MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 6

DUE: MONDAY MARCH 11, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1 and 4.
- **1.** (Munkres §16.1) Prove that the function f defined by $f(x) = e^{-1/x}$ if x > 0 and f(x) = 0 otherwise, is of class C^{∞} as follows: Given any integer $n \ge 0$, define $f_n \colon \mathbb{R} \to \mathbb{R}$ by the equation

$$f_n(x) = \begin{cases} (e^{-1/x}) / x^n, & \text{for } x > 0, \\ 0, & \text{for } x \le 0. \end{cases}$$

(a) Show that f_n is continuous at 0 [*Hint: Show that* $a < e^a$ for all a. Then set a = t/2n to conclude that

$$\frac{t^n}{e^t} < \frac{(2n)^n}{e^{t/2}}.$$

Set t = 1/x and let x approach 0 through positive values.]

- (b) Show that f_n is differentiable at 0.
- (c) Show that $f'_{n}(x) = f_{n+2}(x) nf_{n+1}(x)$ for all x.
- (d) Show that f_n is of class C^{∞} .

2. (Munkres §16.3)

(a) Let S be an arbitrary subset of \mathbb{R}^n ; let $\mathbf{x}_0 \in S$. We say that the function $f: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 , of class C^r , provided there is a C^r function $g: U \to \mathbb{R}$ defined in a neighborhood U of \mathbf{x}_0 in \mathbb{R}^n , such that g agrees with f on the set $U \cap S$. In this case, show that if $\phi: \mathbb{R}^n \to \mathbb{R}$ is a C^r function whose support lies in U, then the function

$$h(\boldsymbol{x}) = \begin{cases} \phi(\boldsymbol{x})g(\boldsymbol{x}), & \text{for } \boldsymbol{x} \in U, \\ 0, & \text{for } \boldsymbol{x} \notin \text{Support } \phi, \end{cases}$$

is well-defined and of class C^r on \mathbb{R}^n .

(b) Prove the following:

Theorem. If $f: S \to R$ and f is differentiable of class C^r at each point \mathbf{x}_0 of S, then f may be extended to a C^r function $h: A \to \mathbb{R}$ that is defined on an open set A of \mathbb{R}^n containing S.

[Hint: Cover S by appropriately chosen neighborhoods, let A be their union, and take a C^{∞} partition of unity on A dominated by this collection of neighborhoods.]

3. (Munkres §17.3) Let U be the open set in \mathbb{R}^2 consisting of all \boldsymbol{x} with $\|\boldsymbol{x}\| < 1$. Let $f(x, y) = 1/(x^2 + y^2)$ for $(x, y) \neq \mathbf{0}$. Determine whether f is integrable over $U - \mathbf{0}$ and over $\mathbb{R}^2 - \overline{U}$; if so, evaluate.

4. (Munkres §17.4)

(a) Show that

$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} = \left[\int_{\mathbb{R}} e^{-x^2} \right]^2,$$

provided the first of these integrals exists.

- (b) Show the first of these integrals exists and evaluate it.
- 5. (Munkres §17.5) Let B the portion of the first quadrant in \mathbb{R}^2 lying between the hyperbolas xy = 1 and xy = 2 and the two straight lines y = x and y = 4x. Evaluate $\int_B x^2 y^3$. [Hint: Set x = u/v and y = uv.]