LEGENDRIAN KNOTS AND CONSTRUCTIBLE SHEAVES

JOHAN ASPLUND

The main reference of this talk is the paper [STZ17].

1. DEFINITIONS AND CONTEXT

Throughout this talk, let & be a commutative ring and M a real analytic manifold. We use the
following definitions.
Shpaive(M) := chain complexes of sheaves of k-modules on M
whose cohomology is constructible and has perfect stalks
Sh(M) := Shpaive(M)/acyclic complexes

Shg(M) := Sh(M) where cohomology of each object is
constructible wrt the stratification 8 of M

Shy, (M) = Sh(M) where sheaves have singular support in
the closed conical subset L C T*M

Sha(M) = Shgr_,400,, (M) where A C ST*M is Legendrian

Last time Juan explained to us that the results in [NZ09, Nad09] give a quasi-equivalence
Sh(M) = Fuk(T*M),

where Fuk(7*M) is the “infinitesimally wrapped Fukaya category” of T*M. In particular there is
a quasi-equivalence Sh (M) = Fuk(T*M) where A C ST*M is a Legendrian, where Fuk, (7" M)
has objects being exact conical Lagrangians asymptotic to the fixed Legendrian A C ST*M at
infinity.

The goal of this talk is to give a combinatorial description Sh4(M) from the point of view of the
Legendrian A C ST*M, in the cases M = R? or M = S x R.

Sh(M)p := Sh(M) where sheaves have acyclic stalks for z < 0
More precisely, we will discuss the proof of some of the following theorems.

Theorem 1.1 ([STZ17]). A contactomorphism inducing a Legendrian isotopy A ~ A’ induces a
quasi-equivalence Sh (M) — Sh (M). This quasi-equivalence preserves the subcategory Sh(M)o.

Theorem 1.2 ([STZ17]). If A is a stabilized Legendrian knot (see Definition 2.4 for the definition),
then every element of Shy(M) is locally constant. In particular Sha(M)o = 0.

Theorem 1.3 ([STZ17]). Every element of Sha(M) is periodic with period 2rot(A); in particular,
if rot(A) # 0, then there are no bounded complexes of sheaves in Sh(M).

Let €1(A) C Sha(M)g be the subcategory of objects with “microlocal rank 1” (see Definition 4.6).
Associated to the Legendrian A is a certain A..-category called the augmentation category which
is denoted by Aug, (A). Its objects are dg-algebra maps e: CE*(A) — Z, where CE*(A) is the
Chekanov-Eliashberg dg-algebra.

Theorem 1.4 ([NRS*20]). There exists an equivalence of As-categories Aug, (A) = C(A).
1
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2. LEGENDRIAN KNOTS

We now focus on the case M = R2 » and Legendrian knots A C ST*]R%Z. In fact, since

ST*]R2 >~ R2 2 X St we will furthermore assume that A is null-homologous. Without loss of
X Sl =~ R3 where R3 is equipped with the

generahty we may thus assume A C R2 ower Ty, T,y,%

standard contact form o = dz — ydzx.
We give a short introduction to Legendrian knot theory in R3. The front projection is defined by
(z,y,2) = (z,z). Pick a parametrization t — (x(t),y(t),z(t)) of A and note that A is Legendrian

(by definition) iff TA C £ = ker(dz — ydzx) iff y(t) = Z((g Thus given a front projection of
a Legendrian knot we can always lift it to a Legendrian by (z,z) — (a:, g—fc,z). Note that this
excludes front diagrams with vertical tangencies. Instead of vertical tangencies, front diagrams

contains cusps.

O X OO

FIGURE 1. Left to right: The unknot, the trefoil and a stabilized unknot.

z

Remark 2.1. Whenever we draw a front diagram, we never have to indicate over and under
crossings. The strand with lower slope (= lower y value in the lift) is always the over strand.
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Since the tangent vectors (&(t), 2(t)) are never vertical it follows that the downward normal
vectors (z':(t) —&(t)) are never horizontal. Thus a front diagram lifts directly to a Legendrian in
X Slower by defining the component in the Slower factor to be the unit downward conormal at

the point.

Theorem 2.2. Two front diagrams represent the same Legendrian knot iff they are related by
reqular homotopy and a finite sequence of Reidemeister moves as shown in Figure 2.
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F1GURE 2. The three Reidemeister moves in the front projection.
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Exercise 2.3. Show that the following two front diagrams represent the same knot.

o0 L5

\
Definition 2.4. A front diagram is called stabilized if it contains a zig-zag: ‘\i,,‘

3. CONSTRUCTIBLE SHEAVES

We have seen from Sebastian’s talk that for a Whitney stratification & of a manifold M that
sheaves on M with singular support in N*§ are exactly constructible sheaves on M wrt 8§ (see
[GPS18, Proposition 4.8]). In our case, the category at hand is Sh(R?), but in our case R4 is
just half of the conormal. However, we can still describe Sh4(R?) in terms of constructible sheaves,
but with certain conditions.

Arc. Near arcs we have the following local picture.

Since the singular support is contained in the downward normal directions it means that ¢ is a
quasi-isomorphism. This sheaf is thus determined up to quasi-isomorphism by the following data
near arcs.

2

Cusp. Near cusps we have the following local picture

NV,
J
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FiGURE 3.
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From the definition of singular support one can work out that the map ¢ — s is also a quasi-
isomorphism. The conclusion is that the sheaf near cusps is determined up to quasi-isomorphism
by the following commutative diagram near cusps.

0
Crossing. Near crossings we have the following local picture
N
ST
a2
w c E
NN S
SW
/ SN \
S

FiGURE 4.

Again studying the definition of singular suppot we find that the maps ¢ — se and ¢ — sw are
quasi-isomorphisms. There is an additional condition which we do not write out in terms of these
maps. We summarize by saying that a sheaf near a crossing is determined by the following data

N

S

with the extra condition that the total complex
S—W®FE — N
should be acyclic.

Example 3.1. Consider the front diagram of the unknot. Elements in Shyuinet(R?) are specified

by two complexes X and Y of k-modules with maps X i> Y %5 X whose composition is the
identity.

X
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If we consider elements in Shypmet (R?)o, that is to say that X is acyclic, then any such sheaf is
in fact determined by the choice of Y. So Shynimet (R?)g is quasi-equivalent to the derived category
of complexes of k-modules.

Let us now prove the invariance theorem.

Theorem 3.2 ([STZ17]). A contactomorphism inducing a Legendrian isotopy A ~ A’ induces a
quasi-equivalence Shy (M) — Sh/(M). This quasi-equivalence preserves the subcategory Sh(M)g.

Proof. By Theorem 2.2 it is enough to study the three Reidemeister moves.
Reidemeister 1: Consider the first Reidemeister move:

144
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We first go from right to left. By the cusp conditions we have pg; = pgo = 1. By

commutativity we obtain f; = f». Thus we obtain V' i) W by letting f := f1 = fo.
From left to right, we first note that without loss of generality f is injective on the chain

level (if not, replacing W with the mapping cylinder of f gives a diagram representing the
same sheaf). Then define f; = fo = f,

U = coker(V S T eW)
and p: U — W is induced by W & W — W.

Checking invariance under the other two Reidemeister moves is left as an exercise. (See [STZ17,
Sections 4.4.2 and 4.4.3].) O

4. MICROLOCAL MONODROMY

An n-periodic Maslov potential of a front diagram @ is a map p: strands(®) — Z/nZ such that
when two strands meet at a cusp we have

p(upper strand) = p(lower strand) + 1.

The existence of such a potential is equivalent to n | 2rot(A).
Given a Maslov potential, we now define a functor

pmon: Sh(M) — Loc(A)

to local systems of complexes of k-modules up to quasi-isomorphism on A. To define this functor,
we will pull back the given stratification 8 of a front diagram to a stratification of A C R? via the
front projection.

e Arcs in 8 have unique preimages in A.

e The preimage of a crossing c is two points in A which we denote by ¢ - and ¢ respectively,
see Figure 5.

e The preimage of a cusp is a closed interval in A, i.e. one 1-dimensional stratum that we
denote by c-, and two 0-dimensional strata which we denote by cy and cz, respectively.
All together we denote the preimages and maps relating them in the stratification of A as
¢ — €< < ¢z, see Figure .
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FIGURE 5.

Let us now first define the unnormalized microlocal monodromy.

Definition 4.1 (Unnormalized microlocal monodromy). Given a stratification 8 of a front diagram
and the corresponding stratification A of A we define the unnormalized microlocal monodromy
functor pmon’ as follows.

e [fa €8 is an arc, we denote its preimage by a € A. Denote the region above a in the front
diagram by N, and define

pmon’(a) := Cone(a — N).
o [fceS§ is a crossing we have a diagram as in Figure /. We define
pmon’(c /) := Cone(c — nw)

pmon’ (e ) := Cone(c — ne)

There are furthermore maps in A as follows: nw < ¢ — se and ne < c, — sw, and the
corresponding maps after applying pmon’

pmon’ (nw) <— pmon’ (¢ ) — pmon’(se)
pmon’ (ne) < pmon’(c /) — pmon’(sw)

are defined via functoriality of cones

¢ — nw — pmon’(c ) ¢ —— nw — pmon’(c /)
ne — N —— pmon’(ne) sw — W —— pmon’(sw)

and the corresponding diagrams for the maps pmon’(ne) < pmon’(c /) — pmon’(sw).
o [fc € 8 is a cusp we have a diagram as in Figure 5. The preimage of ¢ is the diagram
¢ — C< < cz and we define

pmon’(c) = pmon’(c<) := Cone(c — n)

pmon’(c<) := pmon’(n) = Cone(n — O).
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Since we have maps s < ¢ — n in the cusp diagram Figure 3 we need to provide maps
pmon’(s) < pmon’(c<) id pmon’ (c<) < pmon’(c<) iq pmon’(n).
where pmon’(cy) — pmon’(s) is defined by functoriality of cones via the diagram

¢ — a — pmon’(cg)

[ |

b — I —— pmon'(s)

the map pmon’(cz) — pmon’(c<) is defined as follow. Applying the octahedral aziom to the sequence
c —n — O gives the triangle

Cone(¢ —+ n) — Cone(c — O) — Cone(n — O) A,

which gives a map pmon’(c<) — pmon’(c<)[1].
Proposition 4.2. After applying pmon’, all arrows are quasi-isomorphisms (or a shifted quasi-

isomorphism in the case of cusps).

Proof. The precise statements are that all maps defined above

'(se)

pmon’ (nw) < pmon’(ex ) — pmon’(
pmon’ (ne) < pmon’(c /) — pmon’(sw)
pmon’ (c5)" — pmon’(s)
pmon’(cz) — pmon’(c<)
are quasi-isomorphisms. First, the crossing condition that the complex ¢ = ne®nw — N is acyclic
is equivalent to the maps pmon’(c ) — pmon’(ne) and pmon’(c. ) — pmon’(nw) being quasi-
isomorphisms. Secondly, by studying Figure 4 we have immediately that the maps gmon’(c ) —
pmon’(sw) and pmon’(e. ) — pmon’(se) are quasi-isomorphisms.
By studying Figure 3 we have that pmon’(cg)’ — pmon’(s) is a quasi-isomorphism, and we have
that the cusp condition gives that pmon’(cz) — pmon’(c<) is a quasi-isomorphism. O

Proposition 4.3. If a is an arc on one component of a front diagram, then traveling around the
component gives a sequence of quasi-isomorphisms

pmon’(a) < --- = pmon’ (a)[#down cusps - #up cusps] = pmon’(a)[—2rot(A)].
In particular if rot(A) # 0, pmon’(a) must be either unbounded in both directions or acyclic.

Definition 4.4 (Normalized microlocal monodromy). Fiz a Maslov potential p: strands(®) —
Z/nZ. We define the functor pmon: Shp(M) — Loc(A) as follows. If x is the preimage of an
arc or crossing, then

pmon(z) := pmont (2)[—p(z)]
For the preimage c4 < c< — c= of a cusp ¢, we define
pmon(c=) := pmon(n) = Cone(n — O)[—p(n)]
pmon(cg) = pmon(c<) := Cone(c — n)[—p(n) + 1]

We now finish with the proof of the following theorem.

Theorem 4.5 ([STZ17]). If A is a stabilized Legendrian knot (see Definition 2.4 for the definition),
then its microlocal monodromy vanishes.



8 JOHAN ASPLUND

Proof. Assuming A is stabilized, there is some zig-zag in the diagram. Near such a zig-zag we have

the following diagram
W \»

[ 5

W

N\,

&//

Furthermore by definition of singular support (also see Figure 3 and surrounding discussion) we
have that ¢ — s and d — m are quasi-isomorphisms. By commutativity it implies that ¢ — W and
d — E are quasi-isomorphisms too. So we have the following diagram

By passing to cohomology and utilizing a trick (see [STZ17, Corollary 3.18]) we obtain

c—d—n—FE

where both compositions of consecutive arrows equals the identity map, and ¢ = n and d = F
It follows that d — n is an isomorphism, from which it follows that the microlocal monodromy
vanishes. O

Definition 4.6 (Microlocal rank). A sheaf is said to have microlocal rank r wrt to a fized Maslov
potential if pmon(z) is quasi-isomorphic to a locally free k-module of rank r placed in degree 0. We
write C.(A) C Sha(R?)g for the full subcategory of microlocal rank r objects.
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