MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 10

DUE: MONDAY APRIL 22, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1,3 and 4.

1. (Munkres $\S 30.2$) Consider the forms

$$
\begin{aligned}
\omega & =x y d x+3 d y-y z d z \\
\eta & =x d x-y z^{2} d y+2 x d z
\end{aligned}
$$

in \mathbb{R}^{3}. Verify by direct computation that

$$
d(d \omega)=0 \quad \text { and } \quad d(\omega \wedge \eta)=(d \omega) \wedge \eta-\omega \wedge d \eta
$$

2. (Munkres §30.5) Prove the following:

Theorem. Let $A=\mathbb{R}^{2} \backslash\{0\}$; let

$$
\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}
$$

in A. Then ω is closed but not exact, in A.
Proof. (a) Show ω is closed.
(b) Let B consist of \mathbb{R}^{2} with the non-negative x-axis deleted. Show that for each $(x, y) \in B$, there is a unique $0<t<2 \pi$ such that

$$
x=\sqrt{x^{2}+y^{2}} \cos t \quad \text { and } \quad y=\sqrt{x^{2}+y^{2}} \sin t
$$

denote this value of t by $\phi(x, y)$.
(c) Show that ϕ is of class C^{∞}. [Hint: The inverse sine and inverse cosine functions are of class C^{∞} on the intervals $(-\pi / 2, \pi / 2)$ and $(0, \pi)$, respectively.]
(d) Show that $\omega=d \phi$ in B. [Hint: We have $\tan \phi=y / x$ if $x \neq 0$ and $\cot \phi=x / y$ if $y \neq 0$.]
(e) Show that if g is a closed 0 -form in B, then g is constant in B. [Hint: Use the mean-value theorem to show that if \boldsymbol{a} is the point $(-1,0)$ of \mathbb{R}^{2}, then $g(\boldsymbol{x})=g(\boldsymbol{a})$ for all $\boldsymbol{x} \in B$.]
(f) Show that ω is not exact in A. [Hint: If $\omega=d f$ in A, then $f-\phi$ is constant in B. Evaluate the limit of $f(1, y)$ as y approaches 0 through positive and negative values.]
3. (Munkres $\S 31.3)$ Let A be an open set in \mathbb{R}^{3}.
(a) Translate the equation $d(d \omega)=0$ into two theorems about vector and scalar fields in \mathbb{R}^{3}.
(b) A is called homologically trivial of dimension k if every closed k on A is exact on A.

Translate the condition that A is homologically trivial in dimension k into a statement about vector and scalar fields in A. Consider the cases $k=0,1,2$.
4. (Munkres §32.3) In \mathbb{R}^{3}, let

$$
\omega=x y d x+2 z d y-y d z
$$

Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by the equation

$$
\alpha(u, v)=\left(u v, u^{2}, 3 u+v\right) .
$$

Calculate $d \omega$ and $\alpha^{*} \omega$ and $d\left(\alpha^{*} \omega\right)$ directly.

