MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 6

DUE: MONDAY MARCH 11, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1 and 4.

1. (Munkres §16.1) Prove that the function f defined by $f(x)=e^{-1 / x}$ if $x>0$ and $f(x)=0$ otherwise, is of class C^{∞} as follows: Given any integer $n \geq 0$, define $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by the equation

$$
f_{n}(x)= \begin{cases}\left(e^{-1 / x}\right) / x^{n}, & \text { for } x>0 \\ 0, & \text { for } x \leq 0\end{cases}
$$

(a) Show that f_{n} is continuous at 0 [Hint: Show that $a<e^{a}$ for all a. Then set $a=t / 2 n$ to conclude that

$$
\frac{t^{n}}{e^{t}}<\frac{(2 n)^{n}}{e^{t / 2}}
$$

Set $t=1 / x$ and let x approach 0 through positive values.]
(b) Show that f_{n} is differentiable at 0 .
(c) Show that $f_{n}^{\prime}(x)=f_{n+2}(x)-n f_{n+1}(x)$ for all x.
(d) Show that f_{n} is of class C^{∞}.
2. (Munkres §16.3)
(a) Let S be an arbitrary subset of \mathbb{R}^{n}; let $\boldsymbol{x}_{0} \in S$. We say that the function $f: S \rightarrow \mathbb{R}$ is differentiable at \boldsymbol{x}_{0}, of class C^{r}, provided there is a C^{r} function $g: U \rightarrow \mathbb{R}$ defined in a neighborhood U of \boldsymbol{x}_{0} in \mathbb{R}^{n}, such that g agrees with f on the set $U \cap S$. In this case, show that if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{r} function whose support lies in U, then the function

$$
h(\boldsymbol{x})= \begin{cases}\phi(\boldsymbol{x}) g(\boldsymbol{x}), & \text { for } \boldsymbol{x} \in U \\ 0, & \text { for } \boldsymbol{x} \notin \text { Support } \phi\end{cases}
$$

is well-defined and of class C^{r} on \mathbb{R}^{n}.
(b) Prove the following:

Theorem. If $f: S \rightarrow R$ and f is differentiable of class C^{r} at each point \boldsymbol{x}_{0} of S, then f may be extended to a C^{r} function $h: A \rightarrow \mathbb{R}$ that is defined on an open set A of \mathbb{R}^{n} containing S.
[Hint: Cover S by appropriately chosen neighborhoods, let A be their union, and take a C^{∞} partition of unity on A dominated by this collection of neighborhoods.]
3. (Munkres $\S 17.3$) Let U be the open set in \mathbb{R}^{2} consisting of all \boldsymbol{x} with $\|\boldsymbol{x}\|<1$. Let $f(x, y)=$ $1 /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq \mathbf{0}$. Determine whether f is integrable over $U-\mathbf{0}$ and over $\mathbb{R}^{2}-\bar{U}$; if so, evaluate.
4. (Munkres $\S 17.4)$
(a) Show that

$$
\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)}=\left[\int_{\mathbb{R}} e^{-x^{2}}\right]^{2}
$$

provided the first of these integrals exists.
(b) Show the first of these integrals exists and evaluate it.
5. (Munkres $\S 17.5$) Let B the portion of the first quadrant in \mathbb{R}^{2} lying between the hyperbolas $x y=1$ and $x y=2$ and the two straight lines $y=x$ and $y=4 x$. Evaluate $\int_{B} x^{2} y^{3}$. [Hint: Set $x=u / v$ and $y=u v$.]

