w1, . . . , wn. More explicitly, Sqi(wn) = wn ·wi for
i ≤ n.

Let us introduce on the set of monomials wi the lexicographic ordering (R) by
setting wk ≺ wl if k < l. For instance, w4 ≺ w4(w1)2 ≺ w4w2w1 ≺ w4w3.

Now let SqI = Sqi1Sqi2 . . . Sqir , where I = (i1, . . . , ir) is admissible, and let
SqI(wk) = wk ·QI . We examine the highest term of QI with respect to (R).

We claim that QI = wi1wi2 . . . wir+lower terms. For r = 1, Qi1 = wi1 . Assume
this is true for r − 1, then

SqI(wn) = Sqi1(Sqi2 . . . Sqir (wn)) = Sqi1(wn · P ),
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where, by assumption P looks like wi2wi3 . . . wir+lower terms. Hence

Sqi1(wn · P ) =
∑

0≤j≤i1

Sqj(wn)Sqi1−j(P ) = wn
∑
j

wjSq
i1−j(P ).

Consequently, QI =
∑

0≤j≤i1 wjSq
i1−j(P ). To analyze the highest term, we need

Wu formulae, which can be shown using splitting principle:

Sqr(wi) =
∑
t

(
r − i+ t− 1

t

)
wr−twi+t.

In the sum
∑

0≤j≤i1 wjSq
i1−j(P ), the term with j = i1 looks like wi1 · P =

wi1wi2 . . . wir+monomials of lower order in (R). On the other hand, by Wu for-
mulae, Sqi1−j(P ), j < i1 only contains those classes wi for which i < 2i2 ≤ i1. So
QI = wi1 . . . wir+lower terms with respect to (R).

Thus, we see that all classes SqI(wn), where I is any admissible sequence of
total degree h, are linearly independent in the group Hn+h(BOn). Indeed, if there
were a non-trivial relation between these classes, then, taking the highest term with
respect to (R), which looks like wi1wi2 . . . wir by our computation. We would then
see that this term can be linearly expressed as a combination of strictly lower terms,
which is impossible. This proves

Lemma 3.6. The classes SqI(t1 . . . tn), where I runs through the set of all admissi-
ble sequences of total degree h ≤ n, are linearly independent symmetric functions in
ti. Therefore, the map MOn → K(Z2, n) corresponding to the Thom class induces
an injection H∗(K(Z2, n);Z2)→ H∗(MOn;Z2) in the stable range n ≤ ∗ ≤ 2n.

So we have found a copy of Steenrod algebra in the stable range of H∗(MOn)
generated by the Thom class. Next I’m going to write down a set of generators for
H∗(MOn) as Steenrod algebra module, and prove H∗(MOn) is freely generated by
them.

For any number h ≤ k consider the class

Xh
ω =

∑
Sω

(t1)a1+1(t2)a2+1 . . . (tr)
ar+1tr+1 . . . tn,

where Sω is the set of essential permutations and ω = (a1, . . . , ar) is an arbitrary
decomposition of h into summands, with no summand of type 2m − 1 (non-dyadic
decomposition of h). Denote the number of such decomposition by d(h).

Lemma 3.7 (Key lemma). For any dimension m ≤ n, the following classes form
a linear basis of Hn+m(MOn;Z2).

Xm
ωm , Sq

1Xm−1
ωm−1

, Sq2Xm−2
ωm−2

, . . . , SqIhXh
ωh
, . . . , SqIwn,

where SqIh is an admissible of total degree (m−h), and ωh is a non-dyadic decom-
position of h.

Using the Lemma, we can prove

Theorem 3.8 (Thom). MOn has the same homotopy 2n-type as

K(Z2, n)×K(Z2, n+ 2)× · · · × (K(Z2, n+ h))d(h) × · · · × (K(Z2, 2n))d(n),

where d(h) is the number of non-dyadic decompositions of h.
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Proof. Each class Xh
ω corresponds to a mapping Fω : MOn → K(Z2, n+ h). Take

the product of these we get F : MOn → Y = K(Z2, n) × K(Z2, n + 2) × · · · ×
(K(Z2, n + h))d(h) × · · · × (K(Z2, 2n))d(n) induces isomorphism F ∗ : H∗(Y ) →
H∗(MOn) in the stable range. By a standard obstruction theoretical argument, �

Corollary 3.9. The stable homotopy group πh(MO) ' ΩOh is isomorphic to the
direct sum of d(h) groups Z2.

Proof. There’s only 2-torsion in π∗(MO) and Adams spectral sequence at 2 col-
lapses on E1-page. �

Now we must prove the key lemma. As before, to show the classes

Xm
ωm , Sq

1Xm−1
ωm−1

, Sq2Xm−2
ωm−2

, . . . , SqIhXh
ωh
, . . . , SqIwn,

are linearly independent, we need to define a quasi-order relation.

Definition 3.10. Let P be an arbitrary polynomial in variables ti. A variable ti
is a dyadic variable for P , if the exponent of the variable in P is either zero or a
power of 2.

Definition 3.11. By a non-dyadic factor of the monomial (t1)a1(t2)a2 . . . (tr)
ar

we mean the monomial consisting of all non-dyadic variables; denote the number
of the non-dyadic factors by ν. For the set of monomials in (ti) variables we define
a quasi-order relation (Q) as follows: a monomial X is greater than the monomial
Y with respect to (Q) if u(X) > u(Y ) or if u(X) = u(Y ) and ν(X) < ν(Y ).

The motivation for the above definition is the following observation: any variable
tk, which is dyadic for P , is dyadic for Sqi(P ) as well. Indeed, since Sqa(tk)m =(
m
a

)
(tk)m+a (one can see this by induction on a+m), if m is a power of two, then(

m
a

)
is congruent to zero except for a = 0,m.

Proof of Key lemma. For any number h ≤ n let’s consider the classes

Xh
ω =

∑
(t1)a1+1(t2)a2+1 . . . (tr)

ar+1tr+1 . . . tn,

where ω = a1, a2, . . . , ar is a non-dyadic decomposition of h. Note that u(Xh
ω) = r

and ν(Xh
ω) = h + r. After applying SqI to Xh

ω , the dyadic variables stays dyadic,
so the index u of the monomials in SqI(Xh

ω) is essentially less or equal to u(Xh
ω).

Thus the leading term in SqI(Xh
ω) looks like∑

(t1)a1+1(t2)a2+1 . . . (tr)
ar+1 · SqI(tr+1 . . . tn).

Hence any non-trivial linear dependency between

Xm
ωm , Sq

1Xm−1
ωm−1

, Sq2Xm−2
ωm−2

, . . . , SqIhXh
ωh
, . . . , SqIwn,

arises from non-trivial linear dependency between those classes SqIXh
ω , whose lead-

ing terms are of the same index u = r and of the same index ν = r+h. Furthermore,
the decompositions ω of h of these Xh

ω ’s, for which this linear dependence hold,
should be the same to make sure the SqI(Xh

ω) have the same non-dyadic factors.
Therefore, any linear dependence is of the type

∑
λ cλSq

IλXh
ω = 0, containing only

one class Xh
ω .

Let’s write down the (Q)-leading terms of this relation:∑
λ

cλ(t1)a1+1(t2)a2+1 . . . (tr)
ar+1SqIλ(tr+1 . . . tn) = 0.
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All terms of this relation containing a fixed factor (t1)a1+1(t2)a2+1 . . . (tr)
ar+1 should

sum to zero. Thus, ∑
λ

cλSq
Iλ(tr+1 . . . tn) = 0.

But |Iλ| = m− h ≤ n− r for m ≤ n and h ≥ 2r, and Iλ is admissible, by Lemma
3.5 the coefficients cλ are equal to zero.

Finally, by a direct dimension counting, the linearly independent classes

Xm
ωm , Sq

1Xm−1
ωm−1

, Sq2Xm−2
ωm−2

, . . . , SqIhXh
ωh
, . . . , SqIwn,

do form a base for Hn+m(MOn;Z2). The rank of Hn+m(MOn) is equal to the
total number p(m) of decompositions of m into summands. On the orther hand,
the number of the above classes is equal to

∑
h≤m c(m − h)d(h). It is easy to see

that
p(m) =

∑
h≤m

c(m− h)d(h).

Indeed, to each decomposition of m there correspond two decompositions: the
decomposition of h, consisting of summands of the type 2k−1 and the decomposition
of h, consisting of the remaining summands. �


