Wrapped microlocal sheaves on pair-of-pants

Yin Li

In this note we give an account of Nadler's computation of the dg category of wrapped microlocal sheaves on n-dimensional pair-of-pants, which in particular verifies the homological mirror symmetry conjecture in this case.

We will be working over an algebraically closed field K of characteristic 0.

1 Matrix factorizations

Consider a superpotential $W : \mathbb{A}^n \to \mathbb{A}^1$ such that $0 \in \mathbb{A}^1$ is the unique critical value. Denote by $X = W^{-1}(0)$ the singular fiber.

Let Perf(X) and Coh(X) be the dg enhancements of the triangulated category of perfect complexes and the bounded derived category of coherent sheaves, respectively. Let $D_{Sing}(X) = Coh(X)/Perf(X)$ be the 2-periodic dg quotient.

Let $MF(\mathbb{A}^n, W)$ be the differential $\mathbb{Z}/2$ -graded category of matrix factorizations. Denote by $MF(\mathbb{A}^n, W)_{2\mathbb{Z}}$ the unfurling of $MF(\mathbb{A}^n, W)$, then there is a quasi-equivalence between 2-periodic dg categories

$$MF(\mathbb{A}^n, W)_{2\mathbb{Z}} \cong D_{Sing}(X).$$
 (1)

We are interested in the superpotential $W_{n+1} : \mathbb{A}^{n+1} \to \mathbb{A}^1$ given by the product of coordinates $z_1 \cdots z_{n+1}$, so that the central fiber $X_n = W_{n+1}^{-1}(0)$ is the union of n+1 coordinate hyperplanes.

Consider the natural projection $\pi: X_n \to X_{n-1}$.

Proposition 1.1. The pullback of coherent sheaves

$$\pi^* : Coh(X_{n-1}) \to Coh(X_n) \tag{2}$$

induces an equivalence of differential $\mathbb{Z}/2$ -graded categories

$$Coh(X_{n-1})_{\mathbb{Z}/2} \cong MF(\mathbb{A}^{n+1}, W_{n+1}).$$

$$(3)$$

Let $dgst_{\mathbb{K}}$ be the ∞ -category of \mathbb{K} -linear small stable dg categories with exact functors. Let $dgSt_{\mathbb{K}}$ be the ∞ -category of \mathbb{K} -linear cocomplete dg categories with continuous functors. Let $dgSt_{\mathbb{K}}^c \subset dgSt_{\mathbb{K}}$ be the (not full) ∞ -subcategory of \mathbb{K} -linear cocomplete dg categories with functors preserving compact objects. Taking ind-categories provides an equivalence

$$Ind: dgst_{\mathbb{K}} \xrightarrow{\cong} dgSt^{c}_{\mathbb{K}}.$$
(4)

Taking compact objects provides an inverse equivalence

$$\kappa: dgSt^c_{\mathbb{K}} \xrightarrow{\cong} dgst_{\mathbb{K}}.$$
(5)

Let $\mathfrak{X}_{\mathbb{K}}$ be the category of affine locally complete intersection \mathbb{K} -schemes and closed embeddings. Passing to coherent sheaves and pushforwards yields a functor

$$Coh_* : \mathfrak{X}_{\mathbb{K}} \to dgst_{\mathbb{K}}.$$
 (6)

Passing to perfect complexes and *-pullbacks yields a functor

$$Perf^* : \mathfrak{X}^{op}_{\mathbb{K}} \to dgst_{\mathbb{K}},$$
(7)

and similarly for perfect complexes with proper support

$$Perf^*_{prop} : \mathfrak{X}^{op}_{\mathbb{K}} \to dgst_{\mathbb{K}}.$$
 (8)

Passing to ind-coherent sheaves and pushforwards provides a functor

$$IndCoh_* : \mathfrak{X}_{\mathbb{K}} \to dgSt^c_{\mathbb{K}}.$$
 (9)

Passing to quasi-coherent sheaves and *-pullbacks yields a functor

$$QCoh^* \simeq IndPerf^* : \mathfrak{X}^{op}_{\mathbb{K}} \to dgSt^c_{\mathbb{K}}.$$
 (10)

Passing to ind-coherent sheaves with *-pullbacks or !-pullbacks yield functors

$$IndCoh^* : \mathfrak{X}^{op}_{\mathbb{K}} \to dgSt_{\mathbb{K}}, \ IndCoh^! : \mathfrak{X}^{op}_{\mathbb{K}} \to dgSt_{\mathbb{K}}.$$
 (11)

Tensoring with the dualizing complex provides a natural intertwining equivalence

$$\otimes \omega : IndCoh^* \xrightarrow{\simeq} IndCoh^!. \tag{12}$$

Let us return to (\mathbb{A}^n, W_n) . Let \mathcal{I}_n° denote the poset of subsets $I \subset \{1, \dots, n\}$ under inclusions. For $I \in \mathcal{I}_n^{\circ}$, consider the corresponding coordinate subspace

$$X_I = \operatorname{Spec}\mathbb{K}[z_1, \cdots, z_n]/(z_a | a \notin I).$$
(13)

We have a colimit diagram of closed embeddings

$$\operatorname{colim}_{I \in \mathcal{I}_n^{\circ}} X_I \xrightarrow{\cong} X_{n-1}. \tag{14}$$

Proposition 1.2. The colimit diagram (14) is taken to a colimit diagram by Coh_* and $IndCoh_*$, and a limit diagram by $Perf^*$, $Perf_{prop}^*$, $IndCoh^!$, and $IndCoh^*$.

2 Microlocal sheaves

Let Z be a real analytic manifold. We will often work with a closed conic Lagrangian subvariety $\Lambda \subset T^*Z$ and its Legendrian ideal boundary

$$\Lambda^{\infty} = \left(\Lambda \cap \left(T^*Z \backslash Z\right)\right) / \mathbb{R}_{>0} \subset S^{\infty}Z.$$
(15)

Denote by Y the front projection $\pi^{\infty}(\Lambda^{\infty})$, where $\pi^{\infty}: S^{\infty}Z \to Z$. In the generic situation, the projection $\pi^{\infty}|_{\Lambda^{\infty}}: \Lambda^{\infty} \to Y$ is finite, so the front projection is a hypersurface.

We will often fix a Whitney stratification $S = \{Z_{\alpha}\}_{\alpha \in A}$ of Z so that $Y \subset Z$ is a union of strata. Hence we have inclusions

$$\Lambda \subset T^*_{\mathcal{S}}Z := \bigsqcup_{\alpha \in A} T^*_{Z_{\alpha}}Z, \ \Lambda^{\infty} \subset S^{\infty}_{\mathcal{S}}Z := \bigsqcup_{\alpha \in A} S^{\infty}_{Z_{\alpha}}Z.$$
(16)

Given a Whitney stratification S, by a small open ball $B \subset Z$ around a point $z \in Z$ we will mean an open ball $B = B(r) \subset Z$ of some radius r > 0 such that the corresponding spheres $S(r') \subset Z$, for all 0 < r' < r, are transverse to the strata of S.

Let $Sh^{\diamond}(Z)$ denote the dg category of complexes of sheaves of K-vector spaces on Z such that the total cohomology sheaf is locally constant with respect to some Whitney stratification S. For a fixed Whitney stratification S, denote by $Sh_{\mathbb{S}}^{\diamond}(Z) \subset Sh^{\diamond}(Z)$ the full subcategory which are cohomologically locally constant with respect to this specific S. It follows that $Sh^{\diamond}(Z) = \bigcup_{\mathbb{S}} Sh_{\mathbb{S}}^{\diamond}(Z)$.

Let $Sh(Z) \subset Sh^{\diamond}(Z)$ be the full dg subcategory of constructible complexes of sheaves of K-vector spaces on Z. In other words, it consists of objects of $Sh^{\diamond}(Z)$ whose total cohomology sheaf, when restricted to each Z_{α} , has finite rank. We can introduce the notation $Sh_{\mathcal{S}}(Z)$ as above, and it follows that $Sh(Z) = \bigcup_{\mathcal{S}} Sh_{\mathcal{S}}(Z)$. The objects of $Sh^{\diamond}(Z)$ will be referred to as *large constructible sheaves*, and the objects of Sh(Z) as *constructible sheaves*.

All functors between dg categories of sheaves will be derived in the dg sense. When dealing with large constructible sheaves, since we are working with co-complete dg categories, the functors should also be co-continuous (preserves colimits). For example, for a closed embedding $i : Y \to Z$, by the !-restriction $i^! : Sh^{\diamond}(Z) \to Sh^{\diamond}(Y)$, we will mean the shifted cone $i^! \simeq Cone(\mathcal{F} \to j_*j^*\mathcal{F})[-1]$, where $j : U \to Z$ is the inclusion of the open complement $U = Z \setminus i(Y)$. For a smooth map $f : Y \to Z$, by the !-pullback $f^! : Sh^{\diamond}(Z) \to Sh^{\diamond}(Y)$, we will mean the twist of the *-pullback $f^!\mathcal{F} \cong f^*\mathcal{F} \otimes \omega_f$, where $\omega_f \cong or_f[\dim Y/Z]$ is the relative dualizing complex.

Fix a point $(z,\xi) \in T^*Z$. Let $B \subset Z$ be an open ball around $z \in Z$, and $f : B \to \mathbb{R}$ a smooth function such that f(z) = 0 and $df|_z = \xi$. We will refer to f as a compatible test function.

Define the vanishing cycles functor

$$\phi_f: Sh^{\diamond}(Z) \to Mod_{\mathbb{K}},\tag{17}$$

$$\phi_f(\mathcal{F}) = \Gamma_{\{f \ge 0\}}(B, \mathcal{F}|_B) \cong Cone\left(\Gamma(B, \mathcal{F}|_B) \to \Gamma(\{f < 0\}, \mathcal{F}|_{\{f < 0\}})\right) [-1], \tag{18}$$

where we take $B \subset Z$ to be sufficiently small.

To any object \mathcal{F} of $Sh^{\diamond}(Z)$, define its singular support $ss(\mathcal{F}) \subset T^*Z$ to be the largest closed subset such that $\phi_f(\mathcal{F}) \cong 0$ for any $(z,\xi) \in T^*Z \setminus ss(\mathcal{F})$, and any compatible test function f.

For a conic Lagrangian subvariety $\Lambda \subset T^*Z$, write $Sh^{\diamond}_{\Lambda}(Z) \subset Sh^{\diamond}(Z)$, resp. $Sh_{\Lambda}(Z) \subset Sh(Z)$ for the full dg subcategory with singular support $ss(\mathcal{F}) \subset \Lambda$.

Given a Whitney stratification S, an inclusion $\Lambda \subset T^*_{S}Z$ induces the fully faithful embeddings $Sh^{\diamond}_{\Lambda}(Z) \subset Sh^{\diamond}_{S}(Z)$, $Sh_{\Lambda}(Z) \subset Sh_{S}(Z)$. More generally, an inclusion $\Lambda \subset \Lambda'$ induces the fully faithful embeddings $Sh^{\diamond}_{\Lambda}(Z) \subset Sh^{\diamond}_{\Lambda'}(Z)$, $Sh_{\Lambda}(Z) \subset Sh_{\Lambda'}(Z)$.

When $U \subset Z$ is an open subset, we will abuse notations and write $Sh^{\diamond}_{\Lambda}(U) \subset Sh^{\diamond}(U)$, resp. $Sh_{\Lambda}(U) \subset Sh(U)$ for the full dg subcategory with objects satisfying $ss(\mathcal{F}) \subset \Lambda \cap \pi^{-1}(U)$. $\pi: T^*Z \to Z$ is the natural projection.

Remark 2.1. Let $\omega_Z \cong or_Z[\dim Z] \cong p^! \mathbb{K}_{pt}$, for $p: Z \to pt$, be the Verdier dualizing complex. For a conic Lagrangian subvariety $\Lambda \subset T^*Z$ and the antipodal conic Lagrangian subvariety $-\Lambda \subset T^*Z$. Verdier duality provides an involutive equivalence

$$\mathbf{D}_Z: Sh_\Lambda(Z)^{op} \xrightarrow{\simeq} Sh_{-\Lambda}(Z), \mathbf{D}_Z(\mathfrak{F}) = \mathcal{H}om(\mathfrak{F}, \omega_Z).$$
(19)

The above discussions can be generalized to the slightly more general setting. To a conic open subspace $\Omega \subset T^*Z$, we associate the dg category $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ of large microlocal sheaves on Ω supported along Λ . Before describing its construction, we first mention some of its formal properties.

- Given an inclusion of conic open subspaces $\Omega' \subset \Omega$, there is a natural restriction functor $\mu Sh^{\diamond}_{\Lambda}(\Omega) \to \mu Sh^{\diamond}_{\Lambda}(\Omega')$. These assignments assemble into a sheaf $\mu Sh^{\diamond}_{\Lambda}$ of dg categories supported along Λ .
- There exists a Whitney stratification of Λ such that the restriction of $\mu Sh^{\diamond}_{\Lambda}$ to each stratum is locally constant. Thus we can reconstruct $\mu Sh^{\diamond}_{\Lambda}$ from the assignments $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ for small conic open neighborhoods Ω of $(z,\xi) \in \Lambda$.
- Given a closed embedding of conic Lagrangian subvarieties $\Lambda' \subset \Lambda$, there is a natural full embedding $\mu Sh^{\diamond}_{\Lambda'} \subset \mu Sh^{\diamond}_{\Lambda}$ of sheaves of dg categories.

All of the above facts follows from the local description of $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ which we now recall. Note that for a point $(z,\xi) \in \Lambda$ there are two local cases to consider: either $\xi = 0$

so locally Ω is the cotangent bundle T^*B of a small open ball $B \subset Z$, or $\xi \neq 0$ so that locally Ω is the cone over a small open ball $\Omega^{\infty} \subset S^{\infty}Z$.

• For $B = \pi(\Omega)$, there is always a canonical functor $Sh^{\diamond}_{\Lambda}(B) \to \mu Sh^{\diamond}_{\Lambda}(\Omega)$. When $\Omega = T^*B$, this functor is in fact an equivalence

$$Sh^{\diamond}_{\Lambda}(B) \xrightarrow{\cong} \mu Sh^{\diamond}_{\Lambda}(T^*B).$$
 (20)

• Suppose Ω is the cone over small open ball $\Omega^{\infty} \subset S^{\infty}Z$. Set $B = \pi(\Omega)$, and let $Sh^{\diamond}_{\Lambda}(B,\Omega) \subset Sh^{\diamond}(B)$ denote the full dg subcategory of objects with $ss(\mathcal{F}) \cap \Omega \subset \Lambda$. Then there is a natural equivalence

$$Sh^{\diamond}_{\Lambda}(B,\Omega)/K^{\diamond}(B,\Omega) \xrightarrow{\cong} \mu Sh^{\diamond}_{\Lambda}(\Omega),$$
 (21)

where $K^{\diamond}(B,\Omega) \subset Sh^{\diamond}_{\Lambda}(B,\Omega)$ denote the full dg subcategory of objects with $ss(\mathcal{F}) \cap \Omega = \emptyset$.

We similarly introduce the full dg subcategory $\mu Sh_{\Lambda}(\Omega) \subset \mu Sh_{\Lambda}^{\diamond}(\Omega)$ of microlocal sheaves on Ω supported along Λ . It is constructed as above by working with constructible sheaves instead of large constructible sheaves.

The dg category $\mu Sh_{\Lambda}(\Omega)$ is the sections of a subsheaf $\mu Sh_{\Lambda} \subset \mu Sh_{\Lambda}^{\diamond}$ of full dg subcategories supported along Λ . Given a Whitney stratification of Λ such that the restriction of $\mu Sh_{\Lambda}^{\diamond}$ to each stratum is locally constant, the restriction of μSh_{Λ} to each stratum will also be locally constant. Finally, given a closed embedding of conic Lagrangian subvarieties $\Lambda' \subset \Lambda$, the full embedding $\mu Sh_{\Lambda'}^{\diamond} \subset \mu Sh_{\Lambda}^{\diamond}$ restricts to a full embedding $\mu Sh_{\Lambda'} \subset \mu Sh_{\Lambda}$.

Remark 2.2. For a conic Lagrangian subvariety $\Lambda \subset T^*Z$, with antipodal subvariety $-\Lambda \subset T^*Z$, and conic open subspace $\Omega \subset T^*Z$, with antipodal subspace $-\Omega \subset T^*Z$. Verdier duality induces an involutive equivalence

$$\mathbf{D}_Z: \mu Sh_{\Lambda}(\Omega)^{op} \xrightarrow{\cong} \mu Sh_{-\Lambda}(-\Omega).$$
(22)

Fix a Whitney stratification $S = \{Z_{\alpha}\}_{\alpha \in A}$ of Z such that $\Lambda \subset T_{\mathbb{S}}^* Z := \bigsqcup_{\alpha \in A} T_{Z_{\alpha}}^* Z$. To each stratum $Z_{\alpha} \subset Z$, introduce the frontier $\partial(T_{Z_{\alpha}}^* Z) := \overline{T_{Z_{\alpha}}^* Z} \setminus T_{Z_{\alpha}}^* Z$ of its conormal bundle, and the dense, open, smooth locus of their complement

$$(T_{\mathcal{S}}^*Z)^{\circ} := T_{\mathcal{S}}^*Z \setminus \bigcup_{\alpha \in A} \partial(T_{Z_{\alpha}}^*Z).$$
⁽²³⁾

Introduce the corresponding dense, open, smooth locus

$$\Lambda^{\circ} := \Lambda \cap (T^*_{\mathcal{S}}Z)^{\circ} \subset \Lambda.$$
(24)

Note that Λ° depends on S, refining S leads to smaller Λ° .

Fix a point $(z,\xi) \in \Lambda^{\circ}$. Let $B \subset Z$ be a small open ball around $z \in Z$, and $f : B \to \mathbb{R}$ a compatible test function. Let $L \subset T^*Z$ be the graph of df, and assume that L intersects Λ° transversely at the single point $(z,\xi) \in \Lambda^{\circ}$.

Definition 2.1. Let $\Omega \subset T^*Z$ be a conic open subspace containing $(z,\xi) \in \Lambda^\circ$. Define the microstalk along $L \subset T^*Z$ to be the vanishing cycles

$$\phi_L : \mu Sh^{\diamond}_{\Lambda}(\Omega) \to Mod_{\mathbb{K}}, \ , \phi_L(\mathcal{F}) := \Gamma_{\{f \ge 0\}}(B, \tilde{\mathcal{F}}|_B), \tag{25}$$

where $\tilde{\mathcal{F}} \in Sh^{\diamond}_{\Lambda}(B,\Omega_B)$ represents the restriction of $\mathcal{F} \in \mu Sh^{\diamond}_{\Lambda}(\Omega)$ to a small open neighborhood $\Omega_B \subset \Omega$ of the point $(z,\xi) \in T^*Z$.

Remark 2.3. The microstalk is well-defined since by construction it vanishes on the kernel of the localization $Sh^{\diamond}_{\Lambda}(B,\Omega_B) \to \mu Sh^{\diamond}_{\Lambda}(\Omega_B)$ with respect to the singular support.

Lemma 2.1. An object $\mathcal{F} \in \mu Sh^{\diamond}_{\Lambda}(\Omega)$ is trivial if and only if all of its microstalks are trivial. An object $\mathcal{F} \in \mu Sh^{\diamond}_{\Lambda}(\Omega)$ lies in the full subcategory $\mu Sh_{\Lambda}(\Omega) \subset \mu Sh^{\diamond}_{\Lambda}(\Omega)$ if and only if all its microstalks are perfect (*i.e. proper*) \mathbb{K} -modules.

3 Wrapped microlocal sheaves

Definition 3.1. Define the small dg category $\mu Sh^w_{\Lambda}(\Omega)$ of wrapped microlocal sheaves on Ω supported along Λ to be the full dg subcategory of compact objects within the dg category $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ of large microlocal sheaves.

The dg categories $\mu Sh_{\Lambda}(\Omega)$ and $\mu Sh_{\Lambda}^{w}(\Omega)$ can now be defined for any Liouville manifold instead of conic open subsets in the cotangent bundle. See the work of Nadler-Shende.

Remark 3.1. Given the full dg subcategory $C_c \subset C$ of compact objects in a stable cocomplete dg category, the canonical functor $IndC_c \rightarrow C$ is an equivalence. Thus we have

$$Ind\mu Sh^w_{\Lambda}(\Omega) \cong \mu Sh^{\diamond}_{\Lambda}(\Omega).$$
 (26)

Geometrically, the partially wrapped Fukaya category $W(X, \mathfrak{f})$ is generated by cocores and linking discs. Denote their endomorphism A_{∞} -algebra by $W_{(X,\mathfrak{f})}$. Then the definition above just says that the derived category $D^{perf}W(X,\mathfrak{f})$ can be defined as the category $D^{perf}(W_{(X,\mathfrak{f})})$ of perfect modules over the A_{∞} -algebra $W_{(X,\mathfrak{f})}$. Note that $D^{perf}(W_{(X,\mathfrak{f})}) \subset$ $D^{mod}(W_{(X,\mathfrak{f})})$ is the subcategory of compact objects.

There is a more concrete geometric characterization of wrapped microlocal sheaves. Recall the microstalk functors $\phi_L : \mu Sh^{\diamond}_{\Lambda}(\Omega) \to Mod_{\mathbb{K}}$. Note that ϕ_L preserves products, hence admits a left adjoint $\phi_L^{\ell} : Mod_{\mathbb{K}} \to \mu Sh^{\diamond}_{\Lambda}(\Omega)$, and also preserves coproducts, hence ϕ_L^{ℓ} preserves compact objects.

Definition 3.2. Define the microlocal skyscraper $\mathcal{F}_L = \phi_L^{\ell}(\mathbb{K}) \in \mu Sh_{\Lambda}^w(\Omega)$ to be the object corepresenting the microstalk

$$\phi_L(\mathfrak{F}) \cong \hom(\mathfrak{F}_L, \mathfrak{F}), \ \mathfrak{F} \in \mu Sh^{\diamond}_{\Lambda}(\Omega).$$
 (27)

Lemma 3.1. $\mu Sh^w_{\Lambda}(\Omega)$ is split-generated by the microlocal skyscrapers $\mathfrak{F}_L \in \mu Sh^w_{\Lambda}(\Omega)$.

Proof. By Lemma 2.1, the microlocal skyscrapers \mathcal{F}_L compactly generate $\mu Sh^{\diamond}_{\Lambda}(\Omega) \cong Ind\mu Sh^w_{\Lambda}(\Omega)$. (For any non-trivial object \mathcal{F} of $\mu Sh^{\diamond}_{\Lambda}(\Omega)$, there must be some L so that hom $(\mathcal{F}_L, \mathcal{F}) \neq 0$.) Thus we may invoke the general fact that if a collection of objects of a small stable dg category \mathcal{C}_c generates the ind-category $\mathcal{C} \cong Ind\mathcal{C}_c$, then it split-generates \mathcal{C}_c .

Remark 3.2. One should think of $\mu Sh^w_{\Lambda}(\Omega)$ as the (derived) partially wrapped Fukaya category associated to the stopped Liouville manifold $(\Omega, \Lambda \cap \partial_{\infty}\Omega)$, and $\mu Sh_{\Lambda}(\Omega)$ the (derived) infinitesimal Fukaya category. The microlocal skyscrapers correspond to cocores and linking discs which intersect the smooth part of $\Lambda \cap \Omega$ transversely at a single point. Geometrically, they are given by the Lagrangian disc $L \subset T^*B$.

Recall that for conic open subspaces $\Omega \subset T^*Z$, the dg category $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ of large microlocal sheaves is the sections of a sheaf $\mu Sh^{\diamond}_{\Lambda}$ of dg categories supported along Λ . For an inclusion $\Omega' \subset \Omega$ of conic open subspaces, the restriction functor $\rho : \mu Sh^{\diamond}_{\Lambda}(\Omega) \to \mu Sh^{\diamond}_{\Lambda}(\Omega')$ preserves products, hence admits a left adjoint $\rho^{\ell} : \mu Sh^{\diamond}_{\Lambda}(\Omega') \to \mu Sh^{\diamond}_{\Lambda}(\Omega)$, and also preserves coproducts, hence ρ^{ℓ} preserves compact objects. Thus its restriction to the subcategory of compact objects defines a natural corestriction functor

$$\rho^{w}: \mu Sh^{w}_{\Lambda}(\Omega') \to \mu Sh^{w}_{\Lambda}(\Omega).$$
(28)

Proposition 3.1. The dg categories $\mu Sh^w_{\Lambda}(\Omega)$ for conic open subspaces $\Omega \subset T^*Z$ and corestriction functors $\rho^w : \mu Sh^w_{\Lambda}(\Omega') \to \mu Sh^w_{\Lambda}(\Omega)$ for inclusions $\Omega' \subset \Omega$, assemble into a cosheaf μSh^w_{Λ} of dg categories supported along Λ . Furthermore, there exists a Whitney stratification of Λ such that the restriction of μSh^w_{Λ} to each stratum is locally constant.

Given a closed embedding of conic Lagrangian subvarieties $\Lambda' \subset \Lambda$, there is a natural full embedding $i : \mu Sh^{\diamond}_{\Lambda'} \to \mu Sh^{\diamond}_{\Lambda}$ of sheaves of dg categories. Observe that *i* preserves products, hence admits a left adjoint $i^{\ell} : \mu Sh^{\diamond}_{\Lambda} \to \mu Sh^{\diamond}_{\Lambda'}$, and also preserves coproducts, so i^{ℓ} preserves compact objects. Thus its restriction to compact objects defines an essentially surjective functor (i.e. surjective on objects up to isomorphism)

$$i^w: \mu Sh^w_\Lambda \to \mu Sh^w_{\Lambda'}.$$
 (29)

The evaluation of i^w on a microlocal skyscraper $\mathcal{F}_L \in \mu Sh^w_{\Lambda}(\Omega)$ is straightforward. If the small Lagrangian ball $L \subset T^*Z$ is centered at a point $(z,\xi) \in \Lambda^\circ$ that is not contained in $\Lambda' \subset \Lambda$, then $i^w(\mathcal{F}_L) \cong 0$. If the small Lagrangian ball L is centered at a point $(z,\xi) \in \Lambda^\circ$ contained in $\Lambda' \subset \Lambda$, then $i^w(\mathcal{F}_L)$ simply represents the restriction of the microstalk functor to sections of $\mu Sh^{\diamond}_{\Lambda'} \subset \mu Sh^{\diamond}_{\Lambda}$. (Geometrically, what the functor i^w does is sending linking discs of Λ to linking discs of Λ' . Since Λ has more linking discs, i^w is essentially surjective.)

Theorem 3.1. The natural hom-pairing provides an equivalence

$$\mu Sh_{\Lambda}(\Omega) \cong Fun^{ex} \left(\mu Sh_{\Lambda}^{w}(\Omega)^{op}, Perf_{\mathbb{K}}\right), \tag{30}$$

where Fun^{ex} denotes the dg category of exact functors, and $\operatorname{Perf}_{\mathbb{K}}$ that of perfect \mathbb{K} -modules.

Remark 3.3. While objects of $\mu Sh^w_{\Lambda}(\Omega)$ similarly give functionals on $\mu Sh_{\Lambda}(\Omega)$, it is not in general true that they produce all possible functionals. One could think about the specific example where $\Lambda = S^1 \subset T^*S^1$ is the zero section, and $\Omega = T^*S^1$ is the entire cotangent bundle. Then we have $\mu Sh_{S^1}(T^*S^1) \cong Perf_{prop}(\mathbb{G}_m)$ and $\mu Sh^w_{S^1}(T^*S^1) \cong Coh(\mathbb{G}_m)$. The hom-pairing gives an equivalence

$$Perf_{prop}(\mathbb{G}_m) \cong Fun^{ex} \left(Coh(\mathbb{G}_m)^{op}, Perf_{\mathbb{K}} \right).$$
 (31)

Clearly there are more functionals on $\operatorname{Perf}_{prop}(\mathbb{G}_m)$ then those coming from $\operatorname{Coh}(\mathbb{G}_m)$. For example, one could take the hom-pairing with a direct sum of skyscraper sheaves at infinitely many points.

Remark 3.4. In terms of symplectic topology, Theorem 3.1 is a version of the Eilenberg-Moore equivalence between the partially wrapped Fukaya category and the infinitesimal Fukaya category associated to the stopped Liouville manifold $(\Omega, \Lambda \cap \partial_{\infty} \Omega)$. Choosing Λ to be the zero section, $\Lambda \cap \partial_{\infty} \Omega = \emptyset$, the infinitesimal Fukaya category becomes the compact Fukaya category, and the partially wrapped Fukaya category becomes the fully wrapped Fukaya category. In general, this Eilenberg-Moore equivalence does not give the Koszul duality between Fukaya categories, a typical example is $\Omega = T^*S^1$.

On the mirror side, Koszul duality between Coh(X) and $Perf_{prop}(X)$ holds for proper schemes X.

Proof of Theorem 3.1. First, let us observe that it suffices to prove the assertion locally. If one choose a cover $\{\Omega_i\}_{i\in I}$ of Ω by conic open subspaces, since $\mu Sh_{\Lambda}(\Omega)$ is a sheaf and $\mu Sh_{\Lambda}^w(\Omega)$ is a cosheaf we have

$$\mu Sh_{\Lambda}(\Omega) \cong \lim_{i \in I} \mu Sh_{\Lambda}(\Omega_i), \ \mu Sh_{\Lambda}^w(\Omega) \cong \operatorname{colim}_{i \in I} \mu Sh_{\Lambda}^w(\Omega_i).$$
(32)

Thus if we have the assertion locally, i.e.

$$\mu Sh_{\Lambda}(\Omega_i) \xrightarrow{\cong} Fun^{ex} \left(\mu Sh^w_{\Lambda}(\Omega_i)^{op}, Perf_{\mathbb{K}}\right), \qquad (33)$$

then we have it globally

$$\mu Sh_{\Lambda}(\Omega) \cong \lim_{i \in I} \mu Sh_{\Lambda}(\Omega_i) \cong \lim_{i \in I} Fun^{ex} \left(\mu Sh_{\Lambda}^w(\Omega_i)^{op}, Perf_{\mathbb{K}}\right)$$

$$\cong Fun^{ex} \left(\operatorname{colim}_{i \in I} \mu Sh_{\Lambda}^w(\Omega_i)^{op}, Perf_{\mathbb{K}}\right) \cong Fun^{ex} \left(\mu Sh_{\Lambda}^w(\Omega)^{op}, Perf_{\mathbb{K}}\right).$$
(34)

We may assume that $\Omega \subset T^*Z$ is the cone over a small open ball $\Omega^{\infty} \subset S^{\infty}Z$ centered at a point of $\Lambda^{\infty} \subset S^{\infty}Z$.

We may deform $\Lambda^{\infty} \subset S^{\infty}Z$ to a Legendrian subvariety $\Lambda^{\infty}_{arb} \subset S^{\infty}Z$ with arboreal singularities. Taking Λ_{arb} to be the cone over Λ^{∞}_{arb} , we have an equivalence $\mu Sh^{\diamond}_{\Lambda}(\Omega) \cong \mu Sh^{\diamond}_{\Lambda_{arb}}(\Omega)$, restricting to an equivalence $\mu Sh_{\Lambda}(\Omega) \cong \mu Sh_{\Lambda_{arb}}(\Omega)$. Passing to the compact objects in the first equivalence, we have $\mu Sh^{\otimes}_{\Lambda}(\Omega) \cong \mu Sh^{\otimes}_{\Lambda_{arb}}(\Omega)$.

Thus we may assume that the conic Lagrangian subvariety $\Lambda \subset T^*Z$ has arboreal singularities. Moreover, we may further assume that $\Omega \subset T^*Z$ is the cone over a small open ball $\Omega^{\infty} \subset S^{\infty}Z$ centered at a point of $\Lambda^{\infty} \subset S^{\infty}Z$ that is an arboreal singularity. In this situation, $\mu Sh^{\diamond}_{\Lambda}(\Omega)$ is equivalent to the dg category $Mod_{\mathbb{K}}(T)$ of modules over a directed tree T, and $\mu Sh_{\Lambda}(\Omega)$ is equivalent to the dg category $Perf_{\mathbb{K}}(T)$ of perfect modules. Passing to compact objects under the first equivalence, we have that $\mu Sh^{w}_{\Lambda}(\Omega)$ is also equivalent to $Perf_{\mathbb{K}}(T)$.

Finally, for perfect modules over a directed tree, it is straightforward to check that the hom-pairing provides an equivalence

$$Perf_{\mathbb{K}}(T) \cong Fun^{ex} \left(Perf_{\mathbb{K}}(T)^{op}, Perf_{\mathbb{K}} \right).$$
 (35)

Remark 3.5. Locally, the dg categories $\mu Sh_{\Lambda}(\Omega)$ and $\mu Sh_{\Lambda}^{w}(\Omega)$, which correspond respectively to the infinitesimal Fukaya category and the partially wrapped Fukaya category, are Koszul dual. Moreover, these two categories are smooth and proper, therefore "self-dual" in the derived sense. This explains the fact that their derived categories are both equivalent to $Perf_{\mathbb{K}}(T)$ in the above argument.

4 Lagrangian skeleton

By the *n*-dimensional *pair-of-pants*, we mean the Liouville manifold (P_n, α_{P_n}) given by the generic hyperplane

$$P_n = \{1 + z_1 + \dots + z_{n+1} = 0\} \subset T_{\mathbb{C}}^{n+1},\tag{36}$$

equipped with the restriction of the Liouville form α_n on T^*T^{n+1} . The Lagrangian skeleton of P_n can be described by the combinatorics of the permutahedron.

To get a more convenient Lagrangian skeleton, we need to break the symmetry and work with the pair-of-pants in a slightly modified form where we alter its embedding near infinity. This is called *tailored pair-of-pants*, and we denote it by (Q_n, α_{Q_n}) .

To provide the tailored pair-of-pants a particularly simple skeleton, it will be useful to break the symmetry and apply a natural isotopy to its Liouville structure. For $x = (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}$, consider the family of Liouville structures on T^*T^{n+1} given by

$$\alpha_n^x = \sum_{a=1}^{n+1} (\xi_a - x_a) d\theta_a, \\ \omega_n^x = d\alpha_n^x = \sum_{a=1}^{n+1} (\xi_a - x_a) d\theta_a.$$
(37)

The restriction of α_n^x and ω_n^x to the pair-of-pants P_n provide a family of Liouville structures. We may construct the tailored pair-of-pants $Q_n \subset T_{\mathbb{C}}^{n+1}$ so that the restricted Liouville form $\alpha_{Q_n}^x = \alpha_n^x|_{Q_n}$ provide a family of Liouville structures as well. Choose $\ell \gg 0$, and let $x_{\ell} = (-\ell, \cdots, -\ell) \in \mathbb{R}^{n+1}$. Let us focus on the Liouville structure on Q_n given by

$$\beta_{Q_n} := \alpha_{Q_n}^{x_{\ell}} = \left(\sum_{a=1}^{n+1} (\xi_a + \ell) d\theta_a\right) |_{Q_n}.$$
(38)

Write $L_n \subset Q_n$ for the resulting skeleton, we will describe its geometry.

Let $S^1_{\Delta} \subset T^{n+1}$ be the diagonal circle. The translation S^1_{Δ} -action on T^{n+1} induces a Hamiltonian S^1 -action on T^*T^{n+1} , with moment map

$$\mu_{\Delta}: T^*T^{n+1} \to \mathbb{R}, \ \mu_{\Delta}(\theta_1, \xi_1, \cdots, \theta_{n+1}, \xi_{n+1}) = \sum_{a=1}^{n+1} \xi_a.$$
(39)

Consider the quotient $\mathbb{T}^n = T^{n+1}/S^1_{\Delta}$ consisting of (n+1)-tuples $[\theta_1, \cdots, \theta_{n+1}]$ taken up to simultaneous translation. If we distinguish the last entry, then we obtain an identification $\mathbb{T}^n \cong T^n$ via the coordinates $\theta_a - \theta_{n+1}$, where $1 \leq a \leq n$.

Let $\mathbf{t}_n^* = \left\{ \sum_{a=1}^{n+1} \xi_a = 0 \right\} \subset \mathbb{R}^{n+1}$ be the dual of the Lie algebra of \mathbb{T}^n . We have the identification $T^* \mathbb{T}^n \cong \mathbb{T}^n \times \mathbf{t}_n^*$. In terms of coordinates, a point of $T^* \mathbb{T}^n$ can be represented by $([\theta_1, \cdots, \theta_{n+1}], (\xi_1, \cdots, \xi_{n+1}))$, where $\sum_{a=1}^{n+1} \xi_a = 0$.

For $\chi \in \mathbb{R}$, we have a twisted Hamiltonian reduction correspondence

$$T^*T^{n+1} \xleftarrow{q_{\chi}}{\mu_{\Delta}^{-1}(\chi)} \xrightarrow{p_{\chi}} T^*\mathbb{T}^n, \tag{40}$$

where q_{χ} is the inclusion of level set, while p_{χ} is the translation projection

$$p_{\chi}((\theta_1, \cdots, \theta_{n+1}), (\xi_1, \cdots, \xi_{n+1})) := ([\theta_1, \cdots, \theta_{n+1}], (\xi_1 - \hat{\chi}, \cdots, \xi_{n+1} - \hat{\chi})), \quad (41)$$

where $\hat{\chi} = \chi/(n+1)$. In particular, when $\chi = 0$, we recover the usual Hamiltonian reduction correspondence

$$T^*T^{n+1} \xleftarrow{q_0} T^*_{S^1_\Delta} T^{n+1} \xrightarrow{p_0} T^* \mathbb{T}^n, \tag{42}$$

where $T_{S_{\perp}}^* T^{n+1} \subset T^* T^{n+1}$ is the conormal bundle.

Introduce the conic Lagrangian subvariety

$$\Lambda_1 := \{ (\theta, 0) | \theta \in S^1 \} \cup \{ (0, \xi) | \xi \in \mathbb{R}_{\ge 0} \} \subset T^* S^1,$$
(43)

and the product conic Lagrangian subvariety

$$\Lambda_{n+1} := (\Lambda_1)^{n+1} \subset T^* T^{n+1}.$$

$$\tag{44}$$

Note that $\Lambda_{n+1} \subset \mu_{\Delta}^{-1}(\mathbb{R}_{\geq 0})$, and that Λ_{n+1} and $\mu_{\Delta}^{-1}(\chi)$ are transverse for $\chi > 0$. Fix some $\chi > 0$, define the Lagrangian subvariety

$$\mathfrak{L}_n := p_\chi \left(q_\chi^{-1}(\Lambda_{n+1}) \right) \subset T^* \mathbb{T}^n.$$
(45)

Remark 4.1. We do not include χ in the notation for \mathfrak{L}_n as we will eventually specialize to the case $\chi = n + 1$.

To describe $\mathfrak{L}_n \subset T^*\mathbb{T}^n$, consider the moment map $\mu_{n+1} : T^*T^{n+1} \to \mathbb{R}^{n+1}$ of the Hamiltonian T^{n+1} -action and restrict it to $\Lambda_{n+1} \subset T^*T^{n+1}$. Note that $\mu_{n+1}(\Lambda_{n+1}) =$ $\mathbb{R}^{n+1}_{\geq 0}$. For $I \subset \{1, \cdots, n+1\}$, consider the relatively open coordinate cone

$$\sigma_I = \{\xi_a = 0, \xi_b > 0 | a \in I, b \notin I\} \subset \mathbb{R}^{n+1}_{\ge 0}.$$
(46)

For $x \in \sigma_I$, $\mu_{n+1}^{-1}(x) \cap \Lambda_{n+1}$ is the orthogonal coordinate subtorus

$$T^{I} = \{\theta_{a} = 0 | a \notin I\} \subset T^{n+1}.$$

$$(47)$$

Consider the closed simplex

$$\widetilde{\Xi}(\chi) = \left\{ (\xi_1, \cdots, \xi_{n+1}) | \xi_a \ge 0 \text{ for } 1 \le a \le n+1, \sum_{a=1}^{n+1} \xi_a = \chi \right\} \subset \mathbb{R}^{n+1}_{\ge 0}.$$
(48)

Note that the projection p_{χ} restricts to an isomorphism

$$\mu_{\Delta}^{-1}(\chi) \cap \Lambda_{n+1} = \mu_{n+1}^{-1} \left(\widetilde{\Xi}(\chi) \right) \xrightarrow{\cong} \mathfrak{L}_n$$
(49)

since for any point of $\mu_{\Delta}^{-1}(\chi) \cap \Lambda_{n+1}$, we must have $\xi_a > 0$ and hence $\theta_a = 0$ for some $a \in \{1, \dots, n+1\}$, so that no points are identified by the S_{Δ}^1 -translations.

For a proper subset $I \subset \{1, \dots, n+1\}$, consider the relatively open subsimplex

$$\widetilde{\Xi}_I(\chi) = \widetilde{\Xi}_n(\chi) \cap \sigma_I.$$
(50)

Then p_{χ} restricts to an isomorphism

$$\bigcup_{I} T^{I} \times \widetilde{\Xi}_{I}(\chi) \xrightarrow{\cong} \mathfrak{L}_{n}, \tag{51}$$

where we take the union over non-empty $I \subset \{1, \dots, n+1\}$. Note that when $n = 2, \mathfrak{L}_n$ is the union of two circles and an open interval.

Theorem 4.1. There is an open neighborhood $U_n \subset Q_n$ of the Lagrangian skeleton $L_n \subset Q_n$ and an open symplectic embedding

$$j: U_n \to T^* \mathbb{T}^n \tag{52}$$

which restricts to an isomorphism

$$j|_{L_n}: L_n \xrightarrow{\cong} \mathfrak{L}_n. \tag{53}$$

5 Contactification and symplectization

By Theorem 4.1, the symplectic geometry of a neighborhood $U_n \subset Q_n$ of $L_n \subset Q_n$ is equivalent to that of a neighborhood $\mathfrak{U}_n \subset T^* \mathbb{T}^n$ of $\mathfrak{L}_n \subset T^* \mathbb{T}^n$.

We introduce the Liouville form β_n on the neighborhood $\mathfrak{U}_n \subset T^*\mathbb{T}^n$ obtained by transporting the Liouville form β_{Q_n} restricted to the neighborhood $U_n \subset Q_n$. Thus β_n provides a primitive to the restriction of the canonical symplectic form $\omega_{T^*\mathbb{T}^n}|_{\mathfrak{U}_n} = d\beta_n$. The Lagrangian subvariety $\mathfrak{L}_n \subset T^*\mathbb{T}^n$ is conic with respect to its associated Liouville vector field.

In general, let M be a Liouville manifold with Liouville form α_M . The *circular con*tactification of M is the contact manifold $N = M \times S^1$, with contact form $\lambda_N = dt + \alpha_M$, and contact structure $\xi_N = \ker(\lambda_N)$. The *contactification* of M is the contact manifold $\tilde{N} = M \times \mathbb{R}$, with contact form $\lambda_{\tilde{N}} = dt + \alpha_M$, and contact structure $\xi_{\tilde{N}} = \ker(\lambda_{\tilde{N}})$. Note that there is a natural contact \mathbb{Z} -cover $\tilde{N} \to N$.

Definition 5.1. A Lagrangian subvariety $L \subset M$ is integral if there is a continuous function $f: L \to S^1$ such that the restriction of f to any submanifold of L is differentiable and a primitive for the restriction of α_M .

A Lagrangian subvariety $L \subset M$ is exact if in addition there exists a lift of $f: L \to S^1$ to a continuous function $\tilde{f}: L \to \mathbb{R}$.

Remark 5.1. A Lagrangian subvariety $L \subset M$ is integral if and only if it admits a Legendrian lift $\mathcal{L} \subset N$. Similarly, $L \subset M$ is exact if and only if it admits a Legendrian lift $\widetilde{\mathcal{L}} \subset \widetilde{N}$.

Return to the neighborhood $\mathfrak{U}_n \subset T^*\mathbb{T}^n$. It admits two Liouville forms: β_n and the canonical Liouville form $\alpha_{T^*\mathbb{T}^n}$. The Lagrangian subvariety $\mathfrak{L}_n \subset \mathfrak{U}_n$ is conic with respect to the Liouville vector field associated to β_n , and thus exact with respect to β_n . On the other hand, if we construct \mathfrak{L}_n using $\chi > 0$ with $\hat{\chi} = \chi/(n+1)$ integral, then the function

$$\tilde{f}: \mu_{\Delta}^{-1}(\chi) \cap \Lambda_{n+1} \to S^1, \tilde{f} = \sum_{a=1}^{n+1} (\xi_a - \hat{\chi})\theta_a$$
(54)

is invariant under S^1_{Δ} -translations, hence descends to a function $f : \mathfrak{L}_n \to S^1$. A straightforward computation shows that f provides an integral structure of \mathfrak{L}_n for $\alpha_{T^*\mathbb{T}^n}$.

Consider the circular contactification (N_n, λ_n) of \mathfrak{U}_n . Denote by \mathcal{L}_n the Legendrian lift of \mathfrak{L}_n to (N_n, λ_n) .

From now on we further specialize to $\chi = n + 1$ so that $\hat{\chi} = 1$. Introduce the conic open subspace and its spherical projectivization

$$\Omega_{n+1} = \mu_{\Delta}^{-1}(\mathbb{R}_{>0}) \subset T^* T^{n+1}, \Omega_{n+1}^{\infty} = \Omega_{n+1}/\mathbb{R}_{>0} \subset S^{\infty} T^{n+1}.$$
 (55)

The natural projection gives an isomorphism of contact manifolds $\mu_{\Delta}^{-1}(\chi) \cong \Omega_{n+1}^{\infty}$.

Lemma 5.1. We have a finite contact cover

$$\mathfrak{p}_{\chi}:\Omega_{n+1}^{\infty}\cong\mu_{\Delta}^{-1}(\chi)\to T^*\mathbb{T}^n\times S^1$$
(56)

given by $\mathfrak{p}_{\chi} = p_{\chi} \times \delta$, where $\delta : T^{n+1} \to S^1$ is the diagonal character.

The cover is trivializable over the neighborhood $N_n \subset T^* \mathbb{T}^n \times S^1$ of the Legendrian $\mathcal{L}_n \subset N_n$ with a canonical section $s: N_n \to \Omega_{n+1}^{\infty}$ such that $s(\mathcal{L}_n) = \Lambda_{n+1}^{\infty}$.

It follows that the contact geometry of the circular contactification $N_n \subset T^* \mathbb{T}^n \times S^1$ near the Legendrian lift \mathcal{L}_n is equivalent to that of the open subspace $\Omega_{n+1}^{\infty} \subset S^{\infty}T^{n+1}$ near the Legendrian subvariety Λ_{n+1}^{∞} .

Introduce the circular contactification $Q_n \times S^1$, and its symplectization $\widetilde{Q}_n = Q_n \times S^1 \times \mathbb{R}$, with their natural projections

$$\widetilde{Q}_n = Q_n \times S^1 \times \mathbb{R} \xrightarrow{s} Q_n \times S^1 \xrightarrow{c} Q_n.$$
(57)

The Lagrangian skeleton $L_n \subset Q_n$ lifts under c to the Legendrian subvariety $L_n \times \{0\} \subset Q_n \times S^1$, and we can take its inverse image under s to obtain a conic Lagrangian subvariety

$$\widetilde{L}_n = s^{-1}(L_n \times \{0\}) \subset \widetilde{Q}_n.$$
(58)

The following is a consequence of Theorem 4.1.

Theorem 5.1. Fix $\chi = n + 1$. There is a conic open neighborhood $\widetilde{U}_n \subset \widetilde{Q}_n$ of the Lagrangian subvariety $\widetilde{L}_n \subset \widetilde{Q}_n$, a conic open neighborhood $\Upsilon_{n+1} \subset \Omega_{n+1}$ of the intersection $\Lambda_{n+1} \cap \Omega_{n+1}$, and an exact symplectomorphism

$$\widetilde{j}: \widetilde{U}_n \xrightarrow{\cong} \Upsilon_{n+1}$$
(59)

restricting to an isomorphism

$$\tilde{j}|_{\tilde{L}_n} : \tilde{L}_n \xrightarrow{\cong} \Lambda_{n+1} \cap \Omega_{n+1}.$$
(60)

6 Mirror symmetry

We calculate (what is supposed to be) the dg category of wrapped microlocal sheaves on the pair-of-pants. Note that Theorem 5.1 allows us to define the dg category $\mu Sh_{L_n}(Q_n)$ of wrapped microlocal sheaves on Q_n supported along L_n to be the dg category of wrapped microlocal sheaves on Ω_{n+1} supported along Λ_{n+1} . Lemma 6.1. There are mirror equivalences

$$Sh^{\diamond}_{\Lambda_{n+1}}(T^{n+1}) \cong QCoh(\mathbb{A}^{n+1}), \tag{61}$$

$$Sh_{\Lambda_{n+1}}(T^{n+1}) \cong Perf_{prop}(\mathbb{A}^{n+1}),$$
(62)

$$Sh^{w}_{\Lambda_{n+1}}(T^{n+1}) \cong Coh(\mathbb{A}^{n+1}).$$

$$(63)$$

Remark 6.1. Geometrically, $Sh_{\Lambda_1}(S^1)$ and $Sh_{\Lambda_1}^w(S^1)$ correspond respectively to the infinitesimal and partially wrapped Fukaya categories associated to the Landau-Ginzburg model (\mathbb{C}^*, z) , which is the mirror of \mathbb{A}^1 .

Fix a subset $I \subset \{1, \dots, n+1\}$, with complement $I^c = \{1, \dots, n+1\} \setminus I$. Let $T^I \subset T^{n+1}$ be the subtorus defined by $\theta_a = 0$ for $a \in I^c$. Let $\Lambda_I = (\Lambda_1)^I \subset T^*T^I$ be the product conic Lagrangian subvariety.

Consider the hyperbolic restriction

$$\eta_I : Sh^{\diamond}_{\Lambda_{n+1}}(T^n) \to Sh^{\diamond}_{\Lambda_I}(T^I), \ \eta_I(\mathcal{F}) := p_*q^!\mathcal{F}$$
(64)

built from the correspondence

$$T^{I} \xleftarrow{p} T^{I} \times [0, 1/2)^{I^{c}} \xrightarrow{q} T^{n+1}, \tag{65}$$

where p is the projection and q is the inclusion.

Let $f : \mathbb{A}^I = \operatorname{Spec}\mathbb{K}[t_a | a \in I] \to \mathbb{A}^n = \operatorname{Spec}\mathbb{K}[t_1, \cdots, t_n]$ be the affine subspace defined by $t_a = 0$ for $a \in I^c$.

Lemma 6.2. The equivalences (61) and (62) fit into commutative diagrams

$$\begin{array}{cccc}
Sh^{\diamond}_{\Lambda_{n+1}}(T^{n+1}) & \xrightarrow{\cong} & QCoh(\mathbb{A}^{n+1}) \\
& & & & \downarrow_{f^{*}} \\
& & & & \downarrow_{f^{*}} \\
& & & & Sh^{\diamond}_{\Lambda_{I}}(T^{I}) & \xrightarrow{\cong} & QCoh(\mathbb{A}^{I})
\end{array}$$
(66)

$$\begin{array}{ccc} Sh_{\Lambda_{n+1}}(T^{n+1}) & \xrightarrow{\cong} & Perf_{prop}(\mathbb{A}^{n+1}) \\ & & & & \downarrow_{f^{*}} \\ & & & \\ Sh_{\Lambda_{I}}(T^{I}) & \xrightarrow{\cong} & Perf_{prop}(\mathbb{A}^{I}) \end{array}$$
(67)

Theorem 6.1. There are mirror equivalences

$$\mu Sh^{\diamond}_{\Lambda_{n+1}}(\Omega_{n+1}) \cong IndCoh(X_n), \tag{68}$$

$$\mu Sh_{\Lambda_{n+1}}(\Omega_{n+1}) \cong Perf_{prop}(X_n), \tag{69}$$

$$\mu Sh^w_{\Lambda_{n+1}}(\Omega_{n+1}) \cong Coh(X_n).$$
(70)

Proof. Let \mathcal{I}_{n+1} be the category whose objects are subsets $I \subset \{1, \dots, n+1\}$, and morphisms $I \to I'$ are inclusions $I \subset I'$. Let $\mathcal{I}_{n+1}^{\circ} \subset \mathcal{I}_{n+1}$ denote the full subcategory whose objects are proper subsets of $\{1, \dots, n+1\}$.

Define a functor $A : \mathcal{J}_{n+1}^{\circ} \to \mathfrak{X}_{\mathbb{K}}$ as follows. For an object I of $\mathcal{J}_{n+1}^{\circ}$, take the affine space $A(I) = \mathbb{A}^{I}$, and for a morphism $I \subset I'$, take the inclusion $A(I, I') : \mathbb{A}^{I} \to \mathbb{A}^{I'}$, given by setting $t_{a} = 0$ for each $a \in I' \setminus I$.

Recall the functor $IndCoh^* : \mathfrak{X}_{\mathbb{K}}^{op} \to dgSt_{\mathbb{K}}$ that assigns a scheme its ind-coherent sheaves and a proper morphism of schemes its *-pullback. Recall also the full subfunctor $Perf_{prop}^* : \mathfrak{X}_{\mathbb{K}}^{op} \to dgst_{\mathbb{K}}$ of perfect complexes with proper support.

Consider the composite functor $IndCoh^* \circ A : (\mathfrak{I}_{n+1}^\circ)^{op} \to dgSt_{\mathbb{K}}$, and $Perf_{prop}^* \circ A(\mathfrak{I}_{n+1}^\circ)^{op} \to dgSt_{\mathbb{K}}$. By Proposition 1.2, the canonical maps are equivalences

$$IndCoh(X_n) \xrightarrow{\cong} \lim_{(\mathcal{I}_{n+1}^{\circ})^{op}} IndCoh(\mathbb{A}^I),$$
 (71)

$$Perf_{prop}(X_{n+1}) \xrightarrow{\cong} \lim_{(\mathcal{I}_{n+1}^{\circ})^{op}} Perf_{prop}(\mathbb{A}^{I}),$$
 (72)

$$Coh(X_n) \xleftarrow{\cong} \operatorname{colim}_{\mathcal{I}_{n+1}^\circ} Coh(\mathbb{A}^I).$$
 (73)

To prove the theorem, we will similarly identify $\mu Sh^{\diamond}_{\Lambda_{n+1}}(\Omega_{n+1})$ as the limit of a functor

$$\mu Sh^{\diamond} : (\mathfrak{I}_{n+1}^{\circ})^{op} \to dgSt_{\mathbb{K}}, \tag{74}$$

and then provide an equivalence of functors $\mu Sh^{\diamond} \simeq IndCoh^* \circ A$. This will immediately prove the first and the third equivalences. For the second one, we observe that $\mu Sh_{\Lambda_{n+1}}(\Omega_{n+1})$ is the limit of a full subfunctor $\mu Sh \subset \mu Sh^{\diamond}$, which is equivalent to the subfunctor $Perf_{prop}^* \circ A \subset IndCoh^* \circ A$.

For each $I \in \mathcal{I}_{n+1}^{\circ}$, introduce the conic open subspace $\Omega_I \subset \Omega_{n+1}$, cut out by the additional requirement $\xi_a \neq 0$ for $a \notin I$. Thus for $I \subset I'$, we have the open inclusion $\Omega_I \subset \Omega_{I'}$, and for $I = \{1, \dots, n+1\}$, we have $\Omega_I = \Omega_{n+1}$. Note that the collection $\{\Omega_I\}_{I \in \mathcal{I}_{n+1}^{\circ}}$ forms a conic open cover of Ω_{n+1} with the property $\Omega_{I \cap I'} = \Omega_I \cap \Omega_{I'}$. Define the functor μSh^{\diamond} by

$$\mu Sh^{\diamond}(I) = \mu Sh^{\diamond}_{\Lambda_{n+1}}(\Omega_I), \tag{75}$$

with inclusions $I \subset I'$ taken to the restriction maps along the inclusions $\Omega_I \subset \Omega_{I'}$. Define the full subfunctor $\mu Sh \subset \mu Sh^{\diamond}$ by $\mu Sh(I) = \mu Sh_{\Lambda_{n+1}}(\Omega_I)$.

Since $\mu Sh^{\diamond}_{\Lambda_{n+1}}$ forms a sheaf, $\mu Sh_{\Lambda_{n+1}} \subset \mu Sh^{\diamond}_{\Lambda_{n+1}}$ is a full subsheaf, and $\{\Omega_I\}_{I \in \mathcal{I}^{\circ}_{n+1}}$ is an open conic cover of Ω_{n+1} , the canonical functors are equivalences

$$\mu Sh^{\diamond}_{\Lambda_{n+1}}(\Omega_{n+1}) \xrightarrow{\cong} \lim_{(\mathcal{I}^{\circ}_{n+1})^{op}} \mu Sh^{\diamond}_{\Lambda_{n+1}}(\Omega_{I}), \tag{76}$$

$$\mu Sh_{\Lambda_{n+1}}(\Omega_{n+1}) \xrightarrow{\cong} \lim_{(\mathcal{I}_{n+1}^{\circ})^{op}} \mu Sh_{\Lambda_{n+1}}(\Omega_I).$$
(77)

Next let us define an additional functor to interpolate between $IndCoh^* \circ A$ and μSh^{\diamond} . For $I \in \mathfrak{I}_{n+1}^{\circ}$, define the functor

$$Sh^{\diamond}: (\mathfrak{I}_{n+1}^{\diamond})^{op} \to dgSt_{\mathbb{K}}, \ Sh^{\diamond}(I) = Sh^{\diamond}_{\Lambda_{I}}(T^{I})$$

$$(78)$$

with inclusions $I \subset I'$ taken to the hyperbolic restrictions

$$\eta_{I \subset I'} : Sh_{\Lambda'_{I}} \diamond (T^{I'}) \to Sh^{\diamond}_{\Lambda_{I}}(T^{I}), \ \eta_{I \subset I'}(\mathcal{F}) = p_{*}q^{!}\mathcal{F}$$

$$\tag{79}$$

built from the correspondence

$$T^{I} \xleftarrow{p} T^{I} \times [0, 1/2)^{I' \setminus I} \xrightarrow{q} T^{I'}, \tag{80}$$

where p is the projection and q is the inclusion. Define the full subfunctor $Sh \subset Sh^{\diamond}$ by $Sh(I) = Sh_{\Lambda_I}(T^I)$.

Lemmas 6.1 and 6.2 imply that we have equivalences

$$Sh^{\diamond} \simeq IndCoh^* \circ A, \ Sh \simeq Perf_{prop}^* \circ A.$$
 (81)

It remains to establish equivalences of functors

$$Sh^{\diamond} \simeq \mu Sh^{\diamond}, \ Sh \simeq \mu Sh.$$
 (82)

For any $I \in \mathcal{I}_{n+1}^{\circ}$, let us return to the hyperbolic restriction

$$\eta_I : Sh^{\diamond}_{\Lambda_{n+1}}(T^{n+1}) \to Sh_{\Lambda_I}(T^I), \ \eta_I(\mathfrak{F}) = p_*q^!\mathfrak{F}.$$
(83)

First, η_I factors through the microlocalization

$$Sh^{\diamond}_{\Lambda_{n+1}}(T^{n+1}) \to \mu Sh^{\diamond}_{\Lambda_{I}}(\Omega_{I}) \xrightarrow{\eta_{I}} Sh_{\Lambda_{I}}(T^{I})$$
 (84)

since the hyperbolic restriction in the coordinate direction indexed by $a \in T^c$ vanishes on sheaves whose singular support does not intersect the locus $\{\xi_a > 0\} \subset T^*T^{n+1}$.

Next, for $I \subset I'$, the induced functors extend to natural commutative diagrams

Thus we have a map of functors $\tilde{\eta} : \mu Sh^{\diamond} \to Sh^{\diamond}$, restricting to a map of subfunctors $\mu Sh \to Sh$. It remains to show that $\tilde{\eta}$ is an equivalence. It suffices to show that

$$\tilde{\eta}_I : \mu Sh^{\diamond}_{\Lambda_I}(\Omega_I) \to Sh^{\diamond}_{\Lambda_I}(T^I)$$
(86)

is an equivalence for any $I\in \mathfrak{I}_{n+1}^{\circ}.$ Note that it admits a inverse induced by the pushforward

$$j_{I_*}: Sh^{\diamond}_{\Lambda_I}(T^I) \to Sh^{\diamond}_{\Lambda_{n+1}}(T^{n+1})$$
(87)

along the natural inclusion $j_I: T^I \to T^{n+1}$. To see this, note that j_I is simply the product of inclusions in the coordinate directions indexed by I^c , and the identity in the coordinate directions indexed by I.

Corollary 6.1. There is a quasi-equivalence of differential $\mathbb{Z}/2$ -graded categories

$$\mu Sh^{w}_{\Lambda_{n+1}}(\Omega_{n+1})_{\mathbb{Z}/2} \cong MF(\mathbb{A}^{n+2}, W_{n+2}).$$
(88)

For a \mathbb{Z} -graded version of the above equivalence proved for the actual wrapped Fukaya category $\mathcal{W}(P_n)$, see Lekili-Polischuk.