MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 9

DUE: MONDAY APRIL 8, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2,3 and 6 .

1. (Munkres $\S 28.1)$ Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w} \in \mathbb{R}^{5}$. Let

$$
\begin{aligned}
F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) & =2 x_{2} y_{2} z_{1}+x_{1} y_{5} z_{4} \\
G(\boldsymbol{x}, \boldsymbol{y}) & =x_{1} y_{3}+x_{3} y_{1} \\
h(\boldsymbol{w}) & =w_{1}-2 w_{3}
\end{aligned}
$$

Recall that the alternatization of a k-tensor is given by

$$
A F=\sum_{\sigma \in S_{k}}(-1)^{\sigma} F
$$

(a) Write $A F$ and $A G$ in terms of elementary alternating tensors. [Hint: Write F and G in terms of elementary tensors and use Step 9 of the proof of Theorem 28.1 to compute $A \phi_{I}$.]
(b) Express $(A F) \wedge h$ in terms of elementary alternating tensors.
(c) Express $(A F)(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ as a function.
2. (Munkres §28.2) If G is symmetric, show that $A G=0$. Does the converse hold?
3. (Munkres $\S 28.4)$ Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ be vectors in \mathbb{R}^{n}; let X be the matrix $X=\left[\boldsymbol{x}_{1} \cdots \boldsymbol{x}_{k}\right]$. If $I=\left(i_{1}, \ldots, i_{k}\right)$ is an arbitrary k-tuple from the set $\{1, \ldots, n\}$, show that

$$
\phi_{i_{1}} \wedge \cdots \wedge \phi_{i_{k}}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)=\operatorname{det} X_{I}
$$

4. (Munkres $\S 29.1)$ Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be of class C^{r}. Show that the velocity vector of γ corresponding to the parameter value t is the vector $\gamma_{*}\left(t ; \boldsymbol{e}_{1}\right)$.
5. (Munkres $\S 29.3)$ Let M be a k-manifold of class C^{r} in \mathbb{R}^{n}. Let $\boldsymbol{p} \in M$. Show that the tangent space of M at \boldsymbol{p} is well-defined. (Meaning that $T_{\boldsymbol{p}} M$ is independent of the choice of the coordinate chart.)
6. (Munkres $\S 29.4)$ Let M be a k-manifold in \mathbb{R}^{n} of class C^{r}. Let $\boldsymbol{p} \in M-\partial M$.
(a) Show that if $(\boldsymbol{p}, \boldsymbol{v})$ is a tangent vector to M, then there is a parametrized curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow$ \mathbb{R}^{n} whose image set lies in M, such that $(\boldsymbol{p}, \boldsymbol{v})$ equals the velocity vector of γ corresponding to parameter value $t=0$.
(b) Prove the converse. [Hint: Recall that for any coordinate chart α, the map α^{-1} is of class C^{r}.]
