X topological space. A stratification 5 of X is a decomposition X = II Xx of locally closed subsets s.t. Xa Xa is a union of strata omk Sis a poset: B - x iff Xx = XB (A) For any (X;) -> y, X; EX, YEY s.t. Tx, X converges to VST, M, we have T, YSV (B) For (x_i) in X, (y_i) in Y both converging to y $\in Y$ s.t. $T_{x_i} X$ converges to $V \subseteq T_y M$ and second directions from y_i to x_i converge to $L \subseteq T_y M$, we have $L \subseteq V$ Non-examples: (whitney Umbrella)

(Whitney cusp)

(A) is a microlocal condition: $N^*S := U_{x} N^*M_{x} \in T^*M$ is closed (2) (A) Say that Y SM is constructible if it is a union of strata. (Slogan: Compact, constructible sets have notions microlocally close notids UZX; N*U converges to N*X Prop: Fix 15p ≤ 00, 5 a C^e-Whitney strate X S M on S - constructible compact, $N^* X := \bigcup_{\mathcal{M}_{\mathcal{A}} \in X} N^* \mathcal{M}_{\mathcal{A}}.$ Then I a decreasing family Xⁿ of nbhds of X w/ CP-conversed boundary s.t. as 9-90, (1) N*Xⁿ becomes contained in arbitrarily small conversed nbhds of N*X, (2) N*X? remains disjoint from N*S

Can write X as
$$VX_i$$
 for $X_0 \in X_1 \in ---$
loc. closed submitteds w/ boundary whose conormals
approach N*S
(apply Prop to $\partial X = X \setminus X$, $X_i := X \setminus V_i$
where $V_i = nbbd$ of boundary)
 $SS(Z_X) = SS(\lim_{x \to \infty} Z_{X_i}) \subseteq N^*S$

.