MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 9

DUE: MONDAY APRIL 8, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2, 3 and 6.

1. (Munkres §28.1) Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w} \in \mathbb{R}^5$. Let

$$egin{aligned} F(m{x},m{y},m{z}) &= 2x_2y_2z_1 + x_1y_5z_4, \ G(m{x},m{y}) &= x_1y_3 + x_3y_1, \ h(m{w}) &= w_1 - 2w_3. \end{aligned}$$

Recall that the *alternatization* of a k-tensor is given by

$$AF = \sum_{\sigma \in S_k} (-1)^{\sigma} F.$$

- (a) Write AF and AG in terms of elementary alternating tensors. [*Hint:* Write F and G in terms of elementary tensors and use Step 9 of the proof of Theorem 28.1 to compute $A\phi_{I}$.]
- (b) Express $(AF) \wedge h$ in terms of elementary alternating tensors.
- (c) Express $(AF)(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ as a function.
- **2.** (Munkres §28.2) If G is symmetric, show that AG = 0. Does the converse hold?
- **3.** (Munkres §28.4) Let $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k$ be vectors in \mathbb{R}^n ; let X be the matrix $X = [\boldsymbol{x}_1 \cdots \boldsymbol{x}_k]$. If $I = (i_1, \ldots, i_k)$ is an *arbitrary k*-tuple from the set $\{1, \ldots, n\}$, show that

$$\phi_{i_1} \wedge \cdots \wedge \phi_{i_k}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k) = \det X_I.$$

- 4. (Munkres §29.1) Let $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ be of class C^r . Show that the velocity vector of γ corresponding to the parameter value t is the vector $\gamma_*(t; e_1)$.
- 5. (Munkres §29.3) Let M be a k-manifold of class C^r in \mathbb{R}^n . Let $p \in M$. Show that the tangent space of M at p is well-defined. (Meaning that T_pM is independent of the choice of the coordinate chart.)
- **6.** (Munkres §29.4) Let M be a k-manifold in \mathbb{R}^n of class C^r . Let $p \in M \partial M$.
 - (a) Show that if $(\boldsymbol{p}, \boldsymbol{v})$ is a tangent vector to M, then there is a parametrized curve $\gamma \colon (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ whose image set lies in M, such that $(\boldsymbol{p}, \boldsymbol{v})$ equals the velocity vector of γ corresponding to parameter value t = 0.

(b) Prove the converse. [*Hint:* Recall that for any coordinate chart α , the map α^{-1} is of class C^r .]