MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 7

DUE: MONDAY MARCH 25, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2, 3 and 4.
- **1.** (Munkres §23.1) Let $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ be the map $\alpha(x) = (x, x^2)$; let M be the image set of α . Show that M is a 1-manifold in \mathbb{R}^2 covered by a single coordinate patch α .
- **2.** (Munkres §23.3)
 - (a) Show that the unit circle S^1 is a 1-manifold in \mathbb{R}^2 .
 - (b) Show that the function $\alpha \colon [0,1) \to S^1$ given by

$$\alpha(t) = (\cos 2\pi t, \sin 2\pi t)$$

is not a coordinate patch on S^1 .

3. (Munkres §24.4) Show that the upper hemisphere of $S^{n-1}(a)$, defined by the equation $E^{n-1}_+(a) = S^{n-1}(a) \cap \mathbb{H}^n,$

is an (n-1)-manifold. What is its boundary?

- 4. (Munkres §24.5) Let O(3) denote the set of all orthogonal 3×3 matrices, considered as a subspace of \mathbb{R}^9 .
 - (a) Define a C^{∞} function $f \colon \mathbb{R}^9 \to \mathbb{R}^6$ such that O(3) is the solution set of the equation $f(\boldsymbol{x}) = \boldsymbol{0}$.
 - (b) Show that O(3) is a compact 3-manifold in \mathbb{R}^9 without boundary. [*Hint: Show the rows of* $Df(\mathbf{x})$ are independent if $\mathbf{x} \in O(3)$.]
- **5.** (Munkres §21.1) Let

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{bmatrix}$$

- (a) Find $X^T \cdot X$.
- (b) Find V(X).
- 6. (Munkres §21.2) Let x_1, \ldots, x_k be vectors in \mathbb{R}^n . Show that

$$V(\boldsymbol{x}_1,\ldots,\lambda\boldsymbol{x}_i,\ldots,\boldsymbol{x}_k) = |\lambda|V(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k).$$