HOMOTOPY RIGIDITY OF NEARBY LAGRANGIAN COCORES

JOHAN ASPLUND

ABSTRACT. Notes from a talk given at the conference Homotopy Theory and Floer Homology at Institut Mittag-Leffler in June 2025.

Everything reported in these notes are joint work with Yash Deshmukh and Alex Pieloch.

1. Results

Let X be a Weinstein manifold. Assume that X is stably polarized, i.e., we have fixed a lift:

$$X \xrightarrow{TX} BU$$

Any Weinstein manifold X^{2n} is built via attachment of index k Weinstein handles

$$(D^k \times D^{2n-k}, \frac{1}{2} \sum_{j=1}^{n-k} (x_j dy_j - y_j dx_j) + \sum_{j=n-k+1}^{n} (2x_j dy_j + y_j dx_j)), \quad 0 \le k \le n$$

If $k \le n-1$ it is called *subcritical*. If k=n, we call it a *critical handle*, see Figure 1.

Figure 1. The local model of a critical handle.

We call $C = \{0\} \times D^n$ the Lagrangian cocore disk. Here $C_{\varepsilon} = \{\varepsilon\} \times D^n$, $\varepsilon \in D^n \setminus \{0\}$ for some ε near 0. It is called the *shifted cocore*.

From now on, fix a Weinstein handlebody presentation of X.

There exists a retract $\pi: X \to \operatorname{Core} X$ to an *n*-dimensional CW-complex $\operatorname{Core} X$, that inherits a cell structure from the handlebody presentation of X. We denote the k-skeleton of $\operatorname{Core} X$ by $(\operatorname{Core} X)_k$.

Definition 1.1. $L \subset X$ is a nearby cocore if

- L is exact and conical at ∞
- $\partial_{\infty}L = \partial_{\infty}C_{\varepsilon}$ for some shifted cocore
- $L \cap C = \emptyset$, where $C := \bigcup$ cocore disks

Example 1.2. An exact conical Lagrangian $L \subset T^*Q$ such that $\partial_{\infty}L = \partial_{\infty}T^*_{q_1}Q$ for some $q_1 \in Q$ and $L \cap T^*_{q_2}Q = \emptyset$, for some $q_2 \neq q_1$, is a nearby cocore

Motivated by the nearby Lagrangian conjecture, we have the following:

Question 1.3. Is a nearby cocore Hamiltonian isotopic to a Lagrangian cocore?

A weaker homotopical version:

Question 1.4. Is the retract $\pi|_L: L \to \operatorname{Core} X \setminus \pi(C)$ null-homotopic?

Theorem 1.5 (A.-Deshmukh-Pieloch). Let $k \ge 1$ and let $n \ge 2k+2$. Suppose that X^{2n} is a stably polarized Weinstein sector with a chosen Weinstein handlebody decomposition such that there is no index i Weinstein handle where $n-k+1 \le i \le n-1$. If $L \subset X$ is a nearby cocore, the following composition is null-homotopic

$$L \xrightarrow{\pi|_L} \operatorname{Core} X \setminus \pi(C) \longrightarrow (\operatorname{Core} X)_{n-k}/(\operatorname{Core} X)_{n-k-1}.$$

Corollary 1.6 (A.–Deshmukh–Pieloch). Let X be either:

- $T^*\mathbb{C}\mathrm{P}^2$, or
- a tree plumbing with each vertex being $T^*\mathbb{R}^n$, T^*S^n or $T^*(S^{n-k}\times\mathbb{R}^k)$ for $k\in\{1,4,5,12,61\}$ and $n\geq 2k+2$ (where k for all vertices).

Let $L \subset X$ be a nearby cocore. Then

$$\pi|_L \colon L \longrightarrow \operatorname{Core} X \setminus \pi(\boldsymbol{C})$$

is null-homotopic.

In fact, a strengthening is obtained by employing an h-principle:

Corollary 1.7. With X as in Corollary 1.6, any nearby cocore $L \subset X$ is smoothly isotopic, relative to its boundary, to the shifted cocore in the complement of all Lagrangian cocores.

Remark 1.8. • Ekholm–Smith [ES18] proved the conclusion of Corollary 1.6 for $X = T^*\mathbb{R}^n$, $n \ge 4$.

• Côté-Dimitroglou Rizell [CDR22] proved that nearby cocores in T^* (compact Riemann surface) are Hamiltonian isotopic to the cotangent fiber.

2. Strategy

Let X_0 denote the subcritical part of X (after removing critical handles). Let $L \subset X$ be a nearby cocore. This yields an exact Lagrangian filling L of a Legendrian unknot $\Lambda_0 \subset \partial_{\infty} X_0$ in a Darboux ball in $\partial_{\infty} X_0$, see Figure 2.

Remark 2.1. Theorem 1.5 could be rephrased in terms of exact Lagrangian fillings of Legendrian unknots $\Lambda_0 \subset \partial_\infty X_0$ as above.

One can in fact show that L has to be diffeomorphic to D^n if $n \neq 4$ (and homeomorphic to D^4 when n = 4). Using wrapped Floer cohomology with \mathbb{Z}_2 -grading and \mathbb{Z}_2 -coefficients one can first show that L is relative pin and must have trivial Maslov class. Using wrapped Floer cohomology with \mathbb{Z} -coefficients then shows that L is an integer homology disk, and in fact is simply connected by [EL23, Theorem 70].

Let \widehat{X}_0 be X_0 with a critical Weinstein handle attached along Λ_0 , see Figure 3. Let $\widehat{L} = L \cup_{\partial}$ core disk and $\widehat{C} = C_{\varepsilon} \cup_{\partial}$ core disk.

The new cocore disk F generates the wrapped Fukaya category $\mathcal{W}(\widehat{X}_0; \mathbb{Z})$, so we know using classical tools that $\widehat{L} \cong \widehat{C}$ in $\mathcal{W}(\widehat{X}_0; \mathbb{Z})$. There is in fact a spectral lift of this result.

Proposition 2.2 (A.–Deshmukh–Pieloch). There are objects supported on $\widehat{L}, \widehat{C} \subset \widehat{X}_0$ such that $\widehat{L} \cong \widehat{C}$ in $\mathcal{W}(\widehat{X}_0; MO\langle k+2\rangle)$.

FIGURE 2. Construction of an unknot filling from a nearby cocore.

FIGURE 3. Attaching a critical handle to X_0 .

Remark 2.3. Here $MO\langle k\rangle$ denotes the Thom spectrum of the k-connected cover of the orthogonal group. In particular we have e.g. $O\langle 3\rangle = Spin$ and $O\langle 7\rangle = String$.

In this proposition, $\mathcal{W}(\widehat{X}_0; R)$ denotes the wrapped Donaldson–Fukaya category with R-coefficients, for any commutative (E_{∞}) ring spectrum R [Lar21, PS24a, PS24b, ADP24].

Objects: $L \subset \widehat{X}_0$ exact conical Lagrangians equipped with grading (null-homotopy of the Maslov class) and R-brane structure, i.e., a choice of null-homotopy of the composition

$$L \xrightarrow{\mathfrak{G}_L} U/O \xrightarrow{\simeq} B^2O \times B\mathbb{Z} \xrightarrow{B^2J} B^2GL_1(\mathbb{S}) \longrightarrow B^2GL_1(R)$$

Morphisms: HW(L, K; R) is an R-module constructed via the Cohen–Jones–Segal construction of an R-oriented flow category associated to the R-branes L and K.

Using the open-closed map, we have:

Proposition 2.4 ([ADP24, PS24a]). If L and K are two compact R-orientable R-branes such that $L \cong K$ in $W(\widehat{X}_0; R)$, there exist R-fundamental classes on L and K such that $[L]_R = [K]_R$ in $H_n(\widehat{X}_0; R)$.

Since \widehat{L} and \widehat{C} topologically are spheres for $n \geq 2k+2$, there is a unique tangential O(k+2)-structure on its tangent bundle, i.e., a homotopically unique lift

$$BO \langle k+2 \rangle$$

$$\downarrow \qquad \downarrow$$

$$L \xrightarrow{TL} BO$$

This yields an $MO\langle k+2\rangle$ -fundamental class $[\widehat{L}] \in H_n(\widehat{X}_0; MO\langle k+2\rangle)$. Combining these two results yields that there exists an $MO\langle k+2\rangle$ -fundamental class $[\widehat{C}] \in H_n(\widehat{X}_0; MO\langle k+2\rangle)$ such that

$$[\widehat{L}] = [\widehat{C}] \in H_n(\widehat{X}_0; MO\langle k+2\rangle).$$

Next, $\pi: X_0 \to \operatorname{Core} X_0$ admits an extension $\widehat{\pi}: \widehat{X}_0 \to \operatorname{Core} X_0$ such that $\widehat{\pi}|_{\widehat{C}}: \widehat{C} \to \operatorname{Core} X_0$ is null-homotopic. Such extension exists because the critical Weinstein handle attached to X_0 is along a Legendrian that belongs to a Darboux ball in $\partial_{\infty} X_0$. Therefore we conclude

(2.1)
$$\widehat{\pi}_*[\widehat{L}] = \widehat{\pi}_*[\widehat{C}] = 0 \text{ in } \widetilde{H}_n(\operatorname{Core} X_0; MO\langle k+2\rangle)$$

3. Sketch of the proof of the main theorem

We consider the composition

$$\widehat{L} \xrightarrow{\widehat{\pi}|_L} \operatorname{Core} X_0 \xrightarrow{q} \frac{(\operatorname{Core} X_0)_{n-k}}{(\operatorname{Core} X_0)_{n-k-1}} \simeq \bigvee_j S^{n-k}.$$

Let $q_i: \bigvee_i S^{n-k} \to S^{n-k}$ be the components of the wedge sum.

Since $n \geq 2k+2$, $q \circ \widehat{\pi}|_L$ being null-homotopic is in fact equivalent to $f^i := q_i \circ q \circ \widehat{\pi}|_L$ being null-homotopic for each i. Now, (2.1) implies $f_*^i[\widehat{L}] = 0$ in $\widetilde{H}_n(S^{n-k}; MO\langle k+2\rangle)$. We have a commutative diagram

$$\widetilde{H}_{n}(S^{n}; MO \langle k+2 \rangle) \xrightarrow{f_{*}^{i}} \widetilde{H}_{n}(S^{n-k}; MO \langle k+2 \rangle)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\pi_{0}(MO \langle k+2 \rangle) \xrightarrow{f_{*}^{i}} \pi_{k}(MO \langle k+2 \rangle)$$

$$\uparrow \cong \qquad \qquad \uparrow \cong$$

$$\pi_{0}^{\text{st}} \xrightarrow{f_{*}^{i}} \pi_{k}^{\text{st}}$$

We now have $f_*^i = 0$ since the fundamental class generates $\widetilde{H}_n(S^n; MO\langle k+2\rangle)$. Now, we are in the stable range because $n \geq 2k+2$, so we conclude that f^i is null-homotopic for each i, and hence $q \circ \widehat{\pi}|_L$ is null-homotopic.

References

- [ADP24] Johan Asplund, Yash Deshmukh, and Alex Pieloch. Spectral equivalence of nearby Lagrangians. $arXiv:2411.08841,\ 2024.$
- [CDR22] Laurent Côté and Georgios Dimitroglou Rizell. Symplectic rigidity of fibers in cotangent bundles of open Riemann surfaces. *Math. Ann.*, 2022.
- [EL23] Tobias Ekholm and Yankı Lekili. Duality between Lagrangian and Legendrian invariants. *Geom. Topol.*, 27(6):2049–2179, 2023.
- [ES18] Tobias Ekholm and Ivan Smith. Nearby Lagrangian fibers and Whitney sphere links. *Compos. Math.*, 154(4):685–718, 2018.

- [Lar21] Tim Large. Spectral Fukaya Categories for Liouville Manifolds. ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)—Massachusetts Institute of Technology.
- $[PS24a] \quad \text{Noah Porcelli and Ivan Smith. Bordism of flow modules and exact Lagrangians.} \ arXiv:2401.11766,\ 2024.$
- [PS24b] Noah Porcelli and Ivan Smith. Spectral Floer theory and tangential structures. arXiv:2411.03257, 2024.