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Abstract. We construct transcendental entire functions whose Julia sets have

packing dimension in (1, 2). These are the first examples where the computed

packing dimension is not 1 or 2. Our analysis will allow us further show that

the set of packing dimensions attained is dense in the interval (1, 2), and that

the Hausdorff dimension of the Julia sets can be made arbitrarily close to the

corresponding packing dimension.
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1. Introduction

Let f : C→ C be a transcendental (non-polynomial) entire function. We denote

the nth iterate of f by fn. We define the Fatou set, F(f), to be the set of all points

so that {fn}∞n=1 locally forms a normal family. Thus the Fatou set is the “stable”

set for the dynamics of f . We define the Julia set, J (f), to be the complement of

the Fatou set. This is the set where the dynamics of f are chaotic. We refer the

reader to [CG93] and [Sch10] for an introduction to complex dynamics the rational

and transcendental setting, respectively.

One of the goals of complex dynamics is to understand the geometric and topo-

logical properties of the Julia set. In this paper we prove the following theorem.

Theorem 1.1. There exists a transcendental entire function f : C→ C such that

the packing dimension of J (f) ∈ (1, 2).

Stallard asked in [Sta08] if there exists a transcendental meromorphic (we consider

entire functions as a special case of meromorphic functions) function for which the

packing and Hausdorff dimensions of the Julia set are non-integer and equal. Our

techniques generate a family of entire functions, and we will actually prove the

following stronger result which offers positive progress towards the construction of

such a function.

Theorem 1.2. The set of packing dimensions attained by Julia sets of transcen-

dental entire functions is dense in (1, 2). In particular, let s ∈ (1, 2) and ε0 > 0 be

given. Then there exists a transcendental entire f so that

s− ε0 ≤ dimH(J (f)) ≤ dimP(J (f)) ≤ s+ ε0.

In [Bak75], Baker proved that the Julia set of a transcendental entire function

must always contain a non-trivial, compact, connected set, and it follows immedi-

ately that the Hausdorff dimension of the Julia set must always be greater than

or equal to 1. In [Mis81], Misiurewicz showed that the Julia set of ez was the

entire complex plane, and in [McM87] McMullen showed that the Julia sets of

the exponential and sine families of entire functions always have Hausdorff dimen-

sion 2, but need not be all of C. These examples can also have positive or zero

area measure. Reducing the dimension of the Julia set is therefore the difficult

task in the transcendental setting, and in [Sta91], Stallard constructed examples

in the Eremenko-Lyubich class that had Hausdorff dimension arbitrarily close to 1,

and refined this result further in [Sta97] and [Sta00] to include all values in (1, 2).

Moreover, in [Sta96], Stallard showed that in the Eremenko-Lyubich class the Haus-

dorff dimension must be strictly greater than 1. Recently, in [Bis17], Bishop con-

structed a transcendental entire function with Julia set having Hausdorff dimension
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1. This example demonstrates that all values of Hausdorff dimension in [1, 2] can

be achieved.

Less is known about the packing dimension in the transcendental setting. In

[RS05], Rippon and Stallard show that if f belongs to the Eremenko-Lyubich class,

then the packing dimension of the Julia set is 2. Bishop computed the packing

dimension of the Julia set of his example above to be 1. Our result is the first of its

kind where the computed packing dimension is strictly between 1 and 2. Packing

dimension and other various dimensions relevant to the paper are defined in Section

4. Figure 1 below summarizes what has been proven about the possible Hausdorff

and packing dimension pairs attained by Julia sets transcendental entire functions.

Figure 1. A graph showing the possible and attained Hausdorff
and packing dimension pairs for transcendental entire functions.
All possible pairs are shaded in light grey, and all attained values
are colored black. The point (2, 2) is attained by families of the
exponential and sine functions. The upper segment is due to the
work of Stallard, and the point (1, 1) is due to Bishop. Our contri-
bution uses enlarged, dashed lines, to emphasize that a dense set
of dimensions are attained very close to the diagonal.

We would like to point out how our construction differs from the constructions

cited above. Since Stallard’s examples belong to the Eremenko-Lyubich class, the

packing dimension of those Julia sets must be 2, even though the Hausdorff dimen-

sion can attain any value in (1, 2). In our examples, the packing and Hausdorff

dimensions may be arranged to be arbitrarily close. The dynamical behavior of

our examples is also much different; our functions have multiply connected Fatou

components which do not occur in the Eremenko-Lyubich class. Stallard uses a
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family of functions defined via a Cauchy integral, whereas we use an infinite prod-

uct construction similar to Bishop. Our example looks very similar to Bishop’s at

first glance but there are many major differences. The most obvious difference is

the dynamical behavior near the origin; our examples have an attracting basin with

quasicircle boundary near the origin, whereas Bishop’s contains a Cantor repeller.

This difference introduces what we call ’wiggly’ Fatou components, which we de-

scribe in Section 2. The Hausdorff and packing dimensions in Bishop’s example

are supported on the boundaries of Fatou components which escape quickly, and

the dynamics are simple on these boundaries. In our examples, we will see that

the dimension of the Julia set is supported on buried points that are not on the

boundary of any Fatou component. In Bishop’s example, the buried points have

dimension close to zero. The dynamics on the buried points are more intricate; the

buried points contain bounded orbit points, escaping points, and so-called bungee

orbits. These dynamically defined sets are defined in Section 13.

The author would like to thank Chris Bishop for suggesting this problem and

for many useful conversations, suggestions, and for reading and offering detailed

feedback on earlier drafts. David Sixsmith found many mistakes and typos and

offered suggestions that greatly improved the exposition of this paper. The author

would also like to thank the referee for a detailed and helpful report that found many

places to improve this paper, and would also like to recognize Misha Lyubich, Lasse

Rempe-Gillen, Gwyneth Stallard, and Phil Rippon for helpful discussions.

2. Outline of the Proof

We will construct a function f : C→ C depending on parameters N ∈ N, R ∈ R,

λ ∈ D and c in the main cardioid of the Mandelbrot set. Define g(z) = z2 + c. The

function f will be g iterated N times multiplied by an infinite product. As a

formula,

f(z) = gN (z) ·
∞∏
k=1

(
1− 1

2

(
λ2Nkz

Rk

)nk)
= gN (z)(1 + ε(z)).(2.1)

Here, nk = 2N+k−1, and the sequence {Rk} grows super-exponentially and is de-

fined inductively starting from a large initial parameter R. The choices are made

so that near the origin, the infinite product can be made uniformly close to the

constant function 1. We will sometimes write the infinite product as (1 + ε(z)) to

emphasize this fact, where ε(z) is a holomorphic function uniformly close to the 0

function in a large neighborhood of the origin.

In Section 3 we discuss the facts we will need about conformal, quasiconfor-

mal, and polynomial-like mappings. In Section 4, we define and discuss what we
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call Whitney-type decompositions, a generalization of Whitney decompositions com-

posed of dyadic squares and our main tool for calculating the packing dimension. In

Section 5, we will carefully define f and show it defines an entire function. In Sec-

tion 6 we decompose a region of the plane far from the origin into alternating annuli

Ak and Bk, where the modulus of Ak is fixed and contains the circle {|z| = |Rk|}
and the modulus of Bk increases as k →∞. We will show that f(Bk) ⊂ Bk+1, and

that if a point ever lands in Bk, it diverges locally uniformly to ∞ under f . The

existence of these ”absorbing” annuli Bk of increasing modulus is always true for

functions with multiply-connected wandering domains; see p.25 in [Zhe06] and also

[BRS13] for this and related results. In our example, we will additionally show that

on Bk, f is a small perturbation of a constant multiple of the power function z2nk .

Therefore, all the interesting dynamical behavior happens in the annuli Ak. We

will show that Ak ⊂ f(Ak−1), and that all the zeros and critical points of f and the

Julia set are inside the Ak’s. To accomplish this, we will show (in a quantitative

way) that f is a small perturbation of the kth term of the infinite product on Ak.

Given any s ∈ (1, 2), we will choose c so that dimH(J(gN )) = s. In Section 7,

we will show that in a neighborhood of the origin, f is a polynomial-like mapping

which is a small perturbation of gN . In this section, the parameter λ is used to

show that the quasicircle Julia set of f viewed as a polynomial-like mapping moves

holomorphically with respect to λ. By some standard arguments it will follow that

for appropriate choices of λ the Julia set of the entire function f will have Hausdorff

dimension bounded below by a value arbitrarily close to s. From here, we will be

able to prove that we can sort the Fatou components into two categories depending

on if the component remains bounded or if the component escapes to infinity. The

first type of Fatou component comes from the connected component containing the

critical point 0 of f(z). This component is an attracting basin which we denote by

Bf . All the inverse images of Bf are eventually mapped conformally with small

distortion onto Bf by some iterate of f .

In Sections 8 and 9 we discuss the second type of Fatou component. These are

subsets of the escaping set I(f), where

I(f) := {z : fn(z)→∞} .

These components will be infinitely connected wandering domains, and their bound-

ary components will be bounded by C1 closed curves. These boundary curves will

accumulate on the outermost boundary of each component. There is a distinguished

central series {Ωk}∞k=−∞ of these Fatou components which surround the origin. We

will split these components into two sub-categories. If k ≥ 1, we will call Ωk round

since the inner and outer boundary of Ωk will be C1 curves which are approxi-

mately circles. See Figure 2. We will call Ωk for k ≤ 0 wiggly. The inner and outer
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Figure 2. A round Fatou component. Such components are in-
finitely connected, and all the boundary components are C1 and
approximately circles. The circular boundary components accu-
mulate onto the outermost boundary component and are arranged
in layers that can be connected by approximately circular Jordan
curves. This picture is not to scale; the diameters of the holes are
actually much smaller than the diameter of the component.

boundary of wiggly components will be C1 curves that approximate the fractal

boundary of Bf as k → −∞. If Ωk is wiggly, then fk+1 will map Ωk to the round

component Ω1 as a covering map. The action of fk+1 on Ωk can be thought of as

first mapping Ωk inside a very thin annulus conformally, then to a thick annulus by

a power mapping zn1(k+1). This is similar to the dynamics on the basin of infinity

for a quadratic polynomial with connected Julia set. See Figure 3. We will see that

the central series of Fatou components is the main building block for the Fatou and

Julia set of f . Indeed, we will show all Fatou components of f map conformally

onto an element of the central series with small distortion.

The Julia set of f will contain the boundaries of each of these two types of

components. This is not the entire Julia set. Since f has a multiply connected

Fatou component, the work of Dominguez ([Dom97]) implies that the Julia set will

also contain points that do not lie on the boundaries of either of these two types

of components. We call these points in the Julia set buried points, and the orbits

of buried points either remain bounded, belong to the bungee set or escape slowly

(see Section 14 for the definitions of these dynamically defined sets). In Sections 10

through 13, we will perform a detailed analysis of the Hausdorff dimension of the

set of buried points. We will show that the Hausdorff dimension of this set is at

most ε0 larger than the Hausdorff dimension of the boundary of the fractal basin of

attraction. So while the Hausdorff dimension could possibly be strictly larger than
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Figure 3. A schematic for a sequence of wiggly Fatou compo-
nents, alternating between gray and white. The holes have been
omitted to emphasize the wiggly shape of the inner and outer
boundaries. These boundary components approximate level lines
for the Green’s function of the complement of the basin of at-
traction, and they surround and accumulate on the basin’s fractal
boundary.

the Hausdorff dimension of the boundary of the basin of attraction, we show that

we can make this difference ε0 arbitrarily small.

To obtain an upper bound the packing dimension, we will follow the strategy

in [Bis17] and study the critical exponent of a Whitney-type decomposition of the

complement of the Julia set of f in a bounded region. Since the Julia set of f will

have zero area, it turns out that this critical exponent coincides with the packing

dimension, and we will show that this exponent is at most the Hausdorff dimension

of the buried points. The key idea in this part of the proof is to iterate Fatou

components, or pieces of Fatou components, conformally onto Fatou components

where we can estimate the critical exponent directly. The trade-off is that this
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conformal rescaling procedure results in various corrective factors that we need to

control. We do this with a combination of all the technical work done earlier in the

paper.

We conclude with some notation we will use throughout the paper. We denote

the complex plane by C, B(z, r) is the open ball in C with center z and radius r,

and D = B(0, 1). Likewise C(z, r) will denote the circle of radius r centered at z.

We denote the closure of a set A by A. If Ω is a multiply connected domain in

the plane, we will denote Ω̂ as the union of Ω with all its bounded complementary

components. We will sometimes refer to the simply connected domain Ω̂ as the

polynomial hull of Ω. We will say that a Jordan curve γ ⊂ C surrounds the origin

if its bounded complementary component contains the origin. We will similarly say

that a domain Ω with Jordan boundary components surrounds the origin if at least

one of its boundary components surrounds the origin.

We will frequently use big-oh notation. If {xn} and {yn} are sequences in C,

then xn = O(yn) means that there exists a constant C so that |xn| ≤ C|yn| for all

sufficiently large n. Similarly if f(z) and g(z) are functions, we say f(z) = O(g(z))

as z → a if there exists C and a ball B(a, r) so that |f(z)| ≤ C|g(z)| on B(a, r). In

certain proofs, a constant C may evolve throughout the proof.

3. Conformal, Quasiconformal, and Polynomial-Like Mappings

In this section, let Ω and Ω′ be planar domains. In this paper, we will call a

mapping f : Ω → C conformal if and only if f is both holomorphic and injective.

Equivalently, f is conformal if and only if it is a biholomorphic map onto some

domain Ω′. This condition implies that f ′(z) 6= 0 on Ω, but the converse is not true

in general.

If f : Ω→ Ω′ is conformal, and K is relatively compact in Ω, the distortion of f

on K is

D|K := sup
z,w∈K

|f ′(z)|
|f ′(w)|

.

We will often make use of the Koebe growth and distortion theorems for conformal

mappings (see [GM05] Theorem 4.5 p. 22) in the following form.

Lemma 3.1. Fix r < 1 and let B = B(0, r) ⊂ D be an open ball and let K ⊂ B be

a compact set. Suppose that f : D→ C is conformal. Then there exists a constant

C depending only on r, independent of f , so that

C−1 diam(f(K))

diam(f(B))
≤ diam(K)

diam(B)
≤ C diam(f(K))

diam(f(B))
.

There exists a constant C ′ depending only on r, independent of f , so that

D|K ≤ C ′.
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We remark that as r → 0, the constants C and C ′ tend to 1. When the hypothe-

ses of Lemma 3.1 are met we will sometimes say that f has bounded conformal

distortion on K, or small conformal distortion if r is sufficiently close to 0.

We call an orientation preserving homeomorphism ϕ : Ω→ Ω′ K-quasiconformal

if ϕ has locally square integrable distributional derivatives which satisfy

|ϕz̄(z)| ≤ k|ϕz(z)|

for all z ∈ Ω for k = (K − 1)/(K + 1) < 1. When the value of K is not important

we will refer to f simply as quasiconformal. Given a quasiconformal mapping, we

define its dilatation

µ(z) =
ϕz̄(z)

ϕz(z)
.

The definition says that the dilatation of a quasiconformal mapping is bounded

above by some number strictly less than 1.

Ω is a multiply connected Jordan domain if Ω is not simply connected and all

of its boundary components are Jordan curves. A domain A ⊂ C is a topological

annulus if it has two complementary components, and A is a Jordan annulus if its

boundary components are closed Jordan curves. In particular, a Jordan annulus

has one bounded and one unbounded complementary component. The boundary of

the bounded complementary component is called the inner boundary of A, and the

boundary of the unbounded complementary component is called the outer boundary

of A. A round annulus is a Jordan annulus of the form A = A(r1, r2) = {z : r1 ≤
|z| ≤ r2} where r1 < r2. Given a Jordan annulus A, there exists 1 < r <∞ and a

conformal mapping

ϕ : A→ A(1, r).

This allows us to define the modulus ofA to be mod(A) = 1
2π log(r). The modulus of

an annulus is a quasi-invariant. If ϕ : A→ A′ is a quasiconformal homeomorphism

between two Jordan annuli then

1

K
mod(A) ≤ mod(A′) ≤ K mod(A′).

Finally, we remark that using our definition of conformal, f is conformal if and only

if f is 1-quasiconformal. In particular the modulus of an annulus is invariant under

conformal mappings. This allows for the following invariant formulation of Lemma

3.1.

Lemma 3.2. Let Ω be simply connected, let U be open and compactly contained in

Ω, and let K be a compact subset of U . Suppose f : Ω → Ω′ is conformal. Then

there is a constant C which depends only on mod(Ω \ U) so that

C−1 diam(f(K))

diam(f(B))
≤ diam(K)

diam(B)
≤ C diam(f(K))

diam(f(B))
.
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There exists a constant C ′ which depends only on mod(Ω \ U) so that

D|Ū ≤ C ′.

C and C ′ → 1 as mod(Ω \ U)→∞.

A Jordan curve Γ ⊂ C is called a κ-quasicircle if κ > 1 and for all points z, w ∈ Γ,

if γ denotes the subarc of Γ of smallest diameter with endpoints z and w, we have

diam(γ) ≤ κ|z − w|.

Γ is a quasicircle if and only if there exists a quasiconformal mapping ϕ : C → C
that maps the unit circle onto Γ.

Douady and Hubbard introduced polynomial-like mappings in [DH85]. Recall

that a continuous mapping f : Ω→ Ω′ is called proper if the inverse image of every

compact set K ⊂ Ω′ is compact in Ω. A degree d polynomial-like map is a triple

(f,Ω,Ω′), where f : Ω → Ω′ is a proper holomorphic mapping of degree d, and Ω

and Ω′ are bounded Jordan domains with Ω relatively compact in Ω′. We define

the filled Julia set of f by

Kf :=
⋂
n≥0

f−n(Ω).

The filled Julia set is precisely the set of points that remain in Ω for all iterates of

f . The Julia set of f is defined to be the boundary ∂Kf , and we denote it by Jf .

The straightening lemma of Douady and Hubbard is of great importance, and we

will need the following simple formulation.

Theorem 3.3 (The Straightening Lemma). Let (f,Ω,Ω′) be a degree d polynomial-

like mapping. Then there exists a quasiconformal mapping ϕ : C → C and a

polynomial p of degree d so that for all z ∈ Ω we have

f(z) = ϕ ◦ p ◦ ϕ−1(z).

A polynomial-like mapping (f,Ω,Ω′) is called hyperbolic if every critical point is

attracted to an attracting cycle. Equivalently, (f,Ω,Ω′) is hyperbolic if there exists

m ∈ N so that |(fm)′| > 1 on Jf . In our applications, the polynomial-like mappings

will come as the restriction of entire functions, and it will be important that we

distinguish between hyperbolicity of polynomial-like mappings, versus hyperbolicity

as a transcendental entire function (which our example cannot be, since we will see

that it has an unbounded set of critical values. See [RGS17].)

4. Dimension and Whitney Type Decompositions

Given a set A ⊂ C, we define its α-Hausdorff measure to be the quantity

Hα(A) := lim
δ→0

Hα
δ (A) := lim

δ→0

(
inf

{ ∞∑
i=1

diam(Ui)
α : A ⊂

∞⋃
i=1

Ui, diam(Ui) < δ

})
.
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The infimum is taken over all countable covers by sets {Ui} of A. One can check

that if Ht(A) < 0, then Hs(A) = 0 for all s > t, and similarly, if Ht(A) > 0, then

Hs(A) =∞ for all s < t. It follows that the Hausdorff dimension

dimH(A) := sup{t : Ht(A) =∞} = inf{t : Ht(A) = 0}

is uniquely defined.

Given a compact set K ⊂ C, define N(K, ε) to be the minimal number of open

balls of radius ε needed to cover K. Since K is compact, this number exists and is

finite. We define the upper Minkowski dimension of K to be

dimM(K) = lim sup
ε→0

log(N(K, ε))

log(1/ε)
= sup

{
s ≥ 0 : lim sup

ε→0
N(K, ε)εs = 0

}
.

One obtains an equivalent definition using squares of side length ε to define N(K, ε).

For this reason, upper Minkowski dimension is often referred to as upper box count-

ing dimension in the literature.

We define the packing dimension of K to be

dimP(K) = inf

{
sup
i
{dimMKi : K = ∪Ki}

}
.

Here, the infimum is taken over all coverings of K by countably many compact

subsets Ki. Note that we do not require K itself to be compact.

In this paper, we will investigate the upper Minkowski and packing dimension

of unbounded Julia sets, so strictly speaking, the definition above does not make

sense. We can instead consider the local upper Minkowski dimension of the Julia

set, which is the upper Minkowski dimension of the Julia set intersected with an

open neighborhood of finite diameter. In [RS05], Rippon and Stallard show that the

local upper Minkowski dimension of the Julia set of an entire function is constant

and coincides with its packing dimension, except perhaps in a neighborhood of 1

point (a point with finite backward orbit; there is at most 1 by the Picard theorem).

Our example will not have an exceptional value of this kind, so their result further

implies that the packing dimension and local upper Minkowski dimension are the

same, no matter where we compute the local upper Minkowski dimension. In light

of this, we will abuse notation and refer to the local upper Minkowski dimension of

J (f) by dimM(J (f)); the neighborhood we are using will always be made clear.

A detailed discussion of these dimensions can be found in [Bis17]. The survey

[Sta08] also contains a detailed discussion of the above definitions, along with an

overview of many results about the dimension of Julia sets of transcendental entire

functions. We focus instead on a detailed discussion of Whitney-type decomposi-

tions, which will be our primary tool in estimating the packing dimension.
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An interval I ⊂ R is called dyadic if I = [j/2n, (j + 1)/2n] for some integers j

and n. We denote the set of all dyadic intervals by ∆, and all the dyadic intervals

of side length 2−n by ∆n. Notice that ∆ = ∪n∆n. A dyadic square Q in the plane

is the product of two dyadic intervals in ∆n.

Let F ⊂ C be a nonempty closed set, and let Ω = C\F . A Whitney decomposition

of Ω is a countable collection of dyadic squares {Qj} satisfying the following three

properties:

(1) Ω = ∪jQj .
(2) For all j, k, Qj and Qk have disjoint interior.

(3) There exists a constant C > 1 so that for all squares Qj ,

1

C
dist(Qj , ∂Ω) ≤ diam(Qj) ≤ C dist(Qj , ∂Ω).

Whitney decompositions always exist when F is nonempty, (see [Ste70], p. 167).

We may always choose the constant C = 4.

For our purposes, the key feature of Whitney decompositions will be that the

squares are approximately squares with unit area with respect to the hyperbolic

metric. It is often advantageous to consider more abstract decompositions with

similar properties where the elements will not necessarily be dyadic squares. To

distinguish these objects, we define a (C, λ)-Whitney type decomposition to be a

countable collection of sets {Sj} whose boundaries are quasicircles that satisfy the

following four properties:

(1) Ω = ∪jSj
(2) For all j, k, Sj and Sk have disjoint interior.

(3) There exists a constant C > 1 so that for all Sj ,

1

C
dist(Sj , ∂Ω) ≤ diam(Sj) ≤ C dist(Sj , ∂Ω).

(4) There exists a constant λ so that for all Sj we have

diam(Sj)
2

Area(Sj)
≤ λ.

For convenience we will often omit the constants and refer to such collections as

Whitney type decompositions, and we will still refer to the elements as squares.

Note that the Whitney decomposition of dyadic squares described above is a (4, 2)-

Whitney type decomposition. Whenever we summon a Whitney type decomposi-

tion in a proof, unless stated otherwise, we will assume it is the (4, 2)-Whitney type

decomposition of dyadic squares. A Whitney type decomposition of an open set is

defined using F = C \ Ω. A Whitney type decomposition of a neighborhood of a

set Ω = C \ F is a collection of sets {Sj} within a bounded distance of F .
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Example 4.1. It is often useful to create Whitney-type decompositions well-

adapted to the dynamics of polynomial maps. The following example will be im-

portant for this paper. Let f(z) = zN , N ∈ N. We will create a Whitney type

decomposition of C \B(0, 1) in a neighborhood of B(0, 1) using the dynamics of f .

First, let Cn denote the circle C(0, R1/2Nn). We define C0 = C(0, R). Then

f(Cn) = Cn−1 and fn(Cn) = C0 for all n ≥ 1. Let An denote the open round

annulus with inner boundary Cn and outer boundary Cn−1. Define Sj,n ⊂ An via

preimages of A1 under fn. There are many ways to do this, and we shall make the

normalization that S1,n has a radial boundary segment that rests on the real line

for each n. See Figure 4.

The collection {Sj,n} is a (C, λ)-Whitney type decomposition of B(0, R)\B(0, 1),

where C and λ depend on N and R. The Whitney type decomposition is dynamical

in the sense that f(Sj,n) = Sj′,n−1 for some new j′, and if int(Sj,n) is the interior

of Sj,n, fn(int(Sj,n)), is A1 with a radial slit removed.

Figure 4. The Whitney type decomposition in Example 4.1. In
this picture the “squares” form a Whitney type decomposition for
the complement of F = C \ D. Each square in the picture has the
property z2 maps a square in one ring of squares to one in the next
ring, normalized so that one of the squares in each ring has a radial
segment on the real axis.

The following is a simple but very useful geometric lemma.
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Lemma 4.2. Let W1(Ω) and W2(Ω) be (Cj , λj)-Whitney type decompositions, j =

1, 2, of Ω. Then there exists a constant L = L(C1, C2, λ1, λ2) such that if Q ∈
W1(Ω), then Q is covered by at most L elements S ∈W2(Ω), and vice versa.

The key to the proof of the lemma is comparing the area of a square Q in one

collection with the area of all the squares in the other collection that intersect Q.

We omit the details.

Let K ⊂ C be compact, and let Ω = C \ K. Let W (Ω) be a Whitney type

decomposition of Ω. We define the critical exponent of K to be

α(K) = inf

α ≥ 0 :
∑

Q∈W (Ω)

diam(Q)α <∞ , diam(Q) < 1

 .

The critical exponent does not depend on the Whitney type decomposition.

Lemma 4.3. Suppose that W (Ω) and W ′(Ω) are Whitney type decompositions.

Then ∑
Q∈W (Ω)

diam(Q)α <∞ if and only if
∑

Q∈W ′(Ω)

diam(Q)α <∞.

Proof. This follows immediately from Lemma 4.2. �

Given a Whitney type decomposition, we will sometimes call the sum of diame-

ters of the squares as in Lemma 4.3 the α-Whitney sum. Thus α(K) = α if and only

if the t-Whitney sums for some Whitney type decomposition of the complement of

K converge for all t > α.

The critical exponent will is the main tool we will use to estimate the packing

dimension. The following is Lemma 2.6.1 in [BP17].

Lemma 4.4. Let K ⊂ C be compact. Then α(K) ≤ dimM(K), and if K has zero

area, then α(K) = dimM(K).

In this paper, the fundamental Whitney type decompositions we consider are

decompositions with dyadic squares, and the decomposition in Example 4.1. It

will also be important that these Whitney type decompositions behave well under

conformal and quasiconformal mappings.

Lemma 4.5. Let f : Ω → Ω′ be a K-quasiconformal homeomorphism of two

domains in C. Let W (Ω) be a Whitney type decomposition for Ω. Define

f(W (Ω)) := {f(Qj) : Qj ∈W (Ω)}.

Then f(W (Ω)) is a (C ′, λ′)-Whitney type decomposition of Ω′, and the constants

C and λ only depend on the constant K and on the constants C and λ.
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It follows that conformal and quasiconformal mappings take Whitney type de-

compositions to new Whitney type decompositions. When f is conformal, the

lemma above follows from the Lemma 3.2. When f is K-quasiconformal, this fol-

lows from Theorem 11.14 in [Hei01]. One can also argue using standard modulus of

path family arguments to the topological annuli Ω\Qj for each square Qj ∈W (Ω).

Theorem 4.6. Let f : Ω→ Ω′ be a K-quasiconformal homeomorphism. Let W (Ω)

and W (Ω′) be Whitney type decompositions. Then there exists a constant L that

depends only on K and the constants defining the Whitney type decompositions so

that each S ∈ f(W (Ω)) is covered by at most L elements Q ∈W (Ω′).

Proof. This follows immediately from Lemma 4.2 and Lemma 4.5. �

We will use the following corollary often.

Corollary 4.7. Let f : Ω → Ω′ be K-quasiconformal. Then the α-Whitney sums

of W (Ω′) and f(W (Ω)) are comparable with constant depending only on K and on

the constants defining the Whitney type decompositions.

5. The Definition of f

In this section, we specify the parameters defining f and show that it is an entire

function.

Recall that the main cardioid of the Mandelbrot set is the region consisting of

all parameters c = µ/2(1 − µ/2), where µ ∈ D. If c is a parameter in the main

cardioid, the Julia set of z2 + c is a quasicircle with an attracting fixed point in

its interior. For each s ∈ (1, 2), we may choose c in the main cardioid so that

dimH(J (z2 + c)) = dimP(J (z2 + c)) = dimM(J (z2 + c)) = s (see [Shi98] p.232 and

[Sul83] p.742, along with Theorem 7.6.7 in [PU10]).

Having chosen such a c, recall that we defined g(z) = z2 + c, and gN (z) denotes

the Nth iterate of g. Since gN is a degree 2N monic polynomial there exists some

R > 0 so that if |z| ≥ R we have

1

2
≤
∣∣∣∣gN (z)

z2N

∣∣∣∣ ≤ 2.(5.1)

In fact, given any ε > 0, there exists R > 0 so that if |z| ≥ R we have

1

(1 + ε)
≤
∣∣∣∣gN (z)

z2N

∣∣∣∣ ≤ (1 + ε).(5.2)

We will always assume R is big enough so that (5.1) holds.

Next given some integer N > 0 define a sequence of integers for k = 0, 1, 2 . . .

nk := 2N+k−1.
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Note that when k 6= 0, nk ≥ 2N , n1 = 2N , and for all k we have 2nk = nk+1. Given

the R above, define

R1 = 2R.

We will construct our infinite product as a sequence of partial products inductively

as follows. Given R as above we can define

F1(z) :=

(
1− 1

2

(
z

R1

)n1
)
,

f1(z) := gN (z) · F1(z),

R2 := M(f1, 2R1) := max{|f1(z)| : |z| = 2R1}.

Next, assume that fk−1, Fk−1 and Rk have all been defined. From there, we define

Fk(z) :=

(
1− 1

2

(
z

Rk

)nk)
,

fk(z) := gN (z)

k∏
j=1

Fj(z),

Rk+1 := M(fk, 2Rk) = max{|fk(z)| : |z| = 2Rk}.

With these starting parameters, we want to investigate the convergence of infinite

products of the form

f(z) = lim
k→∞

fk(z) = gN (z) · lim
k→∞

k∏
j=1

Fj(z).(5.3)

Next, we will introduce the parameter λ ∈ D. Define mk = 2Nk, and then define

fλ(z) = gN (z) · lim
k→∞

k∏
j=1

(
1− 1

2

(
λmkz

Rk

)nk)
,

fk,λ = gN (z) ·
k∏
j=1

(
1− 1

2

(
λmkz

Rk

)nk)
We define

R̂k :=
Rk
λmk

.

When λ = 0, fλ is simply the polynomial gN (z).

To prove that fλ defines an entire function, we first must record some basic

facts about the growth rate of {R̂k} and nk. The following Lemma is completely

elementary but used often. We only remark that (3) below is just a restatement of

(2).

Lemma 5.1 (The Growth Rate of nk). For all k = 1, 2, . . . , we have

(1) nk = 2nk−1, and nk ≥ 2N .

(2) 2N +
∑k
j=1 nj = nk+1.
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(3) deg(fk) = 2 deg(Fk)

Before introducing λ, the original sequence {Rk} was defined in terms of the

maximum modulus of the partial products defining f . The next Lemma says that

{|R̂k|}, despite not being defined in terms of the partial products, approximately

behaves this way.

Lemma 5.2 (R̂k grows similarly to Rk). Given any ε > 0, the starting parameter

R may be chosen large enough so that

|R̂k+1|
(1 + ε)

≤ max
|z|=2|R̂k|

|fk,λ(z)| ≤ (1 + ε)|R̂k+1|.

Proof. By (5.2), there exists R > 0 so that for all |z| > R we have

1

(1 + ε)1/2

∣∣∣∣gN (z)

z2N

∣∣∣∣ ≤ (1 + ε)1/2,

Given such a choice, we estimate

max
|z|=2|R̂k|

|fk,λ(z)| = max
|z|=2|R̂k|

|gN (z)|
k∏
j=1

|Fj(λmkz)|


≤ (1 + ε)1/2 max

|z|=2|R̂k|

|z|2N k∏
j=1

|Fj(λmkz)|


= (1 + ε)1/2 max

|z|=2|R̂k|

|z|2N k∏
j=1

|Fj(|λmk |z)|

 .

The last equality from the fact the the maximum of |Fj(λnkz)| only depends on

|λmk |. Then using the definition of R̂k,

max
|z|=2|R̂k|

|fk,λ(z)| ≤ (1 + ε)1/2

|λ|2N ·2kN
max
|z|=2Rk

|z|2N k∏
j=1

|Fj(z)|


≤ (1 + ε)

|λ|mk+1
max
|z|=2Rk

|gN (z)|
k∏
j=1

|Fj(z)|


=

(1 + ε)

|λ|2(k+1)N
Rk+1

= (1 + ε)|R̂k+1|

A similar argument shows that

max
|z|=2R̂k

|fλ(z)| ≥ 1

(1 + ε)
|R̂k+1|.

�
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Lemma 5.3 (The Growth Rate of R̂k). If k ≥ 1, R satisfies (5.2) for some ε <

10−1, and if N ≥ 10, we have

|R̂k+1| ≥ 2nk |R̂k|2
N−1+nk−1 ≥ 2N |R̂k|2

N

.

Proof. By the assumptions on the initial parameters, we have

|R̂2| ≥
1

1 + ε
max
|z|=2|R̂1|

|f1,λ(z)| = 1

1 + ε
max
|z|=2|R̂1|

|gN (z)| ·

∣∣∣∣∣
(

1− 1

2

zn1

R̂n1
1

)∣∣∣∣∣
≥ 1

(1 + ε)2
· |2R̂1|2

N

· max
|z|=2|R̂1|

∣∣∣∣∣
(

1− 1

2

zn1

R̂n1
1

)∣∣∣∣∣
≥ 1

(1 + ε)2
· 22N · |R̂1|2

N

· (2n1−1 − 1)

≥ 22N |R̂1|2
N

= 2n1 |R̂1|2
N−1+n0 .

This is the base case for an induction. Suppose that for some k ≥ 3, and for all

2 ≤ j ≤ k, we have

|R̂j | ≥ 2nj−1 |R̂j−1|2
N−1+nj−2 ≥ 22N |R̂j−1|2

N

≥ 4|R̂j−1|2

This induction hypothesis implies that |R̂k|1/2 ≥ |R̂j | for all j ≤ k − 1. Therefore,

|R̂k+1| ≥
1

(1 + ε)
max
|z|=2|R̂k|

|fk,λ(z)| = 1

(1 + ε)
max
|z|=2|R̂k|

|gN (z)| ·
k∏
j=1

∣∣∣∣∣
(

1− 1

2

znj

R̂
nj
j

)∣∣∣∣∣
≥ 1

(1 + ε)2
· 22N · |R̂k|2

N

·
k∏
j=1

∣∣∣∣∣2nj−1 R̂
nj
k

R̂
nj
j

− 1

∣∣∣∣∣
≥ 1

(1 + ε)2
· 22N · |R̂k|2

N

·
k∏
j=1

∣∣∣∣∣2nj−2 R̂
nj
k

R̂
nj
j

∣∣∣∣∣
≥ 1

(1 + ε)2
· 22N · |R̂k|2

N

· 2nk−2
k−1∏
j=1

∣∣∣2nj−2R̂
nj−1

k

∣∣∣
≥ 22N−2k+

∑k
j=1 nj · |R̂k|2

N+
∑k−1
j=1 nj−1 .

We used the fact that N > 10 to move from the second line to the third line above.

To wrap up we use Lemma 5.1 again to see that

|R̂k+1| ≥ 22N−2k+nk+1 · |R̂k|2
N+nk−1

≥ 22N+nk · |R̂k|2
N+nk−1 .

This completes the proof. �
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For the rest of the paper, we will always assume that N ≥ 10, so that the con-

clusion of Lemma 5.3 is always valid. The lemma above also contains the following

simpler inequalities that will often be sufficient for our purposes.

Corollary 5.4 (Other Useful Inequalities). For k ≥ 1 we have

(1) |R̂k+1| ≥ 4|R̂k|2.
(2) |R̂k+1| ≥ (2R)2kN .

The proof of (1) above is obvious, and the proof of (2) is a simple induction.

See Corollary 8.3 of [Bis17]. The above inequalities allow us to apply the same

argument as Lemma 5.2 in [Bis17] and conclude that fλ(z) is a transcendental

entire function for all λ ∈ D \ {0}.

Corollary 5.5. Let λ ∈ D \ {0}. The function

fλ(z) = gN (z) ·
∞∏
k=1

Fk(z)

converges uniformly on compact subsets of C. In particular, fλ(z) is a transcen-

dental entire function.

We conclude this section by recording some useful estimates regarding the rela-

tive growth rates of {|R̂k|} that will be useful in Section 7. The proof follows from

Theorem 5.3 and a use of Taylor series approximations, and we refer the reader to

Sections 6 and 8 of [Bis17] for the details.

Lemma 5.6. Suppose that {R̂k} has been defined as in this section, and m ≥ 1.

Then

k−1∏
j=1

(
1 +

(
|R̂j |
|R̂k|

)m)
= 1 +O

(
|R̂−m/2k |

)
,(5.4)

∞∏
j=k+1

(
1 +
|R̂k|
|R̂j |

)
= 1 +O

(
|R̂−1
k |
)
.(5.5)

Finally, if |z| ≤ 4|R̂k|, we have

∞∏
j=k+1

Fj(λ
mjz) = 1 +O

(
|R̂−1
k |
)
.(5.6)

6. The Mapping Behavior of f away from the origin

We now move on to analyzing the function fλ far away from the origin when

λ ∈ D \ {0}. The purpose of this section is to show that fλ behaves like simpler
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functions on suitably defined regions of C. To be more specific, recall that

fλ(z) := gN (z) ·
∞∏
j=1

Fj(λ
mjz).

We will show that we can decompose C \ B(0, |R̂1|/4) into regions where fλ looks

approximately like the jth term of the infinite product. The observations and

estimates here are vital for understanding to precise dynamical behavior of fλ.

We define

Hm(z) = zm(2− zm).

A detailed description of the conformal mapping behavior of Hm can be found in

Section 9 of [Bis17]. For our purposes, we will need to consider the connected

components of C \ {|Hm(z)| = 1}. This set has m+ 2 connected components, one

unbounded, one containing the origin, and m petals. We denote a single petal by

Ωpm. Then Hm : Ωpm → D is a conformal mapping, and diam(Ωpm) = O(1/m). See

Figure 5.

Figure 5. An illustration of the level sets of {|Hm(z)| = 1} for
m = 5, 10 and 20. There are m petals where Hm is a conformal
mapping to the disk, and as m grows, the diameter of the petals
shrinks. All the points on {|Hm(z)| = 1} are distance O(1/m)
from the unit circle |z| = 1.

Next, we decompose C \B(0, |R̂1|/4) into annuli as follows.

Ak :=

{
z :

1

4
|R̂k| ≤ |z| ≤ 4|R̂k|

}
, Bk :=

{
z : 4|R̂k| ≤ |z| ≤

1

4
|R̂k+1|

}
,

Vk :=

{
z :

3

2
|R̂k| ≤ |z| ≤

5

2
|R̂k|

}
, Uk :=

{
z :

5

4
|R̂k| ≤ |z| ≤ 3|R̂k|

}
.

Note that Vk is compactly contained inside of Uk. See Figure 6.

The following is Lemma 10.1 in [Bis17]. We include its simple proof.

Lemma 6.1. With Hm defined above, for all integers k ≥ 1 we have

Fk(z) =
1

2

(
Rk
z

)nk
Hnk

(
z

Rk

)
.
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Figure 6. A schematic for Ak, k ≥ 1. The innermost circle and
outermost circle form the boundary of Ak. The dashed line is the
circle |z| = Rk. The lightly shaded region is Uk, and the darker
region is Vk, which is compactly contained in Uk. In the upcoming
sections, we will see that the Julia set of f is contained near the
circle |z| = Rk and in Vk.

Proof. We compute this directly by factoring as follows,

1

2

(
Rk
z

)nk
Hnk

(
z

Rk

)
=

1

2

(
Rk
z

)nk ( z

Rk

)nk (
2−

(
z

Rk

)nk)
=

(
Rk
z

)nk ( z

Rk

)nk (
1− 1

2

(
z

Rk

)nk)
= Fk(z).

This is exactly what we wanted. �

In particular, we have

Fk(λmkz) =
1

2

(
R̂k
z

)nk
Hnk

(
z

R̂k

)
.

The next lemma says that fλ looks like a slightly perturbed multiple of Hnk on the

annuli Ak.

Lemma 6.2. Let k ≥ 1. If z ∈ Ak, there is a constant Ck so that

fλ(z) = CkHnk

(
z

R̂k

)
(1 +O(|R̂k|−1)).
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For k ≥ 2, the constant Ck is given by the formula

Ck = (−1)k−12−kR̂nkk

k−1∏
j=1

R̂
−nj
j .

For k = 1 the constant is given by

C1 =
1

2
R̂n1

1 .

The proof is almost exactly the same as Lemma 10.2 in [Bis17]. The idea is very

simple. We break fλ into the product of three pieces:

(6.1) fλ(z) =

gN (z) ·
k−1∏
j=1

Fj(λ
mjz)

 · Fk(λmkz) ·

 ∞∏
j=k+1

Fj(λ
mjz)

 .

The first piece is gN followed by the the first k − 1 terms of the infinite product.

That is estimated by some factoring and applying (5.4) from Lemma 5.6. The

second piece is just Fk, which we rewrite using Lemma 6.1. The third part is the

tail of the infinite product, which we estimate using (5.6) from Lemma 5.6.

The next lemma says that fλ looks like a power function on Bk. This fact is

used but not proved directly in [Bis17], so we include it for completeness.

Lemma 6.3. For z ∈ Bk, we have

fλ(z) = −Ck
(
z

R̂k

)2nk

(1 +O(|R̂k+1|−1)) · (1 +O(4−nk+1)) · (1 +O(4−nk)).

Proof. The reasoning above and a similar decomposition to (6.1) allows us to con-

clude that on Bk,

fλ(z) = CkHnk

(
z

R̂k

)
Fk+1(λmk+1z)(1 +O(|Rk+1|−1)).

The only change is that we keep the Fk+1 term. However, when z ∈ Bk, 4|R̂k| ≤
|z| ≤ |R̂k+1|/4, so that,

Hnk

(
z

R̂k

)
=

(
z

R̂k

)nk (
2−

(
z

R̂k

)nk)

=

(
z

R̂k

)2nk
(

2

(
R̂k
z

)nk
− 1

)

= −
(
z

R̂k

)2nk (
1 +O(4−nk)

)
.
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A similar computation yields

Fk+1(λmk+1z) =

(
1− 1

2

(
z

R̂k+1

)nk+1
)

= (1 +O(4−nk+1)).

�

Corollary 6.4. fλ is never zero on Bk.

Next, we have the following estimates on the size of the coefficients Ck.

Lemma 6.5. Let R > 8, N > 3.

(1) When k ≥ 2, we have |Ck| ≥ |R̂k|nk−1/2k ≥ 8|R̂k|.
(2) When k = 1, we have |C1| = |R̂1|n1/2 ≥ 8|R̂1|.
(3) For all k ≥ 1, we have |Ck+1| ≥ |Ck| > 1.

Proof. The k = 1 case can be checked directly. For k ≥ 2, we can compute, using

the fact that |R̂j | ≤ |R̂k|1/2, that

|Ck| =
1

2k
|R̂k|nk

k−1∏
j=1

|R̂j |−nj ≥
1

2k
|R̂k|nk

k−1∏
j=1

|R̂k|−nj/2

=
1

2k
|R̂k|nk−nk−1 =

1

2k
|R̂k|nk−1 .

So in this case we see that

|Ck| ≥
1

2k
|R̂k|nk−1 > 8|R̂k|.

Part (3) is easily checked by computing and estimating |Ck+1|/|Ck|, see Lemma

10.4 in [Bis17]. �

The next two proofs are Lemmas 10.5 and 10.6 of [Bis17]. They are proved using

Lemma 6.2 and factoring techniques similar to the proof of Lemma 6.3. They are

quantitative statements that say that far enough away from the set of points where

|Hm(z)| = 1, Hm looks like z2m and near the origin, Hm looks like zm. Lemma 10.5

in [Bis17] actually has an error in the statement with a missing factor of |R̂k|−nk ,

although the proof is correct. The correct statement is below.

Lemma 6.6. For all k ≥ 1, and for z satisfying 5Rk/4 ≤ |z| ≤ 4Rk, we have

fλ(z) = Ck

(
z

R̂k

)2nk (
1 +O

((
4

5

)nk))
(1 +O(|R̂k|−1)).

Lemma 6.7. For k ≥ 1, and Rk/4 ≤ |z| ≤ 4Rk/5, we have

fλ(z) = 2Ck

(
z

R̂k

)nk
·
(

1 +O

((
4

5

)nk))
(1 +O(|R̂−1

k |)).
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We will see that most of the interesting mapping behavior for fλ happens near

|z| = |R̂k|, where fλ “interpolates” from being a perturbed degree nk power map-

ping to a perturbed degree nk+1 power mapping.

The conformal mapping behavior of fλ and its iterates will be very important

later on, so having control of the critical points and critical values of fλ will be very

important. The statement below is Corollary 10.7 of [Bis17].

Theorem 6.8. f ′λ(z) is non-zero on Vk.

The proof of Theorem 6.8 requires the following lemma.

Lemma 6.9. On Uk, we have

fλ(z) = Ck

(
z

R̂k

)2nk

(1 + hk(z)).

The function hk(z) is holomorphic on Uk with

|hk(z)| = O

((
4

5

)nk
+ |R̂k|−1

)
.

Lemma 6.9 follows immediately from Lemma 6.6. To see how this implies The-

orem 6.8, define

εk = C

((
3

4

)nk
+ |R̂−1

k |
)
.

The constant C > 0 is chosen so that |hk(z)| ≤ εk on the annuli Uk. It follows that∑
εk can be made arbitrarily small, given that N and R are sufficiently large. This

will come up again so we state this carefully below.

Lemma 6.10. Let C, hk(z), and εk be defined as above. Let δ > 0 be given. Then

for N and R sufficiently large,
∞∑
k=1

εk < δ.

Theorem 6.8 now follows from the Cauchy estimates applied to h′k(z) and a direct

estimate of f ′λ(z) on Uk using Lemma 6.6.

The following lemma is equation (10.5) on p. 435 of [Bis17], but contains a typo

(due to the typo in the statement of Lemma 6.6) and the proof is omitted. We

include a corrected version along with a proof.

Lemma 6.11. For all k ≥ 1 we have

1

4
≤ |R̂k+1|
|Ck| · 2nk+1

≤ 4.

Proof. By (5.6), if z ∈ Ak we have

fλ(z) = fk,λ(z)(1 +O(|R̂k|−1)).
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Recall that fk,λ was the kth partial product of the infinite product defining fλ. By

(5.1) it follows that if R is sufficiently large, then

1

2
≤ M(fλ, 2|R̂k|)

|R̂k+1|
≤ 2.

Next note that Lemma 6.6 applies to fλ on |z| = 2|R̂k| as well, and we also have

1

2
≤ M(fλ, 2|R̂k|)
|Ck| · 2nk+1

≤ 2.

The conclusion follows immediately. �

With Corollary 6.11 and the estimates of the previous section, we can prove the

following theorem.

Theorem 6.12. For N > 10 and sufficiently large R, we have that Ak+1 ⊂
fλ(Vk) ⊂ fλ(Ak) and fλ(Bk) ⊂ Bk+1. Moreover, fλ maps the outermost boundary

component of Vk into Bk+1 and the innermost boundary component of Vk into Bk.

For example, if |z| = 4|R̂k|, we have

(6.2) |fλ(z)| ≥ 1

4
|Ck|4nk+1 ≥ 1

16
2nk+1 |R̂k+1|.

We also have

(6.3) |fλ(z)| ≤ 4|Ck|4nk+1 ≤ 16 · 2nk+1 |R̂k+1| ≤
16

|R̂k|2N−1
|R̂k+2|.

Using Lemma 5.3, we can conclude that the outermost boundary component of

Bk is mapped well inside Bk+1 by fλ. Observations like this allow us to deduce

Theorem 6.12, whose straightforward but somewhat tedious proof can be found in

Sections 11 and 12 of [Bis17].

As a result we can obtain our first dynamical corollaries.

Corollary 6.13. Each set Bk is in the Fatou set of fλ.

Proof. Since Bk maps into Bk+1 we know that the iterates tend to infinity locally

uniformly. �

An asymptotic value of an entire function g is a point w ∈ C such that there

exists a curve γ : [0,∞)→ C such that γ(t)→∞ and g(γ(t))→ w as t→∞.

Corollary 6.14. fλ has no finite asymptotic values.

Proof. If γ : [0,∞) → C satisfies γ(t) → ∞ as t → ∞, then there exists tk with

tk < tk+1, tk →∞ and γ(tk) ∈ Bk. Therefore by Theorem 6.12 fλ(γ(tk)) ∈ Bk+1,

so that fλ(γ(tk))→∞. Therefore fλ has no finite asymptotic values. �

When we prove that fλ has multiply connected Fatou components, that will also

imply f has no asymptotic values (see [Sch10] Corollary 2.7).
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7. Behavior of f near the Origin

Having analyzed the behavior of fλ away from the origin, we now analyze fλ

near the origin. The primary goal of this section is to show that the Fatou set of fλ

contains an attracting basin containing the origin, and that the boundary of this

fractal basin of attraction moves holomorphically with respect to the parameter λ.

This will allow us to control the Hausdorff dimension of the boundary of the basin

of attraction.

Lemma 7.1. On B(0, 1/4R̂1), we have

fλ(z) = gN (z)(1 +O(4−n1))(1 +O(|R̂k+1|−1)).

Assume that R is large enough so that |R̂1|1/2 < 1/4|R̂1|. Then by perhaps choosing

R larger, on B(0, 2|R̂1|1/n2) we also have

fλ(z) = gN (z) · (1 +O(|R̂1|
1
2−n0)).

Proof. The techniques are similar to the previous section. Indeed, when |z| ≤
1/4|R̂1| we have

fλ(z) = gN (z)

(
1− 1

2

(
z

R̂1

)n1
) ∞∏
k=2

Fk(λmkz) = gN (z)(1+O(4−n1))(1+O(|R̂2|−1)).

The proof on B(0, 2|R̂1|1/n2) is similar. �

When z ∈ B(0, 2|R̂1|1/n2) we write fλ(z) = gN (z) · (1 + ε(z)), where |ε(z)| =

O(|R̂1|
1
2−n1) as R→∞. We define r := |R̂1|1/n2 .

Lemma 7.2. Let η > 0 be given. Then there exists sufficiently large R so that on

B(0, r) we have

sup
z∈B(0,r)

|f ′λ(z)− (gN )′(z)| < η.

In particular, the estimate holds for all λ ∈ D.

Proof. Let K = supz∈B(0,2r) |gN (z)| and K ′ = supz∈B(0,r) |(gN )′(z)|. Then we

choose R so that r is large enough so that (5.1) applies, and we have

K ≤ 2n1+1r2N = 2n1+1|R̂1|
1
2 .

By the Cauchy estimate we have

K ′ ≤ 2n1+1r2N−1 = 2n1+1|R̂1|
1
2−

1
n2 .

Next note that |ε(z)| = O(|R̂1|
1
2−n0) on B(0, 2r). Then the Cauchy estimate says

max
z∈B(0,r)

|ε′(z)| = O(|R̂1|−
1
2−n0)
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Therefore, given η > 0, there exists R sufficiently large so that

sup
z∈B(0,r)

|f ′(z)− (gN )′(z)| = sup
z∈B(0,r)

|(gN )′(z)ε(z) + gN (z)ε′(z)|

≤ O(|R̂1|−1) < η.

This concludes the proof. �

For the rest of this section we define B = B(0, r). Since gN (z) is a polynomial,

for sufficiently large values of R, (gN , (gN )−1(B), B) is a degree 2N polynomial-

like mapping. The Julia set and filled Julia set of the polynomial-like mapping

(gN , (gN )−1(B), B) are the same as the Julia set and filled Julia set of the poly-

nomial gN . gN is also hyperbolic on its quasicircle Julia set. In fact, there exists

a topological annulus A that contains J (gN ) so that |(gN )′(z)| ≥ µ > 1 on A.

By Lemma 7.2, if R is sufficiently large then |f ′λ(z)| ≥ µ0 > 1 on A as well for

all λ ∈ D. Let Dλ denote the bounded complementary component of f−1
λ (A). All

2N − 1 finite critical points (counted with multiplicity) and values of fλ contained

in B are contained in the interior of Dλ, and all 2N −1 finite critical values are also

contained in the interior of Dλ.

Lemma 7.3. Let B and r be defined as above. Define Uλ = (fλ)−1(B). Then

for any λ ∈ D and all R sufficiently large, (fλ, Uλ, B) is degree 2N polynomial-like

mapping.

Note here again that f0 = gN .

Proof. By the discussion above and Lemma 7.1 and Lemma 7.2, if R is sufficiently

large, all the critical points and critical values of fλ in B are contained in Dλ.

Therefore Uλ is a topological disk compactly contained in B, and the result follows.

�

We now want to show that as we vary λ, the Julia sets Jfλ of the polynomial-like

mappings move holomorphically. First, we recall the definition.

Definition 7.4. A holomorphic motion of a set E ⊂ C is a family of injective maps

ϕλ : E → C,

one for each λ ∈ D, so that ϕλ(·) is holomorphic for fixed z ∈ E, and ϕ0 is the

identity.

We also want our holomorphic motion to respect the dynamics of fλ when viewed

as polynomial-like mappings. That is, the holomorphic motion needs to satisfy

ϕλ : Jf0 → Jfλ ,
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and

fλ ◦ ϕλ(z) = ϕλ ◦ f0(z).

If these conditions hold, we will call the holomorphic motion equivariant.

We need the following to fundamental facts about holomorphic motions. First,

we have the λ-lemma. See Theorem 4.1 of [McM94].

Theorem 7.5 (The λ-lemma). A holomorphic motion of a set E has a unique

extension to a holomorphic motion of E. The extended motion is continuous hλ :

D× E → Ĉ. For each λ, hλ extends to a quasiconformal map of C to itself.

The λ-lemma implies that to show the Julia set moves holomorphically, it suffices

to construct the holomorphic motion on the repelling periodic points, since these

points are dense in the Julia set. Bers and Royden showed in [BR86] that the

dilatation of holomorphic motions can be controlled in the following precise way:

Theorem 7.6. If hλ : D × E → C is a holomorphic motion, then every hλ is

the restriction to E of a K-quasiconformal self map Hλ of C, with dilatation not

exceeding

K =
1 + |λ|
1− |λ|

.

Finally, we will use the following version of the holomorphic implicit function

theorem (see, for example, [Var11], Theorem 2.3.10).

Theorem 7.7. Let U ⊂ C × C be open with (z0, w0) ∈ U . Let F : U → C be

continuous and holomorphic in each variable separately. Suppose that F (z0, w0) = 0

and Fz(z0, w0) 6= 0. Let Π2 : C × C → C denote projection onto the second

coordinate. Then there exists an open set V containing (z0, w0) so that for all w ∈
Π2(V ), the equation F (z, w) = 0 has a unique solution ϕ(w) so that (ϕ(w), w) ∈ V .

Moreover, the function w 7→ ϕ(w) is holomorphic.

Now let’s move onto the family of functions fλ. We have shown that independent

of λ ∈ D, there exists a ball B so that (f, Uλ, B) is a degree 2N polynomial-like

mapping, where Uλ = f−1
λ (B).

Lemma 7.8. The filled Julia set of each (fλ, Uλ, B) is the closure of exactly one

basin of attraction.

Proof. By Lemma 7.2 there exists a Jordan annulus A so that |f ′λ| > µ0 > 1 on A

for all λ ∈ D. Let Dλ be the bounded complementary component of f−1
λ (A). Then

fλ : Dλ → Dλ, and there exists an attracting fixed point cλ for each fλ contained

in Dλ. This fixed point is the only possible fixed point or periodic cycle contained

in Dλ.
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Any other periodic cycles for (fλ, Uλ, B) must be contained in A. Since |f ′λ| > 1

on A, such a cycle must be repelling. Therefore, fλ has exactly one attracting fixed

point, and all other periodic cycles are repelling. It follows that Kfλ , the filled Julia

set of (fλ, Uλ, B), is the closure of exactly one basin of attraction. �

We denote this basin of attraction by Bfλ .

Corollary 7.9. The Julia set of (fλ, Uλ, B) is a quasicircle.

Proof. This follows since the filled Julia sets are closures of a basin of attraction,

combined with the straightening lemma. See Theorem 2.1, p.102 of [CG93]. �

Lemma 7.10. The repelling periodic cycles of fλ depend holomorphically on λ.

Proof. We study the equation

Q(z, λ) = fmλ (z)− z = 0.

The solutions to this equation are exactly the periodic cycles of fλ of period dividing

m. Let z0 be a repelling periodic cycle of period m for f0. Let µ be the multiplier

of f0 at z0. Then z0 ∈ Jf0 , and µ ≥ µ0 > 1 and

|Qz(z0, 0)| = |µ− 1| > 0.

By the holomorphic implicit function theorem, z0 moves holomorphically.

Such a cycle remains repelling as we vary λ. The cycle cannot become attracting

since the filled Julia set is the closure of exactly one basin of attraction. If the cycle

became neutral, that is, |(fmλ )′(z0)| = 1, there would exist a nearby λ′ so that the

cycle became attracting. �

For a repelling periodic point z we define hλ(z) to be the corresponding holo-

morphic motion of that point. If E is the set of all repelling periodic cycles, this

defines a mapping

hλ : E × D→ Eλ,

where Eλ is the set of repelling periodic cycles for (fλ, Uλ, B).

Lemma 7.11. hλ : E × D→ Eλ is a holomorphic motion.

Proof. It only remains to check injectivity. Again, for some given λ, a periodic

cycle zλ of period diving m is a solution of

Q(z, λ) = fmλ (z)− z = 0.

By the implicit function theorem, there exists a neighborhood of (zλ, λ) such that for

all choices of λ′ in this neighborhood there is a unique zλ′ so that Q(zλ′ , λ
′) = 0.

So by the uniqueness statement of the implicit function theorem, we must have

injectivity. �
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Corollary 7.12. The Julia sets of (fλ, Uλ, B) move holomorphically.

Proof. By the λ-Lemma, the holomorphic motion hλ extends to the closures of the

repelling periodic points. We just need to check the equivariance

fλ ◦ hλ(z) = hλ ◦ f0(z),

for all z ∈ Jf0 . Since hλ maps periodic points of period m onto distinct periodic

points of period m, if z is periodic with period m, we have

hλ(fm0 (z)) = hλ(z) = fmλ (hλ(z)).

It follows that fλ(hλ)(z) and hλ(f0(z)) must belong to the same periodic cycle,

so they must be equal. Therefore, we have equivariance on the repelling periodic

points, and by density, this extends to equivariance on the Julia sets of the poly-

nomial like mappings. �

Corollary 7.13. λ ∈ D may be chosen so that the Hausdorff dimension of the

Julia set of (f0, U0, B) is arbitrarily close to the Hausdorff dimension of the Julia

set of (fλ, Uλ, B).

Proof. Theorem 7.6 shows that the hλ extends to a quasiconformal self map of C and

the dilatation of hλ may not exceed K = 1 + |λ|/(1− |λ|). Since K-quasiconformal

mappings are locally 1/K-Holder continuous, it follows that as λ→ 1, dimH(Jλ)→
dimH(J0), which proves the claim. �

Lemma 7.14. Jfλ ⊂ J (fλ). In other words, the Julia set of the polynomial like

mapping (fλ, Uλ, B) is a subset of the Julia set of the entire function f .

Proof. As a polynomial-like map, fλ has exactly one attracting basin, Bfλ . Bfλ
and Jfλ are invariant for (fλ, Uλ, B), and it follows that they are forward invariant

sets for the entire function fλ. If z ∈ Jfλ , then there always exists a nearby point

w so that fnλ (w) converges to the attracting fixed point in Bfλ . But fnλ (z) ∈ Jfλ
for all n, so fλ and its iterates cannot form a normal family in any neighborhood

of z. Therefore z ∈ J (fλ). �

It follows from the reasoning above that if s = dimH(J (gN )) and ε0 > 0 is given

that we may choose λ so that

(7.1) dimH(J (fλ)) ≥ s− ε0.

Important Remark on Notation: The primary purpose of the parameter λ is

to control the change in Hausdorff dimension from Jλ to J0 with arbitrary precision.

We will always assume the λ chosen in the corollary above is real and so that (7.1)

holds. Therefore, it will no longer be necessary to write |R̂k|. Furthermore, for

readability, we will assume that λ has been chosen so that Corollary 7.13 is true,



TRANSCENDENTAL JULIA SETS WITH FRACTIONAL PACKING DIMENSION 31

and for the rest of the paper we will suppress the notation λ and just refer to the

function as f . We will also refer to the values of R̂k simply as Rk.

8. Conformal Mapping Properties of the Fatou and Julia Set

Let k ≥ 0. Define,

A0 =

{
|z| ≤ R1

4
: f(z) ∈ A1

}
,

A−k =

{
|z| ≤ R1

4
: f j(z) ∈ |z| ≤ R1

4
, j = 1, 2, . . . , k, and fk+1(z) ∈ A1

}
.

So after k + 1 iterates, f maps A−k into A1. We make similar definitions for Vk

and Bk, k ≤ 0.

Let C denote the set of all points who eventually get mapped into the filled Julia

set Kf of f viewed as a polynomial-like mapping. Then

C =

∞⋃
k=1

f−k(Kf ).

Now define

A :=
⋃
k∈Z

(Ak \ C).

It follows from Lemma 6.12 that f−1(A) ⊂ A.

The first lemma of this section tells us where the Julia set is located in each Ak,

k ≥ 1. Recall that Ωpnk is a “petal” region where Hnk(z) = znk(2 − znk) restricts

to a conformal mapping onto the disk. Let Pnk denote the union of all the petals

of Hnk . Then Rk · Ωpnk is a petal of Hnk(z/Rk), so we will let Rk · Pnk denote the

petals of Hnk(z/Rk).

Lemma 8.1. Let k ≥ 1. Then (J (f) ∩ Ak) ⊂ Vk ∪ (Rk · Pnk). The diameter of

the portion of the Julia set contained in each petal Rk · Ωpnk is at most R−2
k n−2

k .

To prove this lemma, one uses Lemma 6.6 to conclude that the region, {z :

2Rk ≤ |z| ≤ 4Rk} gets mapped into Bk+1, and then uses Lemma 6.7 to show that

{z : 1/4Rk ≤ |z| ≤ 4/5Rk} gets mapped into Bk, so these regions belong in the

Fatou set. To deal with the points in {z : 4/5Rk ≤ |z| ≤ 3/2Rk}, we first observe

that the zeros of f in Ak belong to this sub-annulus, and define

T ηk = {z : 4/5Rk ≤ |z| ≤ 3/2Rk and Hnk(z/Rk) > η}.

The points where 4/5Rk ≤ |z| ≤ 3/2Rk and Hnk(z/Rk) ≤ |η| for η < 1/2 are

contained in Rnk · Pnk . One can show that there exists a small value η which

depends only on R such that f(T ηk ) ⊂ Bk, and is therefore in the Fatou set. The

diameter argument follows from this observation; Hnk must be very small on the

Julia set contained inside Rk ·Ωpnk , therefore the Julia set has small diameter inside
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of the petal. The details for all of these arguments follow similarly as in Sections

11-13 of [Bis17].

The next lemma characterizes the dynamics of the critical points of f . Recall

that Bf is the basin of attraction for the polynomial-like mapping f . Since f has no

asymptotic values, it’s postcritical set is P (f) = {fn(z) : n ≥ 1, z a critical point}.

Lemma 8.2. For sufficiently large R, the critical points of f are either contained in

Bf or Ak for some k ≥ 1. If z is a critical point contained in Ak, then f(z) ∈ Bk.

In both cases, z is in the Fatou set.

This lemma is proved by studying the size of Hnk at a critical point of f . Since

f is close to Hnk , its critical points are very close to the critical points of Hnk .

However, |Hnk | = 1 at any of its critical points, so we expect that Hnk should have

modulus close to 1 at a critical point for f . This calculation is done explicitly in

Lemma 14.2 in [Bis17], where at a critical point it is shown that

|1−Hnk(z)| ≤ n−2
k .

It follows from Lemma 6.2 and Lemma 6.5 that the distance between a critical

value and the circle C(0, 4Rk) is approximately

|Ck| − 4Rk ≥ R
nk−1

k /2k − 4Rk

when k ≥ 2 and approximately

Rn1
1 /2− 4R1,

when k = 1. So choosing R large enough, this distance can be made arbitrarily

large. Finally, it follows that the distance between P (f) and J (f) is strictly larger

than 0.

Recall that for a set A, Â denotes its polynomial hull; the union of A and all its

bounded complementary components. Lemma 8.2 implies the following.

Lemma 8.3. Let k ≥ 1 and let Dk−1 denote the component of f−1(Âk) containing

the origin. Then

f : Dk−1 → Âk

is a degree nk+1 branched covering map when k ≥ 1. When k ≤ 0, then

f : Dk−1 → Âk

is a degree 2N branched covering map.

The basic covering map lemma above can be refined as follows:

Lemma 8.4. Let W be a connected component of f−1(Ak) for k ∈ Z. Then we

have the following possibilities.
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(1) If k ≥ 1, W ⊂ Vk−1, and f : W → Ak is a degree nk covering map. If

k ≤ 0, W ⊂ Ak−1 and f : W → Ak is a degree 2N covering map.

(2) W ⊂ Aj for j ≥ k and j ≥ 1, and W is contained in some petal in Rj ·Pnj .
Conversely, for all such j and every petal Rnj · Ωnj ∈ Rnj · Pnj , there

exists exactly one component W = f−1(Ak) ⊂ Rnj · Ωnj . In both cases,

f : W → Ak is a conformal mapping.

Moreover, these are the only possibilities.

Proof. (1). By Theorem 6.12, a component W certainly exists in both cases. By

Lemma 8.2, each point z ∈ Ak is evenly covered ; there is a ball B(z, r) so that

f−1(B(z, r)) is the disjoint union of nk simply connected topological disks in W ,

and f is conformal on each of these disks.

(2). The fact that all possible j ≥ k occurs follows from the fact that all the

zeros of f are in the annuli Aj for j ≥ 1, and the fact that f is continuous. W must

also lie completely in some petal region. Indeed, by Lemma 8.1, W must contain

elements of the Julia set, but if W ⊂ Vj , then f(W ) could not be a subset of Ak.

W must be strictly inside the petal, or else the proof of Lemma 8.1 would show

that there are points in W that map to Bk. The fact that there is at least one

component per petal again follows from the continuity of f .

It remains to show the desired conformal mapping behavior occurs. Let z ∈ Ak,

and view f restricted as f : W → Ak. Again Lemma 8.2 shows that each z in Ak

is evenly covered. We want to further show that f is actually one-to-one on W . To

do this, notice that for the globally defined f , z has nk many preimages in Vk−1,

and z has nl many preimages in each Al (one for each petal), for l = k, k+ 1, . . . , j.

This gives

nk + (nk + · · ·+ nj) = nj+1

total preimages in Âj . But f : Dj → Âj+1 is a degree nj+1 branched covering map,

so going back to the original W , we see that f must be one-to-one on W . �

We would like to remark on the following important consequence. If W ⊂ Aj is

a component of f−1(Ak), then f : Ŵ → Âk is conformal. Since f is injective on

the Jordan annulus W , it follows from the argument principle that it is injective

on Ŵ .

Let W ⊂ Aj be a component of f−1(Ak) for j ≥ k. f : W → Ak is conformal,

and the distortion of this conformal mapping can be controlled to be as small as

we would like. If B = B(z, r) is a ball of radius r, we denote λB = B(z, λr).

Lemma 8.5. Let λ > 2 be given and let W be as above. Then for sufficiently large

choices of R, there exists a ball B(z, r) containing W so that f restricted to λB is

conformal.



34 JACK BURKART

Proof. Let {z1, . . . , znk} denote the critical points of f contained in Ak and let

{f(z1), . . . , f(znk)} denote the corresponding critical values. Let

ρk = min{|f(z1)|, . . . , |f(znk)}.

By our comments after the proof of Lemma 8.2, for R sufficiently large, we can

make the ratio ρk/Rk as large as we would like, independent of k. Let A∗k denote

the annulus {z : 1
4Rk ≤ |z| ≤

1
2ρ}.

Let W ∗ be the component of f−1(A∗k) containing W . Then as we argued above,

f : W ∗ → A∗k is a conformal mapping. By Lemma 8.1, there exists a ball B(z, r)

containing W with diam(B(z, r)) = O(R−2
k n−2

k ). The modulus of W ∗ \B(z, r) can

be made as large as we would like, independent of k, so for sufficiently large R it

follows that λB(z, r) ⊂W ∗ as well. The claim now follows from Lemma 3.2. �

9. C1 Boundary Components

The purpose of this section is to show that the boundaries of Fatou components

of f are C1, and in many cases these boundary components are close to being

circles.

We will say a set C is an ε-approximate circle if, for some translation C ′ of C,

there exists a circle C(0, r) and a mapping h : C(0, r) → C ′ which has the form

h(reiθ) = (r(θ), θ) in polar coordinates where r : [0, 2π] → R is ε-Lipschitz. As an

example, in Lemma 7.3, given any ε > 0, we may choose R large enough so that

the sets Uλ are ε-approximate circles.

Let Γ be a connected set in the plane. We say that a line L is tangent to z ∈ Γ

if for every α > 0 there exists r > 0 such that the two-sided sector S(z, L, α) =

{x : d(x, L) ≤ α|x− z|} contains all points of Γ∩B(z, r). A unit tangent vector τz

based at z is a vector based at z with direction given by L. If Γ has a tangent at

z there are two choices of unit tangent vector. We will say that Γ is a C1-smooth

curve if it has a unique tangent line at each point, and there is a choice of unit

tangent vectors so that the direction of the unit tangent vectors varies continuously

with z ∈ Γ.

We will need the following Lemma, which is Lemma 18.1 in [Bis17].

Lemma 9.1. Suppose h is a holomorphic function on A = {z : 1 < |z| < 4} and

suppose that |h| is bounded by ε on A. Let H(z) = zm(1 + h(z)). For any fixed θ

the radial segment S(θ) = {reiθ : 3/2 ≤ r ≤ 5/2} is mapped by H to a curve that

makes angle at most O(ε/m) with any radial ray it meets.

The lemma is proved by applying the Cauchy estimate to zH
′(z)

H(z) ; the argument of

this expression measures the angle. Lemma 9.1 also implies the following stronger

result. If Γ is an analytic Jordan arc in A, and τz is the unit tangent vector to
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Γ at z, then the difference between the angle between τz and S(θ) and the angle

between τf(z) and any ray it meets is O(ε/m). This follows immediately from the

angle preserving property of holomorphic maps with nonzero derivative combined

with Lemma 9.1.

Recall that by Theorem 6.12 the image of the annulus Vk ⊂ Ak contains Ak+1.

It follows from Lemma 9.1 and Lemma 8.2 that W = f−1(Vk+1) ⊂ Vk is a topo-

logical annulus, and the boundary components of W are O(εk)-approximate circles

(recall that the quantities εk were defined in Section 6, p.22). From here, with the

additional help of Lemma 6.6, we can also deduce that the width of W is approxi-

mately Rk/2nk. It turns out that this contracting, small angle distorting behavior

is precisely what we need to prove the following theorem. See also Section 18 of

[Bis17].

Theorem 9.2. Let ε > 0 be given. Then there exists R sufficiently large so that

for all k ≥ 1, there exists a C1-smooth, ε-approximate circle Γk ⊂ Vk contained in

J (f) that surrounds the origin.

Proof. Fix some k ≥ 1 and define

Γk,n =
{
z ∈ Vk : f j(z) ∈ Ak+j , j = 1, . . . , n

}
.

Since Ak+n is a round annulus, it has a natural foliation Uk+n of closed circles

centered at the origin. Γk,n has an induced foliation of closed analytic Jordan

curves obtained by pulling back each element of Uk+n by f . The fact that these

curves are indeed Jordan curves follows from Lemma 8.2 and the covering map

behavior of fn : Γk,n → Ak+n.

Define Γk = ∩nΓk,n. We claim that the compact connected set Γk satisfies the

conditions of the theorem. We first produce candidate tangents for each z ∈ Γk.

For each z ∈ Γk, let γk,n(z) be the element of Uk+n that contains z. Let τn(z)

denote the unit tangent vector at z to γk,n(z). Then by Lemma 9.1 for m ≥ n,

|τn(z)− τm(z)| = O

(
m∑
l=n

εl

)
.

It follows that {τn(z)} is a Cauchy sequence, and τn(z) converges to some unit

vector which we denote by τ(z). Then τ(z) is a tangent vector based at z to Γk.

This follows from the fact that curves γn,k are analytic, and therefore C1, and the

fact that τ(z) is defined to be the limit of the tangent vectors τn(z).

We need to check that τz varies continuously with z. For all z, w ∈ Γk,

|τ(z)− τ(w)| ≤ |τ(z)− τn(z)|+ |τn(z)− τn(w)|+ |τn(w)− τ(w)|,

where τn(z) and τn(w) are tangent to γk,n(z) and γk,n(w), respectively. Let L

denote the ray based at the origin that passes through z. Then L passes through
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γk,n(w) at exactly one point, which we denote by z′. We call the corresponding

unit tangent vector τn(z′). Therefore

|τn(z)− τn(w)| ≤ |τn(z)− τn(z′)|+ |τn(z′)− τn(w)|.

The distance between z and z′ tends to 0 as |z − w| tends to 0. So the fact that

γk,n(w) is analytic shows that |τn(z′)−τn(w)| can be made arbitrarily small if |z−w|
is sufficiently small. For the other term, the line L passes through each element of

Un+k once, and the corresponding unit tangent vectors vary continuously along L,

which shows that |τn(z′)− τn(z)| tends to 0 for large n and |z −w| small. Putting

this all together, we see that τ(z) varies continuously.

Finally we show that Γk ⊂ J (f). For each n, fn : Γk,n → Ak+n. If z ∈ Γk, then

z is contained in some set Sn,k so that fn is one-to-one on the interior of Sn,k and

so that fn : Sn,k → Ak+n. Note that diam(Sn,k) → 0 as n → ∞. By definition

of Γk, we have fn(z) → ∞ as n → ∞. Let w ∈ Ak+n be a zero of f . Then

f−n(w) contains an element in Sn,k, and fn+1(w) ∈ Bf , the basin of attraction

containing the origin. It follows that in any neighborhood of z, {fn} cannot be an

equicontinuous family. �

Now we turn to a systematic labeling of the Fatou components of f . For k ≥ 1,

define Ωk to be the Fatou component containing Bk−1. Let D be the bounded

complementary component of the Jordan annulus B0. For k ≤ 0, we may define Ωk

by taking appropriate preimages, namely,

Ωk = {z ∈ D : f j(z) ∈ D , j = 1, . . . , k , fk+1(z) ∈ Ω1}.

By Theorem 9.2 each Ωk is a distinct Fatou component for all integers k.

Lemma 9.3. For all k, f(Ωk) = Ωk+1. In particular, each Ωk is a multiply

connected wandering domain.

Proof. If k ≤ 0, this is true by definition. For k ≥ 1, we know that f(Bk−1) ⊂
Bk ⊂ Ωk+1 by Theorem 6.12. Since Ωk+1 is a connected component of the Fatou

set it follows that f(Ωk) ⊂ Ωk+1. Since f has no asymptotic values and Ωk is

also a connected component of the Fatou set, we get f(Ωk) = Ωk+1. For the last

comment, we just use the observation that each Bk surrounds the origin. �

Lemma 9.4. Each Γk is a connected component of J (f). In fact, Γk is simul-

taneously the innermost boundary component of Ωk+1 and the outermost boundary

component of Ωk.

Proof. Let Sn,k be the sets from the proof of Theorem 9.2. For sufficiently large n,

since Γ is C1 and an approximate circle, Γ splits Sn,k into exactly two connected

components. Given an Sn,k let So denote the component that is a subset of the
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unbounded complementary component of Γk, and we let Si denote the component

that is a subset of the bounded complementary component Γk.

Since fn(Sn,k) = An+k, there exists a point z ∈ So so that |fn(z)| = 5
2Rk+n.

Then fn+1(z) ∈ Bk+n+1 by Theorem 6.12. It follows that fn+1(z) ∈ Ωk+n+2, and

therefore z ∈ Ωk+1 by Lemma 9.3. So Γk is a boundary component for Ωk+1.

There also exists a point z ∈ Si so that |fn(z)| = 3
2Rk+n. Then fn+1(z) ∈ Bk+n,

so that fn+1 ∈ Ωk+n+1 and z ∈ Ωk. So Γk is a boundary component for Ωk as well.

Let Γ be the connected component of the Julia set containing Γk, and suppose

that Γ \ Γk was non-empty. Then Γ \ Γk cannot have any components in the

unbounded complementary component of Γk by the argument above. It cannot

have a component in the bounded complementary component either. Suppose such

a K existed. The argument above asserts that some iterate n of f takes some point

w ∈ K to the circle C(0, 3/2Rk+n), but the argument above would also assert that

w would be in the Fatou set. �

By Lemma 8.1 and Lemma 9.3, we know that each Ωk is multiply connected.

The proof of Theorem 9.2 actually shows that each Ωk is infinitely connected, since

the sets Γn,k contain preimages of petals (defined on p.18) contained in An+k, and

these petals contain preimages of the basin of attraction containing the origin. We

can break the complement of Ωk into three types of regions Ωak, Ω0
k, and Ω∞k . Ω0

k is

the region containing the origin and Ω∞k is the unbounded region. The remaining

regions Ωak lie between the innermost and outermost boundary components of Ωk.

We define ΩAk to be the union of Ωk and all the regions Ωak, so that ΩAk is a Jordan

annulus. With this notation, Ω̂k is the union of Ω0
k and ΩAk .

Next, let Ωak ⊂ Rk ·Ωpnk , for some petal Ωpnk , be a complementary component of

Ωk. The boundary of Ωak is in the Julia set, and Ωak contains a zero of f . There

exists an inverse image f−1(Ωk) inside of Ωak, and we claim that the boundary of

f−1(Ωk) inside of Ωak is the boundary of Ωak. f maps the boundary of f−1(Ωk)

onto Γk, and this means that f(∂Ωak) belongs to the unbounded complementary

component of Γk. Arguments similar to what we have done in this section shows

that if this were to happen, then there exists n so that fn(∂Ωak) ⊂ Bn+k−1, and

∂Ωak would have to be in the Fatou set.

So by Lemma 8.5, f maps Ωak conformally onto some topological disk that con-

tains the origin, and the boundary of that disk is the outermost boundary compo-

nent of Ωk. It follows that inside of Ωak, there are conformal copies of Ωj for j ≤ k,

and one conformal copy of Bf . This motivates the following definition.

Definition 9.5. We call a Fatou component ω of k-type if there exists m so that

fm : ω → Ωk is a conformal mapping.
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Such a value for k is unique, since conformal mappings as we defined them

are injective. Note that by Lemma 3.2 and Lemma 8.5, we may arrange for the

boundary of a Fatou component of k-type, k ≥ 1, to be an ε-approximate circle for

small ε. Since the orbits of all points in Ωk tend to ∞ for all k, the same is true for

the orbits of all points in a component of k-type. Later, we will prove that every

Fatou component that escapes is of k-type for some k. Given this universality of

Ωk in the Fatou set of f , we create the following definition. Recall that Bf is the

basin of attraction for f viewed as a polynomial-like mapping.

Definition 9.6. The central series of Fatou components is the union of Bf and all

components Ωk, where k ∈ Z. The central series of Fatou components truncated at

m is the union of Bf and all components Ωk with k ∈ Z satisfying k ≤ m.

As we will start to see in Section 10, the central series of Fatou components

truncated at some m is the primary building block for the global Fatou set of f .

That said, there are points in the Julia set that are not in the boundary of any Fatou

component. Such points are called buried points. Let z in A , where A was defined

in Section 8, be given, and suppose that every iterate of z remains in A. Then

there exists integers kn so that fn(z) ∈ Akn for all n ≥ 0 (we interpret f0(z) = z).

Then we may define the orbit sequence of z to be α(z) = (k0, k1, k2, . . . ). The orbit

sequence tells us exactly which Ak f
n(z) belongs to for some iterate n. If z does

not remain in A for all iterates, we may still write a finite orbit sequence similarly.

We will say that a point z ∈ A moves backwards if there exists j ≥ 0 so that

α(z) satisfies kj+1 ≤ kj . A point z ∈ A moves backwards finitely or infinitely often

if there exists finite or infinitely many values j so that α(z) satisfies kj+1 ≤ kj . We

will say a set X ⊂ A moves backwards finitely often if the following two conditions

hold:

(1) All z ∈ X move backwards m times for some m ≥ 1.

(2) Let z ∈ X and let kj be the mth entry of α(z) so that kj+1 ≤ kj . Then if

w ∈ X, then α(z) and α(w) are equal up to the j + 1-st index.

Informally, a set moves backwards finitely often if and only if all its elements move

backwards finitely often at the exact same iterates.

Lemma 9.7. Let z ∈ A be given. If z is buried then it moves backwards infinitely

often.

Proof. Suppose that z is a buried point. Suppose for the sake of a contradiction

z moves backwards only finitely often. By considering an iterate fn(z), we may

assume z never moves backwards. z is in the Julia set, so under these circumstances

if z ∈ Ak, then by Lemma 8.1, z ∈ Vk, and fn(z) ∈ Vk+n for all n. By the proof of

Theorem 9.2, z must be on the boundary of Ωk, so it is not buried. �
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We will see later that z is buried if and only if z moves backwards infinitely

often. For the rest of the paper, we will refer to the points that move backwards

infinitely often as Y .

10. A Detailed Description of the Dynamics of f

We can now offer a complete description of the Fatou and Julia set, along with

several other dynamically interesting facts. We will need the following theorem,

which we will prove in Sections 11-13. For convenience, we will often refer to a sum

of diameters of the form below as an (s+ ε0)-sum.

Theorem 10.1. Let ε0 > 0 and k ∈ Z be given. Then R may be chosen large

enough so that

(10.1)
∑
ω⊂ΩAk

diam(ω)s+ε0 <∞,

where the sum is taken over every Fatou component ω ⊂ ΩAk which is of j-type for

some j ≥ 1.

We would like to emphasize that we are summing over all Fatou components

contained inside of ΩAk of j-type for any j ≥ 1, not just one fixed j. This theorem

cannot be significantly strengthened to include all Fatou components of j-type for

j ∈ Z. Indeed, if B′f is an inverse image of Bf contained inside of ΩAk , there exists

infinitely many Fatou components surrounding B′f with diameter larger than the

diameter of B′f . Compare to (20.1) in [Bis17], p. 455.

Let’s first geometrically interpret what this sum means. Figure 7 shows a

schematic diagram for the Fatou component Ωk, k ≥ 1. As discussed in Section

9, Ωk is infinitely connected. The ‘holes’ in Figure 7 correspond to the compo-

nents Ωak. The innermost ring of holes is contained inside of the collection of petals

Rk · Pnk , defined in Section 8. There is exactly one hole for each individual petal

Rk · Ωpnk , and f maps the outermost boundary of each of these holes conformally

onto the outermost boundary component of Ωk with small distortion by Lemma

8.5. Therefore, each hole contains a preimage or copy of the central series of Fatou

components truncated at k, and Lemma 8.5 says that this preimage is almost an

affine rescaling of the central series truncated at k.

When k ≥ 1, the other rings of holes of Ωk are mapped to rings of holes in Ωk+1.

The second ring of holes maps into Rk+1 · Pnk+1
, and in general, each ring of holes

moves one ring inward under iteration by f . Therefore, all of the other rings of

holes in Figure 7 are eventually mapped conformally into Rj · Pnj for some j > k,

and therefore the same reasoning shows that those holes contain a preimage or copy

of the central series of Fatou components truncated at j.
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Figure 7. A schematic for a Fatou component Ωk, k ≥ 1. Ev-
ery hole in ΩAk is bounded by the outermost boundary of a Fatou
component of j-type, j ≥ k. This forms the first layer of holes,
which we see pictured above. Every hole contains a copy of the
central series of Fatou components truncated at some j ≥ k; the
holes in all of these copies induce the second layer of holes in ΩAk .
This introduces a third layer of holes, and the process continues
inductively. The set Y of points that move backwards infinitely
often coincides with the set of all points that are contained inside
of a hole in every layer.

The discussion above also applies to Ωk for k ≤ 0, with some minor adjustments.

In this case, Ωk is defined to be the preimage f (−1+k)(Ω1) that surrounds the

origin. Each complementary component Ωak gets mapped conformally by f−k+1

onto some component Ωa1 , so it also contains a preimage of the central series of Fatou

components truncated at some j ≥ 1. From this we deduce that the boundary of

every complementary component of Ωk contained in ΩAk is the boundary of some

Fatou component of j-type, where j ≥ 1.

To summarize the above discussion using the informal language of holes, we

have replaced all of the holes in Ωk by appropriate truncated copies of the central

series of Fatou components. These truncated copies introduce a new second layer of

holes contained in Ωk, introduced by the every copy of the truncated central series

of Fatou components. The reasoning above shows that every hole in this second

layer contains a truncated copy of the central series of Fatou components, which

introduces a third layer of holes in Ωk, and so on.
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From this discussion we see that the truncated copies of the central series of

Fatou components serve as the main building block for the Fatou and Julia set of

f . We fill all the holes in the central series by the appropriate truncated copies

of the central series, and repeat this procedure for all the new, smaller holes that

appear. Theorem 10.1 can now be interpreted as saying that the (s + ε0)-sum of

diameters of every hole in every layer of holes contained in ΩAk is finite (in fact, it

is slightly stronger, since many Fatou components may be contained inside of the

same hole).

We can also see from this discussion that every hole in the mth layer described

above moves backwards exactly m many times. Therefore, we see that the set Y

of points that move backwards infinitely often coincides with the set of points that

are contained inside a hole for every layer of holes in ΩAk . For each m, the mth

layer of holes is a covering of Y ∩ ΩAk , so since the sum in Theorem 10.1 converges

we will be able to deduce the following consequence.

Corollary 10.2. For all k, dimH(Y ∩ ΩAk ) ≤ s + ε0. In particular, we have

dimH(Y ) ≤ s+ ε0.

For the remainder of this section we will describe the dynamical consequences of

Theorem 10.1 and Corollary 10.2. Recall that for an entire function f , we define

the escaping set as

I(f) = {z : |fn(z)| → ∞}.

Choose some number S0 so that there exists z with |z| = S0 so that z ∈ I(f) (for

example, choose S0 so that |z| = S0 ⊂ B1). Then define inductively

Sn+1 = max
|z|=Sn

|f(z)|.

We define the fast escaping set as

A(f) = {z : there exists k ≥ 0 so that |fn+k(z)| ≥ Sn for all n ≥ 0}.

We define the bungee set as

BU(f) = {z : there exists nk and nj so that |fnk(z)| → ∞ and fnj (z) is bounded}.

Lastly, we define the bounded orbit set as

BO(f) = {z : fn(z) is bounded}.

Every point z ∈ C is either in I(f), BU(f), or BO(f). All of the elements of BU(f)

belong to Y , and every point in BO(f) that does not eventually map into Kf , the

filled Julia set of the polynomial-like mapping f , also belongs to Y . Y also contains

points in I(f), but since these points move backwards infinitely often, they cannot

belong to A(f) for our function f .
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We can also show that the set Y is precisely the set of buried points.

Corollary 10.3. A point z moves backwards infinitely often if and only if it is

buried.

Proof. By Lemma 9.7, it only remains to show that moving backwards infinitely

often implies the point is buried. First, note that such a point cannot belong to C,

defined in the beginning of Section 8 as the inverse images of Kf .

Suppose z belonged to the boundary of some Fatou component ω. Since z moves

backwards infinitely often, z ∈ Y ∩ΩAk for some integer k, and there exists a sequence

ωj(n) of components of j(n)-type contained in ΩAk so that diam(ωj(n))→ 0. These

components ωj(n) correspond exactly to the hole in the nth layer that z is contained

in. Since we must have ω ⊂ ωj(n) for all n, this is a contradiction. �

Corollary 10.4. Every escaping Fatou component is of k-type for some unique

integer k.

Proof. Uniqueness has already been discussed when we defined components of k-

type. Let ω be an escaping Fatou component, but suppose it is not of k-type. Then

its boundary is in the Julia set, and by Corollary 10.3, every point on the boundary

moves backwards finitely often. So by taking a large enough iterate of f it suffices

to deal with the case that ω is a Fatou component which never moves backwards.

In this case, since the boundary of ω is in the Julia set, Lemma 8.1 says that (by

perhaps applying a larger iterate of f to ω) it is in a petal Rk · Ωpnk , or in Vk for

some k ≥ 1. If it is in a petal, it moves backwards, so ω must be in Vk. But then

f j(ω) ⊂ Vk+j for all j, by the same reasoning. The proof of Theorem 9.2 shows

that this is impossible. �

Corollary 10.5. The sets I(f) \A(f), BU(f), and BO(f) \C all have Hausdorff

dimension ≤ s+ ε0 < 2.

Proof. BU(f) ⊂ Y and BO(f) \ C ⊂ Y , and Y has Hausdorff dimension ≤ s+ ε0

by Corollary 10.2. If z ∈ I(f) \ A(f), then z /∈ C, nor can we have z inside a

Fatou component or the boundary of a Fatou component of k-type for any integer

k, since these sets belong to A(f). Therefore z must be in Y , so z moves backwards

infinitely often and it follows that z cannot belong to A(f). Hence I(f)\A(f) ⊂ Y ,

and the result follows. �

We now know that Fatou components are either inverse images of the basin of

attraction Bf of f viewed as a polynomial-like mapping, or are of k-type for some

integer k. If ω is a preimage of Bf , we call it a basin. If ω is k-type for k ≥ 1, we

call ω round. If ω is k-type for k ≤ 0 we call ω wiggly. As k → −∞, the boundaries

of components of k-type trace more closely the fractal boundary of the basin of
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attraction. Round components are far enough away from the fractal boundary

to still have approximately circular boundaries. Recall in Section 6 immediately

after Lemma 6.9 we defined the summable parameters εk. In Section 9 we showed

that the εk’s determined the deviation from round circles of the innermost and

outermost boundary components of Ωk, k ≥ 1, and for any δ > 0, we could arrange

for
∑∞
k=1 εk < δ.

Corollary 10.6. The boundary of any escaping Fatou component is the union of

C1 curves. If the Fatou component is round, the all of the boundary components

are O(δ)-approximate circles.

Proof. All escaping components are of k-type for some k, so it suffices to show this

for Ωk by Lemma 8.5. Since all the boundary components of Ωk are escaping by

Corollary 10.3, they are the boundaries of components of j-type for j ≥ 1. The

components of j-type map conformally onto Ωj , so their boundaries are also C1,

and by Lemma 8.5, they are approximate circles when k ≥ 1. �

We can now offer a full description of the Julia set.

Theorem 10.7. The Julia set can be decomposed into three pieces

(1) The buried points of f . Equivalently, the set Y of points which move back-

wards infinitely often.

(2) The C1 components that escape to ∞. These components are always the

boundary component of some Fatou component of k-type.

(3) Preimages of Bf , the Julia set of the quadratic-like map f .

Corollary 10.8. J(f) has zero Lebesgue measure.

Proof. The Julia set is the disjoint union of the the set of points that move back-

wards infinitely often which has Hausdorff dimension < 2 by Corollary 10.2, count-

ably many C1 curves, and countably many quasicircles with dimension strictly less

than 2. �

We conclude the section by recording a lemma describing the nice geometry of

the round Fatou components Ωk, k ≥ 1; we refer the reader again to Figure 7. The

proof follows from some basic calculations using the fact that f looks like a power

mapping on some portions of Ωk, along with using Lemma 8.5. A similar discussion

is found in Section 19 of [Bis17], and we omit the details.

Lemma 10.9 (The Shape of Round Fatou components). Choose some Fatou com-

ponent Ωk for some fixed k ≥ 1. Define dj = 2(nk + · · · + nj−1) for j > k. Then

Ωk has the following geometric properties
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(1) For all j ≥ k, there are nj · 2dj many boundary components of Ωk which lie

distance approximately Rk · 2−dj from the outermost boundary component

of Ωk. We call these components the jth ring of Ωk.

(2) The boundary components in the jth ring of Ωk are approximately distance

Rkn
−1
j 2−dj apart from each other and lie on a O(δ)-approximately round

circle.

(3) All boundary components of Ωk arise in this manner for some j ≥ k.

11. The Proof of Theorem 10.1: A Labeling System for Holes

In this section, we formally construct a sequence of coverings Cm of Y ∩A1 which

correspond to the mth layer of holes in ΩAk described in the previous section. We

will focus on the case in Theorem 10.1 with k = 1. It is straightforward to modify

our techniques to other integers k.

Our initial covering C0 will have exactly one element, A1, the annulus defined

in Section 6. Notice that by the proof of Theorem 9.2, A1 contains the outermost

boundary component of Ω1, so that Â1 contains Ω̂1. A1 and Ω1 both have diameter

comparable to R1. We first describe how to construct C1 from C0. For each z ∈
A1 ∩ Y , by definition, there is a smallest positive integer n so that fn(z) ∈ Ak for

k ≤ n. It is possible that k ≤ n is a negative integer. z belongs to one connected

component of f−n(Ak), a Jordan annulus which is a proper subset of A1. We denote

such a component by Wn
k . The collection of all distinct components obtained by

doing this procedure for all z ∈ Y is denoted by C1.

Before proceeding further, we would like to remark on some potentially confusing

notation. The convention of referring to elements in C1 as Wn
k is ambiguous. Indeed,

there are 2N many elements of C1 that could be called W 1
1 , one for each petal

R1 · Ωpn1
. With this ambiguity in mind, we will adopt the convention that the

notation Wn
k ∈ C1 always refers to a single element. We will say that an element

X ∈ C1 is of the form Wn
k if it could be denoted by Wn

k using the procedure above

for some z ∈ X. Therefore every element of C1 is of the form Wn
k for some positive

integer n and some integer k ≤ n. This slight abuse of notation will not be an

issue in what follows; we will exclusively refer to either single elements Wn
k or the

collection of all elements of the form Wn
k exclusively. We will make it clear in each

context if we are referring to a single element versus a collection of elements.

With this in mind we now describe how to obtain C2 from C1. Let Wn
k ∈ C1 be

given, and choose z ∈ Y ∩Wn
k . Then fn(z) ∈ Ak. But since z ∈ Y , there exists a

smallest q so that fn+q(z) ∈ Aj for j ≤ k+ q− 1. z is contained in a component of

f−(n+q)(Aj) ⊂ A1, which we denote by Wn+q
j . Therefore, for all z ∈ Y ∩Wn

k there

is a Jordan annulus Wn+q
j ⊂ Wn

k containing z which moves backwards twice. We
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define C2 to be the collection of all distinct components obtained by applying this

procedure to each element of C1.

We proceed inductively to construct Cm+1 from Cm. Let z ∈Wnm
km
∩ Y for some

element Wnm
km
∈ Cm. Then since z ∈ Y , there exists a smallest q so that fnm+q(z) ∈

Aj for j ≤ km + q − 1. z is a member of some component of f−(nm+q)(Aj), and

we denote this component by Wnm+q
j . Therefore, for all z ∈ Y ∩Wnm

km
, there is a

Jordan annulus Wnm+q
j ⊂Wnm

km
which moves backwards m+ 1 many times. Cm+1

is the collection of all distinct components obtained by applying this procedure to

each element of Cm.

We summarize several properties of the coverings Cm in the Lemma below.

Lemma 11.1. The collection of sets Cm, m ≥ 0, has the following properties.

(1) Cm is a countable union of Jordan annuli which cover Y ∩ ΩA1 .

(2) Cm+1 is a refinement of Cm, i.e, every element in Cm+1 is a subset of an

element in Cm.

(3) Let Wn
k ∈ Cm. Then Wn

k moves backwards m times.

(4) If Wn
k ∈ Cm, then Wn

k contains the outermost boundary component of ex-

actly one Fatou component of k-type that moves backwards m times, but

not m+ 1 times.

(5) Suppose ω is a Fatou component of k-type contained in ΩA1 . Then there is

a positive integer m so that ω moves backwards exactly m times. Moreover,

there exists a unique element Wn
k ∈ Cm so that Wn

k contains the outermost

boundary of ω.

Proof. We only need to discuss (4) and (5). If Wn
k ∈ Cm, then by definition

fn(Wn
k ) = Ak and Wn

k moves backwards m many times. Ak contains the out-

ermost boundary of Ωk, so Wn
k must contain a Fatou component of k-type that

moves backwards m times. Since f(Ωk) = Ωk+1, this component does not move

backwards again, which gives uniqueness, since all other Fatou components whose

outermost boundary is contained in Wn
k will move backwards more than m many

times.

For (5), the existence of such an m is guaranteed by the definition of k-type

and the fact that f(Ωk) = Ωk+1. The existence of Wn
k follows from the fact that

the outermost boundary component of ω moves backwards m many times. So the

outermost boundary of fn(ω) is contained in Ak, so it will be contained in some

Wn
k in Cm. �

We move on to describing how to change the covering Cm by topological annuli

into a simpler covering Ĉm by topological balls. The elements of Ĉm are going to

be topological disks that cover the holes mentioned in Section 9. Let Wn
k ∈ C1

be given. Then Ŵn
k is a topological disk with the same diameter as Wn

k . Ŵn
k is
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contained inside of exactly one element Ŵn
n , with Wn

n ∈ C1. This means that the

Fatou component of k-type that Ŵn
k contains which moves backwards exactly once

is a subset of the polynomial hull of the Fatou component of n-type that moves

backwards exactly once that Ŵn
n contains. Ĉ1 is the collection of all topological disks

of the form Ŵn
n , n ≥ 1. Ĉ1 has the following maximality property: If Ŵn

n ∈ Ĉ1,

there is no Wn
k ∈ C1 so that Ŵn

n is a proper subset of Ŵn
k . This implies that Ĉ1

covers all the points that C1 does. We will continue to use the convention that Ŵn
k

refers to a single element, and refer to the collection of all elements that could be

labeled the same way as the elements of the form Ŵn
k .

To inductively obtain Ĉm+1, assume that Ĉm has been constructed and satisfies

the maximality property that no element Ŵn
k ∈ Ĉm is a proper subset of Ŵn

j where

Wn
j ∈ Cm. Start with take Ŵn

k ∈ Ĉm. Then k ≥ 1; otherwise Ŵn
k is a proper subset

of Ŵn
k+1 for some Wn

k+1 ∈ Cm. Ŵn
k contains a sequence of components Wn

j ∈ Cm for

j ≤ k. Fix Wn
j , and consider the elements of Cm+1 contained inside of Wn

j of the

form Wn+q
j+q−1. If j ≥ 1, then all q ≥ 1 occur. If j ≤ 0, then q must satisfy q ≥ 2− j.

Either way, for each valid choice of q, the polynomial hulls of the components of

the form Wn+q
k+q−1 determine the elements of Ĉm+1 inside of Wn

j . Doing this for

all j ≤ k, we obtain all of the elements of Ĉm+1 contained in Ŵn
k . Ĉm+1 is the

collection of all elements obtained in this way for each Ŵn
k ∈ Cm.

We summarize the properties of the coverings Ĉm below.

Lemma 11.2. The collection of sets Ĉm, m ≥ 0, has the following properties.

(1) Ĉm is a countable collection of topological disks which cover Y ∩ ΩA1 .

(2) Ĉm+1 is a refinement of Ĉm.

(3) Let Ŵn
k ∈ Ĉm. Then Ŵn

k moves backwards m many times.

(4) If Ŵn
k ∈ Ĉm. Then k ≥ 1, and Ŵn

k contains the outermost boundary

of exactly one Fatou component of k-type that moves backwards m many

times, but not m+ 1 many times.

(5) Maximality: if Ŵn
k ∈ Ĉm, then there does not exist a different element

Wn
j ∈ Cm so that Ŵn

k is a proper subset of Ŵn
j .

Proof. The reasoning for (4) follows similarly as it does in Lemma 11.1. The only

thing left to be checked is maximality. But this follows from the fact that inside of

each Wn
j ⊂ Ŵn

k in the construction above, we refined by using components of the

form Wn+q
j+q−1. �

Example 11.3. We would like illustrate what happens when we refine Ŵn
n ∈ Ĉ1

into components that belong in Ĉ2. This example is actually quite universal and

will motivate the technical lemmas in the next two sections. The idea behind this

construction, pulling back a construction on the central series of Fatou components
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to all other Fatou components of k-type, will be a important theme in the following

sections. Let Ak be the annuli defined in Sections 6 and 8 for k ∈ Z.

When k ≥ 1, we may refine Ak similarly to how we constructed C1 and Ĉ1. We

call this new collection of topological disks Vk, and we denote individual elements

of Vk by V nk , where n is the largest integer so that V nk contains a copy of the central

series of Fatou components truncated at n which moves backwards exactly once.

Similar to our conventions above, we denote a single element of Vk as V nk despite

the ambiguity of the notation, and refer to a collection of elements of Vk as being

of the form V nk . Figure 9 gives a schematic illustration of Vk’s for some k ≥ 1.

When k ≤ 0 and z ∈ Ak∩Y , then f1−k(z) ∈ A1∩Y , and therefore z ∈ Ŵn
n ⊂ A1

for some Ŵn
n ∈ Ĉ1. In this case, define V nk to be the component of f−(1−k)(Ŵn

n ) that

contains z. Doing this for all z, we obtain a countable collection of topological disks

which we denote by Vk. We make the same notational conventions as we do when

k ≥ 1; individual elements are referred to as V nk and a collection of components is

of the form V nk if each individual component could be labeled as V nk . Figure 10

gives a schematic illustration of Vk’s for some k << 0.

Let’s turn our attention back to Ŵn
n ∈ Ĉ1, Ŵn

n ⊂ ΩA1 . Ŵn
n corresponds to some

complementary component in ΩA1 that contains a central series of Fatou components

truncated at n. Let ωj , j ≤ n denote the Fatou components of j-type that make

up this copy of the central series. The nth iterate of f conformally maps this copy

of the central series inside Ŵn
n to the actual central series of Fatou components

truncated at n. Therefore elements of Ĉ2 contained inside of Ŵn
n are precisely the

preimages of the elements of Vj for j ≤ n.

12. The s-Sum of the Fatou Components: Refining away from Bf

In this section, we show that our refining and polynomial hull taking refinements

to the coverings in the previous section result in a decreased (s + ε0)-sum of the

diameters. First we need an estimate comparing the diameter of Wn
k to the di-

ameter of the component Wn
k−1 that it surrounds whenever k ≥ 1. See Figure 8.

The following is inequality (17.1) in [Bis17]. We include the proof to emphasize

an important detail, and because it is the simplest situation that illustrates how

Lemma 3.2 will be used in the next two sections. Define R0 := diam(Ω0).

Lemma 12.1. Let k ≥ 1, α ≥ s. Suppose that Wn
k−1,W

n
k are both elements of Cm

for some m, and suppose that Wn
k−1 ⊂ Ŵn

k . Then R may be chosen large enough

so that

diam(Wn
k−1)α ≤ 1

8
diam(Wn

k )α.

Proof. We have fn(Wn
k ) = Ak and fn(Wn

k−1) = Ak−1, and fn is conformal on a

topological ball B containing Wn
k . Indeed, if n > 1, then fn−1(Wn

k ) is contained
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in some petal Rj · Ωpnj , and the proof of Lemma 8.5 says that we may take f to

be conformal on some ball B′ ⊂ Rj · Ωpnj of unit size which contains fn−1(Wn
k ).

Then we can take B to be the appropriate connected component of f−(n−1)(B′).

If n = 1, we may take B′ = B directly from R1 ·Ωpn1
. In either case, by Lemma 3.2

there exists a constant C so that

diam(Wn
k−1)α

diam(Wn
k )α

≤ C diam(Ak−1)α

diam(Ak)α
≤ C

Rαk−1

Rαk
≤ C 1√

Rα1
.

When R is sufficiently large, this proves the lemma. �

Figure 8. A schematic for Lemma 12.1. Wn
k and Wn

k−1 belong to
the same covering Cm, and Wn

k−1 is contained inside of the bounded
complementary component of Wn

k . When R is large and k ≥ 1,
both components are approximately round and the diameter of
Wn
k−1 is controlled in terms of the diameter of Wn

k .

The next lemma is more complicated. It says that at any stage, when we refine

a component Wn
k for k ≥ 1, we can control the sum of the diameters of the refined

components inside Wn
k in terms of the diameter of Wn

k . See Figure 8. This Lemma

corresponds inequality (17.2) in [Bis17]. We will clarify the part of the proof with

an estimate related to the “petal map”; the rest of the proof is the same.

Lemma 12.2. Let k ≥ 1, α ≥ s. Suppose that Wn
k ∈ Cm with k ≥ 1 for some m.

Let Ŵn+q
k+q−1 be components of Ĉm+1 contained inside of Wn

k . Let Wn
k (q) denote the
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components of the form Ŵn+q
k+q−1 for a fixed q ≥ 1. Then∑

q≥1

∑
Wn
k (q)

diam(Ŵn+q
k+q−1)α ≤ 1

8
diam(Wn

k )α

Figure 9. A schematic for Lemma 12.2. Wn
k belongs to the cover-

ing Cm and is the annulus bounded by the innermost and outermost
boundary curves. The filled components correspond to elements

Ŵn+q
k+q−1 ∈ Ĉm+1 for q = 1, 2, 3, 4. Lemma 12.2 says when R is

large enough and k ≥ 1, the α-sum of these components in Ĉm+1

can be controlled in terms of diam(Wn
k )α.

Proof. We have Ŵn+q
k+q−1 ⊂ Wn

k ⊂ A1. Then fn(Ŵn+q
k+q−1) ⊂ B ⊂ Ak, where B is a

ball where fq is conformal, constructed similarly by a pullback of some ball B′ of

unit size as in the proof of Lemma 12.1. By one application of Lemma 3.2 for all

q ≥ 1 we have

(12.1)
diam(Ŵn+q

k+q−1)α

diam(Wn
k )α

≤ C
diam(fn(Ŵn+q

k+q−1))α

Rαk
.

If q = 1, then fn(Ŵn+1
k ) belongs to a petal Rk · Ωpnk and diam(fn(Ŵn+1

k )) =

O(R−2
k n−2

k ) by Lemma 8.1. Therefore for sufficiently large R, (12.1) yields

diam(Ŵn+1
k )α

diam(Wn
k )α

≤ 1

Rαk
.
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If q ≥ 2, we need to be a little more careful. Another application of Lemma 3.2

with B as above gives

diam(fn(Ŵn+q
k+q−1))α

diam(B)α
≤ C

diam(fn+q−1(Ŵn+q
k+q−1))α

diam(B′)α
.

Then since diam(fn+q−1(Ŵn+q
k+q−1)) = O(R−2

k+q−1n
−2
k+q−1) by Lemma 8.1. Therefore

if R is large enough, we combine with (12.1) to obtain

diam(Ŵn+q
k+q−1)α

diam(Wn
k )α

≤ 1

Rαk
.

The rest of the lemma follows similarly to the proof of Lemma 16.3 on page 449 in

[Bis17]. �

13. The s-Sum of the Fatou Components: Refining near Bf and

Conclusions

Let Ŵn
k ∈ Ĉm be given. Lemma 12.2 only works for components in Ĉm+1 con-

tained in the annular regions Wn
j ∈ Cm with Wn

j ⊂ Ŵn
k and j ≥ 1. However, there

are also components of Cm+1 contained in Wn
j ∈ Cm for j < 1 that are contained in

Ŵn
k . The methods of the above two lemmas do not work as j → −∞. We handle

this difficulty by using a Whitney type decomposition.

First, we need to recall some notation from Section 11. Let A1 be as above and

k ≤ 0. Then Ak is the preimage f−(1−k)(A1) that surrounds the origin. Choose

z ∈ Y ∩ Ak. Then f−k+1(z) ∈ A1 ∩ Y , and therefore z ∈ Ŵn
n ⊂ A1 for some

Ŵn
n ∈ Ĉ1. Then define V nk to be the component of fk−1(Ŵn

n ) that contains z. Let

Vk denote the set of all V nk ’s contained in A−k. Let V = ∪k≤0Vk. See Figure 9.

Lemma 13.1. Fix ε0 > 0, and let α ≥ s + ε0. With the notation as above, there

exists a constant C (depending on ε0) so that for sufficiently large R,∑
V nk ∈V

diam(V nk )α ≤ C2NRα0 .

Proof. For each Ωk, k ≤ 0, f : ΩAk → ΩAk+1 is a 2N -to-1 covering map, so each

Ωk can be decomposed into 2N(−k+1) pieces each of which maps conformally onto

ΩA1 minus a slit, denoted as ΩS1 . We may choose the slit to be contained in the

right half plane of C. This process breaks Ωk into 2N(−k+1) pieces and we denote

this collection by Qk. Define Q = ∪k≤0Qk. We also choose to define Q by the

dynamics of f , so that each Q ∈ Qk maps onto some Q′ ∈ Qk+1. To accomplish

this, it suffices to choose an appropriate decomposition of ΩA0 , and then define the

decomposition of Ωk for k < 0 by inverse images, similar to Example 4.1. Also see

Figure 9.
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Figure 10. A schematic for Lemma 13.1. We see a portion of
Bf , and we see annular regions representing the innermost and
outermost boundaries of Fatou components Ωk for k ≤ 0. The
complimentary components of Ωk contained in ΩAk are filled in and
correspond to the elements in Vk. Inside each annular region, we
have depicted the pieces of Ωk that make up the collectionQ, which
is a Whitney type decomposition of the unbounded complementary
component of Jf .

With this procedure, it is not necessarily true that each V nk is compactly con-

tained in some Q ∈ Q. Doing the same procedure above, but with a slit in the left

half plane of C, we obtain a similar but “rotated” collection iQ = ∪k≤0iQk. Then

each V nk is compactly contained inside at least one element of Qk or iQk.

We claim Q and iQ form Whitney type decompositions of the unbounded com-

plementary component of the Julia set Jf of the polynomial-like map f . Indeed,

(f, Ω̂0, Ω̂1) is a degree 2N polynomial-like mapping, and is therefore quasiconfor-

mally conjugate in Ω̂0 \ D to z2N . Moreover, elements of Q correspond under this

conjugacy to a Whitney-type decomposition of the unbounded complement of the

unit circle, as in Example 4.1. The same discussion applies to iQ. It follows from
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Lemma 4.5 that Q and iQ are Whitney type decompositions of a neighborhood of

the unbounded complementary component of Jf .

Let Q in Qk be given. Let V nk ∈ Vk be compactly contained in Q. Then some

iterate of f conformally maps V nk onto some Ŵn
n ∈ Ĉ1, and by Lemma 3.2

diam(V nk )α

diam(Q)α
≤ C diam(Ŵn

n )α

diam(Ω1)α
.

Next we sum over all V nk that are compactly contained inside of Q. We denote this

by V nk ⊂⊂ Q. We obtain∑
V nk ⊂⊂Q

diam(V nk )α

diam(Q)α
≤ C

∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α

diam(Ω1)α
≤ C

Rα1

∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α.

We now sum over all V nk that are compactly contained in some Q ∈ Qk. Then∑
V nk

diam(V nk )α ≤ C

Rα1

∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α ·

∑
Q∈Qk

diam(Q)α.

Similarly, if we sum over all V nk that are compactly contained in some Q′ ∈ iQk we

obtain ∑
V nk

diam(V nn )α ≤ C

Rα1

∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α ·

∑
Q′∈iQk

diam(Q)α.

Note that every V nk is compactly contained in at least one element of Q or iQ. So

∑
V nk ∈Vk

diam(V nn )α ≤ C

Rα1

 ∑
Q∈Qk

diam(Q)α +
∑

Q′∈iQk

diam(Q′)α

 ∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α.

Finally, this estimate is true for all k, so summing over all k gives us,

∑
V nk ∈V

diam(V nk )α ≤ C

Rα1

∑
Ŵn
n∈Ĉ1

diam(Ŵn
n )α·

 ∑
Q∈Qk

diam(Q)α +
∑

Q′∈iQk

diam(Q′)α

 .

Since Q and iQ are Whitney type decompositions of the unbounded complementary

component of Jf , and α ≥ s + ε0, the α-sum of elements of Q and iQ converges

and are comparable to the α-sum of elements in Q0. Recall that R0 = diam(Ω0).

Then by this observation and Lemma 12.2∑
V nk ∈V

diam(V nn )α ≤ C · 2NRα0
Rα1

·
∑

Ŵn
n∈C1

diam(Ŵn
n )α ≤ C2NRα0 .

whenever R is sufficiently large. �

If Ŵn
k ∈ Ĉm, then some iterate of f maps Ŵn

k conformally onto Âk. The compo-

nents of Ĉm+1 that are contained inside of Wn
j ∈ Cm with Wn

j ⊂ Ŵn
k for j < 1 get
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conformally mapped onto the elements of V. This allows us to prove the following

more general lemma.

Lemma 13.2. Fix ε0 > 0 and α ≥ s + ε0. Consider an element of the form

Ŵn
k ∈ Ĉm for some m. Let Wn

j for j ≤ 1 be the elements of Cm which are contained

in Ŵn
k . Let Wn

j (q) denote the components of the form Ŵn+q
j+q−1 in Ĉm+1 which are

contained in Wn
j (we define Wn

j (q) to be empty if j+ q− 1 ≤ 0). Then there exists

a sufficiently large R so that the α-sum of all the components Ŵn+q
j+q−1 ∈ Ĉm+1

contained in Wn
j for j < 1 satisfies

(13.1)

−∞∑
j=0

∞∑
q=1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)α ≤ 1

8
diam(Wn

1 ).

Proof. Choose some Ŵn
k ∈ Ĉm. Then fn(Ŵn

k ) = Âk, and this mapping is con-

formal. The elements being summed in (13.1) are mapped conformally onto V.

Therefore, by Lemma 3.2,

−∞∑
j=0

∞∑
q=1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)α ≤ C

diam(Wn
1 )α

diam(A1)α

∑
V nk ∈V

diam(V nk )α

≤ C · 2N ·Rα0
Rα1

· diam(Wn
1 )α

≤ 1

8
diam(Wn

1 )α,

whenever R is large enough. �

We now have everything we need to prove Theorem 10.1.

Proof of Theorem 10.1. It is sufficient to show that the (s+ε0)-sum of the elements

in Ĉm+1 is at most half the (s + ε0)-sum of the elements in Ĉm, because then the

(s + ε0)-sum is geometric. To accomplish this, it suffices to show that for any

Ŵn
k ∈ Ĉm, the (s+ ε0)-sum of all the elements of Cm+1 contained in Ŵn

k is at most

half of diam(Wn
k )s+ε0 .

To that end, let Ŵn
k ∈ Ĉm be given. Using the notation of the previous lemmas,

the (s+ ε0)-sum of all the elements of Cm+1 contained in Ŵn
k is represented by

I =

−∞∑
j=k

∑
q≥1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)s+ε0 =

k∑
j=1

∑
q≥1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)s+ε0

+

−∞∑
j=0

∑
q≥1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)s+ε0 .
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By Lemma 13.2 we have

−∞∑
j=0

∑
q≥1

∑
Wn
j (q)

diam(Ŵn+q
j+q−1)s+ε0 ≤ 1

8
diam(Wn

1 )s+ε0 .

Combining this with Lemma 12.2 to estimate the other sum, we have

I ≤ 1

4

k∑
j=1

diam(Wn
j )s+ε0 .

Then repeatedly using Lemma 12.1 we can conclude that I ≤ 1
2 diam(Wn

k )s+ε0 . �

Corollary 13.3. Let ε0 > 0. Then for sufficiently large R, we have dimH(Y ) ≤
s+ ε0.

Proof. Each Ĉm is a covering of Y ∩A1. The proof of Theorem 10.1 shows that the

(s+ ε0)-sum of all components of all Ĉm’s converges, and therefore the (s+ ε0)-sum

of the elements in Ĉm tends to 0 as m→∞. Therefore dimH(Y ∩A1) ≤ s+ ε0. The

same arguments in these sections can be modified to show that dimH(Y ∩Ak) ≤ s+ε0
for all k ∈ Z. Therefore dimH(Y ) ≤ s+ ε0. �

14. The Packing Dimension of J (f) is < 2

In this section, we prove that the packing dimension of J (f) can be taken to

be arbitrarily close to its Hausdorff dimension. We do this by estimating the local

upper Minkowski dimension using Theorem 4.4. To do this, we will need to show

the (s+ ε0)-sum of a Whitney type decomposition of the complement of the Julia

set contained in the neighborhood ΩA1 is finite. This will require separating the

components into wiggly, round, and basin components, and performing some useful

decompositions of these components.

The following result follows from the results of Sullivan in [Sul83] (see Theorems

3 and 4). Recall that if f is polynomial-like, Kf denotes its filled Julia set.

Theorem 14.1. Let f : U → V be a hyperbolic polynomial-like map. Then we

have dimP(∂Kf ) = dimH(∂Kf ) = dimM(∂Kf ).

In particular, this result applies to f when viewed as a polynomial like map. So

this result applies to Jf , the quasicircle Julia set of f .

In order to apply Theorem 4.4, we need to decompose the Fatou components of

f into simpler pieces. First we collect the following lemmas proved in Section 20

of [Bis17]. The first lemma will allow us to break the infinitely connected Fatou

components into simpler, annular regions and still conclude the convergence of a

t-sum of a Whitney type decomposition.
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Lemma 14.2. Let Ω be a bounded open set containing disjoint open subsets {Ωj} so

that Ω\∪jΩj has zero Lebesgue measure. Let W (Ω) be a Whitney type decomposition

of Ω and W (Ωj) be a Whitney type decomposition for Ωj.Then for t ∈ (1, 2] we have∑
Q∈W (Ω)

diam(Q)t ≤
∑
j

∑
Q∈W (Ωj)

diam(Q)t.

Figure 11 illustrates how Lemma 14.2 will be implemented. By Theorem 10.9,

the complementary components of the Fatou component Ω1 contained in ΩA1 are

arranged in approximately circular rings, which can be connected by an approxi-

mate circle. Doing this for every ring of complementary components, we obtain a

countable union of Jordan annuli. This can be done for every Fatou component

ω ⊂ ΩA1 . We call this procedure necklacing the Fatou component.

Figure 11. A schematic for the necklacing construction. Holes
of Ωk in the same circular ring are connected via approximate
circles, and this construction can be repeated for all ω ⊂ ΩAk by
pulling back this construction. The result is the multiply connected
Fatou components are now decomposed into topological annuli,
which can be straightened into round annuli by a biLipshitz map.
Lemmas 14.2 and 14.3 say that it suffices to estimate the critical
exponent for a Whitney type decomposition of the complement of
the “necklaced” Julia set of f .

Lemma 14.3. If f : Ω1 → Ω2 is L-biLipschitz, and let W (Ω1) and W (Ω2) be

Whitney type decompositions for Ω1 and Ω2. Then for any t ∈ (0, 2], there is

a constant C depending only on L and the constants defining the Whitney type
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decompositions so that we have

1

C

∑
Q′∈W (Ω2)

diam(Q′)t =
∑

Q∈W (Ω1)

diam(Q)t ≤ C
∑

Q′∈W (Ω2)

diam(Q′)t.

Proof. The image of W (Ω1) under f is a Whitney type decomposition; indeed, L-

BiLipschitz maps are always L2-quasiconformal. So the t-sums of W (f(Ω1)) and

W (Ω2) are comparable depending on L and the constants defining the Whitney type

decompositions. If Q ∈ W (Ω1) then 1/Ldiam(Q) ≤ diam(f(Q)) ≤ Ldiam(Q).

Therefore the t-sums of W (f(Ω1)) and W (Ω1) are comparable depending on L,

and the result follows. �

We will use Lemma 14.3 to map the decomposed round components onto round

annuli, where we can estimate the t-sum directly.

Lemma 14.4. Let A = A(ρ, ρ(1 + δ)) = {z : ρ ≤ |z| ≤ ρ(1 + δ)} be a round

annulus with δ, ρ > 0. Let W (A) denote a Whitney type decomposition of A. Then

for t > 1, ∑
Q∈W (A)

diam(Q)t ≤ O
(

1

1− 2t−1
δt−1ρt

)
.

Proof. We first construct a suitable Whitney type decomposition of A(1, 1 + δ); see

Figure 12. The result will follow from the observations in Section 4 and applying

the map z 7→ ρz. For the given δ > 0 there exists N so that δ ∈ [2−N , 2−N+1). Let

S = {z = re2πiθ : r ∈ (1 + δ/4, 1 + 3δ/4), θ ∈ (0, 2−N )}.

Both diam(S) and dist(S, ∂A) are comparable to 2−N . Then rotating S exactly

2N many times gives the first layer of the Whitney type decomposition which we

denote by S1. To get subsequent layers, we define

S1 = {z = reiθ : R ∈ (R+ δ/8, R+ δ/4), θ ∈ (0, 2−N−1)}.

S′1 = {z = re2πiθ : R ∈ (R+ 3δ/4, R+ 7δ/8), θ ∈ (0, 2−N−1)}.

Then diam(S1) and dist(S1, ∂A) are both comparable to 2−N−1, and the same is

true for S′1. Then rotating S1 and S′1 2N+1 many times generates S2, the second

layer of the Whitney type decomposition. Proceeding inductively, we obtain a

Whitney type decomposition W (A).

The t-sum for the elements in S1 is comparable to 2N(1−t), and the t-sum for the

elements in Sn+1 is comparable to 2(N+n)(1−t). Therefore, the t-sum is geometric

and comparable to the quantity
2N(1−t)

1− 21−t .
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2N and 1/δ are both comparable so we obtain∑
Q∈W (A)

diam(Q)t = O

(
1

1− 21−t δ
t−1
j

)
.

�

Figure 12. An illustration of a Whitney type decomposition of
the annulus described in Lemma 14.4

The following is the fundamental estimate for round Fatou components. See

Theorem 20.3 in [Bis17].

Theorem 14.5. Let W (ωk) be a Whitney type decomposition for a component ωk

of k-type, k ≥ 1, and let t ≥ s+ ε0. Then∑
Q∈W (ωk)

diam(Q)t = O

(
1

1− 21−t diam(ωk)t
)
.

Proof. Perform the necklacing decomposition on ωk. By Lemma 14.2, it suffices

to estimate the t-sum of a Whitney type decomposition of all of these Jordan

annuli. By Lemma 10.9, these annuli are biLipschitz equivalent to round annuli

A(r, r(1+δj)), where r is the diameter of Ωk. Lemma 10.9 part (1) and Lemma 8.5

shows that δj tends very rapidly to 0 and are summable. Therefore, by Lemmas

14.3 and 14.4, we have,

∑
Q∈W (ωk)

diam(Q)t = O

 1

1− 21−t

∞∑
j=1

δt−1
j diam(ωk)t

 = O

(
1

1− 21−t diam(ωk)t
)
.



58 JACK BURKART

�

Next we show how to control the critical exponent for the boundaries of the

central series of Fatou components.

Lemma 14.6. Let W (J (f)) be a Whitney type decomposition of the complement

of J (f), and let W denote the elements of W (J (f)) contained in Bf ∪(∪nk=−∞Ωk).

Then ∑
Q∈W

diam(Q)s+ε0 <∞.

Proof. We split the (s+ ε0)-sum into three pieces∑
Q∈W

diam(Q)s+ε0 = I + II + III.

I is the sum of the Q ∈W contained in Bf , II is the sum of the Q ∈W contained

in round Ωk, and III is the sum of the Q ∈W contained in wiggly Ωk.

I converges by definition of the critical exponent. The Q ∈W which satisfy Q ∈
Bf form a Whitney type decomposition of the bounded complementary component

of Bf . Since dimM(Jf ) = s, I converges.

II converges by Lemma 14.5.

III requires some work. The necklacing construction pulls back to Ωk for k ≤ 0.

Let Q = ∪k≤0Qk be the collection of pieces from Lemma 13.2. The boundaries of

the elements Q ∈ Q further decompose the necklaced versions of Ωk into necklaced

quadrilateral-type pieces. By Lemma 14.2, it is sufficient to estimate the (s+ ε0)-

sum II by estimating a (s + ε0)-sum for a Whitney type decomposition W of the

complement of all of the necklaced quadrilateral-type pieces of Ωk.

Choose some Q ∈ Qk (note that k ≤ 0). Lemma 3.2 implies that for all S ∈W ,

S ⊂ Q,
diam(S)s+ε0

diam(Q)s+ε0
≤ C diam(f−k+1(S))s+ε0

diam(Ω1)s+ε0
.

Since f is conformal on Q, the Whitney type decomposition for the necklaced pieces

of Ωk get mapped to a Whitney type decomposition for ΩS1 , the slit version of Ω1.

Similar to the proofs of Theorem 14.5 and Theorem 14.4, the (s + ε0)-sum of a

Whitney type decomposition for the slit ΩS1 is finite and comparable diam(Ω1)s+ε0 .

Summing over all S ⊂ Q and applying Corollary 4.7 we have∑
S∈W,S⊂Q

diam(S)s+ε0 ≤ C

Rs+ε01

diam(Q)s+ε0 .

Therefore, by summing over all S ∈W , we sum over all Q ∈ Q and get∑
S∈W

diam(S)s+ε0 ≤ C

Rs+ε01

∑
Q∈Q

diam(Q)s+ε0 <∞,
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because Q is a Whitney type decomposition for the unbounded complementary

component of Jf . �

Let W (ΩA1 ) denote a Whitney type decomposition for all Fatou components

contained inside of ΩA1 .

Theorem 14.7. The (s+ε0)-sum of the Whitney type decomposition W (ΩA1 ) above

converges.

Proof. Similar to Lemma 14.6, the Fatou components have three types, and we

decompose the (s+ ε0)-sum into three pieces. We write∑
Q⊂W (ΩA1 )

diam(Q)s+ε0 = I + II + III.

Here, I represents the (s + ε0)-sum in basins, II represents the (s + ε0)-sum in

round components, and III represents the (s+ ε0)-sum in wiggly components.

First we estimate I. Note that if a basin B′f = f−m(Bf ) for some m, then B′f
moves backwards l many times, so it is is contained in a unique ω̂ where ω is a

Fatou component of 1-type that moves backwards l many times. fm : ω̂ → Ω̂1 is

conformal, so for all Q ⊂ B′f ,∑
Q∈B′f

diam(Q)s+ε0 ≤ C diam(ω)s+ε0
∑

fm(Q)∈Bf

diam(fm(Q))s+ε0 .

By Corollary 4.7, the sum above is comparable to an (s+ε0)-sum of a fixed Whitney

type decomposition for Bf , which we discussed converges in the proof of Lemma

14.6. Therefore, by summing over all B′f and all components ω of 1-type containing

B′f and applying Theorem 10.1, we get

I ≤ C
∑
B′f⊂ω

diam(ω)s+ε0 <∞.

II converges by Theorem 14.5 and Theorem 10.1.

Finally we estimate III. For every component ω of 1-type, ω̂ contains a unique

sequence of components ωk of k-type for k ≤ 0 so that there exists m so that

fm(ω) = Ω1 and fm(ωk) = Ωk, and fm is conformal on ω̂. Let ω be of 1-type and

ωk be its associated sequence of wiggly components. Corollary 4.7 and the proof of

Lemma 14.6 show that

−∞∑
k=0

∑
Q⊂ωk

diam(Q)s+ε0 ≤ C diam(ω)s+ε0 ·
∑
Q⊂Q

diam(Q)s+ε0 ≤ C diam(ω)s+ε0 .

Again, Theorem 10.1 allows us to conclude that III <∞. �

Corollary 14.8. The upper Minkowski dimension, and hence the packing dimen-

sion of J (f) ∩A1 is at most s+ ε0.



60 JACK BURKART

Proof. The above argument shows that the critical exponent for the Whitney de-

composition of J (f)∩A1 is less than or equal to s+ε0. Since J (f) has zero Lebesgue

measure, Theorem 4.4 says that the upper Minkowski dimension of J (f) ∩ A1 is

also less than or equal to s + ε0. By results in [RS05], since f has no exceptional

values, the local upper Minkowski dimension is constant and coincides with the

packing dimension, so that dimP(J(f)) ≤ s+ ε0. �
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