MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 2

DUE: MONDAY FEBRUARY 5, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1,2 and 3.

1. (Munkres $\S 4.3)$ Let \mathbb{R}^{∞} be the set of all "infinite-tuples" $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right)$ of real numbers that end in an infinite string of 0's. (See the exercises of $\S 1$.) Define an inner product on \mathbb{R}^{∞} by the rule $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}$. (This is a finite sum, since all but finitely many terms vanish.) Let $\|\boldsymbol{x}-\boldsymbol{y}\|$ be the corresponding metric on \mathbb{R}^{∞} (where $\|\boldsymbol{z}\|$ is defined as $\sqrt{\langle\boldsymbol{z}, \boldsymbol{z}\rangle}$). Define

$$
\boldsymbol{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0, \ldots)
$$

where 1 appear in the i-th place. Then the \boldsymbol{e}_{i} form a basis for \mathbb{R}^{∞}. Let X be the set of all points \boldsymbol{e}_{i}.
(a) Show that X is bounded in \mathbb{R}^{∞}.
(b) Show that X is closed in \mathbb{R}^{∞}. [Hint: How would you prove that a single point in \mathbb{R}^{2} is closed?]
(c) Show that X is non-compact in \mathbb{R}^{∞}.
2. (Munkres $\S 5.1)$ Let $A \subset \mathbb{R}^{m} ;$ let $f: A \rightarrow \mathbb{R}^{n}$. Show that if $f^{\prime}(\boldsymbol{a} ; \boldsymbol{u})$ exists, then $f^{\prime}(\boldsymbol{a} ; c \boldsymbol{u})$ exists and equals $c f^{\prime}(\boldsymbol{a} ; \boldsymbol{u})$.
3. (Munkres $\S 5.2)$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by setting $f(\mathbf{0})=0$ and

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}, \quad \text { if }(x, y) \neq \mathbf{0}
$$

(a) For which vectors $\boldsymbol{u} \neq \mathbf{0}$ does $f^{\prime}(\mathbf{0} ; \boldsymbol{u})$ exist? Evaluate it when it exists.
(b) Do $D_{1} f$ and $D_{2} f$ exist at $\mathbf{0}$?
(c) Is f differentiable at $\mathbf{0}$?
(d) Is f continuous at $\mathbf{0}$?
4. (Munkres $\S 5.3$) Repeat Problem 3 (Munkres $\S 5.2$) for the function f defined by setting $f(\mathbf{0})=$ 0 and

$$
f(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(y-x)^{2}}, \quad \text { if }(x, y) \neq \mathbf{0}
$$

5. (Munkres §5.4) Repeat Problem 3 (Munkres $\S 5.2$) for the function f defined by setting $f(\mathbf{0})=$ 0 and

$$
f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}, \quad \text { if }(x, y) \neq \mathbf{0}
$$

