MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 5

DUE: MONDAY FEBRUARY 26, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 3 and 7.
- 1. (Munkres §11.1) Show that if A has measure zero in \mathbb{R}^n , the sets \overline{A} and ∂A need not have measure zero.
- **2.** (Munkres §11.6) Let $f: [a, b] \to \mathbb{R}$. The graph of f is the subset

$$G_f = \{(x, y) \mid y = f(x)\}$$

of \mathbb{R}^2 . Show that f is continuous, G_f has measure zero in \mathbb{R}^2 . [*Hint: Use uniform continuity of f.*]

- **3.** (Munkres §11.9) Let Q be a rectangle in \mathbb{R}^n ; let $f: Q \to \mathbb{R}$; assume f is integrable over Q.
 - (a) Show that if $f(\boldsymbol{x}) \ge 0$ for $\boldsymbol{x} \in Q$, then $\int_Q f \ge 0$.
 - (b) Show that if $f(\boldsymbol{x}) > 0$ for $\boldsymbol{x} \in Q$, then $\int_{Q}^{\infty} f > 0$.
- **4.** (Munkres §12.2) Let I = [0, 1]; let $Q = I \times I$. Define $f: Q \to \mathbb{R}$ by letting f(x, y) = 1/q if y is rational and x = p/q, where p and q are positive integers with no common factor; let f(x, y) = 0 otherwise.
 - (a) Show that $\int_Q f$ exists.
 - (b) Compute

$$\underline{\int}_{y \in I} f(x, y)$$
 and $\overline{\int}_{y \in I} f(x, y)$.

- (c) Verify Fubini's theorem.
- **5.** (Munkres §12.3) Let $Q = A \times B$, where A is a rectangle in \mathbb{R}^k and B is a rectangle in \mathbb{R}^n . Let $f: Q \to \mathbb{R}$ be a bounded function.
 - (a) Let g be a function such that

$$\underline{\int}_{\boldsymbol{y}\in B} f(\boldsymbol{x},\boldsymbol{y}) \leq g(\boldsymbol{x}) \leq \int_{\boldsymbol{y}\in B} f(\boldsymbol{x},\boldsymbol{y})$$

for all $x \in A$. Show that if f is integrable over Q, then g is integrable over A, and $\int_Q f = \int_A g$. [*Hint: Use Exercise 1 of §10.*]

(b) Give an example where $\int_Q f$ exists and one of the iterated integrals

$$\int_{\boldsymbol{x}\in A}\int_{\boldsymbol{y}\in B}f(\boldsymbol{x},\boldsymbol{y}) \quad \text{and} \quad \int_{\boldsymbol{y}\in B}\int_{\boldsymbol{x}\in A}f(\boldsymbol{x},\boldsymbol{y})$$

exists, but the other one does not.

- *(c) Find an example where both the iterated integrals of (b) exist, but the integral $\int_Q f$ does not. [*Hint: One approach is to find a subset* S of Q whose closure equals Q, such that S contains at most one point on each vertical line and at most one point on each horizontal line.]
- **6.** (Munkres §13.2) Let A be a rectangle in \mathbb{R}^k ; let B be a rectangle in \mathbb{R}^n ; let $Q = A \times B$. Let $f: Q \to \mathbb{R}$ be a bounded function. Show that if $\int_O f$ exists, then

$$\int_{\pmb{y}\in B}f(\pmb{x},\pmb{y})$$

exists for $x \in A - D$ where D is a set of measure zero in \mathbb{R}^k .

7. (Munkres §13.4) Let S_1 and S_2 be bounded sets in \mathbb{R}^n ; let $f: S \to \mathbb{R}$ be a bounded function. Show that if f is integrable over S_1 and S_2 , then f is integrable over $S_1 - S_2$ and

$$\int_{S_1 - S_2} f = \int_{S_1} f - \int_{S_1 \cap S_2} f.$$

*8. (Munkres §13.7) Prove the following:

Theorem. Let S be a bounded set in \mathbb{R}^n ; let $f: S \to \mathbb{R}$ be a bounded function. Let D be the set of points of S at which f fails to be continuous. Let E be the set of points of ∂S at which the condition

$$\lim_{\boldsymbol{x}\to\boldsymbol{x}_0}f(\boldsymbol{x})=0$$

fails to hold. Then $\int_S f$ exists if and only if D and E have measure zero.

Proof. (a) Show that f_S is continuous at each point $\boldsymbol{x}_0 \notin D \cup E$.

- (b) Let B be the set of isolated points of S; then $B \subset E$ because the limit cannot be defined if \boldsymbol{x}_0 is not a limit point of S. Show that if f_S is continuous at \boldsymbol{x}_0 , then $\boldsymbol{x}_0 \notin D \cup (E-B)$.
- (c) Show that B is countable.
- (d) Complete the proof.