
Wrapped microlocal sheaves on pair-of-pants

Yin Li

In this note we give an account of Nadler’s computation of the dg category of wrapped
microlocal sheaves on n-dimensional pair-of-pants, which in particular verifies the homo-
logical mirror symmetry conjecture in this case.

We will be working over an algebraically closed field K of characteristic 0.

1 Matrix factorizations
Consider a superpotential W : An Ñ A1 such that 0 P A1 is the unique critical value.
Denote by X � W�1p0q the singular fiber.

Let Perf pXq and CohpXq be the dg enhancements of the triangulated category of
perfect complexes and the bounded derived category of coherent sheaves, respectively.
Let DSingpXq � CohpXq{Perf pXq be the 2-periodic dg quotient.

Let MFpAn, W q be the differential Z{2-graded category of matrix factorizations. De-
note by MFpAn, W q2Z the unfurling of MFpAn, W q, then there is a quasi-equivalence
between 2-periodic dg categories

MFpAn, W q2Z � DSingpXq. (1)

We are interested in the superpotential Wn�1 : An�1 Ñ A1 given by the product of
coordinates z1 � � � zn�1, so that the central fiber Xn � W�1

n�1p0q is the union of n � 1
coordinate hyperplanes.

Consider the natural projection π : Xn Ñ Xn�1.

Proposition 1.1. The pullback of coherent sheaves

π� : CohpXn�1q Ñ CohpXnq (2)

induces an equivalence of differential Z{2-graded categories

CohpXn�1qZ{2 � MFpAn�1, Wn�1q. (3)

Let dgstK be the 8-category of K-linear small stable dg categories with exact func-
tors. Let dgStK be the 8-category of K-linear cocomplete dg categories with continuous
functors. Let dgStc

K � dgStK be the (not full) 8-subcategory of K-linear cocomplete dg
categories with functors preserving compact objects. Taking ind-categories provides an
equivalence

Ind : dgstK
�
ÝÑ dgStc

K. (4)

Taking compact objects provides an inverse equivalence

κ : dgStc
K

�
ÝÑ dgstK. (5)

Let XK be the category of affine locally complete intersection K-schemes and closed
embeddings. Passing to coherent sheaves and pushforwards yields a functor

Coh� : XK Ñ dgstK. (6)

Passing to perfect complexes and �-pullbacks yields a functor

Perf � : Xop
K Ñ dgstK, (7)
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and similarly for perfect complexes with proper support

Perf �prop : Xop
K Ñ dgstK. (8)

Passing to ind-coherent sheaves and pushforwards provides a functor

IndCoh� : XK Ñ dgStc
K. (9)

Passing to quasi-coherent sheaves and �-pullbacks yields a functor

QCoh� � IndPerf � : Xop
K Ñ dgStc

K. (10)

Passing to ind-coherent sheaves with �-pullbacks or !-pullbacks yield functors

IndCoh� : Xop
K Ñ dgStK, IndCoh! : Xop

K Ñ dgStK. (11)

Tensoring with the dualizing complex provides a natural intertwining equivalence

bω : IndCoh� �
ÝÑ IndCoh!. (12)

Let us return to pAn, Wnq. Let I�n denote the poset of subsets I � t1, � � � , nu under
inclusions. For I P I�n, consider the corresponding coordinate subspace

XI � SpecKrz1, � � � , zns{pza|a R Iq. (13)

We have a colimit diagram of closed embeddings

colimIPI�nXI
�
ÝÑ Xn�1. (14)

Proposition 1.2. The colimit diagram (14) is taken to a colimit diagram by Coh� and
IndCoh�, and a limit diagram by Perf �, Perf �prop, IndCoh!, and IndCoh�.

2 Microlocal sheaves
Let Z be a real analytic manifold. We will often work with a closed conic Lagrangian
subvariety Λ � T�Z and its Legendrian ideal boundary

Λ8 � pΛX pT�ZzZqq {R¡0 � S8Z. (15)

Denote by Y the front projection π8pΛ8q, where π8 : S8Z Ñ Z. In the generic situation,
the projection π8|Λ8 : Λ8 Ñ Y is finite, so the front projection is a hypersurface.

We will often fix a Whitney stratification S � tZαuαPA of Z so that Y � Z is a union
of strata. Hence we have inclusions

Λ � T�
S Z :�

§
αPA

T�
Zα

Z, Λ8 � S8S Z :�
§

αPA

S8Zα
Z. (16)

Given a Whitney stratification S, by a small open ball B � Z around a point z P Z we
will mean an open ball B � Bprq � Z of some radius r ¡ 0 such that the corresponding
spheres Spr1q � Z, for all 0   r1   r, are transverse to the strata of S.

Let Sh�pZq denote the dg category of complexes of sheaves of K-vector spaces on Z

such that the total cohomology sheaf is locally constant with respect to some Whitney
stratification S. For a fixed Whitney stratification S, denote by Sh�SpZq � Sh�pZq the full
subcategory which are cohomologically locally constant with respect to this specific S. It
follows that Sh�pZq �

�
S Sh�SpZq.

Let ShpZq � Sh�pZq be the full dg subcategory of constructible complexes of sheaves
of K-vector spaces on Z. In other words, it consists of objects of Sh�pZq whose total
cohomology sheaf, when restricted to each Zα, has finite rank. We can introduce the
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notation ShSpZq as above, and it follows that ShpZq �
�

S ShSpZq. The objects of Sh�pZq
will be referred to as large constructible sheaves, and the objects of ShpZq as constructible
sheaves.

All functors between dg categories of sheaves will be derived in the dg sense. When
dealing with large constructible sheaves, since we are working with co-complete dg cat-
egories, the functors should also be co-continuous (preserves colimits). For example, for
a closed embedding i : Y Ñ Z, by the !-restriction i! : Sh�pZq Ñ Sh�pY q, we will
mean the shifted cone i! � ConepF Ñ j�j�Fqr�1s, where j : U Ñ Z is the inclusion of
the open complement U � ZzipY q. For a smooth map f : Y Ñ Z, by the !-pullback
f ! : Sh�pZq Ñ Sh�pY q, we will mean the twist of the �-pullback f !F � f�F b ωf , where
ωf � orf rdim Y {Zs is the relative dualizing complex.

Fix a point pz, ξq P T�Z. Let B � Z be an open ball around z P Z, and f : B Ñ R a
smooth function such that fpzq � 0 and df |z � ξ. We will refer to f as a compatible test
function.

Define the vanishing cycles functor

ϕf : Sh�pZq Ñ ModK, (17)

ϕf pFq � Γtf¥0upB,F|Bq � Cone
�
ΓpB,F|Bq Ñ Γptf   0u,F|tf 0uq

�
r�1s, (18)

where we take B � Z to be sufficiently small.
To any object F of Sh�pZq, define its singular support sspFq � T�Z to be the largest

closed subset such that ϕf pFq � 0 for any pz, ξq P T�ZzsspFq, and any compatible test
function f .

For a conic Lagrangian subvariety Λ � T�Z, write Sh�ΛpZq � Sh�pZq, resp. ShΛpZq �

ShpZq for the full dg subcategory with singular support sspFq � Λ.
Given a Whitney stratification S, an inclusion Λ � T�

S Z induces the fully faithful
embeddings Sh�ΛpZq � Sh�SpZq, ShΛpZq � ShSpZq. More generally, an inclusion Λ � Λ1

induces the fully faithful embeddings Sh�ΛpZq � Sh�Λ1pZq, ShΛpZq � ShΛ1pZq.
When U � Z is an open subset, we will abuse notations and write Sh�ΛpUq � Sh�pUq,

resp. ShΛpUq � ShpUq for the full dg subcategory with objects satisfying sspFq � Λ X

π�1pUq. π : T�Z Ñ Z is the natural projection.

Remark 2.1. Let ωZ � orZrdim Zs � p!Kpt, for p : Z Ñ pt, be the Verdier dualizing
complex. For a conic Lagrangian subvariety Λ � T�Z and the antipodal conic Lagrangian
subvariety �Λ � T�Z. Verdier duality provides an involutive equivalence

DZ : ShΛpZq
op �
ÝÑ Sh�ΛpZq, DZpFq � HompF, ωZq. (19)

The above discussions can be generalized to the slightly more general setting. To a
conic open subspace Ω � T�Z, we associate the dg category µSh�ΛpΩq of large microlocal
sheaves on Ω supported along Λ. Before describing its construction, we first mention some
of its formal properties.

• Given an inclusion of conic open subspaces Ω1 � Ω, there is a natural restriction
functor µSh�ΛpΩq Ñ µSh�ΛpΩ1q. These assignments assemble into a sheaf µSh�Λ of dg
categories supported along Λ.

• There exists a Whitney stratification of Λ such that the restriction of µSh�Λ to each
stratum is locally constant. Thus we can reconstruct µSh�Λ from the assignments
µSh�ΛpΩq for small conic open neighborhoods Ω of pz, ξq P Λ.

• Given a closed embedding of conic Lagrangian subvarieties Λ1 � Λ, there is a natural
full embedding µSh�Λ1 � µSh�Λ of sheaves of dg categories.

All of the above facts follows from the local description of µSh�ΛpΩq which we now
recall. Note that for a point pz, ξq P Λ there are two local cases to consider: either ξ � 0
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so locally Ω is the cotangent bundle T�B of a small open ball B � Z, or ξ � 0 so that
locally Ω is the cone over a small open ball Ω8 � S8Z.

• For B � πpΩq, there is always a canonical functor Sh�ΛpBq Ñ µSh�ΛpΩq. When
Ω � T�B, this functor is in fact an equivalence

Sh�ΛpBq
�
ÝÑ µSh�ΛpT�Bq. (20)

• Suppose Ω is the cone over small open ball Ω8 � S8Z. Set B � πpΩq, and let
Sh�ΛpB, Ωq � Sh�pBq denote the full dg subcategory of objects with sspFq X Ω � Λ.
Then there is a natural equivalence

Sh�ΛpB, Ωq{K�pB, Ωq �
ÝÑ µSh�ΛpΩq, (21)

where K�pB, Ωq � Sh�ΛpB, Ωq denote the full dg subcategory of objects with sspFqX
Ω � H.

We similarly introduce the full dg subcategory µShΛpΩq � µSh�ΛpΩq of microlocal
sheaves on Ω supported along Λ. It is constructed as above by working with constructible
sheaves instead of large constructible sheaves.

The dg category µShΛpΩq is the sections of a subsheaf µShΛ � µSh�Λ of full dg subcat-
egories supported along Λ. Given a Whitney stratification of Λ such that the restriction of
µSh�Λ to each stratum is locally constant, the restriction of µShΛ to each stratum will also
be locally constant. Finally, given a closed embedding of conic Lagrangian subvarieties
Λ1 � Λ, the full embedding µSh�Λ1 � µSh�Λ restricts to a full embedding µShΛ1 � µShΛ.

Remark 2.2. For a conic Lagrangian subvariety Λ � T�Z, with antipodal subvariety
�Λ � T�Z, and conic open subspace Ω � T�Z, with antipodal subspace �Ω � T�Z.
Verdier duality induces an involutive equivalence

DZ : µShΛpΩqop �
ÝÑ µSh�Λp�Ωq. (22)

Fix a Whitney stratification S � tZαuαPA of Z such that Λ � T�
S Z :�

�
αPA T�

Zα
Z.

To each stratum Zα � Z, introduce the frontier BpT�
Zα

Zq :� T�
Zα

ZzT�
Zα

Z of its conormal
bundle, and the dense, open, smooth locus of their complement

pT�
S Zq� :� T�

S Zz
¤

αPA

BpT�
Zα

Zq. (23)

Introduce the corresponding dense, open, smooth locus

Λ� :� ΛX pT�
S Zq� � Λ. (24)

Note that Λ� depends on S, refining S leads to smaller Λ�.
Fix a point pz, ξq P Λ�. Let B � Z be a small open ball around z P Z, and f : B Ñ R

a compatible test function. Let L � T�Z be the graph of df , and assume that L intersects
Λ� transversely at the single point pz, ξq P Λ�.

Definition 2.1. Let Ω � T�Z be a conic open subspace containing pz, ξq P Λ�. Define
the microstalk along L � T�Z to be the vanishing cycles

ϕL : µSh�ΛpΩq Ñ ModK, , ϕLpFq :� Γtf¥0upB, rF|Bq, (25)

where rF P Sh�ΛpB, ΩBq represents the restriction of F P µSh�ΛpΩq to a small open neigh-
borhood ΩB � Ω of the point pz, ξq P T�Z.

Remark 2.3. The microstalk is well-defined since by construction it vanishes on the
kernel of the localization Sh�ΛpB, ΩBq Ñ µSh�ΛpΩBq with respect to the singular support.

Lemma 2.1. An object F P µSh�ΛpΩq is trivial if and only if all of its microstalks are
trivial. An object F P µSh�ΛpΩq lies in the full subcategory µShΛpΩq � µSh�ΛpΩq if and
only if all its microstalks are perfect (i.e. proper) K-modules.
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3 Wrapped microlocal sheaves
Definition 3.1. Define the small dg category µShw

ΛpΩq of wrapped microlocal sheaves on
Ω supported along Λ to be the full dg subcategory of compact objects within the dg category
µSh�ΛpΩq of large microlocal sheaves.

The dg categories µShΛpΩq and µShw
ΛpΩq can now be defined for any Liouville manifold

instead of conic open subsets in the cotangent bundle. See the work of Nadler-Shende.

Remark 3.1. Given the full dg subcategory Cc � C of compact objects in a stable cocom-
plete dg category, the canonical functor IndCc Ñ C is an equivalence. Thus we have

IndµShw
ΛpΩq � µSh�ΛpΩq. (26)

Geometrically, the partially wrapped Fukaya category WpX, fq is generated by cocores
and linking discs. Denote their endomorphism A8-algebra by WpX,fq. Then the definition
above just says that the derived category DperfWpX, fq can be defined as the category
Dperf pWpX,fqq of perfect modules over the A8-algebra WpX,fq. Note that Dperf pWpX,fqq �

DmodpWpX,fqq is the subcategory of compact objects.

There is a more concrete geometric characterization of wrapped microlocal sheaves.
Recall the microstalk functors ϕL : µSh�ΛpΩq Ñ ModK. Note that ϕL preserves products,
hence admits a left adjoint ϕℓ

L : ModK Ñ µSh�ΛpΩq, and also preserves coproducts, hence
ϕℓ

L preserves compact objects.

Definition 3.2. Define the microlocal skyscraper FL � ϕℓ
LpKq P µShw

ΛpΩq to be the object
corepresenting the microstalk

ϕLpFq � hompFL,Fq, F P µSh�ΛpΩq. (27)

Lemma 3.1. µShw
ΛpΩq is split-generated by the microlocal skyscrapers FL P µShw

ΛpΩq.

Proof. By Lemma 2.1, the microlocal skyscrapers FL compactly generate µSh�ΛpΩq �
IndµShw

ΛpΩq. (For any non-trivial object F of µSh�ΛpΩq, there must be some L so that
hompFL,Fq � 0.) Thus we may invoke the general fact that if a collection of objects of a
small stable dg category Cc generates the ind-category C � IndCc, then it split-generates
Cc.

Remark 3.2. One should think of µShw
ΛpΩq as the (derived) partially wrapped Fukaya

category associated to the stopped Liouville manifold pΩ, Λ X B8Ωq, and µShΛpΩq the
(derived) infinitesimal Fukaya category. The microlocal skyscrapers correspond to cocores
and linking discs which intersect the smooth part of ΛX Ω transversely at a single point.
Geometrically, they are given by the Lagrangian disc L � T�B.

Recall that for conic open subspaces Ω � T�Z, the dg category µSh�ΛpΩq of large
microlocal sheaves is the sections of a sheaf µSh�Λ of dg categories supported along Λ.
For an inclusion Ω1 � Ω of conic open subspaces, the restriction functor ρ : µSh�ΛpΩq Ñ
µSh�ΛpΩ1q preserves products, hence admits a left adjoint ρℓ : µSh�ΛpΩ1q Ñ µSh�ΛpΩq, and
also preserves coproducts, hence ρℓ preserves compact objects. Thus its restriction to the
subcategory of compact objects defines a natural corestriction functor

ρw : µShw
ΛpΩ1q Ñ µShw

ΛpΩq. (28)

Proposition 3.1. The dg categories µShw
ΛpΩq for conic open subspaces Ω � T�Z and

corestriction functors ρw : µShw
ΛpΩ1q Ñ µShw

ΛpΩq for inclusions Ω1 � Ω, assemble into
a cosheaf µShw

Λ of dg categories supported along Λ. Furthermore, there exists a Whitney
stratification of Λ such that the restriction of µShw

Λ to each stratum is locally constant.
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Given a closed embedding of conic Lagrangian subvarieties Λ1 � Λ, there is a natural
full embedding i : µSh�Λ1 Ñ µSh�Λ of sheaves of dg categories. Observe that i preserves
products, hence admits a left adjoint iℓ : µSh�Λ Ñ µSh�Λ1 , and also preserves coproducts, so
iℓ preserves compact objects. Thus its restriction to compact objects defines an essentially
surjective functor (i.e. surjective on objects up to isomorphism)

iw : µShw
Λ Ñ µShw

Λ1 . (29)

The evaluation of iw on a microlocal skyscraper FL P µShw
ΛpΩq is straightforward. If the

small Lagrangian ball L � T�Z is centered at a point pz, ξq P Λ� that is not contained in
Λ1 � Λ, then iwpFLq � 0. If the small Lagrangian ball L is centered at a point pz, ξq P Λ�

contained in Λ1 � Λ, then iwpFLq simply represents the restriction of the microstalk
functor to sections of µSh�Λ1 � µSh�Λ. (Geometrically, what the functor iw does is sending
linking discs of Λ to linking discs of Λ1. Since Λ has more linking discs, iw is essentially
surjective.)

Theorem 3.1. The natural hom-pairing provides an equivalence

µShΛpΩq � Funex pµShw
ΛpΩqop, Perf Kq , (30)

where Funex denotes the dg category of exact functors, and Perf K that of perfect K-
modules.

Remark 3.3. While objects of µShw
ΛpΩq similarly give functionals on µShΛpΩq, it is not

in general true that they produce all possible functionals. One could think about the specific
example where Λ � S1 � T�S1 is the zero section, and Ω � T�S1 is the entire cotangent
bundle. Then we have µShS1pT�S1q � Perf proppGmq and µShw

S1pT�S1q � CohpGmq. The
hom-pairing gives an equivalence

Perf proppGmq � Funex pCohpGmq
op, Perf Kq . (31)

Clearly there are more functionals on Perf proppGmq then those coming from CohpGmq.
For example, one could take the hom-pairing with a direct sum of skyscraper sheaves at
infinitely many points.

Remark 3.4. In terms of symplectic topology, Theorem 3.1 is a version of the Eilenberg-
Moore equivalence between the partially wrapped Fukaya category and the infinitesimal
Fukaya category associated to the stopped Liouville manifold pΩ, ΛXB8Ωq. Choosing Λ to
be the zero section, ΛXB8Ω � H, the infinitesimal Fukaya category becomes the compact
Fukaya category, and the partially wrapped Fukaya category becomes the fully wrapped
Fukaya category. In general, this Eilenberg-Moore equivalence does not give the Koszul
duality between Fukaya categories, a typical example is Ω � T�S1.

On the mirror side, Koszul duality between CohpXq and Perf proppXq holds for proper
schemes X.

Proof of Theorem 3.1. First, let us observe that it suffices to prove the assertion locally.
If one choose a cover tΩiuiPI of Ω by conic open subspaces, since µShΛpΩq is a sheaf and
µShw

ΛpΩq is a cosheaf we have

µShΛpΩq � lim
iPI

µShΛpΩiq, µShw
ΛpΩq � colimiPIµShw

ΛpΩiq. (32)

Thus if we have the assertion locally, i.e.

µShΛpΩiq
�
ÝÑ Funex pµShw

ΛpΩiq
op, Perf Kq , (33)
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then we have it globally

µShΛpΩq � lim
iPI

µShΛpΩiq � lim
iPI

Funex pµShw
ΛpΩiq

op, Perf Kq

� Funex pcolimiPIµShw
ΛpΩiq

op, Perf Kq � Funex pµShw
ΛpΩqop, Perf Kq .

(34)

We may assume that Ω � T�Z is the cone over a small open ball Ω8 � S8Z centered at
a point of Λ8 � S8Z.

We may deform Λ8 � S8Z to a Legendrian subvariety Λ8
arb � S8Z with arboreal

singularities. Taking Λarb to be the cone over Λ8
arb, we have an equivalence µSh�ΛpΩq �

µSh�Λarb
pΩq, restricting to an equivalence µShΛpΩq � µShΛarbpΩq. Passing to the compact

objects in the first equivalence, we have µShw
ΛpΩq � µShw

Λarb
pΩq.

Thus we may assume that the conic Lagrangian subvariety Λ � T�Z has arboreal
singularities. Moreover, we may further assume that Ω � T�Z is the cone over a small
open ball Ω8 � S8Z centered at a point of Λ8 � S8Z that is an arboreal singularity.
In this situation, µSh�ΛpΩq is equivalent to the dg category ModKpT q of modules over
a directed tree T , and µShΛpΩq is equivalent to the dg category Perf KpT q of perfect
modules. Passing to compact objects under the first equivalence, we have that µShw

ΛpΩq
is also equivalent to Perf KpT q.

Finally, for perfect modules over a directed tree, it is straightforward to check that
the hom-pairing provides an equivalence

Perf KpT q � Funex pPerf KpT qop, Perf Kq . (35)

Remark 3.5. Locally, the dg categories µShΛpΩq and µShw
ΛpΩq, which correspond respec-

tively to the infinitesimal Fukaya category and the partially wrapped Fukaya category, are
Koszul dual. Moreover, these two categories are smooth and proper, therefore “self-dual”
in the derived sense. This explains the fact that their derived categories are both equivalent
to Perf KpT q in the above argument.

4 Lagrangian skeleton
By the n-dimensional pair-of-pants, we mean the Liouville manifold pPn, αPn

q given by
the generic hyperplane

Pn � t1� z1 � � � � � zn�1 � 0u � T n�1
C , (36)

equipped with the restriction of the Liouville form αn on T�T n�1. The Lagrangian
skeleton of Pn can be described by the combinatorics of the permutahedron.

To get a more convenient Lagrangian skeleton, we need to break the symmetry and
work with the pair-of-pants in a slightly modified form where we alter its embedding near
infinity. This is called tailored pair-of-pants, and we denote it by pQn, αQn

q.
To provide the tailored pair-of-pants a particularly simple skeleton, it will be useful

to break the symmetry and apply a natural isotopy to its Liouville structure. For x �

px1, � � � , xn�1q P Rn�1, consider the family of Liouville structures on T�T n�1 given by

αx
n �

n�1̧

a�1
pξa � xaqdθa, ωx

n � dαx
n �

n�1̧

a�1
pξa � xaqdθa. (37)

The restriction of αx
n and ωx

n to the pair-of-pants Pn provide a family of Liouville struc-
tures. We may construct the tailored pair-of-pants Qn � T n�1

C so that the restricted
Liouville form αx

Qn
� αx

n|Qn
provide a family of Liouville structures as well. Choose
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ℓ " 0, and let xℓ � p�ℓ, � � � ,�ℓq P Rn�1. Let us focus on the Liouville structure on Qn

given by

βQn :� αxℓ

Qn
�

�
n�1̧

a�1
pξa � ℓqdθa

�
|Qn . (38)

Write Ln � Qn for the resulting skeleton, we will describe its geometry.
Let S1

∆ � T n�1 be the diagonal circle. The translation S1
∆-action on T n�1 induces a

Hamiltonian S1-action on T�T n�1, with moment map

µ∆ : T�T n�1 Ñ R, µ∆pθ1, ξ1, � � � , θn�1, ξn�1q �
n�1̧

a�1
ξa. (39)

Consider the quotient Tn � T n�1{S1
∆ consisting of pn�1q-tuples rθ1, � � � , θn�1s taken up to

simultaneous translation. If we distinguish the last entry, then we obtain an identification
Tn � T n via the coordinates θa � θn�1, where 1 ¤ a ¤ n.

Let t�n �
!°n�1

a�1 ξa � 0
)
� Rn�1 be the dual of the Lie algebra of Tn. We have the

identification T�Tn � Tn�t�n. In terms of coordinates, a point of T�Tn can be represented
by prθ1, � � � , θn�1s, pξ1, � � � , ξn�1qq, where

°n�1
a�1 ξa � 0.

For χ P R, we have a twisted Hamiltonian reduction correspondence

T�T n�1 qχ
ÐÝ µ�1

∆ pχq
pχ
ÝÑ T�Tn, (40)

where qχ is the inclusion of level set, while pχ is the translation projection

pχppθ1, � � � , θn�1q, pξ1, � � � , ξn�1qq :� prθ1, � � � , θn�1s, pξ1 � χ̂, � � � , ξn�1 � χ̂qq , (41)

where χ̂ � χ{pn � 1q. In particular, when χ � 0, we recover the usual Hamiltonian
reduction correspondence

T�T n�1 q0ÐÝ T�
S1

∆
T n�1 p0ÝÑ T�Tn, (42)

where T�
S1

∆
T n�1 � T�T n�1 is the conormal bundle.

Introduce the conic Lagrangian subvariety

Λ1 :� tpθ, 0q|θ P S1u Y tp0, ξq|ξ P R¥0u � T�S1, (43)

and the product conic Lagrangian subvariety

Λn�1 :� pΛ1q
n�1 � T�T n�1. (44)

Note that Λn�1 � µ�1
∆ pR¥0q, and that Λn�1 and µ�1

∆ pχq are transverse for χ ¡ 0. Fix
some χ ¡ 0, define the Lagrangian subvariety

Ln :� pχ

�
q�1

χ pΛn�1q
�
� T�Tn. (45)

Remark 4.1. We do not include χ in the notation for Ln as we will eventually specialize
to the case χ � n� 1.

To describe Ln � T�Tn, consider the moment map µn�1 : T�T n�1 Ñ Rn�1 of the
Hamiltonian T n�1-action and restrict it to Λn�1 � T�T n�1. Note that µn�1pΛn�1q �

Rn�1
¥0 . For I � t1, � � � , n� 1u, consider the relatively open coordinate cone

σI � tξa � 0, ξb ¡ 0|a P I, b R Iu � Rn�1
¥0 . (46)

For x P σI , µ�1
n�1pxq X Λn�1 is the orthogonal coordinate subtorus

T I � tθa � 0|a R Iu � T n�1. (47)
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Consider the closed simplex

rΞpχq � #pξ1, � � � , ξn�1q|ξa ¥ 0 for 1 ¤ a ¤ n� 1,
n�1̧

a�1
ξa � χ

+
� Rn�1

¥0 . (48)

Note that the projection pχ restricts to an isomorphism

µ�1
∆ pχq X Λn�1 � µ�1

n�1

�rΞpχq	 �
ÝÑ Ln (49)

since for any point of µ�1
∆ pχq X Λn�1, we must have ξa ¡ 0 and hence θa � 0 for some

a P t1, � � � , n� 1u, so that no points are identified by the S1
∆-translations.

For a proper subset I � t1, � � � , n� 1u, consider the relatively open subsimplex

rΞIpχq � rΞnpχq X σI . (50)

Then pχ restricts to an isomorphism¤
I

T I � rΞIpχq
�
ÝÑ Ln, (51)

where we take the union over non-empty I � t1, � � � , n � 1u. Note that when n � 2, Ln

is the union of two circles and an open interval.

Theorem 4.1. There is an open neighborhood Un � Qn of the Lagrangian skeleton
Ln � Qn and an open symplectic embedding

j : Un Ñ T�Tn (52)

which restricts to an isomorphism

j|Ln : Ln
�
ÝÑ Ln. (53)

5 Contactification and symplectization
By Theorem 4.1, the symplectic geometry of a neighborhood Un � Qn of Ln � Qn is
equivalent to that of a neighborhood Un � T�Tn of Ln � T�Tn.

We introduce the Liouville form βn on the neighborhood Un � T�Tn obtained by
transporting the Liouville form βQn

restricted to the neighborhood Un � Qn. Thus βn

provides a primitive to the restriction of the canonical symplectic form ωT�Tn |Un
� dβn.

The Lagrangian subvariety Ln � T�Tn is conic with respect to its associated Liouville
vector field.

In general, let M be a Liouville manifold with Liouville form αM . The circular con-
tactification of M is the contact manifold N � M �S1, with contact form λN � dt�αM ,
and contact structure ξN � kerpλN q. The contactification of M is the contact manifoldrN � M �R, with contact form λ

�N
� dt�αM , and contact structure ξ

�N
� kerpλ

�N
q. Note

that there is a natural contact Z-cover rN Ñ N .

Definition 5.1. A Lagrangian subvariety L � M is integral if there is a continuous
function f : L Ñ S1 such that the restriction of f to any submanifold of L is differentiable
and a primitive for the restriction of αM .

A Lagrangian subvariety L � M is exact if in addition there exists a lift of f : L Ñ S1

to a continuous function f̃ : L Ñ R.

Remark 5.1. A Lagrangian subvariety L � M is integral if and only if it admits a
Legendrian lift L � N . Similarly, L � M is exact if and only if it admits a Legendrian
lift rL � rN .
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Return to the neighborhood Un � T�Tn. It admits two Liouville forms: βn and the
canonical Liouville form αT�Tn . The Lagrangian subvariety Ln � Un is conic with respect
to the Liouville vector field associated to βn, and thus exact with respect to βn. On the
other hand, if we construct Ln using χ ¡ 0 with χ̂ � χ{pn� 1q integral, then the function

f̃ : µ�1
∆ pχq X Λn�1 Ñ S1, f̃ �

n�1̧

a�1
pξa � χ̂qθa (54)

is invariant under S1
∆-translations, hence descends to a function f : Ln Ñ S1. A straight-

forward computation shows that f provides an integral structure of Ln for αT�Tn .
Consider the circular contactification pNn, λnq of Un. Denote by Ln the Legendrian

lift of Ln to pNn, λnq.
From now on we further specialize to χ � n � 1 so that χ̂ � 1. Introduce the conic

open subspace and its spherical projectivization

Ωn�1 � µ�1
∆ pR¡0q � T�T n�1, Ω8

n�1 � Ωn�1{R¡0 � S8T n�1. (55)

The natural projection gives an isomorphism of contact manifolds µ�1
∆ pχq � Ω8

n�1.

Lemma 5.1. We have a finite contact cover

pχ : Ω8
n�1 � µ�1

∆ pχq Ñ T�Tn � S1 (56)

given by pχ � pχ � δ, where δ : T n�1 Ñ S1 is the diagonal character.
The cover is trivializable over the neighborhood Nn � T�Tn � S1 of the Legendrian

Ln � Nn with a canonical section s : Nn Ñ Ω8
n�1 such that spLnq � Λ8

n�1.

It follows that the contact geometry of the circular contactification Nn � T�Tn � S1

near the Legendrian lift Ln is equivalent to that of the open subspace Ω8
n�1 � S8T n�1

near the Legendrian subvariety Λ8
n�1.

Introduce the circular contactification Qn � S1, and its symplectization rQn � Qn �

S1 � R, with their natural projections

rQn � Qn � S1 � R s
ÝÑ Qn � S1 c

ÝÑ Qn. (57)

The Lagrangian skeleton Ln � Qn lifts under c to the Legendrian subvariety Ln � t0u �
Qn�S1, and we can take its inverse image under s to obtain a conic Lagrangian subvariety

rLn � s�1pLn � t0uq � rQn. (58)

The following is a consequence of Theorem 4.1.

Theorem 5.1. Fix χ � n � 1. There is a conic open neighborhood rUn � rQn of the La-
grangian subvariety rLn � rQn, a conic open neighborhood Υn�1 � Ωn�1 of the intersection
Λn�1 X Ωn�1, and an exact symplectomorphism

j̃ : rUn
�
ÝÑ Υn�1 (59)

restricting to an isomorphism

j̃|
rLn

: rLn
�
ÝÑ Λn�1 X Ωn�1. (60)

6 Mirror symmetry
We calculate (what is supposed to be) the dg category of wrapped microlocal sheaves on
the pair-of-pants. Note that Theorem 5.1 allows us to define the dg category µShLnpQnq of
wrapped microlocal sheaves on Qn supported along Ln to be the dg category of wrapped
microlocal sheaves on Ωn�1 supported along Λn�1.
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Lemma 6.1. There are mirror equivalences

Sh�Λn�1
pT n�1q � QCohpAn�1q, (61)

ShΛn�1pT
n�1q � Perf proppAn�1q, (62)

Shw
Λn�1

pT n�1q � CohpAn�1q. (63)

Remark 6.1. Geometrically, ShΛ1pS
1q and Shw

Λ1
pS1q correspond respectively to the in-

finitesimal and partially wrapped Fukaya categories associated to the Landau-Ginzburg
model pC�, zq, which is the mirror of A1.

Fix a subset I � t1, � � � , n�1u, with complement Ic � t1, � � � , n�1uzI. Let T I � T n�1

be the subtorus defined by θa � 0 for a P Ic. Let ΛI � pΛ1q
I � T�T I be the product

conic Lagrangian subvariety.
Consider the hyperbolic restriction

ηI : Sh�Λn�1
pT nq Ñ Sh�ΛI

pT Iq, ηIpFq :� p�q!F (64)

built from the correspondence

T I p
ÐÝ T I � r0, 1{2qI

c q
ÝÑ T n�1, (65)

where p is the projection and q is the inclusion.
Let f : AI � SpecKrta|a P Is Ñ An � SpecKrt1, � � � , tns be the affine subspace defined

by ta � 0 for a P Ic.

Lemma 6.2. The equivalences (61) and (62) fit into commutative diagrams

Sh�Λn�1
pT n�1q QCohpAn�1q

Sh�ΛI
pT Iq QCohpAIq

ηI

�

f�

�

(66)

ShΛn�1pT
n�1q Perf proppAn�1q

ShΛI
pT Iq Perf proppAIq

ηI

�

f�

�

(67)

Theorem 6.1. There are mirror equivalences

µSh�Λn�1
pΩn�1q � IndCohpXnq, (68)

µShΛn�1pΩn�1q � Perf proppXnq, (69)

µShw
Λn�1

pΩn�1q � CohpXnq. (70)

Proof. Let In�1 be the category whose objects are subsets I � t1, � � � , n � 1u, and mor-
phisms I Ñ I 1 are inclusions I � I 1. Let I�n�1 � In�1 denote the full subcategory whose
objects are proper subsets of t1, � � � , n� 1u.

Define a functor A : I�n�1 Ñ XK as follows. For an object I of I�n�1, take the affine
space ApIq � AI , and for a morphism I � I 1, take the inclusion ApI, I 1q : AI Ñ AI1 , given
by setting ta � 0 for each a P I 1zI.

Recall the functor IndCoh� : X
op
K Ñ dgStK that assigns a scheme its ind-coherent

sheaves and a proper morphism of schemes its �-pullback. Recall also the full subfunctor
Perf �prop : Xop

K Ñ dgstK of perfect complexes with proper support.
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Consider the composite functor IndCoh� � A : pI�n�1q
op Ñ dgStK, and Perf �prop �

ApI�n�1q
op Ñ dgstK. By Proposition 1.2, the canonical maps are equivalences

IndCohpXnq
�
ÝÑ lim

pI�
n�1q

op
IndCohpAIq, (71)

Perf proppXn�1q
�
ÝÑ lim

pI�
n�1q

op
Perf proppAIq, (72)

CohpXnq
�
ÐÝ colimI�

n�1
CohpAIq. (73)

To prove the theorem, we will similarly identify µSh�Λn�1
pΩn�1q as the limit of a functor

µSh� : pI�n�1q
op Ñ dgStK, (74)

and then provide an equivalence of functors µSh� � IndCoh� � A. This will immedi-
ately prove the first and the third equivalences. For the second one, we observe that
µShΛn�1pΩn�1q is the limit of a full subfunctor µSh � µSh�, which is equivalent to the
subfunctor Perf �prop �A � IndCoh� �A.

For each I P I�n�1, introduce the conic open subspace ΩI � Ωn�1, cut out by the
additional requirement ξa � 0 for a R I. Thus for I � I 1, we have the open inclusion
ΩI � ΩI1 , and for I � t1, � � � , n � 1u, we have ΩI � Ωn�1. Note that the collection
tΩIuIPI�

n�1
forms a conic open cover of Ωn�1 with the property ΩIXI1 � ΩI XΩI1 . Define

the functor µSh� by
µSh�pIq � µSh�Λn�1

pΩIq, (75)

with inclusions I � I 1 taken to the restriction maps along the inclusions ΩI � ΩI1 . Define
the full subfunctor µSh � µSh� by µShpIq � µShΛn�1pΩIq.

Since µSh�Λn�1
forms a sheaf, µShΛn�1 � µSh�Λn�1

is a full subsheaf, and tΩIuIPI�
n�1

is
an open conic cover of Ωn�1, the canonical functors are equivalences

µSh�Λn�1
pΩn�1q

�
ÝÑ lim

pI�
n�1q

op
µSh�Λn�1

pΩIq, (76)

µShΛn�1pΩn�1q
�
ÝÑ lim

pI�
n�1q

op
µShΛn�1pΩIq. (77)

Next let us define an additional functor to interpolate between IndCoh� �A and µSh�.
For I P I�n�1, define the functor

Sh� : pI�n�1q
op Ñ dgStK, Sh�pIq � Sh�ΛI

pT Iq (78)

with inclusions I � I 1 taken to the hyperbolic restrictions

ηI�I1 : ShΛ1
I
� pT I1q Ñ Sh�ΛI

pT Iq, ηI�I1pFq � p�q!F (79)

built from the correspondence

T I p
ÐÝ T I � r0, 1{2qI

1zI q
ÝÑ T I1 , (80)

where p is the projection and q is the inclusion. Define the full subfunctor Sh � Sh� by
ShpIq � ShΛI

pT Iq.
Lemmas 6.1 and 6.2 imply that we have equivalences

Sh� � IndCoh� �A, Sh � Perf �prop �A. (81)

It remains to establish equivalences of functors

Sh� � µSh�, Sh � µSh. (82)

For any I P I�n�1, let us return to the hyperbolic restriction

ηI : Sh�Λn�1
pT n�1q Ñ ShΛI

pT Iq, ηIpFq � p�q!F. (83)
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First, ηI factors through the microlocalization

Sh�Λn�1
pT n�1q Ñ µSh�ΛI

pΩIq
η̃IÝÑ ShΛI

pT Iq (84)

since the hyperbolic restriction in the coordinate direction indexed by a P T c vanishes on
sheaves whose singular support does not intersect the locus tξa ¡ 0u � T�T n�1.

Next, for I � I 1, the induced functors extend to natural commutative diagrams

µSh�Λ1
I
pΩI1q Sh�Λ1

I
pT I1q

µSh�ΛI
pΩIq Sh�ΛI

pT Iq

ρI�I1

η̃I1

ηI�I1

η̃I

(85)

Thus we have a map of functors η̃ : µSh� Ñ Sh�, restricting to a map of subfunctors
µSh Ñ Sh. It remains to show that η̃ is an equivalence. It suffices to show that

η̃I : µSh�ΛI
pΩIq Ñ Sh�ΛI

pT Iq (86)

is an equivalence for any I P I�n�1. Note that it admits a inverse induced by the pushfor-
ward

jI� : Sh�ΛI
pT Iq Ñ Sh�Λn�1

pT n�1q (87)

along the natural inclusion jI : T I Ñ T n�1. To see this, note that jI is simply the product
of inclusions in the coordinate directions indexed by Ic, and the identity in the coordinate
directions indexed by I.

Corollary 6.1. There is a quasi-equivalence of differential Z{2-graded categories

µShw
Λn�1

pΩn�1qZ{2 � MFpAn�2, Wn�2q. (88)

For a Z-graded version of the above equivalence proved for the actual wrapped Fukaya
category WpPnq, see Lekili-Polischuk.
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