
MAT 322/523 MIDTERM I

WEDNESDAY FEBRUARY 28, 2024
2:30–3:20PM

Name: ID:

Instructions.
(1) Fill in your name and Stony Brook ID number and circle your lecture number at the top

of this cover sheet.

(2) This exam is closed-book and closed-notes; no electronic devices.

(3) You have 80 minutes to complete this exam.

(4) You must justify all your answers and show all your work (unless the problem says
otherwise). Even a correct answer without any justification will result in no credit.
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1. Let A be an (m×n)-matrix with the element aij at position (i, j). Define ∥A∥ :=
√∑m

i=1
∑n

j=1 a2
ij .

Let x ∈ Rn.
(a) (10 pts) Show ∥Ax∥ =

√∑m
i=1 ⟨ai, x⟩2, where ai ∈ Rn is the i-th row of A, and where

⟨−, −⟩ denotes the standard inner product on Rn, and where ∥−∥ denotes the standard
Euclidean norm on Rn.

Solution. By definition Ax is the vector with i-th component equal to ∑n
j=1 aijxj .

Therefore∥Ax∥ =
√∑m

i=1
(∑n

j=1 aijxj
)2. The i-th row of A is ai = (ai1 · · · ain),

and we note that ∑n
j=1 aijxj = ⟨ai, x⟩ by definition. Therefore ∥Ax∥ =√∑m

i=1 ⟨ai, x⟩2. □

(b) (10 pts) Show that ∥Ax∥ ≤ ∥A∥∥x∥. [Hint: Use Cauchy–Schwarz inequality.]

Solution. By part (a) we have ∥Ax∥ =
√∑m

i=1 ⟨ai, x⟩2. Applying the Cauchy–
Schwarz inequality ⟨ai, x⟩2 ≤∥ai∥2∥x∥2 yields

∥Ax∥ =

√√√√ m∑
i=1

⟨ai, x⟩2 ≤

√√√√ m∑
i=1

∥ai∥2∥x∥2

=

√√√√ m∑
i=1

∥ai∥2∥x∥ =

√√√√ m∑
i=1

(
n∑

j=1
a2

ij

)
∥x∥ =∥A∥∥x∥ .

□
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2. (a) (5 pts) Write down the definition of what it means for a metric space (X, d) to be con-
nected.

Solution. A metric space X is connected if and only if X = A ∪ B for non-empty
A, B

open
⊂ X implies that A ∩ B ̸= ∅. □

(b) (15 pts) Suppose that (X, d) is a connected metric space. Show that if A ⊂ X is both
open and closed, then either A = ∅ or A = X.

Solution. By hypothesis A
open
⊂ X. Since A is closed in X, it means by definition

that X ∖A
open
⊂ X. By construction A ∩ (X ∖A) = ∅. Therefore X = A ∪ (X ∖A)

is a separation of X, which by definition means that X is disconnected. This is a
contradiction and therefore we must either have A = ∅ or X ∖ A = ∅. □
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3. (a) (5 pts) Let f : Rn → Rm be a function. Consider the following hypotheses on f :
(1) f is of class C1

(2) all directional derivatives of f exist
(3) all partial derivatives of f exist
(4) f is differentiable
(5) f is of class C∞

Without justification, rank the hypotheses by strength by filling in the blanks:

=⇒ =⇒ =⇒ =⇒
Furthermore, which hypotheses implies that f is continuous? No justification needed.

Solution. The correct answer is
(5) =⇒ (1) =⇒ (4) =⇒ (2) =⇒ (3).

The hypotheses (4) (and hence (1) and (5)) implies that f is continuous. We
have seen an example in the lectures of a discontinuous function f such that all
directional derivatives exist. □

(b) (15 pts) A function f : Rn → R is called Lipschitz continuous if there exists a constant
K ≥ 0 such that for all x, y ∈ Rn we have

|f(x) − f(y)| ≤ K∥x − y∥ .

(i) Show that if f is Lipschitz continuous, then f is continuous.
(ii) Show that if f is differentiable such that Df is bounded, then it is Lipschitz contin-

uous [Hint: Use the mean value theorem and the result of Problem 1(b).]

Solution. (i) Continuity means that by definition ∀ε > 0 ∃δ > 0 such that
∥x − y∥ < δ ⇒ |f(x) − f(y)| < ε. Letting ε > 0 be arbitrary and as-
suming ∥x − y∥ < δ we have by the assumption of Lipschitz continuity that
|f(x) − f(y)| ≤ K∥x − y∥ < Kδ, which means that we can choose δ = ε

K to
achieve |f(x) − f(y)| < ε.

(ii) The mean value theorem says that if x, y ∈ Rn, then there is some point c
that lies on the straight line connecting x and y, such that f(x) − f(y) =
Df(c) · (x − y). Taking norms on both sides gives

|f(x) − f(y)| = |Df(c) · (x − y)|
Problem 1(b)

≤ ∥Df(c)∥∥x − y∥ ≤ M∥x − y∥ ,

which shows that f is Lipschitz continuous with K = M , which is the bound
on the derivative of f .

□
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4. Consider the function f : R2 → R defined by f(0, y) = 0 for all y ∈ R, f(x, 0) = 0 for all
x ∈ R, and

f(x, y) = x

y
+ y

x
for xy ̸= 0.

(a) (5 pts) Compute the partial derivatives ∂f
∂x (0, 0) and ∂f

∂y (0, 0).

Solution. We use the definition. Namely,
∂f

∂x
(0, 0) = lim

t→0

f(t, 0) − f(0, 0)
t

= 0

∂f

∂y
(0, 0) = lim

t→0

f(0, t) − f(0, 0)
t

= 0,

since the numerators are constantly equal to zero. □

(b) (15 pts) Compute the directional derivative f ′((0, 0); (1, 1)). Is f differentiable at the
origin?

Solution. We use the definition. Namely,

f ′((0, 0); (1, 1)) = lim
t→0

f(t, t) − f(0, 0)
t

= lim
t→0

t
t + t

t

t
= lim

t→0

2
t

= ∞.

Since this limit does not exist, we conclude that the directional derivative
f ′((0, 0); (1, 1)) does not exist. It follows that f can not be differentiable at the ori-
gin, because differentiability implies existence of every directional derivative. □
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5. Let Q ⊂ Rn be a rectangle.
(a) (5 pts) For any a ∈ Q, show that {a} ⊂ Q is a bounded set of measure zero.

Solution. By definition {a} is bounded because it is contained in a ball of any
(finite) radius centered at a. Let ε > 0. We cover {a} by a single rectangle
Qε :=

∏n
j=1

[
aj − 1

2
n

√
ε
2 , aj + 1

2
n

√
ε
2

]
where aj is the j-th component of a ∈ Rn.

This rectangle clearly contains {a} and it has volume

vol Qε =
n∏

j=1

(
aj + 1

2
n

√
ε

2

)
−
(

aj − 1
2

n

√
ε

2

)
=

n∏
j=1

n

√
ε

2
= ε

2
< ε,

for any ε > 0. Consequently {a} has measure zero. □

(b) (15 pts) Let f : Q → R be an integrable function. For any a ∈ Rn, show that f is integrable
over {a} and

∫
{a} f = 0. [Hint: Pick a partition of Q that has ∏n

i=1 [ai − ε, ai + ε] as a
subrectangle.]
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Solution. By part (a), {a} ⊂ Q is a bounded subset of Q of measure zero. We
show that f is integrable (and we compute the integral) by using the definition.
We define

f{a}(x) =
{

f(a), x = a

0, otherwise
.

Then by definition
∫

{a} f =
∫

Q f{a} if it exists. We therefore need to check that
f{a} is integrable on Q, provided that f is. We will show that for any ε > 0 there
exists a partition P of Q such that U(f, P )−L(f, P ) < ε. To that end let P be any
partition of Q that has Qε as in part (a) as a subrectangle. For any subrectangle
R determined by P that is different from Qε we have f{a}(x) = 0 for all x ∈ R so
mR(f{a}) = MR(f{a}). For R = Qε we have

MQε(f{a}) − mQε(f{a}) = |f(a)|,
(this we see by looking at two cases: we conclude the above in either of the two
cases f(a) ≥ 0 and f(a) ≤ 0) and consequently
U(f{a}, P )−L(f{a}, P ) =

∑
R

(MR(f{a})−mR(f{a})) vol R = |f(a)| vol Qε < |f(a)|ε.

This shows that f is integrable on {a} (more precisely, repeat the above with
Q ε

|f(a) |).
Finally, because f is integrable we have

∫
{a} f =

∫
{a}f =

∫
{a}f . Let P be a

partition as above. We have two cases:
f(a) ≥ 0: Then mR(f{a}) = 0 for any R determined by P (if R does not contain a

the value of f{a} is constantly equal to zero and if R contains a, the minimum
of f{a} over R is 0 since f(a) ≥ 0).

In this case we obtain
∫

{a} f =
∫

{a}f = 0.
f(a) ≤ 0: Similar to the above we have MR(f{a}) = 0 for any R determined by P .

Therefore we obtain
∫

{a} f =
∫

{a}f = 0.
□
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