MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 2

DUE: MONDAY FEBRUARY 5, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1, 2 and 3.
- 1. (Munkres §4.3) Let \mathbb{R}^{∞} be the set of all "infinite-tuples" $\boldsymbol{x} = (x_1, x_2, ...)$ of real numbers that end in an infinite string of 0's. (See the exercises of §1.) Define an inner product on \mathbb{R}^{∞} by the rule $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$. (This is a finite sum, since all but finitely many terms vanish.) Let $\|\boldsymbol{x} - \boldsymbol{y}\|$ be the corresponding metric on \mathbb{R}^{∞} (where $\|\boldsymbol{z}\|$ is defined as $\sqrt{\langle \boldsymbol{z}, \boldsymbol{z} \rangle}$). Define

$$e_i = (0, \ldots, 0, 1, 0, \ldots, 0, \ldots),$$

where 1 appear in the *i*-th place. Then the e_i form a basis for \mathbb{R}^{∞} . Let X be the set of all points e_i .

- (a) Show that X is bounded in \mathbb{R}^{∞} .
- (b) Show that X is closed in \mathbb{R}^{∞} . [*Hint:* How would you prove that a single point in \mathbb{R}^2 is closed?]
- (c) Show that X is non-compact in \mathbb{R}^{∞} .
- **2.** (Munkres §5.1) Let $A \subset \mathbb{R}^m$; let $f: A \to \mathbb{R}^n$. Show that if $f'(\boldsymbol{a}; \boldsymbol{u})$ exists, then $f'(\boldsymbol{a}; \boldsymbol{cu})$ exists and equals $cf'(\boldsymbol{a}; \boldsymbol{u})$.
- **3.** (Munkres §5.2) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by setting $f(\mathbf{0}) = 0$ and

$$f(x,y) = \frac{xy}{x^2 + y^2}, \text{ if } (x,y) \neq \mathbf{0}.$$

- (a) For which vectors $\boldsymbol{u} \neq \boldsymbol{0}$ does $f'(\boldsymbol{0}; \boldsymbol{u})$ exist? Evaluate it when it exists.
- (b) Do $D_1 f$ and $D_2 f$ exist at **0**?
- (c) Is f differentiable at **0**?
- (d) Is f continuous at **0**?
- **4.** (Munkres §5.3) Repeat Problem 3 (Munkres §5.2) for the function f defined by setting $f(\mathbf{0}) = 0$ and

$$f(x,y) = \frac{x^2 y^2}{x^2 y^2 + (y-x)^2}, \quad \text{if } (x,y) \neq \mathbf{0}.$$

5. (Munkres §5.4) Repeat Problem 3 (Munkres §5.2) for the function f defined by setting $f(\mathbf{0}) = 0$ and

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
, if $(x,y) \neq 0$.