From cotangent bundles to Liouville manifolds

Based on Section 7 of *Microlocal Morse Theory of Wrapped Fukaya Categories* by Ganatra, Pardon, and Shende

Microlocal theory of sheaves in symplectic geometry learning seminar Columbia University December 6, 2022 Our goal is to prove

Theorem (GPS3, Theorem 1.4)

Suppose X is a real analytic Liouville manifold and $\Lambda \subset \partial_{\infty} X$ is a stop whose relative core $\mathfrak{c}_{X,\Lambda} := \mathfrak{c}_X \cup (\Lambda \times \mathbb{R}) \subset X$ is a subanalytic singular isotropic. For any stable polarization of X, there is a fully faithful functor

$$Perf \mathcal{W}(X, \Lambda)^{op} \hookrightarrow \mu sh_{\mathfrak{c}_{X, \Lambda}}(\mathfrak{c}_{X, \Lambda})^c$$

taking a homological cocore at a smooth Lagrangian point p of $\mathfrak{c}_{X,\Lambda}$ to a co-representative of the microstalk at p.

Note: If X is Weinstein (or more generally, admits all homological cocores), this embedding is an equivalence.

What we've seen

In Yash's talks, we saw

Theorem (GPS3, Theorem 1.1)

Suppose M is a real analytic and $\Lambda \subset S^*M$ be a subanalytic closed isotropic subset. There is a canonical equivalence

$$Perf W(T^*M, \Lambda)^{op} \simeq Sh_{\Lambda}(M)^c$$

taking the linking disk at a smooth Lagrangian point $p \in \Lambda$ to a co-representative of the microstalk functor at p, and taking a cotangent fiber over $p \in M$ that does not meet Λ to a co-representative of the stalk functor.

Rough idea: Both sides have good functoriality properties with respect to stop removal and are generated by the objects mentioned above. Moreover, they can be described combinatorially when Λ is the conormal to a triangulation. This behavior is captured formally as a microlocal Morse theater uniquely determining both sides.

Strategy

We will produce a diagram

$$\mathcal{W}(X,\Lambda)^{\operatorname{op}} \longrightarrow \operatorname{Perf} \mathcal{W}(T^*M,D(\mathfrak{c}_{X,\Lambda}))^{\operatorname{op}}$$

$$\parallel \operatorname{Theorem} 1.1$$

$$\mu \operatorname{sh}_{\mathfrak{c}_{X,\Lambda}}(\mathfrak{c}_{X,\Lambda})^c \longrightarrow \operatorname{Sh}_{D(\mathfrak{c}_{X,\Lambda})}(M)^c$$

for a stop $D(\mathfrak{c}_{X,\lambda})$ called the double. The horizontal arrows land in categories generated by certain linking disks/co-representatives of micro-stalks.

Two ingredients:

- ▶ Find an embedding $X \hookrightarrow S^*M$ as a Liouville hypersurface
- Doubling trick to produce fully faithful functors.

Embedding

A Liouville hypersurface embedding of Liouville (domain) X into contact Y is a codimension 1 embedding such that there is contact form agreeing with the Liouville form on X. When $Y = \partial_{\infty} Z$, we call (Z, X) a Liouville pair.

Want: Liouville pair (T^*M, X) given any Liouville X satisfying some hypotheses.

 $X \hookrightarrow S^*M$ would give:

- ▶ smooth map $f: X \to M$.
- ▶ splitting $f^*TM \simeq B \oplus \underline{\mathbb{R}}$.
- ▶ $TX \simeq B \otimes_{\mathbb{R}} \mathbb{C}$ as \mathbb{C} -vector bundles.

There is an h-principle that this formal data is enough.

Lemma (GPS3, Lemma 7.6 after Eliashberg-Mishachev)

If X is a Liouville manifold such that \mathfrak{c}_X is contained in a finite union of locally closed submanifolds of dimension at most $\frac{1}{2}\dim X$, then every triple above arises from some $X\hookrightarrow S^*M$.

Embedding

We imposed that X has a stable polarization, i.e., $TX \oplus \underline{\mathbb{C}}^k \simeq B \otimes_{\mathbb{R}} \mathbb{C}$ for some $k < \infty$.

The h-principle lemma always applies to $X \times \mathbb{C}^k$ for for some $k < \infty$ and some further algebraic topology shows that a stable polarization produces the formal data needed.

Upshot: For any stable polarization of X, there is a Liouville hypersurface embedding $X \times \mathbb{C}^k \hookrightarrow S^*M$ compatible with stable polarization.

Interlude: homological cocores

Definition (GPS3, Definition 7.1)

Let (X, Λ) be a stopped Liouville manifold whose relative core $\mathfrak{c}_{X,\Lambda}$ with $\mathfrak{c}_{X,\Lambda}$ mostly Lagrangian. An object of Perf $\mathcal{W}(X,\Lambda)$ is a homological cocore at a smooth Lagrangian point p if its image under the Künneth embedding

$$\mathcal{W}(X,\Lambda) \hookrightarrow \mathcal{W}((X,\Lambda) \times (\mathbb{C}_{Re \geq 0},\infty))$$

is isomorphic to the linking disk at $p \times \infty$.

Examples: Linking disks/cocores, any generalized cocore (exact, conical Lagrangian intersecting once at p).

Linking disks generate $\mathcal{W}((X,\Lambda)\times(\mathbb{C}_{\mathsf{Re}\geq 0},\infty))\Longrightarrow$ existence of all homological cocores is equivalent to Künneth embedding being an equivalence.

Doubling

From a Liouville pair (Z, X) want to embed $\mathcal{W}(X)$ into some partially wrapped category on Z. Use doubling trick.

 $(Z,X)\leadsto$ Liouville sector by: In particular, have sector chart $X\times\mathbb{C}_{\mathrm{Re}\geq0}\subset Z$ and thus functors

$$\mathcal{W}(X) o \mathcal{W}(X imes \mathbb{C}_{\mathsf{Re} \geq 0}, \mathfrak{c}_X imes \{\infty\}) o \mathcal{W}(Z, \mathfrak{c}_X)$$

However, wrapping may cause this not to be full and faithful. Instead, double up. Set $D(\mathfrak{c}_X) := \mathfrak{c}_X \sqcup \mathfrak{c}_X^{\varepsilon}$. This stops the other end and becomes a full and faithful functor

$$\mathcal{W}(X) \hookrightarrow \mathcal{W}(Z, \mathfrak{c}_X \sqcup \mathfrak{c}_X^{\varepsilon}).$$

Doubling with stop

Really, wanted to work with $\mathcal{W}(X,\Lambda)$. In the sector chart $X \times \mathbb{C}_{Re \geq 0} \subset Z$, look at

$$(X,\Lambda)\times(\mathbb{C},\{\pm i\infty\})=(X\times\mathbb{C},(\mathfrak{c}_X\times\{\pm i\infty\})\cup(\Lambda\times i\mathbb{R}))$$

and perturb slightly inwards. Result is defined to be $D(\mathfrak{c}_{X,\Lambda})$. Then, have

$$\mathcal{W}(X,\Lambda) o \mathcal{W}((X,\Lambda) imes (\mathbb{C}_{\mathsf{Re} \geq 0}, \infty)) \ o \mathcal{W}(X imes \mathbb{C}, (\mathfrak{c}_X imes \{-\infty\}) \sqcup (\mathfrak{c}_X imes \{\pm i\infty\}) \sqcup (\Lambda imes i\mathbb{R})) \ \simeq \mathcal{W}(X imes \mathbb{C}_{\mathsf{Re} \geq 0}, D(\mathfrak{c}_{X,\Lambda})) \ o \mathcal{W}(Z, D(\mathfrak{c}_{X,\Lambda}))$$

This functor is also fully faithful.

The sheafy part

What we have done so far will give us a full and faithful embedding $\mathcal{W}(X,\Lambda)^{\mathrm{op}}\hookrightarrow \mathrm{Sh}_{D(\mathfrak{c}_{X,\Lambda})}(M)^c$. That is, we now "just" need to understand $\mu\mathrm{sh}_{\mathfrak{c}_{X,\Lambda}}(\mathfrak{c}_{X,\Lambda})^c$.

First, what is it?

In cotangent case, we recall $\mu \mathrm{sh}$ is the sheafification of

$$\Omega \mapsto \mathsf{Sh}(M)/\mathsf{Sh}_{T^*M\setminus\Omega}(M)$$

and have $\mu \mathrm{sh}_{\Lambda}$ consisting of objects with microsupport in Λ . Also, have microlocalization functions $\mathrm{Sh}_{\Lambda}(M) \to \mu \mathrm{sh}_{\Lambda}(\Lambda \cap \Omega)$. In general, Shende has shown that $\mu \mathrm{sh}_{\Lambda}(\Lambda)$ is well-defined for any Λ embedded into a stably polarized contact manifold.

Sheaf doubling

There is a generalization of doubling for subanalytic $\Lambda \subset S^*M$ with some nice coordinates near its boundary when not closed. The doubling trick for sheaves is addressed in *Sheaf quantization in Weinstein symplectic manifolds* by Nadler and Shende.

Theorem (NS, Theorem 6.30)

Let $\Lambda \subset S^*M$ be sufficiently nice. Then, $Sh_{D(\Lambda \times (0,1))}(M \times \mathbb{R})$ is an orthogonal direct sum of $Sh_{\emptyset}(M \times \mathbb{R})$ and $Sh_{D(\Lambda \times (0,1))}(M \times \mathbb{R})_0$ and microlocalization gives an equivalence

$$Sh_{D(\Lambda \times (0,1))}(M \times \mathbb{R})_0 \simeq \mu sh_{\Lambda \times (0,1)}(\Lambda \times (0,1)) = \mu sh_{\Lambda}(\Lambda).$$

Finishing the proof

We will show that microlocalization $\mu: \mathsf{Sh}_{D(\mathfrak{c}_{X,\Lambda})}(M) \to \mu \mathsf{sh}_{\mathfrak{c}_{X,\Lambda}}(\mathfrak{c}_{X,\Lambda})$ has a fully faithful left adjoint Consider

where vertical arrows are microlocalization μ and horizontal arrows are restriction r.

Sheaf doubling theorem implies that furthest right μ is a projection onto an orthogonal direct summand. Thus, μ^* is inclusion, and, in particular, fully faithful.

Thus, reduced to showing $r^* \colon \mathsf{Sh}_{D(\mathfrak{c}_{X,\Lambda}) \times (0,1)}(M \times (0,1)) \to \mathsf{Sh}_{D(\mathfrak{c}_{X,\Lambda} \times (0,1))}(M \times \mathbb{R})$ is fully faithful on co-representatives of microstalks on the first copy of $\mathfrak{c}_{X,\Lambda} \times (0,1)$.

Fukaya categories strike back

This is in a cotangent bundle, and we can translate back to Fukaya categories. Want to show

$$\mathcal{W}(T^*(M\times(0,1)),D(\mathfrak{c}_{X,\Lambda})\times(0,1))\to\mathcal{W}(T^*(M\times\mathbb{R})),D(\mathfrak{c}_{X,\Lambda}\times(0,1)))$$

is fully faithful on linking disks of the first copy of $\mathfrak{c}_{X,\Lambda} \times (0,1)$. This comes from the fact that

$$(X,\Lambda)\times(\mathbb{C},\pm\infty)\times(\mathbb{C}_{\mathsf{Re}\geq 0},\infty)\hookrightarrow (\mathcal{T}^*(M\times\mathbb{R}),D(\mathfrak{c}_{X,\Lambda}\times(0,1)))$$

induces a fully faithful functor on linking disks of the first copy of the stop by the doubling theorem. Moreover, this map factors through $(T^*(M\times(0,1)),D(\mathfrak{c}_{X,\Lambda})\times(0,1))$ and full-faithfulness of the first map is proved by repeating the argument of the doubling theorem with a factor of $T^*(0,1)$.

The end

Thank you!