MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 3

DUE: MONDAY FEBRUARY 12, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 2, 3 and 4.
- **1.** (Munkres §6.1) Show that the function f(x, y) = |xy| is differentiable at **0**, but is not of class C^1 in any neighborhood of **0**.
- **2.** (Munkres §6.4) Show that if $A \subset \mathbb{R}^m$ and $f: A \to \mathbb{R}$, and if the partials $D_j f$ exist and are bounded in a neighborhood of a, then f is continuous at a.
- **3.** (Munkres §6.5) Let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be defined by the equation

$$f(r,\theta) = (r\cos\theta, r\sin\theta).$$

- It is called the **polar coordinate transformation**.
- (a) Calculate Df and $\det Df$
- (b) Sketch the image under f of the set $S = [1, 2] \times [0, \pi]$. [Hint: Find the images under f of the line segments that bound S.]

4. (Munkres §7.2) Let $f \colon \mathbb{R}^2 \to \mathbb{R}^3$ and $g \colon \mathbb{R}^3 \to \mathbb{R}^2$ be given by the equations

$$f(\mathbf{x}) = (e^{2x_1 + x_2}, 2x_2 - \cos x_2, x_1^2 + x_2 + 2)$$

$$g(\mathbf{x}) = (3y_1 + 2y_2 + y_3^2, y_1^2 - y_3 + 1).$$

- (a) If $F(\mathbf{x}) = g(f(\mathbf{x}))$, find $DF(\mathbf{0})$. [*Hint: Don't compute F explicitly.*]
- (b) If G(y) = f(g(y)), find DG(0).
- 5. (Munkres §7.3) Let $f \colon \mathbb{R}^3 \to \mathbb{R}$ and $g \colon \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Let $F \colon \mathbb{R}^2 \to \mathbb{R}$ be defined by the equation

$$F(x,y) = f(x,y,g(x,y)).$$

- (a) Find DF in terms of the partials of f and g.
- (b) If F(x,y) = 0 for all (x,y), find D_1g and D_2g in terms of the partials of f.