MAT 322/523 MIDTERM I

WEDNESDAY FEBRUARY 28, 2024
 2:30-3:20PM

Name: \qquad ID: \qquad

Instructions.

(1) Fill in your name and Stony Brook ID number and circle your lecture number at the top of this cover sheet.
(2) This exam is closed-book and closed-notes; no electronic devices.
(3) You have 80 minutes to complete this exam.
(4) You must justify all your answers and show all your work (unless the problem says otherwise). Even a correct answer without any justification will result in no credit.

1. Let A be an $(m \times n)$-matrix with the element $a_{i j}$ at position (i, j). Define $\|A\|:=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}$. Let $\boldsymbol{x} \in \mathbb{R}^{n}$.
(a) (10 pts) Show $\|A \boldsymbol{x}\|=\sqrt{\sum_{i=1}^{m}\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle^{2}}$, where $\boldsymbol{a}_{i} \in \mathbb{R}^{n}$ is the i-th row of A, and where $\langle-,-\rangle$ denotes the standard inner product on \mathbb{R}^{n}, and where $\|-\|$ denotes the standard Euclidean norm on \mathbb{R}^{n}.

Solution. By definition $A \boldsymbol{x}$ is the vector with i-th component equal to $\sum_{j=1}^{n} a_{i j} x_{j}$. Therefore $\|A \boldsymbol{x}\|=\sqrt{\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}}$. The i-th row of A is $\boldsymbol{a}_{i}=\left(\begin{array}{lll}a_{i 1} & \cdots & a_{i n}\end{array}\right)$, and we note that $\sum_{j=1}^{n} a_{i j} x_{j}=\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle$ by definition. Therefore $\|A \boldsymbol{x}\|=$ $\sqrt{\sum_{i=1}^{m}\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle^{2}}$.
(b) (10 pts) Show that $\|A \boldsymbol{x}\| \leq\|A\|\|\boldsymbol{x}\|$. [Hint: Use Cauchy-Schwarz inequality.]

Solution. By part (a) we have $\|A \boldsymbol{x}\|=\sqrt{\sum_{i=1}^{m}\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle^{2}}$. Applying the CauchySchwarz inequality $\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle^{2} \leq\left\|\boldsymbol{a}_{i}\right\|^{2}\|\boldsymbol{x}\|^{2}$ yields

$$
\begin{aligned}
\|A \boldsymbol{x}\| & =\sqrt{\sum_{i=1}^{m}\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle^{2}} \leq \sqrt{\sum_{i=1}^{m}\left\|\boldsymbol{a}_{i}\right\|^{2}\|\boldsymbol{x}\|^{2}} \\
& =\sqrt{\sum_{i=1}^{m}\left\|\boldsymbol{a}_{i}\right\|^{2}}\|\boldsymbol{x}\|=\sqrt{\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j}^{2}\right)}\|\boldsymbol{x}\|=\|A\|\|\boldsymbol{x}\| .
\end{aligned}
$$

2. (a) (5 pts) Write down the definition of what it means for a metric space (X, d) to be connected.

Solution. A metric space X is connected if and only if $X=A \cup B$ for non-empty $A, B \stackrel{\text { open }}{\subset} X$ implies that $A \cap B \neq \varnothing$.
(b) (15 pts) Suppose that (X, d) is a connected metric space. Show that if $A \subset X$ is both open and closed, then either $A=\varnothing$ or $A=X$.

Solution. By hypothesis $A \stackrel{\text { open }}{\subset} X$. Since A is closed in X, it means by definition that $X \backslash A \stackrel{\text { open }}{\subset} X$. By construction $A \cap(X \backslash A)=\varnothing$. Therefore $X=A \cup(X \backslash A)$ is a separation of X, which by definition means that X is disconnected. This is a contradiction and therefore we must either have $A=\varnothing$ or $X \backslash A=\varnothing$.
3. (a) (5 pts) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. Consider the following hypotheses on f :
(1) f is of class C^{1}
(2) all directional derivatives of f exist
(3) all partial derivatives of f exist
(4) f is differentiable
(5) f is of class C^{∞}

Without justification, rank the hypotheses by strength by filling in the blanks:

Furthermore, which hypotheses implies that f is continuous? No justification needed.
Solution. The correct answer is

$$
(5) \Longrightarrow(1) \Longrightarrow(4) \Longrightarrow(2) \Longrightarrow(3)
$$

The hypotheses (4) (and hence (1) and (5)) implies that f is continuous. We have seen an example in the lectures of a discontinuous function f such that all directional derivatives exist.
(b) (15 pts) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called Lipschitz continuous if there exists a constant $K \geq 0$ such that for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ we have

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq K\|\boldsymbol{x}-\boldsymbol{y}\|
$$

(i) Show that if f is Lipschitz continuous, then f is continuous.
(ii) Show that if f is differentiable such that $D f$ is bounded, then it is Lipschitz continuous [Hint: Use the mean value theorem and the result of Problem 1(b).]

Solution. (i) Continuity means that by definition $\forall \varepsilon>0 \exists \delta>0$ such that $\|\boldsymbol{x}-\boldsymbol{y}\|<\delta \Rightarrow|f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon$. Letting $\varepsilon>0$ be arbitrary and assuming $\|\boldsymbol{x}-\boldsymbol{y}\|<\delta$ we have by the assumption of Lipschitz continuity that $|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq K\|\boldsymbol{x}-\boldsymbol{y}\|<K \delta$, which means that we can choose $\delta=\frac{\varepsilon}{K}$ to achieve $|f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon$.
(ii) The mean value theorem says that if $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, then there is some point \boldsymbol{c} that lies on the straight line connecting \boldsymbol{x} and \boldsymbol{y}, such that $f(\boldsymbol{x})-f(\boldsymbol{y})=$ $D f(\boldsymbol{c}) \cdot(\boldsymbol{x}-\boldsymbol{y})$. Taking norms on both sides gives

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})|=|D f(\boldsymbol{c}) \cdot(\boldsymbol{x}-\boldsymbol{y})| \stackrel{\text { Problem } 1(\mathrm{~b})}{\leq}\|D f(\boldsymbol{c})\|\|\boldsymbol{x}-\boldsymbol{y}\| \leq M\|\boldsymbol{x}-\boldsymbol{y}\|
$$

which shows that f is Lipschitz continuous with $K=M$, which is the bound on the derivative of f.
4. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(0, y)=0$ for all $y \in \mathbb{R}, f(x, 0)=0$ for all $x \in \mathbb{R}$, and

$$
f(x, y)=\frac{x}{y}+\frac{y}{x} \text { for } x y \neq 0
$$

(a) (5 pts) Compute the partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

Solution. We use the definition. Namely,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=0
\end{aligned}
$$

since the numerators are constantly equal to zero.
(b) (15 pts) Compute the directional derivative $f^{\prime}((0,0) ;(1,1))$. Is f differentiable at the origin?

Solution. We use the definition. Namely,

$$
f^{\prime}((0,0) ;(1,1))=\lim _{t \rightarrow 0} \frac{f(t, t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{\frac{t}{t}+\frac{t}{t}}{t}=\lim _{t \rightarrow 0} \frac{2}{t}=\infty
$$

Since this limit does not exist, we conclude that the directional derivative $f^{\prime}((0,0) ;(1,1))$ does not exist. It follows that f can not be differentiable at the origin, because differentiability implies existence of every directional derivative.
5. Let $Q \subset \mathbb{R}^{n}$ be a rectangle.
(a) (5 pts) For any $\boldsymbol{a} \in Q$, show that $\{\boldsymbol{a}\} \subset Q$ is a bounded set of measure zero.

Solution. By definition $\{\boldsymbol{a}\}$ is bounded because it is contained in a ball of any (finite) radius centered at \boldsymbol{a}. Let $\varepsilon>0$. We cover $\{\boldsymbol{a}\}$ by a single rectangle $Q_{\varepsilon}:=\prod_{j=1}^{n}\left[a_{j}-\frac{1}{2} \sqrt[n]{\frac{\varepsilon}{2}}, a_{j}+\frac{1}{2} \sqrt[n]{\frac{\varepsilon}{2}}\right]$ where a_{j} is the j-th component of $\boldsymbol{a} \in \mathbb{R}^{n}$. This rectangle clearly contains $\{\boldsymbol{a}\}$ and it has volume

$$
\operatorname{vol} Q_{\varepsilon}=\prod_{j=1}^{n}\left(a_{j}+\frac{1}{2} \sqrt[n]{\frac{\varepsilon}{2}}\right)-\left(a_{j}-\frac{1}{2} \sqrt[n]{\frac{\varepsilon}{2}}\right)=\prod_{j=1}^{n} \sqrt[n]{\frac{\varepsilon}{2}}=\frac{\varepsilon}{2}<\varepsilon
$$

for any $\varepsilon>0$. Consequently $\{\boldsymbol{a}\}$ has measure zero.
(b) (15 pts) Let $f: Q \rightarrow \mathbb{R}$ be an integrable function. For any $\boldsymbol{a} \in \mathbb{R}^{n}$, show that f is integrable over $\{\boldsymbol{a}\}$ and $\int_{\{a\}} f=0$. [Hint: Pick a partition of Q that has $\prod_{i=1}^{n}\left[a_{i}-\varepsilon, a_{i}+\varepsilon\right]$ as a subrectangle.]

Solution. By part (a), $\{\boldsymbol{a}\} \subset Q$ is a bounded subset of Q of measure zero. We show that f is integrable (and we compute the integral) by using the definition. We define

$$
f_{\{\boldsymbol{a}\}}(\boldsymbol{x})= \begin{cases}f(\boldsymbol{a}), & \boldsymbol{x}=\boldsymbol{a} \\ 0, & \text { otherwise }\end{cases}
$$

Then by definition $\int_{\{a\}} f=\int_{Q} f_{\{a\}}$ if it exists. We therefore need to check that $f_{\{a\}}$ is integrable on Q, provided that f is. We will show that for any $\varepsilon>0$ there exists a partition P of Q such that $U(f, P)-L(f, P)<\varepsilon$. To that end let P be any partition of Q that has Q_{ε} as in part (a) as a subrectangle. For any subrectangle R determined by P that is different from Q_{ε} we have $f_{\{a\}}(\boldsymbol{x})=0$ for all $\boldsymbol{x} \in R$ so $m_{R}\left(f_{\{a\}}\right)=M_{R}\left(f_{\{a\}}\right)$. For $R=Q_{\varepsilon}$ we have

$$
M_{Q_{\varepsilon}}\left(f_{\{a\}}\right)-m_{Q_{\varepsilon}}\left(f_{\{\boldsymbol{a}\}}\right)=|f(\boldsymbol{a})|
$$

(this we see by looking at two cases: we conclude the above in either of the two cases $f(\boldsymbol{a}) \geq 0$ and $f(\boldsymbol{a}) \leq 0)$ and consequently
$U\left(f_{\{\boldsymbol{a}\}}, P\right)-L\left(f_{\{\boldsymbol{a}\}}, P\right)=\sum_{R}\left(M_{R}\left(f_{\{\boldsymbol{a}\}}\right)-m_{R}\left(f_{\{\boldsymbol{a}\}}\right)\right) \operatorname{vol} R=|f(\boldsymbol{a})| \operatorname{vol} Q_{\varepsilon}<|f(\boldsymbol{a})| \varepsilon$.
This shows that f is integrable on $\{\boldsymbol{a}\}$ (more precisely, repeat the above with $\left.Q_{\left.\frac{\varepsilon}{\mid f(a)} \right\rvert\,}\right)$.
Finally, because f is integrable we have $\int_{\{a\}} f=\bar{\int}_{\{a\}} f=\underline{\int}_{\{a\}} f$. Let P be a partition as above. We have two cases:
$f(\boldsymbol{a}) \geq 0$: Then $m_{R}\left(f_{\{a\}}\right)=0$ for any R determined by P (if R does not contain \boldsymbol{a} the value of $f_{\{a\}}$ is constantly equal to zero and if R contains \boldsymbol{a}, the minimum of $f_{\{\boldsymbol{a}\}}$ over R is 0 since $f(\boldsymbol{a}) \geq 0$).

In this case we obtain $\int_{\{a\}} f=\underline{\int}_{\{a\}} f=0$.
$f(\boldsymbol{a}) \leq 0$: Similar to the above we have $M_{R}\left(f_{\{a\}}\right)=0$ for any R determined by P. Therefore we obtain $\int_{\{a\}} f=\underline{\int}_{\{a\}} f=0$.

