MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 8

DUE: MONDAY APRIL 1, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1,3 and 5.

1. (Munkres $\S 25.3(\mathrm{a})$) Consider the torus T of Exercise 7 of $\S 17$, namely

$$
T=\left\{(r, \theta, z) \mid(r-b)^{2}+z^{2}=a^{2}, 0 \leq \theta \leq 2 \pi\right\}
$$

Find the area of this torus. [Hint: The cylindrical coordinate transformation carries a cylinder onto T. Parametrize the cylinder using the fact that its cross-section are circles.]
2. (Munkres $\S 25.8)$ Let M and N be compact manifolds without boundary in \mathbb{R}^{m} and \mathbb{R}^{n}, respectively.
(a) Let $f: M \rightarrow \mathbb{R}$ and $g: N \rightarrow \mathbb{R}$ be continuous. Show that

$$
\int_{M \times N} f g d V=\left(\int_{M} f d V\right)\left(\int_{N} g d V\right)
$$

[Hint: Consider the case where the supports of f and g are contained in coordinate patches.]
(b) Show that $\operatorname{vol}(M \times N)=\operatorname{vol}(M) \operatorname{vol}(N)$.
(c) Find the area of the 2-manifold $S^{1} \times S^{1}$ in \mathbb{R}^{4}.
3. (Munkres §26.2)
(a) Check that if f and g are multilinear, so is $f \otimes g$.
(b) Check the basic properties of the tensor product (Theorem 26.4). Namely
(i) $f \otimes(g \otimes h)=(f \otimes g) \otimes h$
(ii) $(c f) \otimes g=c(f \otimes g)=f \otimes(c g)$
(iii) Suppose f and g have the same order. Then:

$$
\begin{aligned}
& (f+g) \otimes h=f \otimes h+g \otimes h \\
& h \otimes(f+g)=h \otimes f+h \otimes g
\end{aligned}
$$

(iv) Given a basis $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ for V, the corresponding elementary tensors ϕ_{I} satisfy the equation

$$
\phi_{I}=\phi_{i_{1}} \otimes \phi_{i_{2}} \otimes \cdots \otimes \phi_{i_{k}}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$.
4. (Munkres §26.7) Show that the four properties stated in Theorem 26.4 characterize the tensor product uniquely, for finite-dimensional vector spaces V.
5. (Munkres §27.1) Which of the following are alternating tensors in \mathbb{R}^{4} ?

$$
\begin{aligned}
& f(\boldsymbol{x}, \boldsymbol{y})=x_{1} y_{2}-x_{2} y_{1}+x_{1} y_{1} \\
& g(\boldsymbol{x}, \boldsymbol{y})=x_{1} y_{3}-x_{3} y_{2} \\
& h(\boldsymbol{x}, \boldsymbol{y})=\left(x_{1}\right)^{3}\left(y_{2}\right)^{3}-\left(x_{2}\right)^{3}\left(y_{1}\right)^{3} .
\end{aligned}
$$

6. (Munkres $\S 27.2)$ Let $\sigma \in S_{6}$ be the permutation such that

$$
(\sigma(1), \sigma(2), \sigma(3), \sigma(4), \sigma(5))=(3,1,4,5,2) .
$$

Use the procedure given in the proof of Lemma 27.1 to write σ as a composite of elementary permutations.

