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Practice midterm II MAT 127

1. (a) (10 pts) Calculate the degree 4 Taylor polynomial T4(x) of f(x) = cos(2x) centered around
x = π.

(b) (10 pts) Find a power series representation of the integral∫
e−x2

dx.
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Practice midterm II MAT 127

2. (a) (10 pts) Verify that y = Ce−x + x2 − 2x for any value of the constant C is a solution to
the second order ODE y′′ + y′ = 2x.

(b) (10 pts) Find a solution to the initial-value problem
y′′ + y′ = 2x, y(0) = 1.

(You may use the result from part (a), even if you did not solve part (a).)
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Practice midterm II MAT 127

3. (a) (10 pts) Sketch the slope field for the first order ODE y′ = xy − 1.
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(b) (10 pts) Use Euler’s method with step size 1 to estimate y(3) where y(x) is the solution
to the initial-value problem

y′ = x + y + 1, y(0) = 0.
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Practice midterm II MAT 127

4. Find the general solution to the following separable first order ODEs
(a) (10 pts) 3y2y′ = 1

x

(b) (10 pts) dy
dx = −xe−y
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Practice midterm II MAT 127

5. After drinking a cup of coffee containing 100 mg of caffeine, the amount of caffeine in a
person’s body t hours after drinking the cup is described by the differential equation

dC

dt
= − 7

50
C(t).

(a) (10 pts) Solve the initial-value problem
dC

dt
= − 7

50
C(t), C(0) = 100.

(b) (10 pts) Solve the equation C(t) = 50. (Leave the answer in its exact form.) This is
approximately the half-life of caffeine.
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