Wrapped microlocal sheaves on pair-of-pants

Yin Li

In this note we give an account of Nadler’s computation of the dg category of wrapped
microlocal sheaves on n-dimensional pair-of-pants, which in particular verifies the homo-
logical mirror symmetry conjecture in this case.

We will be working over an algebraically closed field K of characteristic 0.

1 Matrix factorizations

Consider a superpotential W : A® — Al such that 0 € A! is the unique critical value.
Denote by X = W~1(0) the singular fiber.

Let Perf(X) and Coh(X) be the dg enhancements of the triangulated category of
perfect complexes and the bounded derived category of coherent sheaves, respectively.
Let Dging(X) = Coh(X)/Perf(X) be the 2-periodic dg quotient.

Let MF(A™, W) be the differential Z/2-graded category of matrix factorizations. De-
note by MF(A™ W)az the unfurling of MF(A™ W), then there is a quasi-equivalence
between 2-periodic dg categories

MF(A"™, W)z = Dging(X). (1)

We are interested in the superpotential W, 11 : A"*! — Al given by the product of
coordinates z7 --- zp41, so that the central fiber X,, = Wn_jl(O) is the union of n + 1
coordinate hyperplanes.

Consider the natural projection 7 : X,, — X,,_;.

Proposition 1.1. The pullback of coherent sheaves
7% Coh(X,—1) —» Coh(X,,) (2)
induces an equivalence of differential Z/2-graded categories
Coh(Xn—1)zj2 = MF(A" ™ Wy 41). (3)

Let dgstx be the co-category of K-linear small stable dg categories with exact func-
tors. Let dgSty be the oo-category of K-linear cocomplete dg categories with continuous
functors. Let dgStgx < dgStg be the (not full) co-subcategory of K-linear cocomplete dg
categories with functors preserving compact objects. Taking ind-categories provides an

equivalence
Ind : dgsty = dgStg. (4)

Taking compact objects provides an inverse equivalence
Kt dgSts => dgsty. (5)

Let X be the category of affine locally complete intersection K-schemes and closed
embeddings. Passing to coherent sheaves and pushforwards yields a functor

Cohy : Xg — dgstg. (6)
Passing to perfect complexes and #-pullbacks yields a functor

Perf* : Xg¥ — dgsty, (7)



and similarly for perfect complexes with proper support
Perfy .., + Xg¥ — dgsty. (8)
Passing to ind-coherent sheaves and pushforwards provides a functor
IndCohy : Xg — dgSti. (9)
Passing to quasi-coherent sheaves and =-pullbacks yields a functor
QCoh* ~ IndPerf* : Xg¥ — dgSti. (10)
Passing to ind-coherent sheaves with #-pullbacks or !-pullbacks yield functors
IndCoh* : X3P — dgSty, IndCoh' : X3P — dgSty. (11)
Tensoring with the dualizing complex provides a natural intertwining equivalence
Quw : IndCoh* = IndCoh'. (12)

Let us return to (A™, W,,). Let J° denote the poset of subsets I < {1,---,n} under
inclusions. For I € J2, consider the corresponding coordinate subspace

X; = SpecK[z1, -+, zn]/(za]a ¢ I). (13)
We have a colimit diagram of closed embeddings
COlim[ej%X[ i Xn71~ (14)

Proposition 1.2. The colimit diagram (14) is taken to a colimit diagram by Cohy and
IndCohy, and a limit diagram by Perf™, Perf:mp, IndC’oh!, and IndCoh™.

2 Microlocal sheaves

Let Z be a real analytic manifold. We will often work with a closed conic Lagrangian
subvariety A € T*Z and its Legendrian ideal boundary

A" = (A (T*2\Z)) JR=g < S7Z. (15)

Denote by Y the front projection 7% (A*), where 7 : S*Z — Z. In the generic situation,
the projection 7% |p» : A" — Y is finite, so the front projection is a hypersurface.

We will often fix a Whitney stratification 8 = {Z,}aea of Z so that Y < Z is a union
of strata. Hence we have inclusions

AcTiZ:= | |T5. 2, A" cS$Z:= | | S5.2 (16)

acA acA

Given a Whitney stratification 8, by a small open ball B ¢ Z around a point z € Z we
will mean an open ball B = B(r) c Z of some radius r > 0 such that the corresponding
spheres S(r') c Z, for all 0 < v’ < r, are transverse to the strata of 8.

Let Sh®(Z) denote the dg category of complexes of sheaves of K-vector spaces on Z
such that the total cohomology sheaf is locally constant with respect to some Whitney
stratification 8. For a fixed Whitney stratification 8, denote by Sh§(Z) < Sh®(Z) the full
subcategory which are cohomologically locally constant with respect to this specific 8. It
follows that Sh°(Z) = Jg Shg(2).

Let Sh(Z) c Sh®(Z) be the full dg subcategory of constructible complexes of sheaves
of K-vector spaces on Z. In other words, it consists of objects of Sh®(Z) whose total
cohomology sheaf, when restricted to each Z,, has finite rank. We can introduce the



notation Shs(Z) as above, and it follows that Sh(Z) = | g Shs(Z). The objects of Sh°(Z)
will be referred to as large constructible sheaves, and the objects of Sh(Z) as constructible
sheaves.

All functors between dg categories of sheaves will be derived in the dg sense. When
dealing with large constructible sheaves, since we are working with co-complete dg cat-
egories, the functors should also be co-continuous (preserves colimits). For example, for
a closed embedding i : Y — Z, by the l-restriction ' : Sh°(Z) — Sh°(Y), we will
mean the shifted cone i* ~ Cone(F — j,j*F)[~1], where j : U — Z is the inclusion of
the open complement U = Z\i(Y). For a smooth map f : Y — Z, by the !-pullback
[ Sh°(Z) — Sh®(Y), we will mean the twist of the =-pullback f'F =~ f*F ® wy, where
wy = org[dimY/Z] is the relative dualizing complex.

Fix a point (z,£) €e T*Z. Let B c Z be an open ball around 2 € Z, and f: B >R a
smooth function such that f(z) = 0 and df|, = & We will refer to f as a compatible test
function.

Define the vanishing cycles functor

b7 : Sh°(Z) — Modx, (17)

¢#(F) = Ty201(B, F|p) = Cone (T(B,F|5) » T({f <0}, Fl(y<0)) [-1], (18)

where we take B < Z to be sufficiently small.

To any object F of Sh°(Z), define its singular support ss(F) € T*Z to be the largest
closed subset such that ¢;(F) = 0 for any (z,§) € T*Z\ss(F), and any compatible test
function f.

For a conic Lagrangian subvariety A ¢ T*Z, write Sh(Z) € Sh°(Z), resp. Sha(Z) c
Sh(Z) for the full dg subcategory with singular support ss(F) c A.

Given a Whitney stratification 8, an inclusion A < T¢Z induces the fully faithful
embeddings Sh{i(Z) < Sh$(Z), Sha(Z) < Shs(Z). More generally, an inclusion A ¢ A’
induces the fully faithful embeddings Sk} (Z) < Sh}.(Z), Sha(Z) < Shp/(Z).

When U < Z is an open subset, we will abuse notations and write Sk} (U) c Sh°(U),
resp. Sha(U) € Sh(U) for the full dg subcategory with objects satisfying ss(F) ¢ A n
7 YU). m:T*Z — Z is the natural projection.

Remark 2.1. Let wy = orz[dim Z] = p!Kpt, forp: Z — pt, be the Verdier dualizing
complex. For a conic Lagrangian subvariety A c T*Z and the antipodal conic Lagrangian
subvariety —A < T*Z. Verdier duality provides an involutive equivalence

Dy : Sha(Z)°P = Sh_p(Z),Dz(F) = Hom(F,wz). (19)

The above discussions can be generalized to the slightly more general setting. To a
conic open subspace () € T*Z, we associate the dg category uShy () of large microlocal
sheaves on () supported along A. Before describing its construction, we first mention some
of its formal properties.

e Given an inclusion of conic open subspaces ' c Q, there is a natural restriction
functor uSh3 () — uSh{ (). These assignments assemble into a sheaf uShy of dg
categories supported along A.

o There exists a Whitney stratification of A such that the restriction of uSh{ to each
stratum is locally constant. Thus we can reconstruct puShy from the assignments
wuShi (Q) for small conic open neighborhoods Q of (z,€) € A.

o Given a closed embedding of conic Lagrangian subvarieties A’ A, there is a natural
full embedding pShy, < pShY of sheaves of dg categories.

All of the above facts follows from the local description of uSh$ (£2) which we now
recall. Note that for a point (z,£) € A there are two local cases to consider: either £ = 0



so locally € is the cotangent bundle T* B of a small open ball B ¢ Z, or £ # 0 so that
locally €2 is the cone over a small open ball Q* c S*Z.

e For B = 7(Q), there is always a canonical functor Sh{(B) — uSh}(2). When
Q = T*B, this functor is in fact an equivalence

~

Sh{ (B) = pShi (T* B). (20)

e Suppose 2 is the cone over small open ball Q% c S*Z. Set B = #(Q2), and let
Shi (B, Q) c Sh°(B) denote the full dg subcategory of objects with ss(F) n Q < A.
Then there is a natural equivalence

Shi (B, Q)/K°(B, Q) = uShi (%), (21)

where K°(B,Q) c Shi{ (B, ) denote the full dg subcategory of objects with ss(F) n
Q=g.

We similarly introduce the full dg subcategory uSha(Q) < uSh3 () of microlocal
sheaves on §2 supported along A. It is constructed as above by working with constructible
sheaves instead of large constructible sheaves.

The dg category uSha(Q) is the sections of a subsheaf uShy < uSh} of full dg subcat-
egories supported along A. Given a Whitney stratification of A such that the restriction of
uShy to each stratum is locally constant, the restriction of uSh to each stratum will also
be locally constant. Finally, given a closed embedding of conic Lagrangian subvarieties
A < A, the full embedding Sh}, < pShy restricts to a full embedding pShar < 11Shy.

Remark 2.2. For a conic Lagrangian subvariety A < T*Z, with antipodal subvariety
—AN c T*Z, and conic open subspace Q c T*Z, with antipodal subspace —Q) < T*Z.
Verdier duality induces an involutive equivalence

Dy : 1Sha(Q)°P S5 puSh_p(—€). (22)

Fix a Whitney stratification 8§ = {Z,}aca of Z such that A € T¢Z = | |, , T Z.
To each stratum Z, c Z, introduce the frontier 01 Z) :=T; Z\T; Z of its conormal
bundle, and the dense, open, smooth locus of their complement

(T 2)° =T 2\ | o135, 2). (23)

acA

Introduce the corresponding dense, open, smooth locus
AN =An(TEZ)° c A (24)

Note that A° depends on §, refining 8 leads to smaller A°.

Fix a point (2,£) € A°. Let B © Z be a small open ball around z € Z, and f: B> R
a compatible test function. Let L < T*Z be the graph of df, and assume that L intersects
A° transversely at the single point (z,£) € A°.

Definition 2.1. Let Q c T*Z be a conic open subspace containing (z,€) € A°. Define
the microstalk along L < T*Z to be the vanishing cycles

oL = wShy () — Mody, ,¢r(F) := F{f;o}(B»fﬂB), (25)

where F € Sh(B,p) represents the restriction of F € uShi () to a small open neigh-
borhood Qg < Q of the point (2,£) € T*Z.

Remark 2.3. The microstalk is well-defined since by construction it vanishes on the
kernel of the localization Sh$ (B,Qp) — puShi(Qp) with respect to the singular support.

Lemma 2.1. An object F € uSh} () is trivial if and only if all of its microstalks are
trivial. An object F € uSh}(Q) lies in the full subcategory uSha() < uSh () if and
only if all its microstalks are perfect (i.e. proper) K-modules.



3 Wrapped microlocal sheaves

Definition 3.1. Define the small dg category pShy () of wrapped microlocal sheaves on
Q supported along A to be the full dg subcategory of compact objects within the dg category
wShi (Q) of large microlocal sheaves.

The dg categories pSha () and pShY () can now be defined for any Liouville manifold
instead of conic open subsets in the cotangent bundle. See the work of Nadler-Shende.

Remark 3.1. Given the full dg subcategory C. c C of compact objects in a stable cocom-
plete dg category, the canonical functor IndC. — C is an equivalence. Thus we have

InduShy () = uSh3(Q). (26)

Geometrically, the partially wrapped Fukaya category W(X,f) is generated by cocores
and linking discs. Denote their endomorphism A -algebra by W x 5. Then the definition
above just says that the derived category DPFW(X,§) can be defined as the category
DPI(W(x 1)) of perfect modules over the A -algebra W x ;). Note that DP*"/ (W x 1)) C
DmOd(W(X’f)) is the subcategory of compact objects.

There is a more concrete geometric characterization of wrapped microlocal sheaves.
Recall the microstalk functors ¢y, : uSh} (2) — Modyk. Note that ¢ preserves products,
hence admits a left adjoint qﬁéL : Modx — pSh3 (€2), and also preserves coproducts, hence

L]L preserves compact objects.

Definition 3.2. Define the microlocal skyscraper F1, = ¢% (K) € uShy (Q) to be the object
corepresenting the microstalk

o (F) = hom(F,F), F e uShi(Q). (27)
Lemma 3.1. pShy (Q) is split-generated by the microlocal skyscrapers Fr, € pShy ().

Proof. By Lemma 2.1, the microlocal skyscrapers ¥ compactly generate uSh{(Q) =
InduShy (). (For any non-trivial object F of uShy (), there must be some L so that
hom(JF,F) # 0.) Thus we may invoke the general fact that if a collection of objects of a
small stable dg category C. generates the ind-category C = IndC,., then it split-generates
Ce. O

Remark 3.2. One should think of wShy (Q) as the (derived) partially wrapped Fukaya
category associated to the stopped Liouville manifold (2, A n 0,Q), and pSha(Q) the
(derived) infinitesimal Fukaya category. The microlocal skyscrapers correspond to cocores
and linking discs which intersect the smooth part of A n S transversely at a single point.
Geometrically, they are given by the Lagrangian disc L < T*B.

Recall that for conic open subspaces Q c T*Z, the dg category uShy () of large
microlocal sheaves is the sections of a sheaf uSh$ of dg categories supported along A.
For an inclusion €' < Q of conic open subspaces, the restriction functor p : uSh3(Q) —
wShS (Q') preserves products, hence admits a left adjoint p : uShS (') — uSh$(2), and
also preserves coproducts, hence p’ preserves compact objects. Thus its restriction to the
subcategory of compact objects defines a natural corestriction functor

p": pShY () — pSh (). (28)

Proposition 3.1. The dg categories wShy (Q) for conic open subspaces Q ¢ T*Z and
corestriction functors p* @ pShy (') — pShy () for inclusions ' < , assemble into
a cosheaf pShy of dg categories supported along A. Furthermore, there exists a Whitney
stratification of A such that the restriction of uShy to each stratum is locally constant.



Given a closed embedding of conic Lagrangian subvarieties A’ < A, there is a natural
full embedding 7 : uShy, — uShy of sheaves of dg categories. Observe that i preserves
products, hence admits a left adjoint i* : 4 ShS — wSh., and also preserves coproducts, so
i’ preserves compact objects. Thus its restriction to compact objects defines an essentially
surjective functor (i.e. surjective on objects up to isomorphism)

i uShY — wShy,. (29)

The evaluation of i on a microlocal skyscraper Fr, € uShy () is straightforward. If the
small Lagrangian ball L ¢ T*Z is centered at a point (z,£) € A° that is not contained in
A < A, then % (FL) = 0. If the small Lagrangian ball L is centered at a point (z,&) € A°
contained in A’ © A, then i*(F) simply represents the restriction of the microstalk
functor to sections of uShf, c uShy. (Geometrically, what the functor i does is sending
linking discs of A to linking discs of A’. Since A has more linking discs, i is essentially
surjective.)

Theorem 3.1. The natural hom-pairing provides an equivalence
1Sha(Q2) = Fun® (uSh ()7, Perfy) (30)

where Fun® denotes the dg category of exact functors, and Perfy that of perfect K-
modules.

Remark 3.3. While objects of uShy (Q) similarly give functionals on wSha(Q), it is not
in general true that they produce all possible functionals. One could think about the specific
example where A = S' < T*S' is the zero section, and Q = T*S' is the entire cotangent
bundle. Then we have uShgi(T*S*) = Perf, ... (G,,) and pShd: (T*S*) =~ Coh(G,,). The
hom-pairing gives an equivalence

prop

Perf on(Gr) = Fun® (Coh(G,,)°P, Perfi) . (31)

prop

Clearly there are more functionals on Perf Gy) then those coming from Coh(G,y,).
For example, one could take the hom-pairing with a direct sum of skyscraper sheaves at

infinitely many points.

pTDp(

Remark 3.4. In terms of symplectic topology, Theorem 3.1 is a version of the Filenberg-
Moore equivalence between the partially wrapped Fukaya category and the infinitesimal
Fukaya category associated to the stopped Liouville manifold (0, A n 05.2). Choosing A to
be the zero section, A n 0.,Q = &, the infinitesimal Fukaya category becomes the compact
Fukaya category, and the partially wrapped Fukaya category becomes the fully wrapped
Fukaya category. In general, this Eilenberg-Moore equivalence does not give the Koszul
duality between Fukaya categories, a typical example is Q = T*S™.

On the mirror side, Koszul duality between Coh(X) and Perf ,,,,(X) holds for proper
schemes X.

Proof of Theorem 3.1. First, let us observe that it suffices to prove the assertion locally.
If one choose a cover {€;};cr of Q by conic open subspaces, since uShy () is a sheaf and
wShiy () is a cosheaf we have

wShp () = lirgl wSha(€2:), uwShY (Q) = colim;e;uShy (). (32)
1€
Thus if we have the assertion locally, i.e.

~

wSha(2;) = Fun® (uShy (Q24)°", Perfy) , (33)



then we have it globally

wSha () = lim pSha (Q;) = lim Fun® (uShy (Q;)°%, Perfk)
i€l i€l (34)
= Fun® (colim;erpuShy (€2;)°P, Perfg) = Fun® (uShy (Q)°P, Perfy) .

We may assume that Q © T*Z is the cone over a small open ball Q* c S*Z centered at
a point of A* c S*Z.

We may deform A* < §*Z to a Legendrian subvariety A7, < S*Z with arboreal
singularities. Taking A to be the cone over A%, we have an equivalence pShy () =
pShy (), restricting to an equivalence pSha(2) = pShy,,,(2). Passing to the compact
objects in the first equivalence, we have uShy (Q) = uShy  (€2).

Thus we may assume that the conic Lagrangian subvariety A < T*Z has arboreal
singularities. Moreover, we may further assume that @ ¢ T*Z is the cone over a small
open ball Q* c S*Z centered at a point of A < S*Z that is an arboreal singularity.
In this situation, uSh3(Q) is equivalent to the dg category Modg(T) of modules over
a directed tree T, and pSha(€2) is equivalent to the dg category Perfy(T) of perfect
modules. Passing to compact objects under the first equivalence, we have that pShy (€2)
is also equivalent to Perfy(T).

Finally, for perfect modules over a directed tree, it is straightforward to check that
the hom-pairing provides an equivalence

Perfg(T) = Fun® (Perfx(T)°?, Perfg) . (35)

O

Remark 3.5. Locally, the dg categories uSha(2) and pShy (), which correspond respec-
tively to the infinitesimal Fukaya category and the partially wrapped Fukaya category, are
Koszul dual. Moreover, these two categories are smooth and proper, therefore “self-dual”
in the derived sense. This explains the fact that their derived categories are both equivalent
to Perfg(T) in the above argument.

4 Lagrangian skeleton

By the n-dimensional pair-of-pants, we mean the Liouville manifold (P,,ap,) given by
the generic hyperplane

Pn={1+zl+"'+zn+1=O}CT£+17 (36)

equipped with the restriction of the Liouville form «, on T*T™*!. The Lagrangian
skeleton of P, can be described by the combinatorics of the permutahedron.

To get a more convenient Lagrangian skeleton, we need to break the symmetry and
work with the pair-of-pants in a slightly modified form where we alter its embedding near
infinity. This is called tailored pair-of-pants, and we denote it by (Q., g, ).

To provide the tailored pair-of-pants a particularly simple skeleton, it will be useful
to break the symmetry and apply a natural isotopy to its Liouville structure. For z =

(21, ++ ,op11) € R?TL consider the family of Liouville structures on T*T"*! given by
n+1 n+1
o, = Z (o — 20)d0q,wy, = da, = Z (o — xq)db,. (37)
a=1 a=1

The restriction of af and w? to the pair-of-pants P,, provide a family of Liouville struc-
tures. We may construct the tailored pair-of-pants @, < Tg“ so that the restricted
Liouville form «ap, = aj

Q,, provide a family of Liouville structures as well. Choose



¢>» 0, and let zp = (=¢,---,—Ff) € R""!. Let us focus on the Liouville structure on Q,
given by

n+1

ﬂQn = agn = (Z (ga + e)dea) |Qn' (38)
a=1

Write L,, c @, for the resulting skeleton, we will describe its geometry.

Let SlA < T™*! be the diagonal circle. The translation SlA—action on T"*! induces a

Hamiltonian S'-action on T*T™*t!, with moment map

n+1
27, T*TnJrl - Ra NA(alvfla T 79n+1,£n+1) = Z ga- (39)
a=1
Consider the quotient T = T""! /S consisting of (n+1)-tuples [0y, - - ,0;,+1] taken up to

simultaneous translation. If we distinguish the last entry, then we obtain an identification
T™ =~ T"™ via the coordinates 6, — 0,,,1, where 1 < a < n.

Let t¥ = {22211 0 = 0} < R™*! be the dual of the Lie algebra of T". We have the

identification T*T™ = T™ xt%. In terms of coordinates, a point of T*T™ can be represented

1
by ([917 ot 79TL+1]7 (517 e a§n+1))7 where ZZil a = 0.
For x € R, we have a twisted Hamiltonian reduction correspondence

T B i (x) B T, (40)
where g, is the inclusion of level set, while p,, is the translation projection

Py (01, 0ns1), (§1,- - S 6ng1)) = ([01, 0 O], (G0 = X &1 — X)), (41)

where X = x/(n + 1). In particular, when x = 0, we recover the usual Hamiltonian
reduction correspondence

T L TE T 2 T, (42)
A

where T3, T+l < T*T7+1 ig the conormal bundle.
A

Introduce the conic Lagrangian subvariety
Ar:={(0,0)]0 € 51} U {(0,)I€ € Rxo} = TS, (43)

and the product conic Lagrangian subvariety
Apyr = (A" c Tt (44)

Note that A, C ,uZl(R;O), and that A, and le (x) are transverse for x > 0. Fix
some x > 0, define the Lagrangian subvariety

L =Dy (q;l(AnH)) c 7T (45)

Remark 4.1. We do not include x in the notation for £, as we will eventually specialize
to the case x = n + 1.

To describe £, < T*T", consider the moment map pi,41 : T*T" ! — R+ of the
Hamiltonian 7" % -action and restrict it to A,,; < T*T"+1. Note that p, 1(Apy1) =

R;};l. For I ¢ {1,--+ ,n + 1}, consider the relatively open coordinate cone
o =1{& =0,& >0laeI,b¢ I} c RLH. (46)
For z € o7, f1,,11(2) N Any1 is the orthogonal coordinate subtorus

T ={0,=0a¢ I} c T (47)



Consider the closed simplex

n+1
E(x) = {(51,--- np)[6a = 0for 1<a<n+1, ) & = x} c RZE (48)
a=1

Note that the projection p, restricts to an isomorphism
13 00 0 A = ks (B00) S 2. (49)
since for any point of ugl(x) N Apy1, we must have £, > 0 and hence 6, = 0 for some

a€{l,---,n+ 1}, so that no points are identified by the S}-translations.
For a proper subset I < {1,--- ,n + 1}, consider the relatively open subsimplex

[1]¢

1(X) =EZn(x) nor. (50)

Then p, restricts to an isomorphism

7" x E1(0) = €., (51)
I

where we take the union over non-empty I < {1,---,n + 1}. Note that when n =2, £,
is the union of two circles and an open interval.

Theorem 4.1. There is an open neighborhood U, < @Q, of the Lagrangian skeleton
L, c Q, and an open symplectic embedding

j: U, - T*T" (52)
which restricts to an isomorphism

Jlo, i Ly = £,. (53)

5 Contactification and symplectization

By Theorem 4.1, the symplectic geometry of a neighborhood U, < @, of L, € @Q,, is
equivalent to that of a neighborhood U,, ¢ T*T" of £, < T*T™.

We introduce the Liouville form (3, on the neighborhood i, < T*T™ obtained by
transporting the Liouville form (g, restricted to the neighborhood U, < @,. Thus 3,
provides a primitive to the restriction of the canonical symplectic form wrsrn |y, = dfy,.
The Lagrangian subvariety £, < T*T™ is conic with respect to its associated Liouville
vector field.

In general, let M be a Liouville manifold with Liouville form ap;. The circular con-
tactification of M is the contact manifold N = M x S', with contact form Ay = dt + oy,
and contact structure {nx = ker(Ay). The contactification of M is the contact manifold
N = M x R, with contact form A% = dt+ayr, and contact structure {3 = ker(A5). Note
that there is a natural contact Z-cover N — N.

Definition 5.1. A Lagrangian subvariety L — M 1is integral if there is a continuous
function f : L — S such that the restriction of f to any submanifold of L is differentiable
and a primitive for the restriction of ayy.

A Lagrangian subvariety L ¢ M is exact if in addition there exists a lift of f : L — S!
to a continuous function f: L — R.

Remark 5.1. A Lagrangian subvariety L < M is integral if and only if it admits a
Legendrian lift L < N. Similarly, L < M 1is exact if and only if it admits a Legendrian
lift Lc N.



Return to the neighborhood i,, ¢ T*T™. It admits two Liouville forms: 3, and the
canonical Liouville form az#pn. The Lagrangian subvariety £, < il, is conic with respect
to the Liouville vector field associated to f3,, and thus exact with respect to 3,. On the
other hand, if we construct £,, using x > 0 with ¥ = x/(n + 1) integral, then the function

n+1
Frup 00 nApsr = 8 F= D1 (6 — V)b (54)
a=1

is invariant under S} -translations, hence descends to a function f: £, — S'. A straight-
forward computation shows that f provides an integral structure of £,, for apsrn.
Consider the circular contactification (N,,A,) of Ll,. Denote by £, the Legendrian
lift of £, to (Np, An)-
From now on we further specialize to x = n + 1 so that ¥ = 1. Introduce the conic
open subspace and its spherical projectivization

Qng1 = px (Rag) € T*T™H Q7 = Qpp1/Rag € S7TL (55)
The natural projection gives an isomorphism of contact manifolds pgl(x) = Qr .

Lemma 5.1. We have a finite contact cover
Py Q= Rt (x) = TFT" x S (56)

given by p, = py x 8§, where § : T — St s the diagonal character.
The cover is trivializable over the neighborhood N, < T*T™ x S! of the Legendrian
L, © N, with a canonical section s : N, — Q7 | such that s(Ly,) = A7, .

It follows that the contact geometry of the circular contactification N,, < T*T" x S*
near the Legendrian lift £,, is equivalent to that of the open subspace Q7 ; < SETntl
near the Legendrian subvariety A, ;.

Introduce the circular contactification @,, x S', and its symplectization @n = Q, X
S x R, with their natural projections

On=QnxS"'xR35Q, x5 5Q,. (57)

The Lagrangian skeleton L, c @, lifts under ¢ to the Legendrian subvariety L, x {0} c
Qn xS, and we can take its inverse image under s to obtain a conic Lagrangian subvariety

L, =5 (L, x {0}) € Qn. (58)
The following is a consequence of Theorem 4.1.

Theorem 5.1. Fiz x =n + 1. There is a conic open neighborhood ﬁn c @n of the La-
grangian subvariety L,, € Q,, a conic open neighborhood Y, 11 € Q41 of the intersection
A1 0 Qui1, and an exact symplectomorphism

~

5 Uy, = n+1 (59)
restricting to an isomorphism

~

5|En : En = N1 0 Qg (60)

6 Mirror symmetry

We calculate (what is supposed to be) the dg category of wrapped microlocal sheaves on
the pair-of-pants. Note that Theorem 5.1 allows us to define the dg category uShr, (@) of
wrapped microlocal sheaves on @,, supported along L,, to be the dg category of wrapped
microlocal sheaves on €2, 11 supported along A, 1.
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Lemma 6.1. There are mirror equivalences

SthH(T”“) =~ QCoh(A™"1), (61)
ShAnH(T”H) >~ Perfpmp(A"H), (62)
Sh}\”n+1(T”+1) =~ Coh(A™"1). (63)

Remark 6.1. Geometrically, Shy,(S*) and Shy (S*) correspond respectively to the in-
finitesimal and partially wrapped Fukaya categories associated to the Landau-Ginzburg
model (C*, 2), which is the mirror of Al

Fix asubset I  {1,--- ,n+1}, with complement I¢ = {1,--- ,n+1}\I. Let 71 < T"*!
be the subtorus defined by 6, = 0 for a € I¢. Let A; = (A1)’ < T*TT be the product
conic Lagrangian subvariety.

Consider the hyperbolic restriction

nr: Sh})\nH(T") — Shy, (T, n1(F) := ped'F (64)
built from the correspondence
T &7 % [0,1/2)"" L 7 (65)

where p is the projection and ¢ is the inclusion.
Let f : AT = SpecK|[t,|a € I] — A" = SpecK[t1, - ,t,] be the affine subspace defined
by t, =0 for a € I°.

Lemma 6.2. The equivalences (61) and (62) fit into commutative diagrams

Sy, (T"1) —=— QCoh(A"*1)

al Lf* (66)

Sh (T1) —=— QCoh(AT)

ShAn+1(Tn+1) é Perfprop(AnJrl)

ml lf* (67)

Sha, (T") —=—= Perf (A7)
Theorem 6.1. There are mirror equivalences
wShy, ., (ni1) = IndCoh(X,), (68)
SN,y (Qnt1) = Perf 0, (Xn), (69)
pShy (1) = Coh(Xy). (70)
Proof. Let J,,41 be the category whose objects are subsets I < {1,--- ,n + 1}, and mor-

phisms I — I’ are inclusions I < I’. Let J5 | < J,41 denote the full subcategory whose
objects are proper subsets of {1,--- ,n + 1}.

Define a functor A : J;,,; — Xk as follows. For an object I of J} ,, take the affine
space A(I) = AT, and for a morphism I  I’, take the inclusion A(I,I') : AT — A" given
by setting ¢, = 0 for each a € I'\I.

Recall the functor IndCoh* : Xg¥ — dgSty that assigns a scheme its ind-coherent
sheaves and a proper morphism of schemes its #-pullback. Recall also the full subfunctor

Perf : X — dgsty of perfect complexes with proper support.

*
prop
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Consider the composite functor IndCoh™ o A : (J;, )" — dgStg, and Perf},,, o

A(J5 ,1)°P — dgstg. By Proposition 1.2, the canonical maps are equivalences

~

IndCoh(X,) = lim IndCoh(A"), (71)

1
(jz’+1)071

Pe’rfp'mp(Xn-‘rl) i johm op Perfprop(AI)7 (72)

( n+1)
Coh(X,) < colimgs  Coh(A"). (73)

To prove the theorem, we will similarly identify ,u,S’hj)\n+1 (,41) as the limit of a functor
HSh : (3311)°F = dgSty (74)

and then provide an equivalence of functors uSh® ~ IndCoh™ o A. This will immedi-
ately prove the first and the third equivalences. For the second one, we observe that
pwSha, ., (1) is the limit of a full subfunctor uSh < pSh®, which is equivalent to the
subfunctor Perfy,,, o A € IndCoh* o A.

For each I € J; ., introduce the conic open subspace Q; < )41, cut out by the
additional requirement &, # 0 for a ¢ I. Thus for I  I’, we have the open inclusion
Qr € Qp, and for I = {1,--- ,n + 1}, we have Q; = Q,11. Note that the collection
{Q]}]eji_H forms a conic open cover of §,,,1 with the property Qr~p = Q N Q. Define
the functor uSh® by

Sk (1) = Sk, (), (75)
with inclusions I < I’ taken to the restriction maps along the inclusions Q; < Q.. Define
the full subfunctor pSh < pSh® by pSh(I) = uSha,, ., ().

Since pShy, ,, forms a sheaf, juShy, ,, < pShy |
an open conic cover of €,11, the canonical functors are equivalences

is a full subsheaf, and {Q;}reso | is

wShy, (1) = j}im)op wShy, ., (), (76)
n+1

HShA s Q) = ) puSha o (). (77)
n+1

Next let us define an additional functor to interpolate between IndCoh™ o A and 1Sh°.
For I € J;, ., define the functor

Sh® : (95,41)°7 — dgStg, Sh°(I) = Shy, (T!) (78)
with inclusions I < I’ taken to the hyperbolic restrictions
nicr : Shyy © (T") = Sh3,(T1), nicr(F) = ped'T (79)
built from the correspondence
T! & 71 % [0,1/2)"'\ L 71", (80)

where p is the projection and ¢ is the inclusion. Define the full subfunctor Sh < Sh® by
Sh(I) = Sha,(TT).
Lemmas 6.1 and 6.2 imply that we have equivalences

Sh® ~ IndCoh™ o A, Sh =~ Perfy, o A. (81)
It remains to establish equivalences of functors
Sh® ~ uSh®, Sh ~ uSh. (82)
For any I € J; 1, let us return to the hyperbolic restriction

n S (T = Sha, (T7), 0i(T) = peq'. (83)
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First, n; factors through the microlocalization
Sh,., (T™H1) = uShS, () > Sha, (T7) (84)

since the hyperbolic restriction in the coordinate direction indexed by a € T° vanishes on
sheaves whose singular support does not intersect the locus {£, > 0} < T*T™+1,
Next, for I  I’, the induced functors extend to natural commutative diagrams

S () " ShS, (T")
pICI’J/ lnlcl’ (85)
pSh, (Qr) —"— ShS, (1)

Thus we have a map of functors 7 : uSh® — Sh°, restricting to a map of subfunctors
wSh — Sh. It remains to show that 7 is an equivalence. It suffices to show that

iir + pSh, () — Sh (T7) (86)

is an equivalence for any I € J; ;. Note that it admits a inverse induced by the pushfor-
ward

Jre 1 SK,(TT) — Sk, (T™) (87)

n+1 (

along the natural inclusion j; : TT — T™+1. To see this, note that j; is simply the product
of inclusions in the coordinate directions indexed by I¢, and the identity in the coordinate
directions indexed by I. O

Corollary 6.1. There is a quasi-equivalence of differential Z/2-graded categories

wShY . (Qni1)z2 = MF(A" 2 W) (88)

n+1

For a Z-graded version of the above equivalence proved for the actual wrapped Fukaya
category W(P,), see Lekili-Polischuk.
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