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Some History

1 (Baker, 1975): Julia set of a transcendental entire function
contains a continuum. So we always have dim(J(f )) ≥ 1.

2 (McMullen, 1987): Studied two families of transcendental
entire functions:

{f (z) = λez : λ 6= 0}, dim J(f ) = 2

{g(z) = sin(az + b) : a 6= 0}, J(f ) has positive area.

3 (Stallard, 1997-2000): Constructed examples in B with
Hausdorff dimension d for all d ∈ (1,2].
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The Main Theorem

Theorem (Bishop, 2011)

There exists a transcendental entire function f so that J(f ) has
Hausdorff dimension 1.
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What is f?

The function f is a family of infinite products

f (z) = F0(z) ·
∞∏

k=1

Fk (z).

Each f is determined by fixed parameters
{N ∈ N, λ > 1,R > 1,S ⊂ N}.

F0(z) = Nth iterate of pλ(z) = λ(2z2 − 1),

Fk (z) =
(

1− 1
2

(
z

Rk

)nk
)
.

Here, {Rk} and {nk} are defined in terms of {N, λ,R,S} and
increase rapidly to∞.
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What is f?

To illustrate, choose parameters N = 5, R = λ = 10. Then

F0(z) = (2λ)2N−1z2N
+ lower order terms

We define {nk} in terms of N by

nk = 2N+k−1

We define {Rk} so that we have growth at least

Rk+1 ≥ 2R2
k .

Then, for example

F4(z) =

(
1−

(
z

1,600,000,000

)512
)
.
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Why F0(z)?

The Julia set of pλ(z), and therefore of F0(z), is a Cantor set in
[−1,1]. It’s dimension tends to 0 as λ→∞.

{Rk} and {nk} are chosen to increase sufficiently quickly, so
that on D = B(0,1/2R),

∞∏
k=1

Fk (z) ≈ 1.

Therefore on D

f (z) ≈ F0(z) = (pλ(z))◦N .
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Why F0(z)?

It follows that f has some invariant Cantor set E in D of small
dimension.

This Cantor set above will be in the Julia set, but its small
dimension will not impact its Hausdorff dimension.

Finally, outside of D, the infinite product part of f will be the
dominant term.
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Why Fk(z)?

First, we decompose C into annuli. Define

Ak = {z :
1
4

Rk ≤ |z| ≤ 4Rk}, Bk = {z : 4Rk ≤ |z| ≤
1
4

Rk+1}.

Further, we will need to define for k for negative indices. If
k ≥ 0:

A0 = {z ∈ D : f (z) ∈ A1}

A−k = {z ∈ D : f (z), . . . f k (z) ∈ D, f k+1(z) ∈ A1}

In this way we can define A = ∪k∈ZAk . Finally we will need to
define

Vk = {z : 3/2Rk ≤ |z| ≤ 5/2Rk} ⊂ Ak .
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Why Fk(z)?

One of the key features of Fk (z) is that it may be written in
terms of T2(zm), where

T2(z) = 2z2 − 1.

By rescaling T2 appropriately, we obtain the function

Hm(z) = −T2(r2zm + z2) = zm(2− zm).

Figure: Level set of |T2(z)| = 1.
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Why Fk(z) ? (cont.)

All of this gives us a good local model for f .

Lemma
For all z:

Fk (z) =
1
2

(
Rk

z

)nk

· Hnk

(
z

Rk

)
.

And for all z ∈ Ak

f (z) = Ck · Hnk

(
z

Rk

)
· (1 + O(R−1

k ))

where Ck depends on all of the initial starting parameters.

Roughly, f looks like Hnk on Ak .
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Why Fk(z) ?(cont.)

Hm has conformal mapping properties we can describe
explicitly.

Figure: Level set of |Tz(zm)| = 1.

f is m − 1 on the inner disk to D with a critical point at 0.
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Why Fk(z) ?(cont.)

Hm has conformal mapping properties we can describe
explicitly.

Figure: Level set of |Tz(zm)| = 1.

f is conformal from the little loops to D - we call these the
petals.
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The general itinerary of f (z)

Now that we know what each component looks and acts like,
we can move on to describing the dynamics more explicitly.

Figure: A Model Fatou Component

Jack Burkart



Itinerary: Points in Bk

On Bk , f (z) ≈ z2nk . So on this component, f behaves rather
orderly. In fact, we have

Lemma
For all k, we have f (Bk ) ⊂ Bk+1.

Preceding inductively, points that start or end up in any of the
Bk ’s travel locally uniformly to∞.

Corollary

For all k, Bk ⊂ F(f ). Furthermore, J(f ) ⊂ A ∪ E.
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Itinerary: Points in Ak

We have a similar lemma to the previous one for the Ak ’s:

Lemma
For all k ∈ Z, Ak+1 ⊂ f (Ak ).

Since the zeros of f are in the Ak ’s, there is the possibility of
f (z) ∈ Aj for z ∈ Ak and j < k . So we consider two cases:

1 The set Y of points z that go backwards infinitely often.
2 The set Z of points z that eventually only move forwards.
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Illustration of Ak ’s possible itineraries

Figure: Possible preimages of Ak
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Itinerary: Points in Z

Theorem

Z is the union of C1 closed Jordan curves.

This part of the Julia set, therefore, has Hausdorff Dimension 1.

Figure: A Model Fatou Component
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Itinerary: Points in Y

Theorem
For any α > 0, by choosing the initial parameters R, λ and N
sufficiently large, we have dim Y ≤ α.

The set Y is a Cantor set of points determined by the nested
loops in Z .

Figure: Notice the Geometry of the Holes
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Summary

The Julia set consisted roughly of three different components:
1 The Cantor Repellor E , chosen with small dimension
2 The set Y of points that go backwards infinitely often, can

be chosen with small dimension.
3 The set Z of fast escaping points, which has dimension 1.

Therefore, the Julia set of f must have dimension 1.
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What did we Omit?

Much more can be said about the dynamics of Bishop’s
example.

1 By using the parameter S ⊂ N, we can give f arbitrarily
slow growth.

2 The packing dimension (upper Minkowski dimension 2.0) is
also 1.

3 J(f ) has locally finite Hausdorff measure, and other
measure theoretic properties.
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