MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 7

DUE: MONDAY MARCH 25, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2,3 and 4.

1. (Munkres $\S 23.1)$ Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the map $\alpha(x)=\left(x, x^{2}\right)$; let M be the image set of α. Show that M is a 1 -manifold in \mathbb{R}^{2} covered by a single coordinate patch α.
2. (Munkres §23.3)
(a) Show that the unit circle S^{1} is a 1-manifold in \mathbb{R}^{2}.
(b) Show that the function $\alpha:[0,1) \rightarrow S^{1}$ given by

$$
\alpha(t)=(\cos 2 \pi t, \sin 2 \pi t)
$$

is not a coordinate patch on S^{1}.
3. (Munkres $\S 24.4)$ Show that the upper hemisphere of $S^{n-1}(a)$, defined by the equation

$$
E_{+}^{n-1}(a)=S^{n-1}(a) \cap \mathbb{H}^{n}
$$

is an $(n-1)$-manifold. What is its boundary?
4. (Munkres $\S 24.5)$ Let $O(3)$ denote the set of all orthogonal 3×3 matrices, considered as a subspace of \mathbb{R}^{9}.
(a) Define a C^{∞} function $f: \mathbb{R}^{9} \rightarrow \mathbb{R}^{6}$ such that $O(3)$ is the solution set of the equation $f(\boldsymbol{x})=\mathbf{0}$.
(b) Show that $O(3)$ is a compact 3 -manifold in \mathbb{R}^{9} without boundary. [Hint: Show the rows of $D f(\boldsymbol{x})$ are independent if $\boldsymbol{x} \in O(3)$.]
5. (Munkres §21.1) Let

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right]
$$

(a) Find $X^{T} \cdot X$.
(b) Find $V(X)$.
6. (Munkres $\S 21.2)$ Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ be vectors in \mathbb{R}^{n}. Show that

$$
V\left(\boldsymbol{x}_{1}, \ldots, \lambda \boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{k}\right)=|\lambda| V\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)
$$

