MAT 322/523 MIDTERM II

WEDNESDAY APRIL 10, 2024
$2: 30-3: 20 \mathrm{PM}$

Name: \qquad ID: \qquad

Instructions.

(1) Fill in your name and Stony Brook ID number and circle your lecture number at the top of this cover sheet.
(2) This exam is closed-book and closed-notes; no electronic devices.
(3) You have 80 minutes to complete this exam.
(4) You must justify all your answers and show all your work (unless the problem says otherwise). Even a correct answer without any justification will result in no credit.

1. Consider the function

$$
\begin{aligned}
f:(0, \infty)^{2} & \longrightarrow(0, \infty)^{2} \\
(x, y) & \longmapsto\left(x^{2} y, \log y\right)
\end{aligned}
$$

(a) (10 pts) Show that f is a diffeomorphism.

Solution. It is clearly smooth, since the two coordinate functions $f_{1}(x, y)=x^{2} y$ and $f_{2}(x, y)=\log y$ are smooth. Assume $f\left(x^{\prime}, y^{\prime}\right)=f(x, y)$. Then we get

$$
\left\{\begin{array}{l}
\left(x^{\prime}\right)^{2} y^{\prime}=x^{2} y \\
\log y^{\prime}=\log y
\end{array}\right.
$$

The second equation implies $y=y^{\prime}$ which turns the first equation into $\left(x^{\prime}\right)^{2}=x^{2}$ and hence $x^{\prime}=x$ because $x, x^{\prime}>0$, and hence f is injective. To show surjectivity assume $x^{2} y=a$ and $\log y=b$. This gives $b=e^{y}$ and therefore $x=\sqrt{\frac{a}{e^{y}}}$. Finally we compute the derivative

$$
D f(x, y)=\left(\begin{array}{cc}
2 x y & x^{2} \\
0 & \frac{1}{y}
\end{array}\right)
$$

and so det $D f(x, y)=2 x \neq 0$ since $x>0$.
(b) (10 pts) Compute $V(D f)$.

Solution. The definition of the volume is

$$
V(D f(x, y))=\sqrt{\operatorname{det}\left(D f(x, y)^{T} D f(x, y)\right)}
$$

From Problem 1(b) we get $D f(x, y)=\left(\begin{array}{cc}2 x y & x^{2} \\ 0 & \frac{1}{y}\end{array}\right)$. We compute the matrix product:

$$
\begin{aligned}
D f(x, y)^{T} D f(x, y) & =\left(\begin{array}{cc}
2 x y & 0 \\
x^{2} & \frac{1}{y}
\end{array}\right)\left(\begin{array}{cc}
2 x y & x^{2} \\
0 & \frac{1}{y}
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 x^{2} y^{2} & 2 x^{3} y \\
2 x^{3} y & x^{4}+\frac{1}{y^{2}}
\end{array}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
V(D f(x, y)) & =\sqrt{\operatorname{det}\left(D f(x, y)^{T} D f(x, y)\right)}=\sqrt{4 x^{2} y^{2}\left(x^{4}+\frac{1}{y}^{2}\right)-4 x^{6} y^{2}} \\
& =\sqrt{4 x^{2}}=2 x
\end{aligned}
$$

2. (20 pts) Consider the smooth 2 -manifold in \mathbb{R}^{3} given by

$$
M:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=F(x, y),(x, y) \in A\right\} \subset \mathbb{R}^{3}
$$

where $A \subset \mathbb{R}^{2}$ is some bounded open set and where $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function. Show that

$$
\operatorname{vol} M=\int_{A} \sqrt{1+\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}}
$$

[Hint: The manifold M admits a parametrization $\alpha: A \rightarrow \mathbb{R}^{3}$ defined by $\alpha(x, y)=(x, y, F(x, y))$.]
Solution. Since the manifold M admits a parametrization α, we have

$$
\operatorname{vol} M=\int_{M} 1 d V=\int_{A} V(D \alpha(x, y))
$$

We compute the Jacobian $D \alpha(x, y)$ and the volume $V(D \alpha)$:

$$
\begin{gathered}
D \alpha(x, y)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y}
\end{array}\right) . \\
V(D \alpha(x, y))
\end{gathered}=\sqrt{\operatorname{det}\left(D \alpha(x, y)^{T} D \alpha(x, y)\right)}=\sqrt{\operatorname{det}\left(\left(\begin{array}{ccc}
1 & 0 & \frac{\partial F}{\partial x} \\
0 & 1 & \frac{\partial F}{\partial y}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y}
\end{array}\right)\right)}
$$

3. Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{aligned}
& A=\{x=0\} \\
& B=\{x=y \mid x \geq 0\} \cup\{x=-y \mid x \leq 0\} \\
& C=\{x=0\} \cup\{y=0\} \\
& D=\left\{\left(t, t^{3}\right) \mid t \in \mathbb{R}\right\}
\end{aligned}
$$

(a) (10 pts) Which of the subsets A, B, C and D are C^{0} manifolds in \mathbb{R}^{2} ? Which are not? You have to explain your answer, but you do not have to give a full proof.

Solution. C is not a C^{0} manifold, and the other subsets are. First C is not a C^{0} manifold because there is no neighborhood $V \stackrel{\text { open }}{\subset} D$ of the origin $(0,0) \in C$ that is homeomorphic (meaning that it is continuous and has a continuous inverse) to an open subset of \mathbb{R}.

- A is a C^{0} manifold with a single coordinate chart $\alpha: \mathbb{R} \rightarrow A, \alpha(x)=(0, x)$. This is clearly a homeomorphism.
- B is a C^{0} manifold with a single coordinate chart $\beta: \mathbb{R} \rightarrow A, \beta(x)=(x,|x|)$. This is clearly a homeomorphism.
- D is a C^{0} manifold with a single coordinate chart $\gamma: \mathbb{R} \rightarrow A, \gamma(x)=\left(x, x^{3}\right)$. This is clearly a homeomorphism.
(b) (10 pts) Which of the subsets A, B, C and D are smooth $\left(C^{\infty}\right)$ manifolds in \mathbb{R}^{2} ? Which are not? You have to explain your answer, but you do not have to give a full proof.

Solution. The answer is the same as in part (a), except that B is not a smooth manifold; there is no neighborhood of the origin $(0,0) \in B$ that is diffeomorphic to an open subset of \mathbb{R}, because of the corner. (The coordinate chart β is only a homeomorphism but not a diffeomorphism. It is not even a C^{1} diffeomorphism in fact.) It is clear that α and γ are smooth and hence diffeomorphisms (they define global coordinate charts).
4. Let $\Omega \in \mathcal{A}^{k}(V)$ be an alternating k-tensor on a vector space.
(a) (10 pts) If $v_{1}, \ldots, v_{k} \in V$ are vectors so that there are two distinct indices i and j such that $v_{i}=v_{j}$, show that $\Omega\left(v_{1}, \ldots, v_{k}\right)=0$.

Solution. If $\sigma \in S_{k}$ is a permutation, then by definition Ω is alternating if $\Omega^{\sigma}=$ $-\Omega$, where

$$
\Omega^{\sigma}\left(v_{1}, \ldots, v_{k}\right):=\Omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

Now suppose v_{1}, \ldots, v_{k} is a collection of vectors so that $v_{i}=v_{j}$ for two different indices $i \neq j \in\{1, \ldots, k\}$. Then let $\sigma_{i j} \in S_{k}$ be the permutation with $\sigma_{i j}(i)=j$, $\sigma_{i j}(j)=i$ and $\sigma_{i j}(k)=k$ for $k \neq i, j$. Then $\Omega^{\sigma}\left(v_{1}, \ldots, v_{k}\right)=\Omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=$ $\Omega\left(v_{1}, \ldots, v_{k}\right)$. But by definition of being alternating we conclude $\Omega\left(v_{1}, \ldots, v_{k}\right)=$ $-\Omega\left(v_{1}, \ldots, v_{k}\right)$ which implies $\Omega\left(v_{1}, \ldots, v_{k}\right)=0$.
(b) (10 pts) Let $W \subset V$ be a subspace of dimension $<k$. Show that $\Omega\left(w_{1}, \ldots, w_{k}\right)=0$ for any $w_{1}, \ldots, w_{k} \in W$. [Hint: You may use part (a) even if you have not solved it.]

Solution. Since W has dimension $<k$, any tuple of k vectors w_{1}, \ldots, w_{k} are linearly dependent. Therefore we can for instance write $w_{k}=\sum_{i=1}^{k-1} c_{i} w_{i}$, which gives

$$
\Omega\left(w_{1}, \ldots, w_{k}\right)=\Omega\left(w_{1}, \ldots, \sum_{i=1}^{k-1} c_{i} w_{i}\right)=\sum_{i=1}^{k-1} c_{i} \Omega\left(w_{1}, \ldots, w_{k-1}, w_{i}\right)
$$

Each term in this sum is zero by part (a). This is because the tuple $\left(w_{1}, \ldots, w_{k-1}, w_{i}\right)$ of k vectors in W always contain at one pair of duplicates.
5. (a) (5 pts) Show that any open set in \mathbb{R}^{n} is a smooth n-manifold in \mathbb{R}^{n}.

Solution. Let $U \stackrel{\text { open }}{\subset} \mathbb{R}^{n}$. The smooth function id: $U \rightarrow U$ is a coordinate chart (meaning a diffeomorphism) at every point $x \in U$, and hence U is an n-manifold in \mathbb{R}^{n}.
(b) (10 pts) Let $\mathbb{R}^{n \times n}$ denote the set of $n \times n$-matrices; we fix some identification between $\mathbb{R}^{n \times n}$ and $\mathbb{R}^{n^{2}}$. Show that the determinant as a function $\operatorname{det}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is smooth.

Solution. If $A \in \mathbb{R}^{n \times n}$ is identified with the tuple $\left(x_{1}, \ldots, x_{n^{2}}\right) \in \mathbb{R}^{n^{2}}$, then $\operatorname{det} A$ is a polynomial function in the variables $x_{1}, \ldots, x_{n^{2}}$, and polynomials are smooth.
(c) (10 pts) Let $\mathrm{GL}(n ; \mathbb{R}) \subset \mathbb{R}^{n \times n}$ denote the set of all invertible $n \times n$-matrices. Show that $\mathrm{GL}(n ; \mathbb{R})$ is a smooth n^{2}-manifold in $\mathbb{R}^{n^{2}}$.

Solution. By definition a matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{det} A \neq 0$, so

$$
\mathrm{GL}(n ; \mathbb{R})=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det} A \neq 0\right\}=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})
$$

Now $\mathbb{R} \backslash\{0\} \stackrel{\text { open }}{\subset} \mathbb{R}$, and because det is smooth by part (b) (and therefore continuous). Therefore $\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})=\operatorname{GL}(n ; \mathbb{R}) \stackrel{\text { open }}{\subset} \mathbb{R}^{n^{2}}$ and is hence a smooth n^{2}-manifold in $\mathbb{R}^{n^{2}}$ by part (a).

