MAT 322/523 MIDTERM II

WEDNESDAY APRIL 10, 2024 $2:30-3:20\mathrm{PM}$

Name: _____

_____ ID: _____

Instructions.

- (1) Fill in your name and Stony Brook ID number and circle your lecture number at the top of this cover sheet.
- (2) This exam is closed-book and closed-notes; no electronic devices.
- (3) You have 80 minutes to complete this exam.
- (4) You must justify all your answers and show all your work (unless the problem says otherwise). Even a correct answer without any justification will result in no credit.

1. Consider the function

$$f\colon (0,\infty)^2 \longrightarrow (0,\infty)^2$$
$$(x,y) \longmapsto (x^2y,\log y)$$

(a) (10 pts) Show that f is a diffeomorphism.

Solution. It is clearly smooth, since the two coordinate functions $f_1(x, y) = x^2 y$ and $f_2(x, y) = \log y$ are smooth. Assume f(x', y') = f(x, y). Then we get

$$\begin{cases} (x')^2 y' = x^2 y\\ \log y' = \log y \end{cases}$$

The second equation implies y = y' which turns the first equation into $(x')^2 = x^2$ and hence x' = x because x, x' > 0, and hence f is injective. To show surjectivity assume $x^2y = a$ and $\log y = b$. This gives $b = e^y$ and therefore $x = \sqrt{\frac{a}{e^y}}$. Finally we compute the derivative

$$Df(x,y) = \begin{pmatrix} 2xy & x^2 \\ 0 & \frac{1}{y} \end{pmatrix}$$

and so det $Df(x, y) = 2x \neq 0$ since x > 0.

(b) (10 pts) Compute V(Df).

Solution. The definition of the volume is

$$V(Df(x,y)) = \sqrt{\det(Df(x,y)^T Df(x,y))}$$

From Problem 1(b) we get $Df(x,y) = \begin{pmatrix} 2xy & x^2 \\ 0 & \frac{1}{y} \end{pmatrix}$. We compute the matrix product:

$$Df(x,y)^{T}Df(x,y) = \begin{pmatrix} 2xy & 0\\ x^{2} & \frac{1}{y} \end{pmatrix} \begin{pmatrix} 2xy & x^{2}\\ 0 & \frac{1}{y} \end{pmatrix}$$
$$= \begin{pmatrix} 4x^{2}y^{2} & 2x^{3}y\\ 2x^{3}y & x^{4} + \frac{1}{y^{2}} \end{pmatrix},$$

 \mathbf{SO}

$$\begin{split} V(Df(x,y)) &= \sqrt{\det(Df(x,y)^T Df(x,y))} = \sqrt{4x^2 y^2 \left(x^4 + \frac{1}{y}^2\right) - 4x^6 y^2} \\ &= \sqrt{4x^2} = 2x. \end{split}$$

2. (20 pts) Consider the smooth 2-manifold in \mathbb{R}^3 given by

$$M := \left\{ (x, y, z) \in \mathbb{R}^3 \mid z = F(x, y), \ (x, y) \in A \right\} \subset \mathbb{R}^3,$$

where $A \subset \mathbb{R}^2$ is some bounded open set and where $F \colon \mathbb{R}^2 \to \mathbb{R}$ is a smooth function. Show that

$$\operatorname{vol} M = \int_{A} \sqrt{1 + \left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2}}.$$

[*Hint:* The manifold M admits a parametrization $\alpha \colon A \to \mathbb{R}^3$ defined by $\alpha(x, y) = (x, y, F(x, y))$.]

Solution. Since the manifold M admits a parametrization $\alpha,$ we have

vol
$$M = \int_{M} 1 dV = \int_{A} V(D\alpha(x, y)).$$

We compute the Jacobian $D\alpha(x, y)$ and the volume $V(D\alpha)$:

$$D\alpha(x,y) = \begin{pmatrix} 1 & 0\\ 0 & 1\\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{pmatrix}$$

$$\begin{split} V(D\alpha(x,y)) &= \sqrt{\det(D\alpha(x,y)^T D\alpha(x,y))} = \sqrt{\det\left(\begin{pmatrix} 1 & 0 & \frac{\partial F}{\partial x} \\ 0 & 1 & \frac{\partial F}{\partial y} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{pmatrix}} \right)} \\ &= \sqrt{\det\left(\frac{1 + \left(\frac{\partial F}{\partial x}\right)^2 & -\left(\frac{\partial F}{\partial x}\right) \left(\frac{\partial F}{\partial y}\right)}{-\left(\frac{\partial F}{\partial y}\right)^2 \left(1 + \left(\frac{\partial F}{\partial y}\right)^2\right) - \left(\frac{\partial F}{\partial x}\right)^2 \left(\frac{\partial F}{\partial y}\right)^2} \\ &= \sqrt{\left(1 + \left(\frac{\partial F}{\partial x}\right)^2\right) \left(1 + \left(\frac{\partial F}{\partial y}\right)^2\right) - \left(\frac{\partial F}{\partial x}\right)^2 \left(\frac{\partial F}{\partial y}\right)^2} \\ &= \sqrt{1 + \left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial x}\right)^2} \end{split}$$

3. Consider the following subsets of \mathbb{R}^2 :

$$A = \{x = 0\}$$

$$B = \{x = y \mid x \ge 0\} \cup \{x = -y \mid x \le 0\}$$

$$C = \{x = 0\} \cup \{y = 0\}$$

$$D = \{(t, t^3) \mid t \in \mathbb{R}\}$$

(a) (10 pts) Which of the subsets A, B, C and D are C^0 manifolds in \mathbb{R}^2 ? Which are not? You have to explain your answer, but you do not have to give a full proof.

Solution. C is not a C^0 manifold, and the other subsets are. First C is not a C^0 manifold because there is no neighborhood $V \subset D$ of the origin $(0,0) \in C$ that is homeomorphic (meaning that it is continuous and has a continuous inverse) to an open subset of \mathbb{R} .

- A is a C^0 manifold with a single coordinate chart $\alpha \colon \mathbb{R} \to A$, $\alpha(x) = (0, x)$. This is clearly a homeomorphism.
- B is a C^0 manifold with a single coordinate chart $\beta \colon \mathbb{R} \to A$, $\beta(x) = (x, |x|)$. This is clearly a homeomorphism.
- D is a C^0 manifold with a single coordinate chart $\gamma \colon \mathbb{R} \to A, \ \gamma(x) = (x, x^3)$. This is clearly a homeomorphism.

1 1

(b) (10 pts) Which of the subsets A, B, C and D are smooth (C^{∞}) manifolds in \mathbb{R}^2 ? Which are not? You have to explain your answer, but you do not have to give a full proof.

Solution. The answer is the same as in part (a), except that B is not a smooth manifold; there is no neighborhood of the origin $(0,0) \in B$ that is diffeomorphic to an open subset of \mathbb{R} , because of the corner. (The coordinate chart β is only a homeomorphism but not a diffeomorphism. It is not even a C^1 diffeomorphism in fact.) It is clear that α and γ are smooth and hence diffeomorphisms (they define global coordinate charts).

- **4.** Let $\Omega \in \mathcal{A}^k(V)$ be an alternating k-tensor on a vector space.
 - (a) (10 pts) If $v_1, \ldots, v_k \in V$ are vectors so that there are two distinct indices *i* and *j* such that $v_i = v_j$, show that $\Omega(v_1, \ldots, v_k) = 0$.

Solution. If $\sigma \in S_k$ is a permutation, then by definition Ω is alternating if $\Omega^{\sigma} = -\Omega$, where

$$\Omega^{\sigma}(v_1,\ldots,v_k) := \Omega(v_{\sigma(1)},\ldots,v_{\sigma(k)}).$$

Now suppose v_1, \ldots, v_k is a collection of vectors so that $v_i = v_j$ for two different indices $i \neq j \in \{1, \ldots, k\}$. Then let $\sigma_{ij} \in S_k$ be the permutation with $\sigma_{ij}(i) = j$, $\sigma_{ij}(j) = i$ and $\sigma_{ij}(k) = k$ for $k \neq i, j$. Then $\Omega^{\sigma}(v_1, \ldots, v_k) = \Omega(v_{\sigma(1)}, \ldots, v_{\sigma(k)}) = \Omega(v_1, \ldots, v_k)$. But by definition of being alternating we conclude $\Omega(v_1, \ldots, v_k) = -\Omega(v_1, \ldots, v_k)$ which implies $\Omega(v_1, \ldots, v_k) = 0$.

(b) (10 pts) Let $W \subset V$ be a subspace of dimension $\langle k$. Show that $\Omega(w_1, \ldots, w_k) = 0$ for any $w_1, \ldots, w_k \in W$. [*Hint:* You may use part (a) even if you have not solved it.]

Solution. Since W has dimension $\langle k, any tuple of k$ vectors w_1, \ldots, w_k are linearly dependent. Therefore we can for instance write $w_k = \sum_{i=1}^{k-1} c_i w_i$, which gives

$$\Omega(w_1, \dots, w_k) = \Omega\left(w_1, \dots, \sum_{i=1}^{k-1} c_i w_i\right) = \sum_{i=1}^{k-1} c_i \Omega(w_1, \dots, w_{k-1}, w_i).$$

Each term in this sum is zero by part (a). This is because the tuple $(w_1, \ldots, w_{k-1}, w_i)$ of k vectors in W always contain at one pair of duplicates. \Box

5. (a) (5 pts) Show that any open set in \mathbb{R}^n is a smooth *n*-manifold in \mathbb{R}^n .

Solution. Let $U \subset \mathbb{R}^n$. The smooth function id: $U \to U$ is a coordinate chart (meaning a diffeomorphism) at every point $x \in U$, and hence U is an n-manifold in \mathbb{R}^n .

(b) (10 pts) Let $\mathbb{R}^{n \times n}$ denote the set of $n \times n$ -matrices; we fix some identification between $\mathbb{R}^{n \times n}$ and \mathbb{R}^{n^2} . Show that the determinant as a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$ is smooth.

Solution. If $A \in \mathbb{R}^{n \times n}$ is identified with the tuple $(x_1, \ldots, x_{n^2}) \in \mathbb{R}^{n^2}$, then det A is a polynomial function in the variables x_1, \ldots, x_{n^2} , and polynomials are smooth. \Box

(c) (10 pts) Let $GL(n; \mathbb{R}) \subset \mathbb{R}^{n \times n}$ denote the set of all invertible $n \times n$ -matrices. Show that $GL(n; \mathbb{R})$ is a smooth n^2 -manifold in \mathbb{R}^{n^2} .

Solution. By definition a matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if det $A \neq 0$, so $\operatorname{GL}(n; \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\} = \det^{-1}(\mathbb{R} \smallsetminus \{0\}).$

Now $\mathbb{R} \setminus \{0\} \stackrel{\text{open}}{\subset} \mathbb{R}$, and because det is smooth by part (b) (and therefore continuous). Therefore det⁻¹ ($\mathbb{R} \setminus \{0\}$) = GL($n; \mathbb{R}$) $\stackrel{\text{open}}{\subset} \mathbb{R}^{n^2}$ and is hence a smooth n^2 -manifold in \mathbb{R}^{n^2} by part (a).