MAT 322/523 ANALYSIS IN SEVERAL DIMENSIONS HOMEWORK 10

DUE: MONDAY APRIL 22, 12:00PM

- Each problem is worth 10 points.
- Submit the homework via Gradescope.
- Only submit problems 1, 3 and 4.

1. (Munkres §30.2) Consider the forms

$$\omega = xydx + 3dy - yzdz$$
$$\eta = xdx - yz^{2}dy + 2xdz$$

in \mathbb{R}^3 . Verify by direct computation that

$$d(d\omega) = 0$$
 and $d(\omega \wedge \eta) = (d\omega) \wedge \eta - \omega \wedge d\eta$

2. (Munkres §30.5) Prove the following:

Theorem. Let $A = \mathbb{R}^2 \setminus \{0\}$; let

$$\omega = \frac{-ydx + xdy}{x^2 + y^2}$$

in A. Then ω is closed but not exact, in A.

Proof. (a) Show ω is closed.

(b) Let B consist of \mathbb{R}^2 with the non-negative x-axis deleted. Show that for each $(x, y) \in B$, there is a unique $0 < t < 2\pi$ such that

$$x = \sqrt{x^2 + y^2} \cos t$$
 and $y = \sqrt{x^2 + y^2} \sin t;$

denote this value of t by $\phi(x, y)$.

- (c) Show that ϕ is of class C^{∞} . [*Hint:* The inverse sine and inverse cosine functions are of class C^{∞} on the intervals $(-\pi/2, \pi/2)$ and $(0, \pi)$, respectively.]
- (d) Show that $\omega = d\phi$ in B. [*Hint:* We have $\tan \phi = y/x$ if $x \neq 0$ and $\cot \phi = x/y$ if $y \neq 0$.]
- (e) Show that if g is a closed 0-form in B, then g is constant in B. [*Hint:* Use the mean-value theorem to show that if a is the point (-1, 0) of \mathbb{R}^2 , then g(x) = g(a) for all $x \in B$.]
- (f) Show that ω is not exact in A. [*Hint:* If $\omega = df$ in A, then $f \phi$ is constant in B. Evaluate the limit of f(1, y) as y approaches 0 through positive and negative values.]

- **3.** (Munkres §31.3) Let A be an open set in \mathbb{R}^3 .
 - (a) Translate the equation $d(d\omega) = 0$ into two theorems about vector and scalar fields in \mathbb{R}^3 .
 - (b) A is called *homologically trivial of dimension* k if every closed k on A is exact on A. Translate the condition that A is homologically trivial in dimension k into a statement about vector and scalar fields in A. Consider the cases k = 0, 1, 2.

4. (Munkres §32.3) In \mathbb{R}^3 , let

 $\omega = xydx + 2zdy - ydz.$ Let $\alpha \colon \mathbb{R}^2 \to \mathbb{R}^3$ be given by the equation

$$\alpha(u,v) = (uv, u^2, 3u + v).$$

Calculate $d\omega$ and $\alpha^*\omega$ and $d(\alpha^*\omega)$ directly.