
INTRODUCTION TO FLOER HOMOTOPY THEORY

JOHAN ASPLUND

Abstract. These are (vastly expanded) notes for a series of expository talks given at Stony Brook
University in Oct–Nov 2024. These notes are sketchy and may contain errors.

1. Overview

1.1. Goals. The three main goals of these talks are as follows:
• Give an introduction to Floer homotopy theory
• Define the wrapped Donaldson–Fukaya category of a stably polarized Liouville manifold

with coefficients in a commutative ring spectrum R, denoted W(X;R).
• Discuss an outline of the proof of the following theorem.

Theorem 1.1 (A.–Deshmukh–Pieloch [ADP24]). Let R be a commutative ring spectrum.
Let Q be a closed manifold and L ⊂ T ∗Q a nearby Lagrangian. Then L is isomorphic to an
R-brane structure supported on Q in W(T ∗Q;R).

1.2. Idea of Floer homotopy theory. It was already known to Floer [Flo89, pp. 212–213] that
Floer homology in favorable circumstances could be lifted to take values in appropriate generalized
cohomology theories. Cohen–Jones–Segal [CJS95] formalized this vision and answered the following
question in the affirmative.

Question 1.2. Is there a space (or spectrum) whose homology is equal to Floer homology?

In “good” situations Cohen–Jones–Segal showed that the Pontryagin–Thom construction can be
used to build a spectrum whose homology is Floer homology. In these notes we are mainly interested
in the situations of Morse theory or Floer theory of exact Lagrangians in Liouville manifolds, both
of which are “good” situations.

The following philosophy summarizes the idea behind the construction of Floer homotopy theory.

Philosophy 1.3. Encapsulate all geometry of holomorphic curves in algebra.

Example 1.4. Suppose that M is a closed smooth manifold and f : M → R is a smooth Morse–
Smale function. To define Morse homology we consider the free module (over some commutative
ring k) on the critical point set of f . Then we consider moduli spaces M(x, y) of unparametrized
gradient flow lines from x ∈ crit f to y ∈ crit f . Here are two facts:

• For a generically chosen metric M(x, y) is a smooth manifold with corners of dimension
|x| − |y| − 1.
• The moduli spaces M(x, y) can be “coherently framed”: for every x, y ∈ crit f there are

canonical isomorphisms

TW u(x)
∼=−→ TM(x, y)⊕ R⊕ TW u(y),

of vector bundles over M(x, y).
To define Morse homology, throw away all M(x, y) of dimension > 1 and define a differential via

∂x =
∑

|x|−|y|=1 |M(x, y)|y.
1
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Instead, we can in fact recover a space whose homology is Morse homology (of course, this is
just a space homotopic to M itself) by not throwing away the high dimensional moduli spaces of
gradient flow lines. Recording the information of the high dimensional moduli spaces of gradient
flow lines and “orientation data” leads us to the notion of a “flow category.”

2. Unoriented flow categories, bimodules and bordisms

We present a definition of flow categories that is in the flavor found in [AB21, Abo22, AB24] in
a simplified setting that suffices for our main goals of discussing Floer homotopy theory in (stably
polarized) Liouville manifolds. The simplified setting also helps us to not stray too far away from
the original definition of Cohen–Jones–Segal [CJS95].

Definitions that are more closely related to the original definitions of Cohen–Jones–Segal may
be found in [ADP24, Section 2].

2.1. Manifolds with corners. A smooth manifold with corners X determines a category SX
defined by

ob(SX) = {components of corner strata ∂σX}
and

SX(∂
σX, ∂τX) := {components of int(∂σX) ∩N(∂τX)} if ∂σX ⊃ ∂τX,

where N denotes a tubular neighborhood of the corner stratum ∂τX ⊂ X. Assuming that X is
connected, X is the initial object in SX . We furthermore have that SX comes equipped with a
functor codim: SX → N given by the codimension of a corner stratum.

Example 2.1. (1) For any closed manifold M we have that ob(SM ) = {M} and SX(M,M) =
{M}.

(2) For X = [0, 1] we have ob(S[0,1]) = {[0, 1], {0} , {1}} and morphisms {0} ← [0, 1]→ {1}.
(3) If X = teardrop

γ

β

X

then we have ob(SX) = {X,β, γ} and morphisms generated by the arrows

X β γ .

Definition 2.2. A category P equipped with a functor codim: P → N is a model for manifolds
with corners if for each p ∈ ob(P), there is an isomorphism of categories P/p

∼= 2{1,...,codim p}.

In the above definition P/p denotes the overcategory of P over p. Furthermore 2{1,...,codim p}

denotes the power set of {1, . . . , codim p} equipped with the partial order given by inclusion.

Definition 2.3. A stratification of a smooth manifold with corners X is a functor s : SX → P where
P is a model for manifolds with corners, such that

(1) codimP ◦s = codimSX , and
(2) the induced functor s/p : (SX)/p → P/s(p)

∼= 2{1,...,codimP s(p)} is an isomorphism for any
p ∈ ob(SX).

Example 2.4. (1) Let M be a closed manifold. Then we have SM ∼= 2∅ = {∅}, and so
the functor SM → 2∅ defined on objects by intM 7→ ∅ is a stratification, and is also an
isomorphism of categories.
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(2) For X = [0, 1] let P = {0→ 1}. We may define a stratification by SX → P defined on
objects by [0, 1] 7→ 0 and {0} , {1} 7→ 1, and on morphisms by

([0, 1]→ {0}), ([0, 1]→ {1}) 7−→ (0→ 1).

It is clear that this functor preserves codimension. The induced functors on overcategories
are

(S[0,1])/[0,1] −→ S/0

([0, 1]→ [0, 1]) 7−→ (0→ 0)

and e.g.
(S[0,1])/{0} −→ S/1

([0, 1]→ {0}) 7−→ (0→ 1)

({0} → {0}) 7−→ (1→ 1),

and correspondingly for the overcategory (S[0,1])/[0,1]. It is clear that these are isomorphisms
of categories.

(3) Let X = teardrop. The existence of a stratification of X implies that the overcategory
(SX)/γ is isomorphic to a power set, which is impossible because |(SX)/γ | = 5 is not a
power of 2.

Definition 2.5. Denote by Man∂ the category of smooth manifolds with corners X that admit a
stratification SX → P where P is a model for manifolds with corners.

Remark 2.6. The teardrop is not an object in Man∂ by Definition 2.5 as observed in Example 2.4(3).

Example 2.7. The notion of a 〈k〉-manifold introduced by Jänich [Jä68] (also see [Lau00]) is used
in the original definition of a flow category due to Cohen–Jones–Segal. It is a fact that a 〈k〉-
manifold X is equivalent to a smooth manifolds with corners such that SX is isomorphic to the
product poset {0→ 1}k (it is related to the cube category, see e.g. [Jar06]).

A very useful point of view is to view {0→ 1}k as a poset of rooted linear trees on k+1 vertices
and k labeled internal edges, and with partial order generated by the opposite of edge contraction,
see Figure 1.

00

0110

11

α β

α β

Figure 1. Interpreting {0→ 1}2 as a poset of rooted linear edge labeled trees.

Remark 2.8. An important fact that we will gloss over is that any object in Man∂ admits a “coherent
system of collars” of its corner strata. This will become important later, when we consider vector
bundles over objects in Man∂ that need to be suitably compatible with vector bundles over their
corner strata.

A category C enriched in Man∂ determines a 2-category SC with the same objects as C, mor-
phism categories SC(x, y) := SC(x,y) and horizontal composition

SC(x, y)× SC(y, z) −→ SC(x, z)
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defined on objects by the composition in C using the fact that the product of corner strata of
manifolds is a corner stratum of the product ∂σC(x, y)×∂τC(y, z) =: ∂σ×τ (C(x, y)×C(y, z)), while
respecting the codimension functors. We also equip SC with a dimension 2-functor dim: SC → N,
where N is regarded as a 2-category with a single object.

Definition 2.9. Suppose that C is a category enriched in Man∂ equipped with a dimension
2-functor dimSC : SC → N, and that P is a 2-category equipped with a dimension 2-functor
dimP : P → N. A stratification of C in P is a 2-functor s : SC → P such that

(1) The stratification preserves the dimension 2-functors: dimP ◦s = dimSC .
(2) Each induced functor SC(x, y)→ P (s(x), s(y)) is a stratification.
(3) For every x, y, z ∈ ob(C), the following diagram commutes as a diagram of stratifications

of smooth manifolds with corners

SC(x, y)× SC(y, z) P (s(x), s(y))× P (s(y), s(z))

SC(x, z) P (s(x), s(z))

s(x,y)×s(y,z)

s(x,z)

.

2.2. Flow categories. Recall the definition of the poset {0→ 1}k from Example 2.7, and its
interpretation as a poset of rooted linear trees. A rooted linear tree has one half-edge called a leaf,
and one half-edge called the root; it will be useful to think about such a linear tree as an operation
with “input” at the leaf and “output” at the root.

Let S be a Z-graded set. For any p, r ∈ S denote by □S(p, r) the poset with objects being rooted
linear trees with leaf labeled by p, root labeled by r and internal edges labeled by q1, . . . , qk (in this
order, according to the orientation from the leaf to the root) such that |p| > |q1| > · · · > |qk| > |r|.
The morphisms are induced by edge contraction, see Figure 2.

p r

p q1 r p q2 r

p q1 q2 r

Figure 2. Four objects in the poset □S(p, r) with four morphisms.

Given elements p, q, r ∈ S with |p| > |q| > |r| there is a natural functor defined on objects as
follows:

□S(p, q)×□S(q, r) −→ □S(p, r)(2.1)
(
p q

,
q r

) 7−→
p q r

I.e. it is defined as grafting of trees along the leaf of one tree to the root of the other, creating a new
internal edge with label q. It is clear that grafting is associative and is compatible with morphisms
in the poset □S(p, r). We equip □S(p, r) with a codimension functor codim: □S(p, r)→ N defined
as the number of internal edges.

If S is a Z-graded set, denote by □S the 2-category with ob(□S) = S and morphism posets
□S(p, r) for every p, r ∈ S with |p| > |r|. Vertical composition is induced by the composition in
□S(p, r) and horizontal composition is induced by grafting (2.1). We equip □S with a dimension
2-functor dim: □S → N that is defined as follows: For any p, r ∈ S, an object T ∈ ob(□S(p, r)) is
defined to have dimension

dimT := |p| − |r| − 1− codimT = |p| − |r| − 1−#internal edges.
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Note that by definition there is an isomorphism of categories □S(p, r) ∼= {0→ 1}M(p,r) where
M(p, r) := max {k | ∃q1, . . . , qk |p| > |q1| > · · · > |qk| > |r|} .

Definition 2.10. A flow category is a non-unital category M with a Z-graded object set ob(M)
enriched in Man∂ that is equipped with a stratification sM : SM → □ob(M) that is an isomorphism
of 2-categories.

Remark 2.11. Let us unpack Definition 2.10. Firstly, a flow category consists of a Z-graded set
of objects ob(M) =

⋃
i∈Z ob(M)i. Next, for every pair of objects x, z ∈ ob(M), there is a smooth

manifold with corners M(x, z) that is stratified by □ob(M)(x, z) = { x y1 yk z
· · · }, compati-

ble with grafting (2.1) (which is the horizontal composition in □ob(M)). In particular there is a
canonical identification between the codimension 0 stratum M(x, z) and the initial element x z
in □ob(M)(x, z), and grafting (2.1) yields an identification of the disjoint union of the codimension
1 objects with the image of

⊔
|p|>|q|>|r| p q × q r under (2.1). By the assumption that the

stratification sM preserves dimension 2-functors implies that dimM(x, z) = |x| − |z| − 1 for every
x, z ∈ ob(M).

Therefore, the data of such stratifications (that also are isomorphisms) gives a bijection between
codimension k strata ∂σM(x, z) ⊂M(x, z) and linear trees with exactly k internal edges. Moreover,
the following diagram needs to commute

SM(x, y)× SM(y, z) SM(x, z)

□ob(M)(x, y)×□ob(M)(y, z) □ob(M)(x, z)

,

and satisfies a suitable associativity diagram. This discussion implies that the union of the codi-
mension 1 boundary strata of M(x, z) is identified with

⊔
|x|>|y|>|z|M(x, y)×M(y, z). This coincides

with the definition of an (unoriented) flow category as originally given by [CJS95].

We summarize the preceding remark as follows.

Proposition 2.12. A flow category is equivalent to the following data:
• A Z-graded object set ob(M).
• A (|x|− |y|− 1)-dimensional smooth manifold with corners M(x, y) for every pair of objects
x, y ∈ ob(M) with |x| > |y|, such that each M(x, y) is equipped with a 〈k〉-manifold structure
for some k.
• Composition maps

µxyz : M(x, y)×M(y, z) −→M(x, z),

for all x, y, z ∈ ob(M) with |x| > |y| > |z| that are diffeomorphisms onto codimension 1
corner strata of M(x, z) and required to be associative.

□
Example 2.13. Let M be a closed manifold, and let f : M → R be a Morse–Smale function.
We obtain a flow category Mf with object set crit(f) which is Z-graded by the Morse index.
The morphism spaces Mf (x, y) are defined to be the (compactification) of the moduli space of
(unparametrized) gradient trajectories from x to y. By the compactification, the once broken flow
lines provides us with the composition

Mf (x, y)×Mf (y, z) −→Mf (x, z),

and the codimension 1 boundary of Mf (x, z) is identified with
⊔
yMf (x, y)×Mf (y, z). This yields

the stratification SMf

∼=→ □ob(Mf ).
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Example 2.14. Let X be a Liouville manifold and L,K ⊂ X two transversely intersecting closed
exact Lagrangians in X. Then we obtain a flow category ML,K with object set L ∩ K which is
Z-graded by (the negative of) the Maslov index. The morphism spaces ML,K(x, y) are defined by
the (Gromov compactification) of the moduli space of (unparametrized) pseudoholomorphic strips
from x to y with boundary conditions on L and K. It is a non-trivial fact that ML,K(x, y) is a
smooth manifold with corners; it follows from work by Large [Lar21] using work by Fukaya–Oh–
Ohta–Ono [FOOO24]. By the Gromov compactification, the once broken pseudoholomorphic strips
provides us with the composition

ML,K(x, y)×ML,K(y, z) −→ML,K(x, z),

and the codimension 1 boundary of ML,K(x, z) is identified with
⊔
yML,K(x, y)×ML,K(y, z). This

yields the stratification SML,K

∼=→ □ob(ML,K).

2.3. Flow bimodules. The correct notion of a “morphism between flow categories” is that of a
flow bimodule.

Let S1 and S2 be two Z-graded sets. For any (p, r) ∈ S1 × S2, denote by □S1,S2(p, r) the poset
with objects being rooted linear trees with leaf labeled by p, root labeled by r and one distinguished
vertex v. The distinguished vertex v determines a splitting of the internal edges (those on the “leaf
side” of v and those on the “root side” of v). The internal edges are labeled by q11, . . . , q1k, q21, . . . , q2ℓ ,
where q1i ∈ S1 are on the leaf side of v and q2i ∈ S2 are on the root side of v, such that

|p|1 > |q11|1 > · · · > |q1k|1 ≥ |q21|2 > · · · > |q2ℓ |2 > |r|2.
The morphisms are induced by (the opposite of) edge contraction, see Figure 3.

v

p q11
· · ·

q1k q21
· · ·

q2ℓ
r

v
p r

v
p q11

r
v
p q21

r

v
p q11 q

2
1
r

Figure 3. Top: An object in □S1,S2(p, r). Bottom: Morphisms in □S1,S2(p, r).

We equip each poset □S1,S2(p, r) with a dimension functor defined on an object T ∈ ob(□S1,S2(p, r))
as

dimT := |p|1 − |r|2 − codimT := |p|1 − |r|2 −#internal edges.
Given triples (p, q1, r) ∈ S2

1 × S2 and (p, q2, r) ∈ S1 × S2
2 , respectively, we have grafting maps

□S1,S2(p, q
2)×□S2(q

2, r) −→ □S1,S2(p, r)(2.2)
(

v
p q2

,
q2 r

) 7−→ v
p q2 r

□S1(p, q
1)×□S1,S2(q

1, r) −→ □S1,S2(p, r)(2.3)
(
p q1

,
v

q1 r
) 7−→ v

p q1 r
,
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which are both associative and compatible with morphisms in □S1,S2(−,−) and □Si(−,−). More-
over the two grafting operations commute with each other. For technical reasons, adjoin identity
morphisms to □S1 and □S2 by setting □S1(p, p) = □S2(p, p) := {pt}. Then define □S1,S2 to be a
2-functor

□S1,S2 : □
op
S1
×□S2 −→ Cat,

i.e. a Cat-enriched (□S1 ,□S2)-bimodule (or “profunctor”), which on morphisms yields a map

(□op
S1
×□S2)((q

1, p), (q2, r))→ Cat(□S1,S2(q
1, q2),□S1,S2(p, r)),

which is equivalent to

□S1(p, q
1)×□S1,S2(q

1, q2)×□S2(q
2, r) −→ □S1,S2(p, r),

which we define to be equal to the composition of (2.2) and (2.3). By setting q1 = p and q2 = r we
recover the maps (2.2) and (2.3), respectively. These are colloquially called the “bimodule structure
maps.”

A Man∂-enriched functor ϕ : Cop ×D →Man∂ determines a 2-functor

Sϕ : SCop × SD −→ Cat

(c, d) 7−→ Sϕ(c,d).

It is defined on morphism categories by specifying bimodule structure maps (as explained above)

SC(c,c′) × Sϕ(c′,d) −→ Sϕ(c,d)

Sϕ(c,d′) × SD(d,d′) −→ Sϕ(c,d),

in such a way that they are induced from the bimodule structure maps on ϕ, similar to the defi-
nition of SC , namely the product of corner strata is a corner stratum of the product: ∂σC(c, c′)×
∂τϕ(c′, d) = ∂σ×τ (C(c, c′) × ϕ(c′, d)), and now the bimodule structure maps on ϕ determine the
bimodule structure maps above.

Assume that C and D are two Man∂-enriched categories stratified by P1 and P2, respectively,
in the sense of Definition 2.9, with stratifications sC : SC → P1 and sD : SD → P2, respectively. Let
ϕ : Cop×D →Man∂ be a Man∂-enriched functor, and let P : P op

1 ×P2 → Cat be a 2-functor. We
say that ϕ is stratified by P if there is a 2-natural isomorphism F : Sϕ

∼=⇒ P ◦ (sopC × sD).
For a similar reason to the above we now assume tacitly that flow categories are equipped with

units, i.e requiring that M(x, x) is a point, this (without worrying about what possible unintended
consequences this may have).

Definition 2.15 (Flow bimodule). Let M1 and M2 be two flow categories. A flow bimodule,
denoted by N : M1 →M2 is a functor

N : Mop
1 ×M2 −→Man∂ ,

that is stratified by □ob(M1),ob(M2).

Remark 2.16. Again, we need to unpack Definition 2.15. The Man∂-enriched functor N : Mop
1 ×

M2 →Man∂ specifies for each pair of objects (x, y) ∈ ob(M1) × ob(M2) a smooth manifold with
corners N(x, y). As described previously, by the definition of N specifies bimodule structure maps

M1(x, x
′)×N(x′, y) −→ N(x, y)

N(x, y′)×M2(y
′, y) −→ N(x, y),

that are associative and also commute with each other.
By Proposition 2.12, recall that the fact that M1 and M2 admit stratifications by □ob(M1) and

□ob(M2), respectively, equips M1 with the structure of a 〈k1〉-manifold and M2 with the structure
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of a 〈k2〉-manifold. That N is furthermore is stratified by □ob(M1),ob(M2) means that N(x, y) is
stratified by

□ob(M1),ob(M2)(x, y) =

{
v

x x′1

· · ·

x′k y
′
1

· · ·

y′ℓ
y

}
,

compatible with the bimodule structure maps of □ob(M1),ob(M2)(x, y). There is a canonical identifica-
tion between the codimension 0 stratum N(x, y) and the initial element x y

v
in □ob(M1),ob(M2)(x, y),

and dimN(x, y) = dim□ob(M1),ob(M2)(x, y) = |x|1−|y|2. Via the grafting operations (2.2) and (2.3),
we obtain an identification of the disjoint union of the codimension 1 strata of N(x, y) with the
strata corresponding to image of⊔

|x|>|x′|≥|y|
x x′

×
x′
v
y ∪

⊔
|x|≥|y′|>|y|

x
v

y′
×
y′ y

under (2.2) and (2.3).

Proposition 2.17. A flow bimodule between two flow categories M1 and M2 is equivalent to the
following data:

• An assignment of a (|x|1 − |y|2)-dimensional smooth manifold with corners N(x, y) ∈
ob(Man∂) for every pair of objects (x, y) ∈ ob(M1) × ob(M2) with |x| ≥ |y|, such that
each N(x, y) is equipped with a 〈k〉-manifold structure for some k.
• Bimodule structure maps

M1(x, x
′)×N(x′, y) −→ N(x, y)

N(x, y′)×M2(y
′, y) −→ N(x, y)

for all triples (x, x′, y) ∈ ob(M1)
2 × ob(M2) with |x| > |x′| ≥ |y|, and triples (x, y′, y) ∈

ob(M1)× ob(M2)
2 with |x| ≥ |y′| > |y|, respectively, that furthermore are diffeomorphisms

onto codimension 1 corner strata of N(x, y). The bimodule structure maps are required to
be associative and are required to commute with each other.

□

Example 2.18. Suppose that f : M → R and g : N → R are two Morse–Smale functions on two
closed smooth manifolds, and φ : M → N is a smooth function such that φ|Wu

−∇f (x)
⋔W s

−∇g(y) for
every x ∈ crit f and y ∈ crit g. Then we may define a flow bimodule by the assignment

(x, y) 7−→ N(x, y) :=W u
−∇f (x)×φW s

−∇g(y).

Example 2.19. Let X be a Liouville manifold and {Lt}t∈[0,1] ,K ⊂ X closed exact Lagrangians
in X such that Lt ⋔ K for every t ∈ [0, 1]. Then we may define a flow bimodule by defining
NLt;K(x, y) denote the Gromov compactification of the moduli space of pseudoholomorphic strips
from x ∈ L0 ∩K to y ∈ L1 ∩K, with boundary conditions on K and moving boundary conditions
on Lt.

2.4. Composition of flow bimodules. Suppose that N1 : M1 →M2 and N2 : M2 →M3 are two
flow bimodules. There is a natural way of defining their composition, and we discuss stratifying
categories first.

Let S1, S2 and S3 be three Z-graded sets. Given elements (p, r) ∈ S1×S3, denote by □S1,S2,S3(p, r)
the poset with objects being rooted linear trees with leaf labeled by p, root labeled by r and two
distinguished vertices v1 and v2. The two distinguished vertices determines a splitting of the
internal edges as before, and they are labeled by q11, . . . , q1k near the leaf, by q21, . . . , q2ℓ between the
two distinguished vertices, and by q31, . . . , q3m near the root, see Figure 4.
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v1 v2

p q11
· · ·

q1k q21
· · ·

q2ℓ q31 q3m
r

· · ·

Figure 4. An object in □S1,S2,S3(p, r).

The degrees of the labels need to satisfy

|p|1 > |q11|1 > · · · > |q1k|1 ≥ |q21|2 > · · · > |q2ℓ |2 ≥ |q31|3 > · · · > |q3m|3 > |r|3.

As before the morphisms are given by edge contraction with the exception that we do not allow
edge contraction of an internal edge if both of its vertices are distinguished. Note that we now have
a natural grafting operation:

□S1,S2(p, q)×□S2,S3(q, r) −→ □S1,S2,S3(p, r)(2.4)
(
v1
p q

,
v2
q r

) 7−→
v2 v2
p q r

The 2-category □S1,S2,S3 also has a natural description in terms of the (□S1 ,□S2)-bimodule □S1,S2

and the (□S2 ,□S3)-bimodule □S2,S3 . Namely, we have □S1,S2,S3 = □S1,S2 ×□S2
□S2,S3 , where the

2-category □S1,S2 ×□S2
□S2,S3 is defined to have object set equal to S1×S3 and the morphisms are

given by posets (□S1,S2 ×□S2
□S2,S3)(x, z) that is defined as the colimit of the following diagram

⊔
q,q′∈S2

□S1,S2(p, q)×□S2(q, q
′)×□S2,S3(q

′, r)
⊔
q∈S2

□S1,S2(p, q)×□S2,S3(q
′, r) ,

where the two arrows are given by the bimodule grafting operations (2.2) and (2.3), respectively.
There is furthermore a natural 2-functor σS1,S2,S3 : □S1,S2,S3 → □S1,S3 defined on 1-morphisms by
collapsing all internal edges between the two distinguished vertices.

Lemma 2.20. The following diagram is commutative.

□S1,S2 ×□S2
□S2,S3 ×□S3

×□S3,S4 □S1,S2 ×□S2
□S2,S4

□S1,S3 ×□S3
×□S3,S4 □S1,S4

id×□S2
σS2,S3,S4

σS1,S2,S3×□S3
id □S1,S2,S4

σS1,S3,S4

□

Definition 2.21 (Composition of flow bimodules). Let N1 : M1 →M2 and N2 : M2 →M3 be two
flow bimodules. The composition N2 ◦N1 : M1 →M3 is defined as the Man∂-enriched functor

N2 ◦N1 : M
op
1 ×M3 −→Man∂ ,

that is defined on objects by letting (N2 ◦N2)(x, z) be the colimit of the following diagram⊔
y,y′∈ob(M2)

N1(x, y)×M2(y, y
′)×N2(y

′, z)
⊔

y∈ob(M2)

N1(x, y)×N2(y, z) .

Lemma 2.22. The stratifications of N1 by □ob(M1),ob(M2) and N2 by □ob(M2),ob(M3), respectively,
induces a stratification of N2 ◦N1 by □ob(M1),ob(M2),ob(M3). □
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2.5. Flow bordisms. Let M1 and M2 be two flow categories, and N,N′ : M1 → M2 two flow
bimodules. The flow categorical analog of a homotopy is that of a “flow bordism.”

Let S1 and S2 be two Z-graded sets, and let M ∈ ob(Man∂) be a smooth manifold with corners.
Given elements (p, r, ∂σM) ∈ S1 × S2 × ob(SM ), define the poset □∂σM

S1,S2
(p, r) to be an element of

□S1,S2(p, r) such that the distinguished vertex carries the label ∂σM , and
|p|1 > |q11|1 > · · · > |q1k|1, |q21|2 > · · · > |q2ℓ |2 > |r|2, |q1k|1 + dim ∂σM ≥ |q21|2.

The partial order on □∂σM
S1,S2

(p, r) is the same as the one on □S1,S2(p, r), and its dimension function
is defined as dim□∂σM

S1,S2
(p, r) = |p|1 − |r|r + dim ∂σM . Similar to Section 2.3 we therefore obtain a

2-functor
□∂σM
S1,S2

: □op
S1
×□S2 −→ Cat .

Define a functor on objects as follows
□M
S1,S2

: SopM −→ 2-Fun(□op
S1
×□S2 ,Cat)

∂σM 7−→ □∂σM
S1,S2

,

i.e. a 2-Fun(□op
S1
×□S2 ,Cat)-presheaf on SM . The grafting operations (2.2) and (2.3) are defined

on □∂σM
S1,S2

for any ∂σM ∈ ob(SM ). The functor □M
S1,S2

is defined on morphisms ∂σM → ∂τM as
the 2-natural transformation □∂τM

S1,S2
⇒ □∂σM

S1,S2
that changes the label of the distinguished vertex.

It is clear that the label change commutes with both edge contraction and grafting, see Figure 5
for the case M = [0, 1].

{0}
p r

{0}
p q11

r

[0, 1]

p r

[0, 1]

p q11
r

{1}
p r

{1}
p q11

r

Figure 5. Label change and edge contraction commutes.

Assume C and D are two Man∂-enriched categories equipped with stratifications sC : SC →
P1 and sD : SD → P2, respectively. Assume ϕ1, ϕ2 : Cop × D → Man∂ are two Man∂-enriched
functors stratified by the 2-functors P1,P2 : P

op
1 × P2 → Cat (recall that this means that there

are 2-natural isomorphisms Sϕ1 ⇒ P1 ◦ (sopC × sD) and Sϕ2 ⇒ P2 ◦ (sopC × sD)). Suppose that
ψ : Sop[0,1] → Fun(Cop × D,Man∂) is a functor such that ψ({0}) = ϕ1 and ψ({1}) = ϕ2. This
determines a functor

Sψ : S
op
[0,1] −→ 2-Fun(SCop × SD,Cat),

that satisfies Sψ({0}) = Sϕ1 and Sψ({1}) = Sϕ2 . We say that ψ is stratified by a functor Q : Sop[0,1] →
2-Fun(P op

1 × P2,Cat) satisfying Q({0}) = P1 and Q({1}) = P2 if there is a natural isomorphism
Sψ

∼=⇒ QC,D, where QC,D is the induced functor
QC,D : Sop[0,1] −→ 2-Fun(SCop × SD,Cat),

that satisfies QC,D({0}) = P1 ◦ (sopC × sD) and QC,D({1}) = P2 ◦ (sopC × sD).
Definition 2.23 (Flow bordism). Let N1,N2 : M1 → M2 be two flow bimodules. A flow bordism
from N1 to N2, denoted by B : N1 ⇒ N2, is a functor

B : Sop[0,1] −→ Fun(Mop
1 ×M2,Man∂),
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such that B({0}) = N1 and B({1}) = N2 and that is stratified by the functor □[0,1]
ob(M1),ob(M2)

.

Remark 2.24. Note that B is simply a □[0,1]
ob(M1),ob(M2)

-stratified Fun(Mop
1 ×M2,Man∂)-presheaf on

S[0,1].

Remark 2.25. Let us unpack Definition 2.23. Since ob(Sop[0,1]) = {{0} , {1} , [0, 1]}, and since B is
already determined on objects {0} and {1}, we have one additional functor

B([0, 1]) : Mop
1 ×M2 −→Man∂ ,

which by Remark 2.16 means an assignment of a smooth manifold with corners
B(x, y) := B([0, 1])(x, y),

for each pair of objects (x, y) ∈ ob(M1)× ob(M2). This smooth manifold with corners comes with
bimodule structure maps

M1(x, x
′)×B(x′, y) −→ B(x, y)

B(x, y′)×M2(y
′, y) −→ B(x, y),

that are associative and also commute with each other.
The functor B furthermore comes equipped with natural transformations

N1 ⇒ B([0, 1])⇐ N2,

which in particular yield maps
N1(x, y) −→ B(x, y)

N2(x, y) −→ B(x, y)

for all pairs of objects (x, y) ∈ ob(M1)×ob(M2). Similar to Remark 2.16, we obtain an identification
of the disjoint union of the codimension 1 strata of B(x, y) with the strata corresponding to the
image of⊔
|x|>|x′|

|x′|+1≥|y|

x x′
×
x′

[0, 1]

y ∪
⊔

|x|+1≥|y′|
|y′|>|y|

x

[0, 1]

y′
×
y′ y

∪
⊔

|x|≥|y|
x

{0}
y ∪

⊔
|x|≥|y|

x

{1}
y

∼=
⊔

|x|>|x′|
|x′|+1≥|y|

M1(x, x
′)×B(x′, y) ∪

⊔
|x|+1≥|y′|
|y′|>|y|

B(x, y′)×M2(y
′, y) ∪

⊔
|x|≥|y|

N1(x, y) ∪
⊔

|x|≥|y|

N2(x, y)

in the image of the grafting and label change operations, see e.g. Figure 5.
Proposition 2.26. A flow bordism between two flow bimodules N1,N2 : M1 →M2 is equivalent to
the following data:

• An assignment of a (|x|1 − |y|2 + 1)-dimensional smooth manifold with corners B(x, y) ∈
ob(Man∂) for every pair of objects (x, y) ∈ ob(M1)× ob(M2) with |x|+ 1 ≥ |y|, such that
each B(x, y) is equipped with a 〈k〉-manifold structure for some k.
• Bimodule structure maps

M1(x, x
′)×B(x′, y) −→ B(x, y)

B(x, y′)×M2(y
′, y) −→ B(x, y)

N1(x, y) −→ B(x, y)

N2(x, y) −→ B(x, y)

for all triples (x, x′, y) ∈ ob(M1)
2 × ob(M2) with |x| > |x′| and |x′| + 1 ≥ |y|, triples

(x, y′, y) ∈ ob(M1)× ob(M2)
2 with |x|+ 1 ≥ |y′| > |y| and tuples (x, y) ∈ ob(M1)× ob(M2)

with |x| ≥ |y|, respectively. These maps are furthermore required to be diffeomorphisms
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onto codimension 1 corner strata of B(x, y), and they are required to be associative and
commutative with each other.

Remark 2.27. (1) By recent major technical advancements made by Abouzaid–Blumberg [AB24],
there is a construction of a stable∞-category of (framed) flow categories, that is equivalent
to the stable ∞-category of spectra.

(2) The definitions of flow categories, flow bimodules and flow bordisms in these notes indicates
a technically different but equivalent route to defining such an∞-category (in our simplified
setting, which would suffice for Floer theory in the exact setting for instance). Namely, we
consider an object set consisting of flow categories. Letting ∆k denote the standard k-
simplex. For any pair of flow categories (M1,M2) we define a simplicial set

[k] 7−→ Fun□∆k (S
op
∆k ,Fun(M

op
1 ×M2,Man∂)),

where Fun□∆k denotes functors that are stratified by □∆k

ob(M1),ob(M2)
, similar to Defini-

tion 2.23. In other words, the k-simplices in the simplicial set that we call Flow(M1,M2)

are □∆k

ob(M1),ob(M2)
-stratified Fun(Mop

1 ×M2,Man∂)-presheaves on S∆k . It turns out that
this simplicial set is in fact an ∞-groupoid, and this data (objects the set of flow categories
and morphism ∞-groupoids Flow(M1,M2)) is equivalent to the data of an ∞-category
with 0-cells being flow categories.

(3) It is possible to define a “flow multimodule” which would be interpreted as a flow bimodule
with several inputs. This is necessary to consider naturally occurring operations in Floer
theory such as the triangle product and higher A∞-operations appearing in the Fukaya
category. This naturally leads to a “multicategory of flow categories,” or more precisely its
∞-categorical analog: an ∞-operad of flow categories.

2.6. Forgetful functor. In order to make the notion of “throwing away” the high dimensional
moduli spaces as described in Example 1.4 more precise, there is in fact a forgetful functor, which
takes as input a flow category and has as output a chain complex. Given a flow category M, define
a chain complex over Z/2 CMk defined by

CMk := Z/2
〈
µ−1(k)

〉
,

where µ : ob(M)→ Z denotes the grading function. We may define a differential ∂ : CM∗ → CM∗−1

by
∂x :=

∑
|x|=|y|+1

(#2M(x, y))y,

where #2M(x, y) denotes the mod 2 count of the elements in M(x, y). The proof that ∂2 = 0
follows from the fact that contributions to ∂2x counts elements in

⊔
yM(x, y)×M(y, z) of dimen-

sion 0, which are precisely all the boundary strata of the 1-dimensional moduli space M(x, z) by
construction.

Given a flow bimodule N : M→M′, we may define a chain map CN : CM∗ → CM′
∗ by

CN(x) :=
∑

|x|=|y|′
(#2N(x, y))y.

The proof that ∂′ ◦ CN(x) = CN(x) ◦ ∂ is similar to the above; it follows from the fact that
contributions to ∂′ ◦ CN(x) + CN(x) ◦ ∂ counts elements in⊔

x′∈ob(M1)

(M1(x, x
′)×N(x′, y)) t

⊔
y′∈ob(M2)

(N(x, y′)×M2(y
′, y)) ,

of dimension 0, which are precisely all the boundary strata of the 1-dimensional moduli space
N(x, y) by construction.
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Given another flow bimodule N′ : M → M′ and a flow bordism B : N ⇒ N′, we may define a
chain homotopy CB : CM∗ → CM′

∗+1 by

CB(x) :=
∑

|x|+1=|y|′
(#2B(x, y))y.

The proof that ∂′ ◦CB(x) +CB(x) ◦ ∂ = CN(x) +CN′(x) is proved in a similar fashion as above.

3. Spectra and orientations on flow categories

In Floer homology, when working with integer coefficients we must orient moduli spaces of
pseudoholomorphic curves in a coherent fashion. Part of the idea of Floer homotopy theory is to
make sense of using “coefficients in a ring spectrum.” To make this precise we give a brief account
for what notions from stable homotopy theory we require.

3.1. Spectra.
Definition 3.1. A spectrum is a sequence {Zk}∞k=0 of pointed topological spaces with pointed maps
ΣZk → Zk+1.
Example 3.2. Given a pointed topological space we can consider its suspension spectrum Σ∞X
which is defined as

(Σ∞X)k := ΣkX,

and structure maps ΣΣkX
≃→ Σk+1X.

Example 3.3. The sphere spectrum S is defined as Sk := Sk with structure maps ΣSk ≃→ Sk+1.
Example 3.4. If A is an Abelian group, the Eilenberg–MacLane spectrum HA is defined as
(HA)k := K(A, k) which is the k-th Eilenberg–MacLane space ofA. The structure mapsΣK(a, k)→
K(A, k+1) are obtained from the homotopy equivalences K(A, k)

≃→ ΩK(A, k+1) via the adjunc-
tion [ΣX,Y ] ' [X,ΩY ].
Remark 3.5. We work in a certain (non-trivial to construct) category of spectra called “EKMM
spectra” or “S-modules.” It is defined in [EKMM97]. The category of EKMM spectra is equipped
with a symmetric monoidal smash product, and we are not going to discuss the details of this
construction.
Definition 3.6. If Z is a spectrum, we define its homotopy groups by

πnZ := colim
k→∞

πn+kZk.

Definition 3.7. A ring spectrum R is a spectrum R equipped with maps µ : R ∧ R → R and
η : S→ R such that the following diagram commutes

S ∧R R ∧R R ∧ S

R

η×id

≃
µ

id×η

≃

Remark 3.8. For every ring spectrum R there is a unique ring map S→ R. This makes S the initial
object in the category of ring spectra.
Remark 3.9. If E is a spectrum, and X is a space, then

X 7−→ πn(E ∧X) =;Hn(X;E),

is a generalized homology theory, and
X 7−→ [Σ−nX,E] =: Hn(X;E)

is a generalized cohomology theory. (If E is a ring spectrum it follows that the cohomology theory
Hn(−;E) is multiplicative.)
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3.2. Orientations.
Definition 3.10. Let R be a spectrum. The space of units of R is defined as the following homotopy
limit

GL1(R) := holim

 Ω∞R

(π0R)
× π0R

 ,

where the vertical map is the composition Ω∞R→ π0Ω
∞R

∼=→ π0R. It is always true that GL1(R)
is an infinite loop space, so that we can always deloop (as many times as we wish.
Example 3.11. The space of units of the Eilenberg–MacLane spectrum Hk for some discrete ring
is k×, i.e., GL1(Hk) ' k×.

We denote by G := GL1(S), and this space is a classical object in homotopy theory. If G(n)
denotes the set of homotopy equivalences Sn → Sn that fix the point ∞, then we have G =
colimnG(n), and for any n ∈ Z≥0 there is a map

O(n) −→ G(n),

where O(n) denotes the orthogonal group. It is defined by extending an orthogonal linear trans-
formation of Rn to a homeomorphism of its one-point compactification, fixing ∞. By passing to
the colimit as n → ∞ we obtain the so-called J-homomorphism J : O → G, and it induces a map
between the deloopings: BJ : BO → BG. Recall that a (stable) vector bundle on a space X is
classified by a map

X −→ BO.

Now, maps X → BG turn out to classify “stable spherical fibrations” over X. Associated to any
rank n vector bundle ξ : X → BO there is an associated stable spherical fibration

ξS = BJ ◦ ξ : X → BO → BG,

which is the principal Sn-fibration obtained from ξ via fiberwise one-point compactification.
Definition 3.12. A vector bundle X → BO is said to be S-orientable if and only if X → BO → BG
is null-homotopic (i.e., homotopic to the constant map at the basepoints).
Remark 3.13. The definition of R-orientability of a vector bundle is similar: Since S is the initial ring
spectrum, the unit map S → R induces a map BG → BGL1(R), and a vector being R-orientable
is equivalent (by definition) to the following composition being null-homotopic:

X −→ BO −→ BG −→ BGL1(R).

Definition 3.14 (R-line bundle). An R-line bundle is a homotopy class of a map X → BGL1(R).
Definition 3.15. Given two R-line bundles f : X → BGL1(R) and g : Y → BGL1(R), we define
their tensor product f ⊗R g as the product map

f ⊗R g : X ∧ Y
f∧g−→ BGL1(R) ∧BGL1(R) −→ BGL1(R)

where the second map is the ring structure on BGL1(R).
Example 3.16. Classical orientability of vector bundles is equivalent to HZ-orientability. Namely,
by our definition above, HZ-orientability of a vector bundle is equivalent to the following map being
null-homotopic:

X
ξ−→ BO −→ BG −→ BGL1(HZ) ∼= K(Z/2, 1) ∼= RP∞.

Now, it turns out that the latter part of this composition BO → RP∞ is representing the (universal)
first Stiefel–Whitney class w1, so that the composition X → RP∞ represents w1(ξ), the vanishing
of which is equivalent to classical orientability.
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Example 3.17. If ξ : X → BO is an S-orientable vector bundle, then it is equivalent (by definition)
to its associated stable spherical fibration being trivial. If σk is the trivial principal Sk-bundle over
X, which means that there exists some N > 0 such that

ξS ∧ σN ∼= σk+N ,

as principal Sk+N -bundles, where ∧ denotes fiberwise smash product. The stable vector bundle ξ
is S-orientable if and only if ξ has stably trivial fiber homotopy type, see [Hus94, Theorem 16.7.7].

Definition 3.18. A free rank one S-module is defined as a map S0 → BG.

Remark 3.19. (1) A free rank one R-module is defined as a map S0 → BGL1(R).
(2) A free rank one S-module is by definition equivalently an S-line bundle over a point.

3.3. Oriented flow categories and flow bimodules. For this section fix a commutative ring
spectrum R. We are now going to incorporate orientations in our definitions of flow categories.
Recall from Example 1.4 that in Morse theory, we have a vector bundle TW u(x) associated to
each critical point, which is trivial because the unstable manifold is contractible, and we also have
canonical isomorphisms of vector bundles

TW u(x)
∼=−→ TM(x, y)⊕ R⊕ TW u(y).

We will require a flow category to carry this extra coherent orientation structure. Before getting
too abstract it is useful to give the concrete definitions first.

Definition 3.20 (R-oriented flow category). An R-orientation on a flow category M is a choice of
a free rank one R-module o(x) for every object x ∈ ob(M) together with isomorphisms of R-line
bundles over M(x, y)

o(x, y) : o(x)
≃−→ (TM(x, y)⊕ R)R ⊗R o(y),

for every x, y ∈ ob(M), that are compatible with the composition maps in M, in the sense that the
following diagram commutes:

o(x) (TM(x, y)⊕ R)R ⊗R o(y)

(TM(x, z)⊕ R)R ⊗R o(z) (TM(x, y)⊕ R)R ⊗R (TM(y, z)⊕ R)R ⊗R o(z)

.

Example 3.21. If f : M → R is a Morse–Smale function on a closed smooth manifold, recall from
Example 2.13 that we obtain a flow category Mf . This flow category admits an R-orientation for
any commutative ring spectrum R. Namely, let o(x) := (TW u(x))R for every x ∈ ob(Mf ) = crit f .
Next, we have the following exact sequences in Morse theory

0 TpM̃f (x, y) TpW
u(x) NpW

s(y) 0

and
0 R TpM̃f (a, b) TpMf (a, b) 0

for any p ∈M(x, y), where M̃(x, y) is the moduli space of parametrized gradient flow lines (i.e. M is
the quotient of M̃ with the R-action given by translation). These exact sequences of vector spaces
gives canonical isomorphisms

(TW u(x))R
≃−→ (TMf (x, y)⊕ R)R ⊗R (TW u(y))R,

which is precisely the data of an R-orientation on the flow category Mf .
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Example 3.22. Let L,K ⊂ X be two transversely intersecting exact Lagrangians in a (stably
polarized) Liouville manifold X. Under certain assumptions (a sufficient assumption is that the
“stable Lagrangian Gauss maps” L → U/O and K → U/O are null-homotopic; see Theorem 4.5
for a weaker sufficient condition), the flow category ML,K defined in Example 2.14 admits an
R-orientation.

For any object x ∈ ob(ML,K), define V(x) to be the index bundle of the linearized Cauchy–
Riemann operator on a space of disks D(x) with a negative boundary puncture asymptotic to x.
So the associated R-line bundle of V(x) is viewed as a map V(x)R : D(x)→ BGL1(R). A technical
point here is that V(x)R is R-orientable under the above technical assumptions on L, K and X,
which means that the map V(x) factors as D(x)→ S0 → BGL1(R). The latter map is by definition
a free rank one R-module, which we also denote by V(x)R. We define

(3.1) o(x) := (−V(x))R

(The reason we invert this vector bundle before taking its associated R-line bundle is technical.)
Next it is a classical theorem going back to at least Floer–Hofer [FH93] that the index bundles

respect gluing in the sense that there are canonical isomorphisms of R-line bundles over ML,K(x, y)

V(y)R
≃−→ (TML,K(x, y)⊕ R)R ⊗R V(x)R.

that are associative. Therefore, since we tacitly assume that ML,K(x, y) are transversely cut out,
definition (3.1), we have

o(x)
≃−→ (TML,K(x, y)⊕ R)R ⊗R o(y),

which means that ML,K is R-oriented. (In fact, by our assumptions, the above discussion goes
through for any R and in particular the sphere spectrum S; the assumption that the stable La-
grangian Gauss maps of L and K are null-homotopic is quite restrictive.)

Definition 3.23 (R-oriented flow bimodule). If (M1, o1) and (M2, o2) are two R-oriented flow
categories, and N : M1 → M2 is a flow bimodule, then we say that N is R-oriented if there are
canonical isomorphisms of R-line bundles over N(x, y) for every (x, y) ∈ ob(M1)× ob(M2)

o1(x)
≃−→ (TN(x, y))R ⊗R o2(y).

Definition 3.24 (R-oriented flow bordism). Let (M1, o1) and (M2, o2) be two R-oriented flow
categories and let N1,N2 : M1 → M2 be two R-oriented flow bimodules. If B : N1 ⇒ N2 is a flow
bordism, we say that B is R-oriented if there are canonical isomorphisms of R-line bundles over
B(x, y) for every (x, y) ∈ ob(M1)× ob(M2)

o1(x)
≃−→ (TB(x, y)	 R)R ⊗R o2(y).

3.3.1. Alternative definition. With the concrete definition, and examples out of the way, we will
give a more abstract definition that is more closely related to the definition given in [AB24].

Recall the definition of the category Man∂ from Definition 2.5. We upgrade this to a bicategory
as follows. Recall that R still denotes a commutative ring spectrum.

Definition 3.25. Define ManR∂ to be the bicategory given by the following data:
• The set of objects consists of free rank one R-modules o.
• 1-morphisms from o1 to o2 consists of an object X ∈Man∂ together with an isomorphism

of R-line bundles
oX : o1

≃−→ (TX)R ⊗R o2.

• 2-morphisms from X to X ′ consists of a morphism φ : X → X ′ in Man∂ together with an
isomorphism (TX)R ∼= (TX ′)R of associated R-line bundles of their tangent bundles, such
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that the following diagram commutes

o1 (TX)R ⊗R o2

(TX ′)R ⊗R o2

oX

oX′ (Tφ)R⊗Rid≃ .

• The horizontal composition is defined on objects (meaning on 1-morphisms) as follows:

ManR∂ (o1, o2)×ManR∂ (o2, o3) −→ManR∂ (o1, o3)

((X12, o12), (X23, o23)) 7−→ (X12 ×X23, (id⊗Ro23) ◦ o12),

Remark 3.26. The reason ManR∂ is only a bicategory as opposed to a strict 2-category is simple.
Namely, the associativity of the horizontal composition is only up to natural isomorphism. Even
when ignoring the isomorphisms of R-line bundles, the smooth manifolds with corners (X12×X23)×
X34 and X12 × (X23 ×X34) are not equal (indeed, their underlying sets are not equal!), but only
naturally isomorphic.

Now, we may upgrade the definitions of R-oriented flow category, R-oriented flow bimodule and
R-oriented flow bordism by using ManR∂ instead of Man∂ ; we omit the details in these notes.

3.4. Cohen–Jones–Segal geometric realization. Given an R-oriented flow category, there is
a procedure known as Cohen–Jones–Segal (CJS) geometric realization, which gives an R-module
spectrum. We will not discuss this process in detail, but will give an overview sketch of the idea of
the construction. More can be found in the original work of Cohen–Jones–Segal [CJS95], see also
[ADP24, Section 3].

An R-orientation on a flow category M consists of associative maps

(3.2) o(x)
≃−→ IR(x, y)⊗R o(y),

where I(x, y) := TM(x, y) ⊕ R and IR(x, y) := I(x, y)R. Recall that o(x), o(y) : S0 → BGL1(R)

are R-line bundles. As such we may consider the Thom spectra (S0)o(x) and (S0)o(y), that we by
abuse of notation still denote by o(x) and o(y), respectively. From (3.2) we get isomorphisms of
R-modules

(3.3) o(x) ∧M−I(x, y)
≃−→ o(y),

where M−I(x, y) denotes the suspension spectrum of the Thom space (M(x, y))−I(x,y). The rough
idea is to construct a CW spectrum by considering cells (of dimension m)∨

x∈ob(M)
|x|=m

o(x),

and use (3.3) as “gluing maps,” via the Pontryagin–Thom construction.

4. The spectral wrapped Donaldson–Fukaya category

Recall from Example 2.14 that we already defined an unoriented flow category associated to two
transversely intersecting closed exact Lagrangian submanifolds in a Liouville manifold. We now
discuss details on how to orient this flow category, expanding the discussion from Example 3.22.
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4.1. Stable polarizations and the Lagrangian Gauss map. First recall that the tangent
bundle of any symplectic manifold X is canonically almost complex, and we may therefore represent
it by a map X → BU . There is a map c : BO → BU called complexification that is understood as
follows: If ξ : X → BO is a vector bundle, then c ◦ ξ : X → BU is the vector bundle ξ ⊗R C.

Definition 4.1 (Stable polarization). A stable polarization of a symplectic manifold X is a lift of
its tangent bundle X → BU through the complexification map c : BO → BU .

Remark 4.2. (1) In more concrete terms, the existence of a stable polarization on X is the
requirement that TX ⊕ CN is the complexification of a real vector bundle on X for some
N > 0.

(2) Since we have a fiber sequence BO c→ BU → B(U/O), a lift of X → BO through c is
equivalent to the composition X → BU → B(U/O) being null-homotopic. This assertion
is equivalent to the existence of a Lagrangian subbundle of the vector bundle TX ⊕CN for
some N > 0, i.e., a global Lagrangian distribution of TX ⊕ CN .

From now on we assume that any symplectic manifold that appears is equipped with a choice of
stable polarization, namely let TX ⊕ CN ∼= (TX)R ⊗R C.

Given a Lagrangian submanifold L ⊂ X in a symplectic manifold, the “Lagrangian Gauss map”
is a measure of the “difference” between the subbundle TL ⊕ RN ⊂ TX ⊕ CN and the global
Lagrangian distribution of TX ⊕CN determined by the stable polarization. We then have the two
maps TL : L→ BO and (TX)R|L : L→ BO that satisfies
(4.1) c ◦ TL = c ◦ (TX)R|L = TX|L : L −→ BU

which determines a map
GL : L −→ U/O,

since we have the fiber sequence
U/O −→ BO

c−→ BU.

This lift is called the stable Lagrangian Gauss map. More precisely, it is constructed as follows:
The two equal (and thus homotopic) maps in (4.1) are used to produce a null-homotopic map
c ◦ (TL − (TX)R|L) : L → BU where TL − (TX)R|L : L → BO is the map classifying the virtual
vector bundle TL− (TX)R|L. Since c ◦ (TL− (TX)R|L) is null-homotopic, the map TL− (TX)R|L
admits a lift to the homotopy fiber of c : BO → BU , which is U/O.

Bott periodicity gives a homotopy equivalence Ω(U/O) ' Z×BO which yields a map Ω(U/O)→
BO via the projection. This map admits a delooping U/O → B2O.

Definition 4.3. Define (U/O)# to be the homotopy fiber of the following composition

U/O −→ B2O
B2J−→ B2G −→ B2GL1(R).

Definition 4.4 (Lagrangian R-brane). Let L ⊂ X be a Lagrangian submanifold. A Lagrangian
R-brane structure is a lift of the stable Lagrangian Gauss map L → U/O to a map L → (U/O)#.
In other words, a choice of null-homotopy of the following composition

L
GL−→ U/O −→ B2O

B2J−→ B2G −→ B2GL1(R).

Theorem 4.5. Let X be a stably polarized Liouville manifold, and let L,K ⊂ X two exact
Lagrangian R-brane. The flow category ML,K is R-orientable.

Proof. Briefly, the idea is the same as the classical proof involving classical orientation. The key is
that the assumption L and K carry R-brane structures yields that the index bundle of the linearized
Cauchy–Riemann operator on a space of caps (disks with one negative boundary puncture) is R-
orientable. □
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Proposition 4.6 ([ADP24, Lemma 5.17]). A choice of HZ-brane structure on L ⊂ X is equivalent
to a relative pin structure on L, relative to the background class w2((TX)R) ∈ H2(X;Z/2). □
Definition 4.7. Let L,K ⊂ X be two Lagrangian R-branes in a stably polarized Liouville manifold.
Define

HW (L,K;R) := |ML,K , o|,
where o is the R-orientation defined in Example 3.22.
Proposition 4.8. Given two Lagrangian R-branes L,K ⊂ X in a stably polarized Liouville man-
ifold, the homotopy groups of HW (L,K;HZ) are given by the wrapped Floer cohomology (with
integer coefficients) with reversed grading:

π∗(HW (L,K;HZ)) ∼= HW−∗(L,K;Z).
□

Remark 4.9. The above also holds true for Hk, where k is any commutative ring.
4.2. Flow multimodules. Before defining the wrapped Donaldson–Fukaya category, we digress
and give a sketch of the definition of flow multimodules. Given flow categories M0,M1, . . . ,Mk a
flow multimodule

N : M1, . . . ,Mk −→M0

is an assignment (a1, . . . , ak; a0) 7→ N(a1, . . . , ak; a0) of an object in Man∂ that enjoys a similar
decomposition of the union of its codimension 1 corner strata to that of a flow bimodule Defini-
tion 2.15. Namely, there are structure maps

Mi(ai; a
′
i)×N(a1, . . . , a

′
i, . . . , ak; a0) −→ N(a1, . . . , ak; a0), i ∈ {1, . . . , k}

N(a1, . . . , ak; a
′
0)×M0(a

′
0, a0) −→ N(a1, . . . , ak; a0)

that are suitably associative and commutative. An R-orientation on a flow multimodule consists
of isomorphisms of R-line bundles over N(a1, . . . , ak; a0)

o1(a1)⊗R · · · ⊗R ok(ak)
≃−→ (TN(a1, . . . , ak; a0))R ⊗R 0(a0)

for all tuples of objects (a0, . . . , ak) ∈
∏k
i=0 ob(Mi), that satisfy suitable compatibilities with respect

to the bimodule structure on N. The CJS realization is furthermore functorial with respect to flow
multimodules in the sense that it yields a map of R-modules

|N,m| : |M1, o1| ∧R · · · ∧R |Mk, ok| −→ |M0, o0|.

4.3. The wrapped Donaldson–Fukaya category. Given three LagrangianR-branes L0, L1, L2 ⊂
X in a stably polarized Liouville sector, we define a flow multimodule

Nµ : ML0,L1 ,ML1,L2 −→ML0,L2

that is defined by letting Nµ(a1, a2; a0) be the moduli space of pseudoholomorphic triangles, re-
sponsible for defining the product in wrapped Floer cohomology. By the general gluing results in
Floer theory, we equip Nµ with an R-orientation. Its CJS realization yields a map

µ2 : HW (L0, L1;R) ∧R HW (L1, L2;R) −→ HW (L0, L2;R),

Proposition 4.10. The map µ2 of R-modules is homotopy associative. I.e., the following diagram
is commutative up to homotopy:

HW (L0, L1;R) ∧R HW (L1, L2;R) ∧R HW (L2, L3;R) HW (L0, L2;R) ∧R HW (L2, L3;R)

HW (L0, L1;R) ∧R HW (L1, L3;R) HW (L0, L3;R)

µ2∧Rid

id∧Rµ
2 µ2

µ2
.
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Proof. The homotopy between the two compositions is defined by a flow bordism between two flow
multimodules ML0,L1 ,ML1,L2 ,ML2,L3 −→ ML0,L3 , which is defined by moduli spaces of pseudo-
holomorphic pairs of pants with three inputs. (These moduli spaces define a flow bordism and not
a flow multimodule as there are boundary strata of this moduli space that looks like two pairs of
pants composed in two different ways, which is precisely the two compositions in the diagram.) □
Remark 4.11. The unit in the wrapped Fukaya category obtained by counting pseudoholomorphic
disks with one negative boundary puncture may be used to define the unit in HW (L,L;R), too.

Definition 4.12. The wrapped Donaldson–Fukaya category with coefficients in R of X is the
category W(X;R) enriched over the homotopy category of R-modules whose objects are given by
the set of Lagrangian R-branes in X, the morphisms from L0 to L1 are given by

W(X;R)(L0, L1) := HW (L0, L1;R),

and the composition maps are given by µ2.

Remark 4.13. This category is enriched in the homotopy category of R-modules, since the product
is only homotopy associative.

The wrapped Donaldson–Fukaya category enjoys the following properties. A similar version was
also recently proved by Porcelli–Smith [PS24a, PS24b].

Theorem 4.14 (A.–Deshmukh–Pieloch). Let L ∼= K in W(X;R).
(1) There is an isomorphism of R-modules L−TL ∧R ' K−TK ∧R.
(2) If L is R-oriented, then K is R-orientable, and there exists an R-orientation on K such

that [L]R = [K]R ∈ Hn(X;R).

5. Spectral equivalence of nearby Lagrangians

5.1. Floer homotopy type of the cotangent fiber. In this section we focus on X = T ∗Q for
a closed manifold Q. By classical work of Milnor [Mil63], we use a Morse theoretic description of
the based loop space ΩQ to define a flow category whose CJS realization is Σ∞

+ ΩQ ∧R.
Namely, there is a homotopy equivalent space ΩQ ' BQ consisting of piecewise geodesic loops

in Q. This space admits an increasing filtration
BQ(1) ⊂ BQ(2) ⊂ · · · ⊂ BQ(n) ⊂ · · · ,

such that BQ = colimnBQ(n), and each inclusion BQ(n) ⊂ BQ(n+1) is an inclusion as a subman-
ifold with boundary. Moreover, each BQ(n) is a finite dimensional smooth manifold with corners
and for a generic choice of Riemannian metric on Q, the energy functional E(γ) :=

∫ 1
0 |γ̇(t)|

2dt
is a Morse–Smale function. For each n ∈ Z≥1 we therefore obtain a Morse–Smale flow category
MBQ(n),E|BQ(1)

, and this produces a sequence of flow categories

MBQ(1),E|BQ(1)
⊂MBQ(2),E|BQ(2)

⊂ · · · ⊂MBQ(n),E|BQ(n)
⊂ · · · ,

where each inclusion is an inclusion as a full subcategory. We define MΩQ to be the flow category
with

• ob(MΩQ) =
⋃∞
n=1 ob(MBQ(n),E|BQ(n)

)

• The grading is given by the Morse index.
• MΩQ(x, y) is defined as MBQ(n),E|BQ(n)

(x, y) for some large enough n.
• The R-orientation

o(a)
≃−→ (TMΩQ ⊕ R)R ⊗R o(b),

is given by the R-orientation on MBQ(n),E|BQ(n)
for some large enough n.

Proposition 5.1. The CJS realization of (MΩQ, o) is equal to Σ∞
+ ΩQ ∧R. □
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The Pontryagin product P : ΩQ × ΩQ → ΩQ given by concatenation of loops, induces a flow
multimodule

P : MΩQ,MΩQ −→MΩQ

by
P(γ1, γ2; γ) := (W

u
−∇E(γ1)×W

u
−∇E(γ2))×P W

s
−∇E(γ),

there is a natural “intersection orientation” that we equip this flow multimodule with; the CJS
realization of P coincides with the Pontryagin product on Σ∞

+ ΩQ ∧R up to homotopy.
Next, we consider a cotangent fiber F = T ∗

ξQ ⊂ T ∗Q at the basepoint ξ ∈ Q that we implicitly
used for our based loop space above. Let a ∈ ob(MF,F ) be a Hamiltonian chord. We pick some
Hamiltonian that vanishes near the zero section Q ⊂ T ∗Q. Since F ∩Q = {ξ}, there is a constant
Hamiltonian chord at ξ, which we also denote by ξ. Considering the moduli space Nµ(a, ξ; ξ) defined
in Section 4.3, we have an evaluation map

ev : Nµ(a, ξ; ξ) −→ ΩQ,

by restricting a map u to the boundary component along which u maps to Q. We then define a
flow bimodule

N : MF,F −→MΩQ,

via the assignment
N(a; γ) := Nµ(a, ξ; ξ)×ev W

s
−∇E(γ).

This flow bimodule is equipped with the “intersection R-orientation.”

Lemma 5.2. The following diagram is homotopy commutative

HW (F, F ;R) ∧R HW (F, F ;R) (Σ∞
+ ΩQ ∧R) ∧R (Σ∞

+ ΩQ ∧R)

HW (F, F ;R) Σ∞
+ ΩQ ∧R

|N|∧R|N|

µ2 |P|
|N|

.

Proof. This proof is the flow categorical upgrade of the classical proof that the triangle product
(and indeed the entire A∞-structure if it had been defined) in HW (F, F ) is transferred to the
Pontryagin product on the based loop space, see [Abo12]. □

Remark 5.3. We now comment on a technical point regarding the homotopy commutativity which
now becomes important. The suspension spectrum Σ∞

+ ΩQ∧R is an R-module and a ring spectrum,
so it is an R-algebra. A ring spectrum in our sense is the same as an “A∞-ring spectrum” in the
classical sense. This means that the ring structure is associative up to coherent homotopy. This is
stronger than the ring structure being associative up to homotopy. (This is the distinction between
an A2-algebra and an A∞-algebra in algebra or between an H-space and an A∞-space in topology.)

Next, we have that HW (F, F ;R) is a homotopy R-algebra, because we have only proved that µ2
defines a homotopy ring structure. Moreover Lemma 5.2 shows that |N| defines a map of homotopy
R-algebras.

We now assume that R is connective, meaning πkR = 0 for k < 0. For connective spectra there
is a version of Whitehead’s theorem that holds true: If M and N are connective R-modules, and
φ : M → N is a map of R-modules that induces and equivalence φ∗ : π∗(M ∧RHk)

∼=→ π∗(N ∧RHk)
where k := π0R, then φ is an equivalence of R-modules.

Lemma 5.4. The CJS realization
|N| : HW (F, F ;R) −→ Σ∞

+ ΩQ ∧R

defines an equivalence of homotopy R-algebras.
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Proof. Firstly, Σ∞
+ ΩQ ∧R is connective. Moreover, there is a grading preserving bijection

ob(HW (F, F ;R)) ∼= ob(MΩQ)

which implies that HW (F, F ;R) must be connective by the definition of the CJS construction. It
follows from Proposition 4.8 that

π∗(HW (F, F ;R) ∧R Hk) ∼= HW−∗(F, F ; k),

and we know from [Abo12, Theorem 1.1] that this is equivalent to π∗((Σ
∞
+ ΩQ ∧ R) ∧R Hk) ∼=

H∗(ΩQ; k). This equivalence is recovered from |N|, which by Whitehead means that |N| is an
equivalence of R-modules. Since Lemma 5.2 shows that µ2 and the Pontryagin product are inter-
twined up to homotopy, |N| is an equivalence of homotopy R-algebras. □

Now, we equip HW (F, F ;R) with the ring structure pulled back from Σ∞
+ ΩQ ∧ R via the

equivalence of R-modules |N|, which automatically upgrades |N| to an equivalence of R-algebras,
with respect to this ring structure.

5.2. Spectral equivalence of nearby Lagrangians. Let us first show that an R-brane structure
on a Lagrangian is equivalent to a “rank 1 local system.” First recall that given a null-homotopy H
of a (homotopy class of a) map f : X → Y between two spaces, any other null-homotopy g : X → Y
is equivalent to a homotopy class of a map X → ΩY .
Lemma 5.5. An R-brane structure on Q is equivalent to a (Σ∞

+ ΩL ∧R)-module structure on R.
Proof sketch. By definition an R-brane structure on L is equivalent to a null-homotopic map L→
B2GL1(R). Given such, any other R-brane structure is equivalent to a map L→ BGL1(R) which
in turn is equivalent to a ring map ΩL → GL1(R). Such a map defines a (Σ∞

+ ΩL ∧ R)-module
structure on R by the following composition

(Σ∞
+ ΩL ∧R) ∧R R ' Σ∞

+ ΩL ∧R −→ Σ∞GL1(R) ∧R −→ Σ∞
+ Ω

∞R ∧R −→ R ∧R −→ R.

□
Remark 5.6. For R = HZ this lemma says that a relative pin structure on L (relative to the
background class that is the second Stiefel–Whitney class of the stable polarization of the Liouville
manifold) corresponds to a ring map ΩL→ GL1(Z) ∼= Z× = Z/2, which might be thought of as a
rank 1 derived local system on L.

We now restate our main theorem.
Theorem 5.7 (A.–Deshmukh–Pieloch [ADP24]). Let R be a commutative ring spectrum. Let Q be
a closed manifold and L ⊂ T ∗Q a nearby Lagrangian R-brane. There exists an R-brane structure
on Q such that L ∼= Q in W(X;R).
Outline of proof. (1) Let F(X;R) ⊂ W(X;R) denote the full subcategory consisting of closed

Lagrangian R-branes. Let k := π0R. Using Whiteheads theorem one can show that we
have a commutative diagram

F(T ∗Q;R) (Σ∞
+ ΩQ ∧R)-mod

F(T ∗Q;Hk) (Σ∞
+ ΩQ ∧Hk)-mod

Y

Y∧RHk

,

with the property that if Y ∧R Hk is fully faithful, so is Y.
(2) The functor Y∧RHk is fully faithful, by the classical result that the cotangent fiber generates

the wrapped Fukaya category of T ∗Q [Abo11]. Therefore Y is fully faithful. Fully faithful
functors reflect isomorphisms, and therefore to prove L ∼= Q (for some R-brane structure
on Q) in F(T ∗Q;R) it suffices to prove Y(L) ' Y(Q) in (Σ∞

+ ΩQ ∧ R)-mod. (Of course,
L ∼= Q in F(T ∗Q;R) implies L ∼= Q in W(T ∗Q;R).)
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(3) In reality there is a commutative diagram

(Σ∞
+ ΩQ ∧R)-mod

F(T ∗Q;R) (Σ∞
+ ΩQ ∧R)-homod

forget

YF

Y ,

where YF is defined on objects by YF (L) := HW (F,L;R) and induced by the Hurewicz map
on morphisms. This Yoneda functor YF a priori lands in the category of homotopy modules
over Σ∞

+ ΩQ∧R, since HW (F, F ) only has been equipped with a homotopy ring structure
µ2 (as opposed to a highly structured (meaning A∞) one). The functor Y is roughly defined
on the object L by considering (the CJS realization of) MQ,L equipped with a “local system”
that for each element in MQ,L(x, y) records the boundary component of the holomorphic
strip that is mapped to Q, as an element of the path space of Q from x to y.

For the rest of the proof we assume for simplicity that Y = YF and that every homotopy
module is a highly structured one. This is in order to focus on the high level idea of the
proof.

(4) By Whitehead’s theorem we obtain HW (F,L;R) ' ΣℓR for some ℓ ∈ Z. This is because
from classical Floer theory we have π∗(HW (F,L;R) ∧R Hk) ∼= HW−∗(F,L; k) ∼= k[ℓ] for
some ℓ ∈ Z.

(5) Since F∩Q = {ξ} it follows from the definition of the CJS construction that HW (F,Q;R) '
ΣmR for some m ∈ Z; by choosing appropriate grading data we may assume m = ℓ.

(6) Now, HW (F,L;R) ' ΣℓR is equipped with the HW (F, F ;R) ' (Σ∞
+ ΩQ ∧ R)-module

structure obtained from the composition µ2 in the wrapped Donaldson–Fukaya category.
(7) Finally one can show that we can pick some R-brane structure on Q such that the (Σ∞

+ ΩQ∧
R)-module structure on HW (Q,L;R) becomes equivalent to the given (Σ∞

+ ΩQ∧R)-module
structure on HW (F,L;R) ' ΣℓR. (Recall that an R-brane structure on Q corresponds by
Lemma 5.5 to a rank one (Σ∞

+ ΩQ ∧R)-module.)
□

References
[AB21] Mohammed Abouzaid and Andrew J Blumberg. Arnold conjecture and Morava K-theory.

arXiv:2103.01507, 2021. 2
[AB24] Mohammed Abouzaid and Andrew J Blumberg. Foundation of Floer homotopy theory I: Flow categories.

arXiv:2404.03193, 2024. 2, 12, 16
[Abo11] Mohammed Abouzaid. A cotangent fibre generates the Fukaya category. Adv. Math., 228(2):894–939,

2011. 22
[Abo12] Mohammed Abouzaid. On the wrapped Fukaya category and based loops. J. Symplectic Geom., 10(1):27–

79, 2012. 21, 22
[Abo22] Mohammed Abouzaid. An axiomatic approach to virtual chains. arXiv:2201.02911, 2022. 2
[ADP24] Johan Asplund, Yash Deshmukh, and Alex Pieloch. Spectral equivalence of nearby Lagrangians.

arXiv:2411.08841, 2024. 1, 2, 17, 19, 22
[CJS95] R. L. Cohen, J. D. S. Jones, and G. B. Segal. Floer’s infinite-dimensional Morse theory and homotopy

theory. In The Floer memorial volume, volume 133 of Progr. Math., pages 297–325. Birkhäuser, Basel,
1995. 1, 2, 5, 17

[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy
theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 1997. With an appendix by M. Cole. 13

[FH93] A. Floer and H. Hofer. Coherent orientations for periodic orbit problems in symplectic geometry. Math.
Z., 212(1):13–38, 1993. 16

[Flo89] Andreas Floer. Witten’s complex and infinite-dimensional Morse theory. J. Differential Geom., 30(1):207–
221, 1989. 1



24 JOHAN ASPLUND

[FOOO24] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. Exponential decay estimates and smooth-
ness of the moduli space of pseudoholomorphic curves. Mem. Amer. Math. Soc., 299(1500):v+139, 2024.
6

[Hus94] Dale Husemoller. Fibre bundles, volume 20 of Graduate Texts in Mathematics. Springer-Verlag, New
York, third edition, 1994. 15

[Jar06] J. F. Jardine. Categorical homotopy theory. Homology Homotopy Appl., 8(1):71–144, 2006. 3
[Jä68] Klaus Jänich. On the classification of O(n)-manifolds. Math. Ann., 176:53–76, 1968. 3
[Lar21] Tim Large. Spectral Fukaya Categories for Liouville Manifolds. PhD thesis, Massachusetts Institute of

Technology, 2021. 6
[Lau00] Gerd Laures. On cobordism of manifolds with corners. Trans. Amer. Math. Soc., 352(12):5667–5688,

2000. 3
[Mil63] J. Milnor. Morse theory, volume No. 51 of Annals of Mathematics Studies. Princeton University Press,

Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells. 20
[PS24a] Noah Porcelli and Ivan Smith. Bordism of flow modules and exact Lagrangians. arXiv:2401.11766, 2024.

20
[PS24b] Noah Porcelli and Ivan Smith. Spectral Floer theory and tangential structures. arXiv:2411.03257, 2024.

20


	1. Overview
	1.1. Goals
	1.2. Idea of Floer homotopy theory

	2. Unoriented flow categories, bimodules and bordisms
	2.1. Manifolds with corners
	2.2. Flow categories
	2.3. Flow bimodules
	2.4. Composition of flow bimodules
	2.5. Flow bordisms
	2.6. Forgetful functor

	3. Spectra and orientations on flow categories
	3.1. Spectra
	3.2. Orientations
	3.3. Oriented flow categories and flow bimodules
	3.3.1. Alternative definition

	3.4. Cohen–Jones–Segal geometric realization

	4. The spectral wrapped Donaldson–Fukaya category
	4.1. Stable polarizations and the Lagrangian Gauss map
	4.2. Flow multimodules
	4.3. The wrapped Donaldson–Fukaya category

	5. Spectral equivalence of nearby Lagrangians
	5.1. Floer homotopy type of the cotangent fiber
	5.2. Spectral equivalence of nearby Lagrangians

	References

