MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 5

DUE: MONDAY FEBRUARY 26, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 3 and 7.

1. (Munkres $\S 11.1)$ Show that if A has measure zero in \mathbb{R}^{n}, the sets \bar{A} and ∂A need not have measure zero.
2. (Munkres $\S 11.6$) Let $f:[a, b] \rightarrow \mathbb{R}$. The graph of f is the subset

$$
G_{f}=\{(x, y) \mid y=f(x)\}
$$

of \mathbb{R}^{2}. Show that f is continuous, G_{f} has measure zero in \mathbb{R}^{2}. [Hint: Use uniform continuity of f.]
3. (Munkres $\S 11.9$) Let Q be a rectangle in \mathbb{R}^{n}; let $f: Q \rightarrow \mathbb{R}$; assume f is integrable over Q.
(a) Show that if $f(\boldsymbol{x}) \geq 0$ for $\boldsymbol{x} \in Q$, then $\int_{Q} f \geq 0$.
(b) Show that if $f(\boldsymbol{x})>0$ for $\boldsymbol{x} \in Q$, then $\int_{Q} f>0$.
4. (Munkres $\S 12.2$) Let $I=[0,1]$; let $Q=I \times I$. Define $f: Q \rightarrow \mathbb{R}$ by letting $f(x, y)=1 / q$ if y is rational and $x=p / q$, where p and q are positive integers with no common factor; let $f(x, y)=0$ otherwise.
(a) Show that $\int_{Q} f$ exists.
(b) Compute

$$
\int_{y \in I} f(x, y) \text { and } \bar{\int}_{y \in I} f(x, y)
$$

(c) Verify Fubini's theorem.
5. (Munkres $\S 12.3$) Let $Q=A \times B$, where A is a rectangle in \mathbb{R}^{k} and B is a rectangle in \mathbb{R}^{n}. Let $f: Q \rightarrow \mathbb{R}$ be a bounded function.
(a) Let g be a function such that

$$
\int_{y \in B} f(\boldsymbol{x}, \boldsymbol{y}) \leq g(\boldsymbol{x}) \leq \bar{\int}_{y \in B} f(\boldsymbol{x}, \boldsymbol{y})
$$

for all $\boldsymbol{x} \in A$. Show that if f is integrable over Q, then g is integrable over A, and $\int_{Q} f=\int_{A} g$. [Hint: Use Exercise 1 of §10.]
(b) Give an example where $\int_{Q} f$ exists and one of the iterated integrals

$$
\int_{\boldsymbol{x} \in A} \int_{\boldsymbol{y} \in B} f(\boldsymbol{x}, \boldsymbol{y}) \quad \text { and } \quad \int_{\boldsymbol{y} \in B} \int_{\boldsymbol{x} \in A} f(\boldsymbol{x}, \boldsymbol{y})
$$

exists, but the other one does not.

* (c) Find an example where both the iterated integrals of (b) exist, but the integral $\int_{Q} f$ does not. [Hint: One approach is to find a subset S of Q whose closure equals Q, such that S contains at most one point on each vertical line and at most one point on each horizontal line.]

6. (Munkres $\S 13.2$) Let A be a rectangle in \mathbb{R}^{k}; let B be a rectangle in \mathbb{R}^{n}; let $Q=A \times B$. Let $f: Q \rightarrow \mathbb{R}$ be a bounded function. Show that if $\int_{Q} f$ exists, then

$$
\int_{\boldsymbol{y} \in B} f(\boldsymbol{x}, \boldsymbol{y})
$$

exists for $\boldsymbol{x} \in A-D$ where D is a set of measure zero in \mathbb{R}^{k}.
7. (Munkres $\S 13.4)$ Let S_{1} and S_{2} be bounded sets in \mathbb{R}^{n}; let $f: S \rightarrow \mathbb{R}$ be a bounded function. Show that if f is integrable over S_{1} and S_{2}, then f is integrable over $S_{1}-S_{2}$ and

$$
\int_{S_{1}-S_{2}} f=\int_{S_{1}} f-\int_{S_{1} \cap S_{2}} f
$$

*8. (Munkres §13.7) Prove the following:
Theorem. Let S be a bounded set in \mathbb{R}^{n}; let $f: S \rightarrow \mathbb{R}$ be a bounded function. Let D be the set of points of S at which f fails to be continuous. Let E be the set of points of ∂S at which the condition

$$
\lim _{x \rightarrow x_{0}} f(\boldsymbol{x})=0
$$

fails to hold. Then $\int_{S} f$ exists if and only if D and E have measure zero.
Proof. (a) Show that f_{S} is continuous at each point $\boldsymbol{x}_{0} \notin D \cup E$.
(b) Let B be the set of isolated points of S; then $B \subset E$ because the limit cannot be defined if \boldsymbol{x}_{0} is not a limit point of S. Show that if f_{S} is continuous at \boldsymbol{x}_{0}, then $\boldsymbol{x}_{0} \notin D \cup(E-B)$.
(c) Show that B is countable.
(d) Complete the proof.

