MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 4

DUE: MONDAY FEBRUARY 19, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1, 5 and 7.

1. (Munkres §8.1) Let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be defined by the equation

$$f(x,y) = (x^2 - y^2, 2xy).$$

- (a) Show that f is one-to-one on the set A consisting of all (x, y) with x > 0. [*Hint: If* f(x, y) = f(a, b), then ||f(x, y)|| = ||f(a, b)||.]
- (b) What is the set B = f(A)?
- (c) If g is the inverse function, find Dg(0,1).
- **2.** (Munkres §8.5) Let A be open in \mathbb{R}^n ; let $f: A \to \mathbb{R}^n$ be of class C^r ; assume $Df(\boldsymbol{x})$ is nonsingular for $\boldsymbol{x} \in A$. Show that even if f is not one-to-one on A, the set B = f(A) is open in \mathbb{R}^n .
- **3.** (Munkres §9.1) Let $f \colon \mathbb{R}^3 \to \mathbb{R}^2$ be of class C^1 ; write f in the form $f(x, y_1, y_2)$. Assume that $f(3, -1, 2) = \mathbf{0}$, and

$$Df(3,-1,2) = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}.$$

(a) Show that there is a function $g\colon B\to \mathbb{R}^2$ of class C^1 defined on an open set B in \mathbb{R} such that

$$f(x, g_1(x), g_2(x)) = 0$$

for $x \in B$ and $g(3) \in (-1, 2)$.

- (b) Find Dg(3).
- (c) Discuss the problem of solving the equation $f(x, y_1, y_2) = \mathbf{0}$ for an arbitrary pair of the unknowns in the terms of the third, near the point (3, -1, 2).
- 4. (Munkres §9.4) Let $F \colon \mathbb{R}^2 \to \mathbb{R}$ be of class C^2 , with F(0,0) = 0 and $DF(0,0) = \begin{bmatrix} 2 & 3 \end{bmatrix}$. Let $G \colon \mathbb{R}^3 \to \mathbb{R}$ be defined by the equation

$$G(x, y, z) = F(x + 2y + 3z - 1, x^{3} + y^{2} - z^{2}).$$

- (a) Note that G(-2,3,-1) = F(0,0) = 0. Show that one can solve the equation G(x, y, z) = 0 for z, say z = g(x, y), for (x, y) in a neighborhood B of (-2,3), such that g(-2,3) = -1.
- (b) Find Dg(-2,3).
- *(c) If $D_1 D_1 F = 0$ and $D_1 D_2 F = -1$ and $D_2 D_2 F = 5$ at (0,0), find $D_2 D_1 g(-2,3)$.

- **5.** (Munkres §9.6) Let $f: \mathbb{R}^{k+n} \to \mathbb{R}^n$ be of class C^1 ; suppose that $f(\boldsymbol{a}) = \boldsymbol{0}$ and that $Df(\boldsymbol{a})$ has rank n. Show that if \boldsymbol{c} is a point of \mathbb{R}^n sufficiently close to $\boldsymbol{0}$, then the equation $f(\boldsymbol{x}) = \boldsymbol{c}$ has a solution.
- **6.** (Munkres §10.1) Let $f, g: Q \to \mathbb{R}$ be bounded functions such that $f(\boldsymbol{x}) \leq g(\boldsymbol{x})$ for $\boldsymbol{x} \in Q$. Show that $\underline{\int}_Q f \leq \underline{\int}_Q g$ and $\overline{\int}_Q f \leq \overline{\int}_Q g$.
- 7. (Munkres §10.5) Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) = 1/q if x = p/q, where p and q are positive integers with no common factor, and f(x) = 0 otherwise. Show f is integrable over [0, 1].