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Rational maps of degree d ≥ 2. (Mostly d = 2.)

Let K be an algebraically closed field of characteristic > d ,
or characteristic zero, let P1 = P1(K ), and let
K0 be the smallest subfield: K0 = Q or Fp .

Definition. A rational map f : P1 → P1 is:

fixed point marked if we are given an ordered list

(z1, z2, . . . , zd+1)

of its fixed points (not necessarily distinct);

critically marked if we are given an ordered list

(c1, c2, . . . , c2d−2)

of its critical points (not necessarily distinct); and is

totally marked if we are given both.



Moduli Spaces: the quadratic case.
Collapsing the space Ratd of all degree d rational maps
under the action of Aut(P1) by conjugation, we obtain the
corresponding moduli space ratd . Similarly, for marked maps
we obtain marked moduli spaces

rattmd

��

// ratfmd

��
ratcm

d
// ratd

The unmarked space rat2 is isomorphic to K 2. The
surfaces ratfm2 and ratcm

2 each have one singular point.

Theorem 1. The totally marked moduli space rattm2 is
isomorphic to the smooth affine surface V ⊂ K 3 defined by
the equation

x1 + x2 + x3 + x1 x2 x3 = 0 .



Some properties of this construction:

(1) The 12 obvious automorphisms of V correspond to the 12
obvious automorphisms of rattm2 .

[ However, renumbering the first two fixed points
corresponds to the involution

(x1, x2, x3) ↔ (−x2, −x1, −x3).]
(2) The xh and the fixed point multipliers λh are related by:

λh = 1 + xjxk , x2
h = 1 − λjλk ,

where {h, j , k} is any permutation of {1, 2, 3}.

(3) The subfield K ′ = K0({xj}) ⊂ K generated by the xj is
precisely the smallest field such that there is a representative
rational map with all fixed points and critical points in P(K ′).



Examples.

For x1 = x2 = x3 = 0 we obtain the conjugacy class of
f (z) = z + 1/z, with λ1 = λ2 = λ3 = 1.

For (x1, x2, x3) = (1, 1, −1) we obtain the conjugacy class of
f (z) = z2, with (λ1, λ2, λ3) = (0, 0, 2).

For x1 = x2 = x3 = ±
√
−3 we obtain the conjugacy class of

f (z) = 1/z2, with λ1 = λ2 = λ3 = −2.

Thus K ′ = K0(
√
−3) .

[ For further details, see “Hyperbolic Components”, in
Conformal Dynamics and Hyperbolic Geometry, Contemporary

Math. 513, AMS 2012, 183–232. ]
Now let K be the field of complex numbers C.



Parameter space example: A 2-dimensional slice through Rat2,

centered at z 7→ 1/z2.

Maps for which both critical points converge to the same
attracting period 2 orbit are colored white.



Problem: To study hyperbolic components in rattm2 ,
and their closures.

One motivation for the study of rattm2 is that it provides a
uniform and non-singular environment for studying hyperbolic
components in the family of quadratic rational maps.

The “simplest” example is the hyperbolic component centered
at f (z) = z2.

This consists of all elements of rattm2 which have two attracting
fixed points.

Long Digression. Since it is similar, and easier to understand,
I will first consider the analogous family of cubic polynomials.



Let H =
{

monic cubic polynomials with two attracting fixed points}.
Two Julia sets with f ∈ H, and one with f ∈ ∂H:

A typical point of H. The center point. The “bad” point in ∂H.
For maps in H, we can distinguish between upper and lower
critical points, and between upper, lower and middle fixed
points (with multipliers λ1, λ2, λ3 respectively).



For maps in H the first two mulipliers λ1 , λ2 lie in the unit
disk. Hence the corresponding residue indices

ιj =
1

1− λj

lie in the half-plane R(ιj) > 1/2. Since ι1 + ι2 + ι3 = 0, it
follows that R(ι3) < −1, which implies that λ3 lies in the
disk D1/2(3/2).
We can choose any λ1 and λ2 in D, and solve uniquely for

λ3 =
3− 2λ1 − 2λ2 + λ1λ2

2− λ1 − λ2
. (1)

In fact this is also true for any λ1 and λ2 in D ,
unless λ1 = λ2 = 1.



Moduli Space.
The moduli space polyfm

3 for fixed point marked cubic
polynomials can be identified with the smooth affine surface

3 − 2(λ1 + λ2 + λ3) + (λ1λ2 + λ1λ3 + λ2λ3) = 0 . (2)

Lemma. The closure H of our hyperbolic component in
polyfm

3 is the semi-algebraic set consisting of all points in
D× D× D1/2(3/2) satisfying equation (2).

Corollary 1. The set of all points in H with (λ1, λ2) 6= (1, 1)
is homeomorphic to D× Dr{(1, 1)} ; while the set with
(λ1, λ2) = (1, 1) is homeomorphic to the disk D1/2(3/2).

Corollary 2. H is not homeomorphic to a closed
4-dimensional ball.

The proof will show that π
(
∂Hr point

)
6= 0 .



[ Remark 1. It is easiest to prove Corollary 2 by first
considering the analogous problem for monic cubic maps.
(See the following pages.)

Remark 2. The bad behavior at the point λ1 = λ2 = λ3 = 1
is related to the fact that this triple fixed point is a singular point
of the variety defined by equation (2).

Remark 3. We could try understanding the situation over the
triple fixed point by one or two blow-ups. However, this doesn’t
work unless we first resolve the singularity. Let:

1−λ1 = x , 1−λ2 = y , 1−λ3 = z , with xy + xz + yz = 0 .

Resolve the singularity by setting

x = qr , y = pr , z = pq , with p + q + r = 0 .

Finally, blow up at p = q = r = 0 by setting q = ps or
p = qt , where s = 1/t ranges over Ĉ. Then the λj can
be expressed as polynomial functions, either of (p, s) or of

(q, t) (or of either pair when s 6= 0, ∞). ]



Now consider the same problem for the parametrized family of
monic cubic polynomials with a marked fixed point at zero:

f (z) = z3 + az2 + λz .

Theorem 2. The closure of the corresponding hyperbolic
component H̃ in this family is a closed topological 4-ball.

The a-plane for λ = λ3 = 3/2.



[ Remark 4. If we conjugate by the 180◦ rotation z 7→ −z, so
that (a, λ3) 7→ (−a, λ3) then the two critical points are
interchanged, and the first two (upper and lower) fixed points
are interchanged. For most points of H, either λ1 6= λ2 so that
(λ1 , λ2 , λ3) 6= (λ2 , λ1 , λ3) or else we are in the symmetry
locus a = 0, so that −f (−z) = f (z) . However, in the special
case where the upper and lower fixed points crash together, so
that λ1 = λ2 = 1, these two maps represent the same point of
polyfm

3 but different points of the monic family. This is the
essential difference between these two families!

The following page shows one Julia set towards the right of the
central hyperbolic component in the figure, and one at its right
hand tip.

Each of these is distinct from its image under 180◦ rotation
within the monic family, but only the right hand one is identified

(within polyfm
3 ) with its rotated image. ]



Hyperbolic Julia set, a = 1.35 Parabolic Julia set, a =
√

2.
Both maps have real coefficients, yet the left map is different
from its complex conjugate as a point of ratfm2 . On the right, the
two attracting fixed points have crashed together, and the complex
conjugate map represents the same element of ratfm2 .



Proof Outline for Theorem 2.

Let r j = R(ιj). Recall that ι1 + ι2 + ι3 = 0 , and that

r1 , r2 ≥ 1/2 , hence r3 ≤ −1 .

If we fix ι3, then the difference δ = ι1 − ι2 varies over the
strip |R(δ)| ≤ |r3| − 1 . We must also add two ideal points
with =(δ) = ±∞ to this strip, corresponding to the limit as
λ1 and λ2 both tend to +1.

This strip, together with the two points at infinity, is
homeomorphic to the region bounded by an ellipse in
the plane. This ellipse is thin for |r3| near one and
fat for |r3| large.



Ellipses filling out the plane.

[Looking only at ∂H, we get an ellipse (respectively a line
segment) for each ι3 with real part < −1 (or = −1 ), hence a
copy of R2 for each choice of =(ι3).
Thus ∂H with (1,1,1) removed is homeomorphic to R2×R.

It follows that ∂H is homeomorphic to a 3-sphere.



Similarly, H is homeomorphic to a closed 4-ball.

However, the corresponding argument for polyfm
3 breaks down,

since the limit as δ → +∞ and as δ → −∞ must be identified.

There is one such identification for each ι3 with R(ι3) ≤ −1.



The a-plane for λ3 = 1.
These limits fill out a 2-dimensional set bounded by a lemniscate in
∂H ∼= S3 This lemniscate is dotted in the figure.

Any path in S3 joining a point in the left lobe to the identified point
in the right lobe represents a non-zero element of

π1
(
∂Hfmr{triple fixed point}

)
.



Note: The upper and lower lemniscates in the preceding figure
represent boundary points of H which have an attracting fixed
point, and hence are distinct in ratfm.

One could use the space polytm
3 of totally marked polynomial

maps in place of the monic family; but the result would be more
complicated since the projection

polytm
3 → polyfm

3

is ramified over the entire unicritical locus λ = a2/3 , which has

a substantial intersection with H. ]



The corresponding quadratic rational example.

Now consider quadratic rational maps with two attracting fixed
points.

In the moduli space ratfm2 with marked fixed
points, the hyperbolic component H for which the
first two fixed points are attracting has a nasty closure,
with π1(∂Hrpoint) 6= 0.

However, the closure of the corresponding component
H̃ ⊂ rattm2 in the totally marked case is homeomorphic to a
closed 4-dimensional ball with a single boundary point
removed.



First consider the hyperbolic component H ⊂ ratfm2 with
marked fixed points.
The space ratfp2 can be identified with the affine surface

λ1λ2λ3 − λ1 − λ2 − λ3 + 2 = 0 . (3)

Again we want |λ1| , |λ2| < 1 . Hence the real parts
rj = R(ιj) satisfy rj > 1/2. But now

ι1 + ι2 + ι3 = 1 , hence r3 < 0 .

It follows that λ3 must belong to the half-space R(λ3) > 1.
Now H is the set of all

(λ1, λ2, λ3) ∈ D× D× {R(λ3) ≥ 1}

which satisfy equation (3).



The discussion of the space H in rattm2 is almost the same as
the discussion of the corresponding component for monic cubic
polynomials. One just has to substitute R(ι3) ≤ 0 in place of
R(ι3) ≤ −1.

However there is one key difference: The point ι3 = 0 must be
deleted, since it would correspond to λ3 =∞.
Thus, instead of ∂Hr (triple point) being homeomorphic to R3,
it is homeomorphic to R3 with a line segment

ι3 = 0 , −∞ ≤ δ ≤ +∞

removed, where δ = ι1 − ι2.

Therefore ∂H is non-compact, homeomorphic to S3 with a line
segment removed.



The plane of totally marked quadratic raional maps
with a parabolic fixed point.

In (x1, x2, x3)-coordinates, this is the plane with

x1 + x2 = x3 = 0 ,

hence λ1 = λ2 = 1 , λ3 = 1 + x1x2 = 1− x 2
1 .

In the quotient space ratfm2 , the points with coordinate x1 and
−x1 are identified. In particular, the red and blue lobes (the
intersection of this plane with ∂H) are identified with each other.

It follows as in the cubic polynomial case that ∂Hr (triple point)
is not simply connected.



Higher Degrees ?
Theorem. The space Rat fm

d of fixed point marked rational
maps is a smooth complex manifold of dimension 2d + 1.

Proof. Let U ⊂ Rat fm
d be the open subset consisting of all

points (f ; z1, z2 , . . . , zd+1) such that the fixed points
z1, z2 , . . . , zd+1 are all finite.
Then f (z) can be written uniquely as a quotient p(z)/q(z)
where q(z) is a monic polynomial of degree d and p(z) is a
polynomial of degree ≤ d .
The fixed point equation p(z)/q(z) = z takes the form

z q(z)− p(z) = (z − z1) (z − z2) · · · (z − zd+1) = 0 .

Thus we can choose the polynomial q(z) and the fixed points
zj independently, and solve for

p(z) = z q(z) −
d+1∏

1

(z − zj) .

Here p(z) and q(z) must have no common zeros

⇐⇒ the q(zj) must all be non-zero.
4



Theorem. In either ratfmd or rattmd , any hyperbolic component in
the connectedness locus is an open topological (4d − 4)-cell.

In the fixed point marked case, the space ratfmd can have
singularities only where there are multiple fixed points.

However, I have no information about the singularities (if any) of
rattmd , and no information about H.

For further details, again see “Hyperbolic Components”, in
Conformal Dynamics and Hyperbolic Geometry, Contemporary
Math. 513, AMS 2012, 183–232.
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