MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 11

DUE: MONDAY APRIL 29, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1, 2 and 4.

1. (Munkres $\S 32.3)$ In \mathbb{R}^{3}, let

$$
\omega=x y d x+2 z d y-y d z
$$

Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by the equation

$$
\alpha(u, v)=\left(u v, u^{2}, 3 u+v\right)
$$

Calculate $d \omega, \alpha^{*} \omega, \alpha^{*}(d \omega)$ and $d\left(\alpha^{*} \omega\right)$ directly.
2. (Munkres $\S 33.1)$ Let $A=(0,1)^{2}$. Let $\alpha: A \rightarrow \mathbb{R}^{3}$ be given by the equation

$$
\alpha(u, v)=\left(u, v, u^{2}+v^{2}+1\right)
$$

Let Y be the image set of α. Evaluate the integral $\int_{Y, \alpha} x_{2} d x_{2} \wedge d x_{3}+x_{1} x_{3} d x_{1} \wedge d x_{3}$.
3. (Munkres §33.3)
(a) Let A be the open unit ball in \mathbb{R}^{2}. Let $\alpha: A \rightarrow \mathbb{R}^{3}$ be given by the equation

$$
\alpha(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right) .
$$

Let Y be the image set of α. Evaluate the integral

$$
\int_{Y, \alpha} \frac{x_{1} d x_{2} \wedge d x_{3}-x_{2} d x_{1} \wedge d x_{3}+x_{3} d x_{1} \wedge d x_{2}}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{m}}
$$

(b) Repeat (a) when

$$
\alpha(u, v)=\left(u, v,-\sqrt{1-u^{2}-v^{2}}\right)
$$

4. (Munkres $\S 34.1)$ Let M be an n-manifold in \mathbb{R}^{n}. Let α, β be coordinate patches on M such that $\operatorname{det} D \alpha>0$ and $\operatorname{det} D \beta>0$. Show that α and β overlap positively if they overlap at all.
