Chekanov–Eliashberg dg-algebras for singular Legendrians

Johan Asplund

Uppsala University

June 15, 2021

Based on joint work with Tobias Ekholm (arXiv:2102.04858)

Setup and main results

Setup

Let X be a 2n-dimensional Weinstein manifold with ideal contact boundary ∂X .

Singular Legendrians

Let (V,λ) be a (2n-2)-dimensional Weinstein hypersurface in ∂X .

That is, there is an embedding of V in ∂X that extends to a (strict) contact embedding

$$F: (V \times (-\varepsilon, \varepsilon)_z, dz + \lambda) \longrightarrow (\partial X, \alpha)$$

Setup

Singular Legendrians

In particular, the union of the top dimensional strata of $F(\operatorname{Skel} V) \subset \partial X$ is Legendrian.

Setup

We consider stops using a surgery description.

C= union of co-core disks of top handles of $V\times D^*_\varepsilon[-1,1]$ Theorem A (A.–Ekholm)

There is a surgery isomorphism of A_{∞} -algebras

$$\Phi \colon CW^*(C; X_V) \longrightarrow CE^*((V, h); X)$$

Main results

Let $\Lambda \subset \partial X$ be a smooth Legendrian and let $(V(\Lambda), h(\Lambda))$ denote a small disk cotangent neighborhood of Λ with a handle decomposition with a single top handle.

Theorem B (A.–Ekholm)

There is a quasi-isomorphism of dg-algebras

$$\Psi \colon CE^*((V(\Lambda), h(\Lambda)); X) \longrightarrow CE^*(\Lambda, C_{-*}(\Omega\Lambda); X)$$

Remark

- Theorem A and B together prove a conjecture by Ekholm–Lekili and independently by Sylvan.
- There exists a natural augmentation ε of $CE^*((V(\Lambda),h(\Lambda));X)$ such that there is a quasi-isomorphism

$$CE^*((V(\Lambda), h(\Lambda)); \varepsilon; X) \cong CE^*(\Lambda; X)$$

Main results

 $C_{\#}=$ union of co-core disks of top handles of $V \times D_{\varepsilon}^*[-1,1].$ $\Sigma_{\#}:=$ union of attaching spheres dual to $C_{\#}.$

Theorem C (A.-Ekholm)

The diagram below is a pushout diagram.

$$CE^*(\partial l; V_0) \xrightarrow{incl.} CE^*((V, h); X')$$

$$\downarrow incl. \qquad \qquad \downarrow incl.$$

$$CE^*((V, h); X) \xrightarrow{incl.} CE^*(\Sigma_\#(h); X\#_{V_0}X')$$

The Chekanov-Eliashberg dg-algebra

CE^* for smooth Legendrians

Setup

Let X be a 2n-dimensional Weinstein manifold with ideal contact boundary ∂X . $(c_1(X) = 0)$

Let $\Lambda \subset \partial X$ be a smooth Legendrian with vanishing Maslov class.

- α contact form on ∂X
- R_{α} Reeb vector field, defined by $\begin{cases} d\alpha(R_{\alpha},-)=0 \\ \alpha(R_{\alpha})=1 \end{cases}$

Consider $\mathcal{R} = \{ \text{Reeb chords of } \Lambda \}$ and let $\Lambda = \bigsqcup_{i=1}^n \Lambda_i$. Then $\mathcal{R}_{ii} \subset \mathcal{R}$ is the set of Reeb chords from Λ_i to Λ_i . Let \mathbb{F} be a field. Let $\{e_i\}_{i=1}^n$ be such that

- $e_i^2 = e_i$
- $e_i e_i = 0$ if $i \neq j$

CE^* for smooth Legendrians

Graded algebra

Define $\mathbf{k} := \bigoplus_{i=1}^n \mathbb{F} e_i$. Then \mathcal{R} is a \mathbf{k} - \mathbf{k} -bimodule via

$$e_i \cdot c = \begin{cases} c, & \text{if } c \in \mathcal{R}_{ji} \\ 0, & \text{otherwise} \end{cases} \qquad c \cdot e_i = \begin{cases} c, & \text{if } c \in \mathcal{R}_{ij} \\ 0, & \text{otherwise} \end{cases}$$

Then define

$$CE^*(\Lambda) := \mathbf{k} \langle \mathcal{R} \rangle$$
.

Grading is given by

$$|c| = -\operatorname{CZ}(c) + 1.$$

CE^* for smooth Legendrians

Differential

 $\partial \colon CE^*(\Lambda) \longrightarrow CE^*(\Lambda)$ counts (anchored) rigid *J*-holomorphic disks in $\mathbb{R} \times \partial X$ with boundary on $\mathbb{R} \times \Lambda$ with 1 positive puncture, and several negative punctures.

A curve giving the term $\partial c = b_1 b_2 b_3 + \cdots$.

CE^* for singular Legendrians

Assume V^{2n-2} is a Weinstein hypersurface in ∂X with handle decomposition h and $c_1(V)=0$. Let V_0 denote its subcritical part. Let

$$l:=\bigcup_{j=1}^m l_j=\text{union of core disks of top handles}$$

$$\partial l:=\bigcup_{j=1}^m \partial l_j=\text{union of the attaching spheres of top handles}$$

CE^* for singular Legendrians

Now attach $V_0 \times D_{\varepsilon}^*[-1,1]$ to $V_0 \times (-\varepsilon,\varepsilon) \subset \partial X$ to construct X_{V_0} .

Define

$$\Sigma(h) := l \sqcup_{\partial l \times \{-1\}} (\partial l \times [-1,1]) \sqcup_{\partial l \times \{1\}} l$$

CE^* for singular Legendrians

Definition

We define the Chekanov-Eliashberg dg-algebra of a Legendrian embedding of (V,h) in ∂X as

$$CE^*((V,h);X) := CE^*(\Sigma(h);X_{V_0}).$$

Theorem A

There is a surgery isomorphism of A_{∞} -algebras

$$\Phi \colon CW^*(C; X_V) \longrightarrow CE^*((V, h); X)$$

Proof of the surgery formula

Proof of Theorem A.

Follows immediately from the definition together with the Bourgeois-Ekholm-Eliashberg surgery formula.

$$CW^*(C; X_V) \cong CE^*(\Sigma(h); X_{V_0}) = CE^*((V, h); X)$$

Description of generators

00000000

Lemma

For any $\mathfrak{a} > 0$, there is some $\varepsilon > 0$ small enough (size of the stop) so that we have the following one-to-one correspondence

$$\begin{cases} \textit{Reeb chords of } \Sigma(h) \subset \partial X_{V_0} \\ \textit{of action } < \mathfrak{a} \end{cases}$$

$$\downarrow^{1:1}$$

$$\begin{cases} \textit{Reeb chords of } l \subset \partial X \\ \textit{of action } < \mathfrak{a} \end{cases} \cup \begin{cases} \textit{Reeb chords of } \partial l \subset \partial V_0 \\ \textit{of action } < \mathfrak{a} \end{cases}$$

Lemma

There is a dg-subalgebra of $CE^*((V,h);X)$ which is freely generated by Reeb chords of $\partial l \subset \partial V_0$ and canonically isomorphic to $CE^*(\partial l; V_0)$.

Computations and examples

Special case: $\partial X = P \times \mathbb{R}$

Assume $V \subset P \times \mathbb{R}$ is a Legendrian embedding so that $\pi(V_0) \subset P$ is embedded. Consider

$$P^{\circ} := (P \setminus \pi(V_0)) \sqcup_{\pi(\partial V_0)} ((-\infty, 0] \times \pi(\partial V_0))$$

Special case: $\partial X = P \times \mathbb{R}$

Then we can consider $CE^*(l; P^{\circ} \times \mathbb{R})$, where l is the Legendrian lift of $\pi(l) \subset P^{\circ}$.

Proposition

There is an isomorphism of dg-algebras

$$CE^*(l; P^{\circ} \times \mathbb{R}) \cong CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R}))$$
.

Upshot

Can compute $CE^*(l; P^{\circ} \times \mathbb{R})$ and hence $CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R}))$ by projecting l and holomorphic curves to P° . (cf. An–Bae in the case $P = \mathbb{R}^2$)

Computations

Example (Link of Lagrangian arboreal A_2 -singularity)

Let $X=\mathbb{R}^4$ and $\Lambda\subset S^3$. Then $V=T^*\Lambda$ has 0-handles x and y and 1-handles l_1,l_2 and l_3 .

Generators are Reeb chords of l: a and b, and generators of $\partial l \subset \partial V_0$: $\{x_{ij}^p\}$ and $\{y_{ij}^p\}$.

Computations

Example (Link of Lagrangian arboreal A_2 -singularity)

The dg-subalgebra $CE^*(\partial l; V_0)$ consists of two copies of the algebra of 3 points in S^1 . The differential of a and b is as follows

$$\partial a = e_1 + y_{31}^1 b x_{12}^0 + y_{31}^1 x_{13}^0 - y_{21}^1 x_{12}^0, \qquad \partial b = x_{23}^0 - y_{23}^0$$

Let $X=\mathbb{R}^6$ and $\Lambda\subset S^5$ is given by the following front.

The intersection $l \cap \partial h^0$ is a standard Hopf link in S^3 .

The dg-subalgebra $CE^*(\partial l; V_0)$ is generated by the generators of the Hopf link together with with a copy of the algebra of two points in S^1 .

Suitable augmentation of $CE^*(\partial l; V_0)$ gives Chekanov–Eliashberg dg-algebra of nearby smooth tori obtained by smoothing.

Proof of the pushout diagrams

Joining Weinstein manifolds along V

Recall the construction of $X \#_V X'$. Assume V is Legendrian embedded in the ideal contact boundary of X and X'. We can join X and X' together via V.

Joining Weinstein manifolds along V

Theorem C (A.-Ekholm)

The diagram below is a pushout diagram.

$$\begin{array}{ccc} CE^*(\partial l; V_0) & \xrightarrow{\quad \text{incl.} \quad} CE^*((V,h); X') \\ & & \downarrow \text{incl.} & & \downarrow \text{incl.} \\ CE^*((V,h); X) & \xrightarrow{\quad \text{incl.} \quad} CE^*(\Sigma_\#(h); X\#_{V_0}X') \end{array}$$

Proof of the pushout diagram for CE^*

Proof of Theorem C.

Consider $X \#_{V_0} X'$, and $\Sigma_\#(h) \subset \partial (X \#_{V_0} X')$ the attaching spheres obtained by joining l on either side by $\partial l \times [-1,1]$ through the handle.

Proof of the pushout diagram for CE^*

Proof of Theorem C.

By the description of the generators we obtain

$$CE^*(\Sigma_{\#}(h); X_{V_0} X') \cong CE^*((V, h); X) *_{CE^*(\partial l; V_0)} CE^*((V, h); X')$$

which means that the diagram

$$CE^*(\partial l; V_0) \xrightarrow{\text{incl.}} CE^*((V, h); X')$$

$$\downarrow \text{incl.} \qquad \qquad \downarrow \text{incl.}$$

$$CE^*((V, h); X) \xrightarrow{\text{incl.}} CE^*(\Sigma_\#(h); X \#_{V_0} X')$$

is a pushout.

Key observation: $CE^*((V,h);X) \subset CE^*(\Sigma_\#(h);X\#_{V_0}X')$ since curves can not "cross" the handle.

Cosheaf property

Cosheaf property

Sectorial descent

Theorem (Ganatra-Pardon-Shende)

Let $X = X_1 \cup \cdots \cup X_m$ be a sectorial cover. There is a pre-triangulated equivalence (i.e. quasi-equivalence when passing to twisted complexes)

$$\mathcal{W}(X) \cong \underset{\varnothing \neq I \subset \{1, \dots, m\}}{\operatorname{hocolim}} \mathcal{W} \left(\bigcap_{i \in I} X_i \right) .$$

Simplicial descent

Associated to handle decompositions of the Weinstein manifolds $\{V^{(2)},V_{\mathbf{1}}^{(1)},V_{\mathbf{2}}^{(1)},V_{\mathbf{3}}^{(1)}\}$ we can construct a Legendrian submanifold

$$\varSigma = \left(\bigcup_{i=1}^{3} \varSigma_{\mathsf{vertex}_i}\right) \cup \left(\bigcup_{i=1}^{3} \varSigma_{\mathsf{edge}_i}\right) \cup \varSigma_{\mathsf{face}}$$

000000000

Simplicial descent

For each face $\emptyset \neq I \subset \{1, \dots, m\}$ we set $\Sigma_I := \bigcup_{J \supset I} \Sigma_J$.

Using the same almost complex structure as before, we can control holomorphic curves and obtain inclusion of dg-algebras for each inclusion of faces

$$K \subset I \implies CE^*(\Sigma_I) \subset CE^*(\Sigma_K)$$
.

Theorem (A., in progress)

There is an isomorphism of dg-algebras

$$CE^*(\Sigma) \cong \operatorname*{colim}_{\varnothing \neq I \subset \{1,\ldots,m\}} CE^*(\Sigma_I)$$
.

Thank you!