MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 3

DUE: MONDAY FEBRUARY 12, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2, 3 and 4.

1. (Munkres §6.1) Show that the function $f(x, y)=|x y|$ is differentiable at $\mathbf{0}$, but is not of class C^{1} in any neighborhood of $\mathbf{0}$.
2. (Munkres $\S 6.4)$ Show that if $A \subset \mathbb{R}^{m}$ and $f: A \rightarrow \mathbb{R}$, and if the partials $D_{j} f$ exist and are bounded in a neighborhood of \boldsymbol{a}, then f is continuous at \boldsymbol{a}.
3. (Munkres $\S 6.5$) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by the equation

$$
f(r, \theta)=(r \cos \theta, r \sin \theta)
$$

It is called the polar coordinate transformation.
(a) Calculate $D f$ and $\operatorname{det} D f$
(b) Sketch the image under f of the set $S=[1,2] \times[0, \pi]$. [Hint: Find the images under f of the line segments that bound S.]
4. (Munkres $\S 7.2$) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by the equations

$$
\begin{aligned}
& f(\boldsymbol{x})=\left(e^{2 x_{1}+x_{2}}, 2 x_{2}-\cos x_{2}, x_{1}^{2}+x_{2}+2\right) \\
& g(\boldsymbol{x})=\left(3 y_{1}+2 y_{2}+y_{3}^{2}, y_{1}^{2}-y_{3}+1\right)
\end{aligned}
$$

(a) If $F(\boldsymbol{x})=g(f(\boldsymbol{x}))$, find $D F(\mathbf{0})$. [Hint: Don't compute F explicitly.]
(b) If $G(\boldsymbol{y})=f(g(\boldsymbol{y}))$, find $D G(\mathbf{0})$.
5. (Munkres $\S 7.3$) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the equation

$$
F(x, y)=f(x, y, g(x, y))
$$

(a) Find $D F$ in terms of the partials of f and g.
(b) If $F(x, y)=0$ for all (x, y), find $D_{1} g$ and $D_{2} g$ in terms of the partials of f.

