
LEGENDRIAN KNOTS AND CONSTRUCTIBLE SHEAVES

JOHAN ASPLUND

The main reference of this talk is the paper [STZ17].

1. Definitions and context

Throughout this talk, let k be a commutative ring and M a real analytic manifold. We use the
following definitions.

Shnaive(M) := chain complexes of sheaves of k-modules on M

whose cohomology is constructible and has perfect stalks
Sh(M) := Shnaive(M)/acyclic complexes
ShS(M) := Sh(M) where cohomology of each object is

constructible wrt the stratification S of M
ShL(M) = Sh(M) where sheaves have singular support in

the closed conical subset L ⊂ T ∗M

ShΛ(M) = ShR>0Λ∪0M (M) where Λ ⊂ ST ∗M is Legendrian

Last time Juan explained to us that the results in [NZ09, Nad09] give a quasi-equivalence

Sh(M) ∼= Fuk(T ∗M),

where Fuk(T ∗M) is the “infinitesimally wrapped Fukaya category” of T ∗M . In particular there is
a quasi-equivalence ShΛ(M) ∼= FukΛ(T

∗M) where Λ ⊂ ST ∗M is a Legendrian, where FukΛ(T
∗M)

has objects being exact conical Lagrangians asymptotic to the fixed Legendrian Λ ⊂ ST ∗M at
infinity.

The goal of this talk is to give a combinatorial description ShΛ(M) from the point of view of the
Legendrian Λ ⊂ ST ∗M , in the cases M = R2 or M = S1 × R.

ShΛ(M)0 := ShΛ(M) where sheaves have acyclic stalks for z � 0

More precisely, we will discuss the proof of some of the following theorems.

Theorem 1.1 ([STZ17]). A contactomorphism inducing a Legendrian isotopy Λ ' Λ′ induces a
quasi-equivalence ShΛ(M)

∼−→ ShΛ′(M). This quasi-equivalence preserves the subcategory ShΛ(M)0.

Theorem 1.2 ([STZ17]). If Λ is a stabilized Legendrian knot (see Definition 2.4 for the definition),
then every element of ShΛ(M) is locally constant. In particular ShΛ(M)0 = 0.

Theorem 1.3 ([STZ17]). Every element of ShΛ(M) is periodic with period 2 rot(Λ); in particular,
if rot(Λ) 6= 0, then there are no bounded complexes of sheaves in ShΛ(M).

Let C1(Λ) ⊂ ShΛ(M)0 be the subcategory of objects with “microlocal rank 1” (see Definition 4.6).
Associated to the Legendrian Λ is a certain A∞-category called the augmentation category which
is denoted by Aug+(Λ). Its objects are dg-algebra maps ε : CE∗(Λ) −→ Z, where CE∗(Λ) is the
Chekanov–Eliashberg dg-algebra.

Theorem 1.4 ([NRS+20]). There exists an equivalence of A∞-categories Aug+(Λ)
∼= C1(Λ).
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2. Legendrian knots

We now focus on the case M = R2
x,z, and Legendrian knots Λ ⊂ ST ∗R2

x,z. In fact, since
ST ∗R2

x,z
∼=∼= R2

x,z × S1 we will furthermore assume that Λ is null-homologous. Without loss of
generality we may thus assume Λ ⊂ R2

x,z × S1
lower

∼= R3
x,y,z where R3

x,y,z is equipped with the
standard contact form α = dz − ydx.

We give a short introduction to Legendrian knot theory in R3. The front projection is defined by
(x, y, z) 7→ (x, z). Pick a parametrization t 7→ (x(t), y(t), z(t)) of Λ and note that Λ is Legendrian
(by definition) iff TΛ ⊂ ξ := ker(dz − ydx) iff y(t) = ż(t)

ẋ(t) . Thus given a front projection of
a Legendrian knot we can always lift it to a Legendrian by (x, z) 7→

(
x, dzdx , z

)
. Note that this

excludes front diagrams with vertical tangencies. Instead of vertical tangencies, front diagrams
contains cusps.

Figure 1. Left to right: The unknot, the trefoil and a stabilized unknot.

Remark 2.1. Whenever we draw a front diagram, we never have to indicate over and under
crossings. The strand with lower slope (= lower y value in the lift) is always the over strand.

Since the tangent vectors (ẋ(t), ż(t)) are never vertical it follows that the downward normal
vectors (ż(t),−ẋ(t)) are never horizontal. Thus a front diagram lifts directly to a Legendrian in
R2
x,z × S1

lower by defining the component in the S1
lower-factor to be the unit downward conormal at

the point.

Theorem 2.2. Two front diagrams represent the same Legendrian knot iff they are related by
regular homotopy and a finite sequence of Reidemeister moves as shown in Figure 2.

Figure 2. The three Reidemeister moves in the front projection.
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Exercise 2.3. Show that the following two front diagrams represent the same knot.

Definition 2.4. A front diagram is called stabilized if it contains a zig-zag:

3. Constructible sheaves

We have seen from Sebastian’s talk that for a Whitney stratification S of a manifold M that
sheaves on M with singular support in N∗S are exactly constructible sheaves on M wrt S (see
[GPS18, Proposition 4.8]). In our case, the category at hand is ShΛ(R2), but in our case R>0Λ is
just half of the conormal. However, we can still describe ShΛ(R2) in terms of constructible sheaves,
but with certain conditions.

Arc. Near arcs we have the following local picture.

a

N

S

f

g

Since the singular support is contained in the downward normal directions it means that g is a
quasi-isomorphism. This sheaf is thus determined up to quasi-isomorphism by the following data
near arcs.

N

S

Cusp. Near cusps we have the following local picture

n

s

c I

O

O

∼

∼

Figure 3.
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From the definition of singular support one can work out that the map c → s is also a quasi-
isomorphism. The conclusion is that the sheaf near cusps is determined up to quasi-isomorphism
by the following commutative diagram near cusps.

I

O

O

f

g

Crossing. Near crossings we have the following local picture

sw

nenw

se

c

N

EW

S

∼∼

∼ ∼

Figure 4.

Again studying the definition of singular suppot we find that the maps c → se and c → sw are
quasi-isomorphisms. There is an additional condition which we do not write out in terms of these
maps. We summarize by saying that a sheaf near a crossing is determined by the following data

N

EW

S

with the extra condition that the total complex
S −→W ⊕ E −→ N

should be acyclic.

Example 3.1. Consider the front diagram of the unknot. Elements in Shunknot(R2) are specified
by two complexes X and Y of k-modules with maps X

f−→ Y
g−→ X whose composition is the

identity.

X

X

Y
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If we consider elements in Shunknot(R2)0, that is to say that X is acyclic, then any such sheaf is
in fact determined by the choice of Y . So Shunknot(R2)0 is quasi-equivalent to the derived category
of complexes of k-modules.

Let us now prove the invariance theorem.
Theorem 3.2 ([STZ17]). A contactomorphism inducing a Legendrian isotopy Λ ' Λ′ induces a
quasi-equivalence ShΛ(M)

∼−→ ShΛ′(M). This quasi-equivalence preserves the subcategory ShΛ(M)0.
Proof. By Theorem 2.2 it is enough to study the three Reidemeister moves.
Reidemeister 1: Consider the first Reidemeister move:

W

V

f

V

WW

W

U

f1 f2

g1 g2

p

We first go from right to left. By the cusp conditions we have pg1 = pg2 = 1. By
commutativity we obtain f1 = f2. Thus we obtain V

f−→W by letting f := f1 = f2.
From left to right, we first note that without loss of generality f is injective on the chain

level (if not, replacing W with the mapping cylinder of f gives a diagram representing the
same sheaf). Then define f1 = f2 = f ,

U = coker(V
(f,−f)−→ W ⊕W )

and p : U −→W is induced by W ⊕W −→W .
Checking invariance under the other two Reidemeister moves is left as an exercise. (See [STZ17,
Sections 4.4.2 and 4.4.3].) □

4. Microlocal monodromy

An n-periodic Maslov potential of a front diagram Φ is a map µ : strands(Φ) −→ Z/nZ such that
when two strands meet at a cusp we have

µ(upper strand) = µ(lower strand) + 1.

The existence of such a potential is equivalent to n | 2 rot(Λ).
Given a Maslov potential, we now define a functor

µmon: ShΛ(M) −→ Loc(Λ)

to local systems of complexes of k-modules up to quasi-isomorphism on Λ. To define this functor,
we will pull back the given stratification S of a front diagram to a stratification of Λ ⊂ R3 via the
front projection.

• Arcs in S have unique preimages in Λ.
• The preimage of a crossing c is two points in Λ which we denote by c⧸ and c⧹ respectively,

see Figure 5.
• The preimage of a cusp is a closed interval in Λ, i.e. one 1-dimensional stratum that we

denote by c≺, and two 0-dimensional strata which we denote by c≼ and c⋞, respectively.
All together we denote the preimages and maps relating them in the stratification of Λ as
c≼ → c≺ ← c⋞, see Figure 5.
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Figure 5.

Let us now first define the unnormalized microlocal monodromy.

Definition 4.1 (Unnormalized microlocal monodromy). Given a stratification S of a front diagram
and the corresponding stratification ∆ of Λ we define the unnormalized microlocal monodromy
functor µmon′ as follows.

• If a ∈ S is an arc, we denote its preimage by a ∈ ∆. Denote the region above a in the front
diagram by N , and define

µmon′(a) := Cone(a→ N).

• If c ∈ S is a crossing we have a diagram as in Figure 4. We define

µmon′(c⧸) := Cone(c→ nw)

µmon′(c⧹) := Cone(c→ ne)

There are furthermore maps in ∆ as follows: nw ← c⧹ → se and ne← c⧸ → sw, and the
corresponding maps after applying µmon′

µmon′(nw)← µmon′(c⧹)→ µmon′(se)

µmon′(ne)← µmon′(c⧸)→ µmon′(sw)

are defined via functoriality of cones

c nw µmon′(c⧸)

ne N µmon′(ne)

c nw µmon′(c⧸)

sw W µmon′(sw)

and the corresponding diagrams for the maps µmon′(ne)← µmon′(c⧸)→ µmon′(sw).
• If c ∈ S is a cusp we have a diagram as in Figure 3. The preimage of c is the diagram
c≼ → c≺ ← c⋞ and we define

µmon′(c≼) = µmon′(c≺) := Cone(c→ n)

µmon′(c⋞) := µmon′(n) = Cone(n→ O).
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Since we have maps s← c→ n in the cusp diagram Figure 3 we need to provide maps

µmon′(s)← µmon′(c≼)
id→ µmon′(c≺)← µmon′(c⋞)

id→ µmon′(n).

where µmon′(c≼)→ µmon′(s) is defined by functoriality of cones via the diagram

c a µmon′(c≼)

b I µmon′(s)

the map µmon′(c⋞)→ µmon′(c≺) is defined as follow. Applying the octahedral axiom to the sequence
c→ n→ O gives the triangle

Cone(c→ n) Cone(c→ O) Cone(n→ O)
[1]

which gives a map µmon′(c⋞)→ µmon′(c≺)[1].

Proposition 4.2. After applying µmon′, all arrows are quasi-isomorphisms (or a shifted quasi-
isomorphism in the case of cusps).

Proof. The precise statements are that all maps defined above
µmon′(nw)← µmon′(c⧹)→ µmon′(se)

µmon′(ne)← µmon′(c⧸)→ µmon′(sw)

µmon′(c≼)
′ → µmon′(s)

µmon′(c⋞)→ µmon′(c≺)

are quasi-isomorphisms. First, the crossing condition that the complex c→ ne⊕nw → N is acyclic
is equivalent to the maps µmon′(c⧸) −→ µmon′(ne) and µmon′(c⧹) −→ µmon′(nw) being quasi-
isomorphisms. Secondly, by studying Figure 4 we have immediately that the maps µmon′(c⧸) →
µmon′(sw) and µmon′(c⧹)→ µmon′(se) are quasi-isomorphisms.

By studying Figure 3 we have that µmon′(c≼)′ → µmon′(s) is a quasi-isomorphism, and we have
that the cusp condition gives that µmon′(c⋞)→ µmon′(c≺) is a quasi-isomorphism. □

Proposition 4.3. If a is an arc on one component of a front diagram, then traveling around the
component gives a sequence of quasi-isomorphisms

µmon′(a)
∼← · · · ∼→ µmon′(a)[#down cusps - #up cusps] = µmon′(a)[−2 rot(Λ)].

In particular if rot(Λ) 6= 0, µmon′(a) must be either unbounded in both directions or acyclic.

Definition 4.4 (Normalized microlocal monodromy). Fix a Maslov potential p : strands(Φ) −→
Z/nZ. We define the functor µmon: ShΛ(M) −→ Loc(Λ) as follows. If x is the preimage of an
arc or crossing, then

µmon(x) := µmon′(x)[−p(x)] .
For the preimage c≼ ← c≺ → c⋞ of a cusp c, we define

µmon(c⋞) := µmon(n) = Cone(n→ O)[−p(n)]
µmon(c≼) = µmon(c≺) := Cone(c→ n)[−p(n) + 1]

We now finish with the proof of the following theorem.

Theorem 4.5 ([STZ17]). If Λ is a stabilized Legendrian knot (see Definition 2.4 for the definition),
then its microlocal monodromy vanishes.
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Proof. Assuming Λ is stabilized, there is some zig-zag in the diagram. Near such a zig-zag we have
the following diagram

m

s

n

c

d

E

E

W

W

∼

∼

∼

Furthermore by definition of singular support (also see Figure 3 and surrounding discussion) we
have that c→ s and d→ m are quasi-isomorphisms. By commutativity it implies that c→W and
d→ E are quasi-isomorphisms too. So we have the following diagram

By passing to cohomology and utilizing a trick (see [STZ17, Corollary 3.18]) we obtain
c→ d→ n→ E

where both compositions of consecutive arrows equals the identity map, and c = n and d = E.
It follows that d → n is an isomorphism, from which it follows that the microlocal monodromy
vanishes. □
Definition 4.6 (Microlocal rank). A sheaf is said to have microlocal rank r wrt to a fixed Maslov
potential if µmon(x) is quasi-isomorphic to a locally free k-module of rank r placed in degree 0. We
write Cr(Λ) ⊂ ShΛ(R2)0 for the full subcategory of microlocal rank r objects.
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