MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 4

DUE: MONDAY FEBRUARY 19, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1,5 and 7 .

1. (Munkres $\S 8.1$) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by the equation

$$
f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)
$$

(a) Show that f is one-to-one on the set A consisting of all (x, y) with $x>0$. [Hint: If $f(x, y)=f(a, b)$, then $\|f(x, y)\|=\|f(a, b)\|$.
(b) What is the set $B=f(A)$?
(c) If g is the inverse function, find $D g(0,1)$.
2. (Munkres $\S 8.5$) Let A be open in \mathbb{R}^{n}; let $f: A \rightarrow \mathbb{R}^{n}$ be of class C^{r}; assume $D f(\boldsymbol{x})$ is nonsingular for $\boldsymbol{x} \in A$. Show that even if f is not one-to-one on A, the set $B=f(A)$ is open in \mathbb{R}^{n}.
3. (Munkres $\S 9.1)$ Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be of class C^{1}; write f in the form $f\left(x, y_{1}, y_{2}\right)$. Assume that $f(3,-1,2)=\mathbf{0}$, and

$$
D f(3,-1,2)=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

(a) Show that there is a function $g: B \rightarrow \mathbb{R}^{2}$ of class C^{1} defined on an open set B in \mathbb{R} such that

$$
f\left(x, g_{1}(x), g_{2}(x)\right)=0
$$

for $x \in B$ and $g(3) \in(-1,2)$.
(b) Find $D g(3)$.
(c) Discuss the problem of solving the equation $f\left(x, y_{1}, y_{2}\right)=\mathbf{0}$ for an arbitrary pair of the unknowns in the terms of the third, near the point $(3,-1,2)$.
4. (Munkres $\S 9.4)$ Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class C^{2}, with $F(0,0)=0$ and $D F(0,0)=\left[\begin{array}{ll}2 & 3\end{array}\right]$. Let $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by the equation

$$
G(x, y, z)=F\left(x+2 y+3 z-1, x^{3}+y^{2}-z^{2}\right)
$$

(a) Note that $G(-2,3,-1)=F(0,0)=0$. Show that one can solve the equation $G(x, y, z)=0$ for z, say $z=g(x, y)$, for (x, y) in a neighborhood B of $(-2,3)$, such that $g(-2,3)=-1$.
(b) Find $D g(-2,3)$.
*(c) If $D_{1} D_{1} F=0$ and $D_{1} D_{2} F=-1$ and $D_{2} D_{2} F=5$ at $(0,0)$, find $D_{2} D_{1} g(-2,3)$.
5. (Munkres $\S 9.6$) Let $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ be of class C^{1}; suppose that $f(\boldsymbol{a})=\mathbf{0}$ and that $\operatorname{Df}(\boldsymbol{a})$ has rank n. Show that if \boldsymbol{c} is a point of \mathbb{R}^{n} sufficiently close to $\mathbf{0}$, then the equation $f(\boldsymbol{x})=\boldsymbol{c}$ has a solution.
6. (Munkres $\S 10.1)$ Let $f, g: Q \rightarrow \mathbb{R}$ be bounded functions such that $f(\boldsymbol{x}) \leq g(\boldsymbol{x})$ for $\boldsymbol{x} \in Q$. Show that $\underline{\int}_{Q} f \leq \underline{\int}_{Q} g$ and $\bar{\jmath}_{Q} f \leq \bar{\jmath}_{Q} g$.
7. (Munkres $\S 10.5$) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by setting $f(x)=1 / q$ if $x=p / q$, where p and q are positive integers with no common factor, and $f(x)=0$ otherwise. Show f is integrable over $[0,1]$.

