Simplicial descent for Chekanov–Eliashberg dg-algebras

Johan Asplund

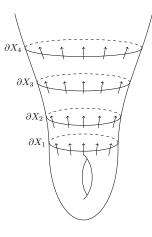
Uppsala University

December 17, 2021

Context and motivation

A Weinstein manifold is an exact symplectic manifold $(X^{2n},\omega=d\lambda)$ such that:

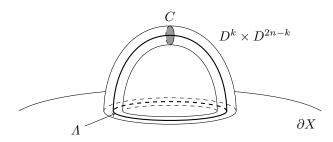
- 1. The Liouville vector field Z defined by $\omega(Z,-)=\lambda$ is complete.
- 2. There exists an exhaustion $X = \bigcup_{k=1}^{\infty} X_k$ by compact domains $X_k \subset X$ with smooth boundaries such that Z points outwards along ∂X_k .
- 3. There exists an exhausting (generalized) Morse function $\phi\colon X\longrightarrow \mathbb{R}$ constant along ∂X_k , such that Z is gradient-like for ϕ .



Weinstein handle of index $0 \le k \le n$

$$\left(D^k \times D^{2n-k}, \sum_{j=1}^k (2x_j dy_j + y_j dx_j) + \frac{1}{2} \sum_{j=k+1}^n (x_j dy_j - y_j dx_j)\right)$$

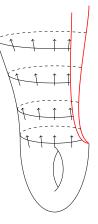
- Core disk $L = D^k \times \{0\}$, attaching sphere $\Lambda = \partial L$
- Cocore disk $C = \{\mathbf{0}\} \times D^{2n-k}$



A Weinstein sector is a Weinstein manifold-with-boundary X^{2n} such that there exists a smooth function $I\colon \partial X \longrightarrow \mathbb{R}$ that is linear at infinity and whose Hamiltonian vector field X_I points outwards along ∂X .

Consequence

Near ∂X there are coordinates of the form $(V^{2n-2} \times T^*(-\delta,0],\lambda_V+pdq)$ where V is called the *symplectic boundary* of X.



Example

If M is a manifold-with-boundary then $(T^*M, \lambda = pdq)$ is a Weinstein sector. Symplectic boundary is $T^*(\partial M)$.

Let X be a Weinstein manifold. A *sectorial cover* is a cover $X=X_1\cup\cdots\cup X_m$ where X_i is a Weinstein manifold-with-boundary such that there are functions $I_i\colon \partial X_i\longrightarrow \mathbb{R}$ (linear at infinity) such that

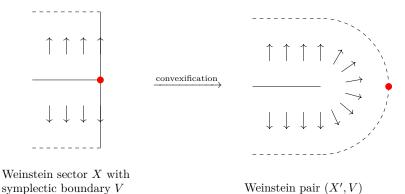
- 1. X_{I_i} points outwards along ∂X_i
- 2. X_{I_i} is tangent to ∂X_j for $i \neq j$
- 3. $[X_{I_i}, X_{I_j}] = 0$

Consequence

Near $\bigcap_{i\in I} \partial X_i$ there are coordinates of the form

$$V_I^{2n-2k}\times T^*(-\delta,\delta)^k$$

where k = |I|.



symplectic boundary V

Fact (Ganatra-Pardon-Shende)

Let $X=X_1\cup\cdots\cup X_m$ be a sectorial cover. Then there is a pre-triangulated equivalence of A_∞ -categories

$$\mathcal{W}(X) \cong \underset{\varnothing \neq I \subset \{1, \dots, m\}}{\operatorname{hocolim}} \mathcal{W}\left(\bigcap_{i \in I} X_i\right)$$

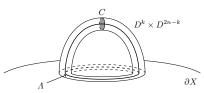
$Fact \ (Chantraine-Dimitroglou \ Rizell-Ghiggini-Golovko, \ GPS)$

 $\mathcal{W}(X)$ is generated by the cocore disks C of the critical Weinstein handles.

Fact (Bourgeois-Ekholm-Eliashberg)

There is an A_{∞} -quasi-isomorphism

$$CW^*(C) \cong CE^*(\Lambda)$$

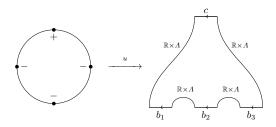


Question:

Does a sectorial cover give rise to a local-to-global principle for $CE^*(\text{attaching spheres})$?

Chekanov–Eliashberg dg-algebra $CE^*(\Lambda)$

- Generators: Reeb chords of $\Lambda \subset \partial X$
- Grading: Conley–Zehnder index
- Differential: Counts rigid J-holomorphic disks in $\mathbb{R} \times \partial X$ with boundary on $\mathbb{R} \times \varLambda$

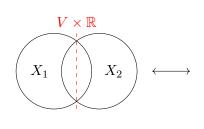


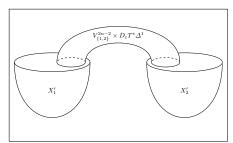
Simplicial decompositions

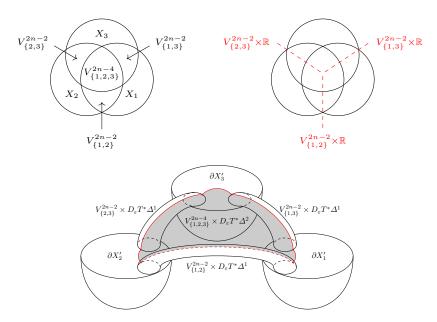
A sectorial cover $X=X_1\cup\cdots\cup X_m$ is good if for any $\varnothing\neq A\subset\{1,\ldots,m\}$ such that $\bigcap_{i\in A}X_i\neq\varnothing$ we have

$$N\left(\bigcap_{i\in A}X_i\right)\cong V_A^{2n-2k}\times T^*\mathbb{R}^k$$

where k = |A| - 1.



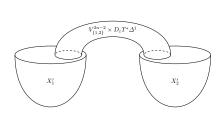


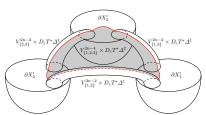


A simplicial decomposition of X is a triple $(C, \mathbf{V}, \mathbf{A})$ where

- C is a simplicial complex
- ullet V handle data
- A attaching data

Sets containing Weinstein manifolds and Weinstein hypersurfaces





$$C = \Delta^1$$

$$C = \Lambda^2$$

Theorem (A.)

Let $\Sigma(\boldsymbol{h})$ be the union of Legendrian attaching spheres of X adapted to $(C, \boldsymbol{V}, \boldsymbol{A})$. Then there is an isomorphism of dg-algebras

$$CE^*(\Sigma(\boldsymbol{h}); X_0) \cong \operatorname*{colim}_{\sigma_k \in C_k} \mathcal{A}_{\sigma_k}$$

Diagram

- Associated to each $\sigma_k \in C_k$ there is a dg-algebra \mathcal{A}_{σ_k}
- For each $\sigma_k \subset \sigma_{k+1}$ we have $\mathcal{A}_{\sigma_{k+1}} \subset \mathcal{A}_{\sigma_k}$

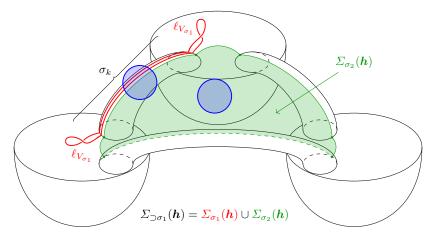
Legendrian attaching data and dg-subalgebras

- Let h be the collection of handle decompositions of all Weinstein manifolds $V \in V \cup A$.
- Remove all the critical Weinstein handles of X
- Let $\Sigma(h)$ be the union of the Legendrian attaching spheres of the critical Weinstein handles of X.

$$egin{aligned} arSigma(oldsymbol{h}) &= igcup_{egin{aligned} \sigma_k \in C_k \ 0 \le k \le m \end{aligned}} arSigma_{\sigma_i \supset \sigma_k} \mathcal{E}_{\sigma_i}(oldsymbol{h}) \ \mathcal{E}_{\supset \sigma_k}(oldsymbol{h}) &= igcup_{oldsymbol{\sigma_i} \supset \sigma_k} \mathcal{E}_{\sigma_i}(oldsymbol{h}) \end{aligned}$$

• Reeb chords of $\Sigma(h)$ are located in the "center" of each handle corresponding to each $\sigma_k \in C_k$

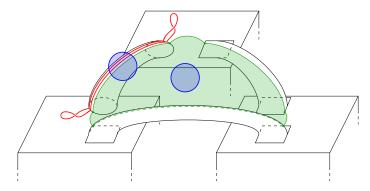
 \mathcal{A}_{σ_k} is generated by Reeb chords of $\Sigma_{\supset \sigma_k}(\boldsymbol{h})$ located in parts of ∂X_0 corresponding to σ_i for $\sigma_i \supset \sigma_k$.



In fact we have

$$\mathcal{A}_{\sigma_k} \cong CE^*(\Sigma_{\supset \sigma_k}(\boldsymbol{h}); X(\sigma_k)_0)$$

 $X(\sigma_k)$ is obtained by replacing $V_{\sigma_i}^{2n-2i} \in \mathbf{V} \cup \mathbf{A}$ with a half symplectization of a contactization for every $\sigma_i \not\supset \sigma_k$.



Theorem (A.)

Let $\Sigma(\boldsymbol{h})$ be the union of Legendrian attaching spheres of X adapted to $(C, \boldsymbol{V}, \boldsymbol{A})$. Then there is an isomorphism of dg-algebras

$$CE^*(\Sigma(\boldsymbol{h}); X_0) \cong \underset{\sigma_k \in C_k}{\operatorname{colim}} CE^*(\Sigma_{\supset \sigma_k}(\boldsymbol{h}); X(\sigma_k)_0)$$

Thank you!