
Pasting Together Julia Sets —

a worked out example of mating

John Milnor

Abstract

The operation of “mating” two suitable complex polynomial maps f1 and f2 constructs a
new dynamical system by carefully pasting together the boundaries of their filled Julia sets so as
to obtain a copy of the Riemann sphere, together with a rational map f1 ⊥⊥ f2 from this sphere
to itself. This construction is particularly hard to visualize when the filled Julia sets K(fi) are
dendrites, with no interior. This note will work out an explicit example of this type, with effectively
computable maps from K(f1) and K(f2) onto the Riemann sphere.
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1 Introduction

The operation of mating , first described by (Douady, 1983) has been shown to exist for suitable pairs
of quadratic polynomial maps by (Tan Lei, 1990), (Rees, 1992), and (Shishikura, 2000). (See §2.) In
an attempt to understand this construction, this paper concentrates on one very special example. We
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Figure 1: The Julia set K = ∂K for f(z) = z2 + c , where c ∼=− 0.228 + 1.115 i .

consider the (filled) Julia set K = K(f) which is illustrated in Figure 1 and described more precisely
in §2. The mating f ⊥⊥ f exists according to Shishikura. This means that we can form a full Riemann
sphere by pasting two copies of K = ∂K together, in such a way that each copy of K covers the full
Riemann sphere, while the map f on each copy corresponds to a smooth quadratic rational map from
this sphere to itself. We will give a computationally effective description for this particular example,
showing just how such a dendrite can map onto a sphere. The construction is closely related to a well
known measure-preserving area filling curve, with associated fractal self-similar tiling,1 which is known
as the “Heighway Dragon”. The resulting rational map F ∼= f ⊥⊥ f , where F (z) = (i/2) (z + z−1) ,
can also be described as a Lattès mapping , that is as the quotient of a rigid expanding map on a torus.
(This is not a new remark: it has been known to experts for many years.) It is this juxtaposition of
these two quite different constructions which makes the explicit description possible. Section 3 will
describe this example, and also provide an introduction to more general Lattès maps. Section 4 will
characterize and compute the associated semiconjugacy from the angle doubling map on the circle to
this rational map F . Section 5 shows that this semiconjugacy carries 1-dimensional measure on the
circle to 2-dimensional measure on the sphere, section 6 discusses associated fractal tilings, and section
7 asks further questions. There are four appendices. The second describes further examples, supplied
by Shishikura, showing that every quadratic Lattès mapping can be given the structure of a mating in
one or more ways, and the last describes some exotic topological conjugacies between filled Julia set,
suggested by Douady.

2 The Mating Construction.

Some standard definitions. (See for example (Milnor, 1999), as well as (Milnor, 2000) or (Goldberg
and Milnor, 1993).) Let f : C → C be a polynomial map of degree d ≥ 2 . The filled Julia set
K = K(f) ⊂ C can be defined as the union of all bounded orbits. Its topological boundary ∂K is
equal to the Julia set of f . If K is connected, then its complement is conformally isomorphic to the
complement of the closed unit disk, and this conformal isomorphism

ϕ : C r D → C rK

1See §4.7 and Figures 7, 16. This construction was discovered by John Heighway, a physicist at NASA, circa 1966.
Compare (Davis and Knuth, 1965), (Edgar, 1990), and even (Crichton, 1990).
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Figure 2: Julia set K = ∂K for the map f(z) = z2 + c of Figure 1, showing selected external
rays. Here c is chosen in the upper half-plane so that f(c) + f ◦2(c) = 0 , or equivalently so
that c3 + 2c2 + 2c + 2 = 0 . The landing point of the zero ray is called the β fixed point. In
this example, the 1/4-ray lands at the critical value c and its image, the 1/2-ray, lands at −β ,
while the other fixed point α is the landing point of the 1/7 , 2/7 and 4/7-rays.

can be chosen so as to conjugate the d-th power map on C r D to the map f on C rK . That is:

ϕ(wd) = f
(

ϕ(w)
)

. (1)

If K is also locally connected, then according to Carathéodory ϕ extends continuously over the
boundary, to yield a map from the unit circle ∂D onto the Julia set ∂K , still satisfying (1). It will
be convenient to parametrize the unit circle by the real numbers modulo one. The resulting map

γ : R/Z → ∂K(f) ,

defined by
γ(t) = γf (t) = lim

r→1
ϕ(re2πit) ,

will be called the Carathéodory semiconjugacy from the circle of reals modulo one to the Julia set. With
this notation, the semiconjugacy identity (1) in the degree d case takes the form

γ(d · t) = f
(

γ(t)
)

. (2)

Equivalently, if we define the external ray Rt = Rt(K) of angle t to be the curve consisting of all
points ϕ(re2πit) ∈ C r K with 1 < r < ∞ , then we can describe γ(t) as the landing point of this
ray, that is its limiting value as r → 1 . As an example, Figure 2 shows several examples of external
rays for the Julia set of Figure 1.
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2.1 Topological Mating. Now suppose that f1 and f2 are quadratic polynomials, for example
of the form fj(z) = z2 + cj . If both filled Julia sets Kj = K(fj) are locally connected, then the
topological-mating f1 ⊥⊥ f2 is a continuous map from an associated compact space K1 ⊥⊥ K2 onto
itself, constructed as follows. Let γj : R/Z → ∂Kj be the Carathéodory semiconjugacy from the
circle of reals modulo one onto the Julia set of fj . Form the disjoint union of K1 and K2 , and let
K1 ⊥⊥ K2 be the quotient space in which the image γ1(t) ∈ ∂K1 is identified with γ2(−t) ∈ ∂K2 for
every t ∈ R/Z . (More precisely, let ∼ be the smallest equivalence relation on the disjoint union of
K1 and K2 such that

γ1(t) ∼ γ2(−t) for every t ∈ R/Z ,

and let K1 ⊥⊥ K2 be the quotient topological space in which each equivalence class is identified to a
point.) Using the semiconjugacy identity γj(2t) = fj

(

γj(t)
)

, we see that the map f1 on K1 and the
map f2 on K2 fit together to yield the required continuous map f1 ⊥⊥ f2 from this quotient space
onto itself. In particular, there are canonical semiconjugacies K1 → K1 ⊥⊥ K2 and K2 → K1 ⊥⊥ K2

from f1 and f2 to f1 ⊥⊥ f2 .

In this generality, there is no reason to expect this space K1 ⊥⊥ K2 to be particularly well behaved.
None-the-less, in many cases it turns out that K1 ⊥⊥ K2 is a topological 2-sphere, and furthermore
that we can give this sphere a conformal structure so that f1 ⊥⊥ f2 becomes a holomorphic map,
rational of degree two.

Here is an alternative description of K1 ⊥⊥ K2 which provides some additional information. Let
S2 be the unit sphere in C×R . Let us identify the dynamic plane for f1 with the northern hemisphere
H+ of S2 and the dynamic plane for f2 with the southern hemisphere H− , under the gnomonic2

projections
ν1 : C → H+ , ν2 : C → H− ,

where
ν1(z) = (z, 1)/

√

|z|2 + 1 , ν2(z) = (z,−1)/
√

|z|2 + 1 .

Note that ν2 can be described as the composition of ν1 with the 180◦ rotation about the x-axis

(x+ iy , h) 7→ (x− iy , −h) . (3)

If we assume that the polynomial f1 has leading coefficient +1 , then it is not hard to check that the
image of the external ray Rt(K1) in H+ has the point (e2πit, 0) on the equator as a limit point.
Similarly, if f2 is also monic then ν2(R−t(K2)) limits at this same point (e2πit, 0) on the equator.
It follows that the map ν1 ◦ f1 ◦ ν−1

1 on the northern hemisphere and the map ν2 ◦ f2 ◦ ν−1
2 on the

southern hemisphere tend to the same limiting values (z, 0) 7→ (z2, 0) as we approach the equator.
In fact these two maps fit together so as to yield a smooth map from the entire 2-sphere to itself.
(Figure 3.) Let us use the notation f1 ] f2 for this induced map on S2 .

Define the ray equivalence relation to be the smallest equivalence relation
ray∼ on S2 such that the

closure of the image ν1(Rt(K1)) , as well as the closure of ν2(R−t(K2)) , lies in a single equivalence

class. Then it is easy to see that the quotient space S2/
ray∼ is canonically homeomorphic to the quotient

space K1 ⊥⊥ K2 described above, and that the map f1]f2 on S2 corresponds to the map f1 ⊥⊥ f2

on this quotient space. However, this new description has several advantages. In particular, it allows
us to make use of the following classical result. (Compare (Daverman, 1986).)

2The gnomonic projection from a plane to the unit sphere has the characteristic property, useful in navigation, of
carrying straight lines in the plane to great circle arcs in the sphere. In the case of a plane not passing through the origin
in R3 it can be defined by the simple formula ν(x) = x/‖x‖ .
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Figure 3: The images of the external rays Rt(K1) and R−t(K2) come together at a common

point (e2πit, 0) on the equator S1 . By definition, these two rays collapse to a single point γ̂(t) in the

quotient space S2/
ray∼ , which is homeomorphic to K1 ⊥⊥ K2 .

2.2 Theorem (R. L. Moore). Let ' be any equivalence relation on the sphere S2 which
is topologically closed. (That is, we assume that the set of all pairs (x, y) with x ' y forms
a closed subset of S2 × S2 .) Assume also that each equivalence class is connected, but is not
the entire sphere. Then the quotient space S2/' is itself homeomorphic to S2 if and only if
no equivalence class separates the sphere into two or more connected components.

(Compare (Moore, 1925)). Further, under the conditions of Moore’s theorem, when S2/' is a
topological sphere, it can be shown that the quotient map S2 → S2/' induces isomorphisms of
homology, and hence imposes a preferred orientation on this quotient sphere. We can now formulate
the following, with K1 ⊥⊥ K2 defined as above.

2.3 Geometric Mating A quadratic rational map F : Ĉ → Ĉ is called a geometric mating of
the quadratic polynomials f1 and f2 , or briefly a mating , if there exists a topological conjugacy h
from the map f1 ⊥⊥ f2 on the space K1 ⊥⊥ K2 to the rational map F on the Riemann sphere Ĉ ,
where h : K1 ⊥⊥ K2 → Ĉ is an orientation preserving homeomorphism, holomorphic on the interior
(if any) of K1 and K2 . Thus h ◦ (f1 ⊥⊥ f2) = F ◦ h . We will often write briefly F ∼= f1 ⊥⊥ f2 .

In all quadratic cases known to the author, if this rational map F exists at all, then it is unique
up to conjugation by a Möbius automorphism, so that we can speak of the unique geometric mating
of f1 and f2 . However, this uniqueness definitely fails in degree 4. (Compare Appendix B.9).)
The uniqueness question for matings is part of a larger rigidity question: If two rational maps are
topologically conjugate under an orientation preserving homeomorphism which is holomorphic on the
Fatou set, when does it follow that they are holomorphically conjugate? (Compare (Lyubich, 1995,
§5).)

Here is a trivial example. Suppose that f2(z) = z2 , so that K2 is the closed unit disk. Pasting
the boundaries of K1 and K2 together, as described above, we simply obtain the Riemann sphere
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⊥⊥ =

Figure 4: An example of mating, with f1 = f2 . (Compare (Haissinsky and Tan Lei, 2004).) The
Julia set for f(z) = z2 + λz , with λ = e2πi/3 , ( λ3 = 1 ), is shown above, and the Julia set for
the mating F∼=f ⊥⊥ f is shown below. Here F (w) = w(w+ λ)/(λw+1) . This figure shows five
projections as the sphere rotates to the left. The image of one of the two filled Julia sets has
been shaded.

with the original polynomial map f1 . In other words, any f1 with locally connected Julia set can be
mated with the standard map z 7→ z2 in such a way that the resulting rational map

f1 ⊥⊥ (z 7→ z2)

is holomorphically conjugate to f1 . For non-trivial examples, see 2.6 as well as (Wittner, 1988), (Luo,
1995). Note that there exist shared matings, where a given rational map can be described as a geometric
mating in essentially distinct ways. (See (Wittner, 1988) as well as Appendix B.9.)

In order to describe some elementary properties of this construction, we will need the following.

2.4 The Canonical Involution To every 2-fold covering or branched covering g : M → M ′

there is associated the canonical involution τ = τg : M → M which interchanges the two preimages of
any point of M ′ , so that

g−1
(

g(x)
)

= {x , τ(x)}
for every x ∈ M . Here M and M ′ could be arbitrary manifolds, but for us g will always be a
self-covering of a real or complex one-dimnsional manifold, and the fixed points (if any) of τ will be
precisely the critical points of g .

Examples. To any quadratic polynomial in the form z 7→ z2 + c we associate the involution
τ(z) = −z which carries the Julia set onto itself and fixes the critical point. More generally, if F is
any quadratic rational map, then τ = τF is the unique Möbius involution which fixes the two critical
points. For example if F (z) = a(z + z−1) + b , then τ(z) = 1/z . We will also make use of the angle
doubling map g(t) = 2t on the real manifold R/Z , with τg(t) = t+ 1/2 .

Given two such [possibly branched] coverings g : M → M and f : N → N , a semiconjugacy
h : M → N , h ◦ g = f ◦ h , is called τ -equivariant if h ◦ τg = τf ◦ h . As an example, if K
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is the filled Julia set of f(z) = z2 + c , it is easy to check that: The Carathéodory semiconjugacy
γ : R/Z→ ∂K is always τ -equivariant. In fact, the involution τ for f maps the entire ray Rt(K)
onto Rτ(t)(K) = Rt+1/2(K) . As another example, a linear map h(t) = kt from R/Z to itself is
τ -equivariant if and only if its degree k is odd.

Recall that the β fixed point of a map f(z) = z2 + c with connected Julia set is defined to be the
landing point γ(0) of the ray R0(K) .

2.5 Lemma. (Properties of Geometric Matings.) If F ∼= f1 ⊥⊥ f2 is a geometric
mating, then:

• The β fixed points of f1 and f2 are glued together in K1 ⊥⊥ K2 , but no other point in
K1 or K2 is identified with these β fixed points.

• Similarly the points τ(β) = −β in K1 and K2 are glued together, but are not identified
with any other point.

• The critical points of f1 and f2 correspond to the two critical points of F . In particular,
these two points always remain distinct under the mating.

• Furthermore the two associated semiconjugacies K1 → K1 ⊥⊥ K2 and K2 → K1 ⊥⊥ K2

are τ -equivariant.

Proof. The first statement follows from the general theory of external rays landing at a repelling periodic
point. Such rays are always periodic with a common period. But the zero-ray for a quadratic map is
the only ray of period one, so no other ray can land at the same point β . Applying the involution τ
which carries Rt(K) to Rt+1/2(K) , we obtain a corresponding statement for τ(β) .

If we assume that f1 and f2 are polynomials of the form fj(z) = z2 + cj with critical point at
the origin, then the corresponding critical points of f1]f2 will be at the north and south poles of S2 .
In this case, the canonical involution associated with f1 ] f2 is the 180◦ rotation τ(z, h) = (−z, h) .
Clearly this rotation is compatible with the ray equivalence relation on S2 , and hence gives rise to a
well defined continuous involution τ ′ of the quotient space K1 ⊥⊥ K2 = S2/

ray∼ , with (f1 ⊥⊥ f2)◦τ ′ =
f1 ⊥⊥ f2 .

First let us show that the north and south poles belong to different ray equivalence classes, and
hence correspond to distinct points of K1 ⊥⊥ K2 . By construction, two points of ν1(K1) ∪ ν2(K2)
map to a common point of K1 ⊥⊥ K2 if and only if there is a path made up out of finitely many
external rays which leads from one to the other. If there were such a path leading from the north pole
to the south pole, then its image under rotation would be another such path, and together these paths
would disconnect the sphere. Since we have assumed that the mating exists, it follows by Moore’s
criterion that this is impossible.

To complete the proof, showing that τ ′ is indeed the canonical involution associated with f1 ⊥⊥ f2 ,
we must show that it has no fixed points other than the two critical points. In other words, we must
show that the points (z, h) and τ(z, h) = (−z, h) map to different points of K1 ⊥⊥ K2 unless they
both belong to the same ray equivalence class as one of the poles. But, if there were a ray path from
(z, h) to (−z, h) which misses both poles, then together with its image under rotation this path would

disconnect the sphere. Again this is impossible. It follows that the projection from S2 to S2/
ray∼ is

τ -equivariant, and that the poles of S2 map to the unique fixed points of the canonical involution
τF , and hence to the critical points of F .
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Figure 5: Picture of the Mandelbrot set boundary, together with selected external rays. Labels
of the form p/q along the cardioid indicate points c(λ) such that f(z) = z2 + c(λ) has a fixed
point of multiplier λ = e2πip/q .

2.6 Existence and Uniqueness Results: Tan Lei, Rees, and Shishikura. Mary Rees and
Tan Lei studied matings under the hypothesis that both f1(z) = z2 + c1 and f2(z) = z2 + c2 have
periodic critical orbit. They showed that the map f1]f2 , as described above, is “Thurston equivalent”
(see (Douady and Hubbard, 1993)) to some rational map F if and only if:

Condition NC: The points c1 and c2 do not belong to complex conjugate limbs of the
Mandelbrot set.

When Condition NC is satisfied, F is described as a “formal mating” of f1 and f2 . To explain this
condition, note that for each complex number λ there is one and only one polynomial f(z) = z2 + c
having a fixed point z = f(z) with multiplier f ′(z) = λ . In fact since z2 + c = z and λ = 2z , we
can solve for c = c(λ) = λ/2− (λ/2)2 . As λ varies over the unit circle, the corresponding parameter
c(λ) varies over the cardioid which is prominently visible in any picture of the Mandelbrot set. Now
for each root of unity λ = e2πip/q 6= 1 it turns out that there is a connected component M(p/q) of
M r (cardioid) which lies outside of the cardioid but is attached to it at the point c(λ) . The closure
M(p/q) is called the (p/q)-limb of M . The characteristic property for polynomials f(z) = z2 + c
with c in this (p/q)-limb is that there are q external rays Rtj (K) landing at a common fixed point
of f , with angles 0 < t1 < · · · < tq < 1 , such that f(Rtj ) = Rtk where k ≡ j + p (mod q) . These
angles tj are uniquely determined by p/q . This common landing point is called the α-fixed point
of f . As an example, if c belongs to the (1/3)-limb M(1/3) , then the three external rays Rt(K)
with angles t = 1/7 , 2/7 , and 4/7 all land at the α-fixed point of K .
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Now suppose that c1 belongs to the p/q -limb M(p/q) while c2 belongs to the complex conjugate
limb M(−p/q) = M

(

(q − p)/q
)

. Then there are at least two distinct rays Rt(K1) and Rs(K1)
landing at the α-fixed point of K1 = K(z2 + c1) . Similarly the rays R−t(K2) and R−s(K2) land at
the α-fixed point of K2 = K(z2 + c2) . In the sphere S2 of Figure 3, these four rays fit together to
form a closed loop which separates the sphere. Hence Moore’s criterion is not satisfied. The quotient
space K1 ⊥⊥ K2 is not a topological sphere, and the geometric mating certainly cannot exist.

Rees sharpened this result. Still assuming that f1 and f2 have periodic critical orbit and do not
belong to complex conjugate limbs, she showed that the rational function constructed by Rees and Tan
Lei really is a geometric mating of f1 and f2 . Using quasi-conformal surgery, it is not difficult to
extend this result to arbitrary hyperbolic polynomials z2 + c with connected Julia set.

Shishikura extended this work to the postcritically finite case. Still assuming that c1 and c2 do not
belong to complex conjugate limbs, he showed that the geometric mating exists and is unique up to
holomorphic conjugacy whenever both maps have eventually periodic critical orbits. (In this generality,
we can no longer say that f1]f2 is Thurston-equivalent to a rational map. In fact Thurston’s algorithm,
applied to f1 ] f2 , may not converge in the conventional sense, using the Teichmüller topology on the
space of embeddings of the postcritical set into Ĉ which are defined up to Möbius automorphisms of
Ĉ . However, it still converges in a weaker sense, where we allow suitably restricted mappings of the
postcritical set into Ĉ .) Thus:

For postcritically finite quadratic polynomials, the geometric mating exists

⇐⇒ Condition NC is satisfied

⇐⇒ K1 ⊥⊥ K2 is a topological sphere.

(However, (Shishikura and Tan Lei, 2000) have described a cubic example where the geometric mating
does not exist, even though K1 ⊥⊥ K2 is a topological sphere.)

2.7 When Does Mating Exist? In order to describe a possible extension of this Tan Lei-Rees-
Shishikura work to more general polynomials, it is convenient to define the t-limb for an irrational
number 0 < t < 1 as the single point c(λ) with λ = e2πit . The corresponding polynomial z2 + c(λ)
has either a Siegel disk or a Cremer point with multiplier λ ∈ ∂D . Note that the geometric mating of
z2 + c(λ) and z2 + c(λ) cannot exist, since no quadratic rational map can have distinct fixed points
of multipliers λ and λ−1 . (For the topological invariance of these rotation numbers, see (Năıshul,
1982).)

If f1 and f2 are quadratic polynomial maps, not belonging to complex conjugate limbs of the
Mandelbrot set, and if their Julia sets are locally connected, does such a geometric mating f1 ⊥⊥ f2

always exist? Is it unique up to a Möbius automorphism of Ĉ ? (It had earlier been conjectured
that such a mating operation not only exists, but depends continuously on the maps f1 and f2 .
See for example (Milnor, 1993). However, (Epstein, 2004) has shown that this is false: In many
cases, the mating operation between two hyperbolic components of the Mandelbrot set does not extend
continuously to the boundary.)

Here is a family of examples which is not covered by the known results. Suppose that f1 and f2

are polynomials of the form fj(z) = z2 + ajz with |aj | = 1 . In this case, the condition that f1 and
f2 do not belong to conjugate limbs of the Mandelbrot set reduces to the inequality a1 a2 6= 1 . A
candidate rational map is given by the formula

F (w) = w
w − a1

a2w − 1
,

with fixed points of multiplier a1 and a2 at zero and infinity respectively. If J(f1) and J(f2) are
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locally connected,3 then it seems quite likely that F is indeed a geometric mating of f1 and f2 . In
fact, in the case of Siegel disks of constant type, this has been shown by (Yampolsky and Zakeri, 2001),
while in the parabolic case it follows from (Haissinsky and Tan Lei, 2004). A parabolic example, with
a1 = a2 = e2πi/3 , is shown in Figure 2.3. (For other special cases in which geometric matings exist,
see (Luo, 1995).)

2.8 The Brolin and Lyubich Measures. According to (Lyubich, 1983), for any rational map
F : Ĉ → Ĉ of degree d ≥ 2 there exists a unique F -invariant probability measure on Ĉ which has
maximal entropy, equal to log d . In the special case of a polynomial map, this measure m was first
studied by (Brolin, 1965), and is known as the Brolin measure; but in the general case I will call it the
Lyubich measure. It can also be characterized as the unique invariant probability measure, supported
on the Julia set J(F ) , with the following property:

If X ⊂ Ĉ is a measurable set, such that F |X is one-to-one, then

m(F (X)) = dm(X) . (4)

As an example, if U ⊂ Ĉ is a simply-connected open set containing no critical values, then each of
the d connected components of f−1(U) qualifies, and hence has measure equal to m(U)/d .

We will need the following.

2.9 Lemma (The Push-Forward). Let F1 and F2 be quadratic rational maps with Julia
sets J1 and J2 , and let m1 and m2 be their Lyubich measures. If ϕ : J1 → J2 is a continuous
semiconjugacy from J1 onto J2 , and if ϕ also satisfies ϕ ◦ τ1 = τ2 ◦ ϕ where τ1 and τ2 are
the canonical involutions, then the push-forward ϕ∗m1 is equal to m2 .

Proof. If U is a simply-connected open set which contains no critical values of F2 , then each of the
components U ′ and U ′′ = τ2(U

′) of F−1
2 (U) maps bijectively onto U . Since ϕ is onto and F1

has degree 2, it follows easily that both ϕ−1(U ′) and ϕ−1(U ′′) map bijectively onto ϕ−1(U). Thus
ϕ∗m1(U

′) = m1(ϕ
−1(U ′)) and ϕ∗m1(U

′′) are both equal to ϕ∗m1(U)/2. Similarly, any measurable
subset of U ′ maps under F2 to a set with twice the measure with respect to ϕ∗m1 . We must also check
that every critical value p of F2 has measure zero. But if p were aperiodic with ϕ∗m1(p) > 0, then
its iterated preimages F−k

2 (p) would be infinitely many disjoint sets with the same positive measure,
which is impossible. If p is periodic, then τ(p) is aperiodic, and again its measure must be zero. These
properties suffice to characterize the measure m2 , so it follows that ϕ∗m1 = m2 .

Remark. It seems possible that this statement remains true without the condition of τ -equivariance,
and for Julia sets of arbitrary degree. I do not know how to resolve this question.

Here is an application of 2.9: To any geometric mating of two quadratic polynomials there is
associated the following commutative diagram of topological semiconjugacies

R/Z
(−1)·−→ R/Z

↓ γ1 ↓ γ2

J(f1) J(f2)
↘ ↙

J(f1 ⊥⊥ f2)

(5)

3To make sense of “mating” for Julia sets which are not locally connected one would need some different definition.
(Two possible suggestions for an alternative definition are given in (Milnor, 1993) and (Milnor, 1994).)
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using the angle doubling map on R/Z (which is topologically conjugate to z 7→ z2 on its Julia set
S1 ). Since each map satisfies the conditions of 2.9 , it follows that the Lebesgue measure on R/Z
pushes forward to the Brolin measure on either J(f1) or J(f2) , which in turn pushes forward to the
Lyubich measure on J(f1 ⊥⊥ f2) . This diagram of semiconjugacies will play a central role in §5.

3 The Example, a Lattès Mapping.

We now concentrate on one very explicit example. Let c = c1/4 be the landing point of the 1/4-
ray R1/4(M) for the Mandelbrot set (Figure 5), and let f(z) = f1/4(z) = z2 + c . According to
the Douady-Hubbard correspondence between parameter plane and dynamic plane, it follows that the
critical value c = f(0) ∈ K(f) is equal to the landing point γ(1/4) of the ray R1/4(K) in the
dynamic plane. Therefore, by (2), the critical orbit for f has the form

0 7→ γ(1/4) 7→ γ(1/2) 7→ γ(0) ,

or in other words
0 7→ c 7→ −β 7→ β ,

where the fixed point β is the landing point of the zero-ray for K(f) , and τ(β) = −β is the landing
point of the (1/2)-ray. (Compare 2.4 and Figures 1, 2.) From the resulting polynomial equation
f◦2(c) + f(c) = 0 , one sees easily that c = −0.22815549 + 1.115142508 i is the unique root of the
equation c3 + 2c2 + 2c+ 2 = 0 in the upper half plane.

According to Shishikura’s Theorem, as described in 2.6 the geometric self-mating

F ∼= f1/4 ⊥⊥ f1/4

exists, and is unique up to holomorphic conjugacy. To fix our ideas, suppose that we choose a repre-
sentative of this holomorphic conjugacy class so that the critical points are at ±1 and the image β̂
of the β -fixed points is at infinity. Then we will prove the following.

3.1 Lemma. The resulting rational function F is given by

F (z) = ± i

2
(z + z−1)

for some choice of sign. The critical orbits of this mapping F have the form

±1 7→ ± i 7→ 0 7→ ∞ . (6)

Proof. For any quadratic rational map F , normalized so that the two critical points are at ±1 , with
one of the three fixed points at infinity, it is not hard to check that F has the form

F (z) = a(z + z−1) + b (7)

for some a 6= 0 and b . (Compare (Milnor, 1993)). In fact the canonical involution for F must be a
Möbius involution which fixes the two critical points, and hence must be given by τ(z) = 1/z . Since
infinity is a fixed point, the point τ(∞) = 0 maps to infinity, and it follows that F must have the
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form F (z) = (az2 + bz + c)/z = az + b + c/z . Setting F ′(±1) = 0 , it then follows that a = c , as
required.)

Now suppose that F commutes with some non-identity Möbius automorphism σ : Ĉ→ Ĉ which
fixes the point at infinity. Since σ cannot fix three distinct points, it must interchange the two critical
points, and hence must be the involution σ(z) = −z . Hence F (z) must be equal to −F (−z) =
a(z + z−1)− b . Thus the coefficient b is equal to zero if and only if F commutes with some Möbius
automorphism which keeps ∞ fixed, and which necessarily interchanges the two critical points.

In particular, an arbitrary geometric mating F ∼= f1 ⊥⊥ f2 can be put in the normal form (7). In
the special case of a self-mating, so that f1 = f2 , if we assume that this mating is uniquely defined,
then there evidently exists an automorphism fixing the fixed point β̂ =∞ and interchanging the two
critical points. It then follows that F (z) = a(z+z−1) with b = 0 . In our particular case, the equation

F (F (±1)) = F (±2a) = 0

must also be satisfied. The equation F (z) = a(z + z−1) = 0 has solutions z = ±i , so it follows that
2a = ±i , as required.

The distinction between the maps F (z) = (i/2)(z + z−1) and F (z) = (−i/2)(z + z−1) is much
more subtle. For the moment, let us simply state the following without proof. Recall that ct is the
landing point of the ray Rt(M) in the Mandelbrot set.

3.2 Assertion. The geometric mating of z 7→ z2 + c1/4 with itself is given by F (z) =
(i/2)(z + z−1) , while the geometric mating of the complex conjugate map z 7→ z2 + c3/4 with
itself is given by F (z) = (−i/2)(z + z−1) .

See Appendix B.12 (An intuitive proof that this is the right choice of sign can be derived by noting
that Figures 12 and 13 have compatible orientations.)

This map z 7→ (i/2) (z+z−1) is one of a collection of examples which can be thoroughly understood
using the following constructions.

3.3 From Torus to Sphere. Following (Lattès, 1918), let us start with a lattice Λ ⊂ C , that
is a free additive subgroup generated by two elements which are linearly independent over R , and
form the quotient torus T = C/Λ . Now form a further identification space by identifying each w ∈ T

with −w , or equivalently form the space of orbits for the group of transformations

w 7→ ± w + λ

of C , where λ ranges over the lattice Λ . The resulting quotient space, which we denote by T/± , is
a Riemann surface of genus zero, and hence is conformally isomorphic to the Riemann sphere. To see
this, note that the involution w 7→ −w of T has just four fixed points, namely the four points wj

modulo Λ such that

wj ≡ − wj (mod Λ) ⇐⇒ 2wj ∈ Λ ⇐⇒ wj ∈
1

2
Λ .

These four fixed points in T are the critical points of the projection map T → T/± . (As local
uniformizing parameter for the quotient T/± in the neighborhood of the image of wj we can use the
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expression (w−wj)
2 , where w ranges over a neighborhood of wj in C .) Since T→ T/± is a map

of degree two with four critical points, the Riemann-Hurwitz formula asserts that the Euler characteristic
χ(T) = 0 can be computed from the Euler characteristic of the quotient by the formula

χ(T) = 2χ(T/±) − 4 .

(This can be proved by triangulating the quotient with the four critical values as vertices, and noting
that each simplex other than the four critical values is covered by exactly two simplexes in T .) Thus
χ(T/±) = 2 , as required.

In fact one specific isomorphism T/± → Ĉ is induced by the Weierstrass ℘-function which is
associated with the lattice Λ . This is a holomorphic mapping ℘ : C→ Ĉ which satisfies

℘(w) = ℘(w′) ⇐⇒ w′ ≡ ± w (mod Λ) .

Furthermore, ℘ is an even function, ℘(w) = ℘(−w) , with ℘(0) =∞ . See Appendix A for details.

3.4 Lattès Mappings. Let η be any non-zero complex number with the property that ηΛ ⊂ Λ
and let κ be a complex constant. Then we can define a linear map L : T→ T from the torus T = C/Λ
to itself by the formula

L(w) ≡ η w + κ (mod Λ) .

This map has degree d = |η|2 , since it multiplies areas by the factor |η|2 . Note that every period p
point w ≡ L◦p(w) has multiplier (L◦p)′ = ηp . If |η| > 1 , then these periodic points are repelling
and it is easy to check that they are everywhere dense, hence the Julia set J(L) is equal to the entire
torus.

Now suppose that 2κ ∈ Λ , so that L(−w) ≡ −L(w) (mod Λ) . Then L induces a holomorphic
map from T/± ∼= Ĉ to itself, also of degree d = |η|2 . More explicitly we can define F = FL to be
the rational map F = ℘ ◦ L ◦ ℘−1 : Ĉ→ Ĉ , so that

F : ℘(w) 7→ ℘(L(w)) .

In other words, the diagram

T
L−→ T

℘ ↓ ℘ ↓
Ĉ

F−→ Ĉ

(8)

is commutative. If the degree |η|2 is two or more, then the resulting F , or any map holomorphically
conjugate to it, is called a Lattès map.

3.5 Remark. It is easy to check that the Lyubich measure for F (compare 2.8) is just the
push-forward under ℘ of the normalized Lebesgue measure on the torus T . In particular, it follows
that this Lyubich measure has a density function ρ , so that m(S) =

∫ ∫

S ρ(x + iy) dx dy , where ρ
is smooth except at the four critical values of ℘ . (Compare Appendix A.5.)

We are primarily interested in one particular degree two example. However, it is almost as easy to
describe the general case. As the simplest example of this Lattès construction we can take L(w) = 2w ,
with η = 2 , so that the induced mapping on the Riemann sphere has degree 22 = 4 . In this case
there is no restriction at all on the lattice Λ . Thus, as Λ varies, we obtain a one complex parameter
family of essentially distinct maps of degree four, all with the entire Riemann sphere as Julia set.
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We will first prove the following. By a simple critical point of a rational map F we mean a point
where the local degree of F is equal to two. (Thus a point ω 6= ∞ is a simple critical point if and
only if F ′(ω) = 0 but F ′′(ω) 6= 0 .) By a postcritical point for F we mean any F ◦k(ω) where ω is
a critical point and k ≥ 1 .

3.6 Lemma. Let V = ℘(1
2Λ) be the set of critical values for the holomorphic map ℘ : T→ Ĉ ,

and let F = ℘ ◦ L ◦ ℘−1 with L as in 3.4. Then F (V ) ⊂ V . Furthermore, V is equal to
the set of all postcritical points of F , while F−1(V ) r V = ℘

(

1
2ηΛ

)

r ℘
(

1
2Λ
)

is the set of all
critical points of F . These critical points are all simple.

Proof. This follows easily by inspecting the diagram (8), and noting that the local degree function
satisfies

deg(L , w) · deg(℘ , L(w))
= deg(℘ ◦ L , w)
= deg(F ◦ ℘ , w)
= deg(℘ , w) · deg(F , ℘(w)) ,

where the local degree of L is always one, and the local degree of ℘ is two at its critical points.

3.7 Remark. In fact we can sharpen this statement into a complete characterization of Lattès
maps as follows:

A rational function is a Lattès map if and only every critical point is simple, and there are
exactly four postcritical points, none of which is also critical.

The proof will be given in Appendix B.1.

For most rational maps, it is difficult to see any structure in the collection of multipliers of the
various periodic orbits. However, in the case of a Lattès map there is a very simple description.

3.8 Lemma. If F is a Lattès map of the form ℘ ◦ L ◦ ℘−1 , with L(w) = ηw + κ , then the
multiplier for a periodic orbit z = F ◦p(z) is equal to η2p whenever this orbit is contained in
the postcritical set V of F , and is equal to ±ηp otherwise.

(We cannot distinguish between +η and −η , since the linear maps L and −L give rise to the same
Lattès map.)

Proof of 3.8. Recall that ℘(w1) = ℘(w2) if and only if w2 ≡ ±w1 (mod Λ) . Therefore, for any
λ0 ∈ Λ , differentiating the identity ℘(w) = ℘(±w + λ0) we see that ℘′(w1) = ±℘′(w2) whenever
℘(w1) = ℘(w2) . Now if z = ℘(w1) has period p and is not in V , so that ℘′(w1) 6= 0 , then applying
the chain rule to the identity ℘ ◦L◦p = F ◦p ◦℘ , we see that (L◦p)′(w1) = ηp is equal to ±(F ◦p)′(z) ,
as required.

In the case of a period p point with ℘(w1) ∈ V , so that w1 ∈ 1
2Λ , we proceed as follows. The

Taylor series for ℘(w1 + h) = ℘(w1− h) contains only even powers of h , so we can use h2 as a local
uniformizing parameter for Ĉ in a neighborhood of ℘(w1) . Since L◦p(w1 + h) = w2 + ηph ≡ ±w1 +
ηph (mod Λ) , the local uniformizing parameter h2 maps to η2ph2 , and the conclusion follows.
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3.9 The Example. After this general discussion, we return to our particular example. Let
Λ = Z[i] = Z + iZ be the lattice of Gaussian integers, and let L(w) = (1 − i)w . Then the condition
that (1−i)Λ ⊂ Λ is clearly satisfied. Since |1−i|2 = 2 , the associated Lattès map z 7→ ℘◦L1−i◦℘−1(z)
is a well defined quadratic rational map. Let c1 and c2 be the critical points of this map. (Using 3.6,
it is not hard to check that these two critical points are equal to ℘

(

(1± i)/4
)

.) It will be convenient
to work with a modified Weierstrass function of the form ℘̂(w) = p℘(w) + q , where the complex
coefficients p 6= 0 and q are chosen so that

p c1 + q = + 1 , p c2 + q = − 1 .

Then evidently the map
F = ℘̂ ◦ L ◦ ℘̂−1

is holomorphically conjugate to ℘ ◦ L ◦ ℘−1 , and has critical points ±1 . Therefore, proceeding as in
3.1, we can set

F (z) = a(z + z−1) + b

for suitable coefficients a 6= 0 and b . To compute the coefficient a , note that ℘̂(0) = ∞ is a
postcritical fixed point, with multiplier equal to (1− i)2 = −2i by 3.8. Since the multiplier at infinity
using this normal form is 1/a , this yields a = 1/(−2i) = i/2 . To compute b , note that the linear map
L commutes with the linear automorphism w 7→ iw of the torus T . It follows that F commutes
with the corresponding automorphism σ(z) = ℘̂

(

i℘̂−1(z) , which must fix the point at infinity and
interchange the two critical points, and hence be given by σ(z) = −z . It follows as in 3.1 that b = 0 .
Thus ℘̂ ◦ L ◦ ℘−1 coincides with the map F (z) = (i/2)(z + z−1) of 3.2, with F ∼= f1/4 ⊥⊥ f1/4 .

4 Semiconjugacies from the Angle Doubling Map.

Suppose that F ∼= f1 ⊥⊥ f2 is a geometric mating between quadratic polynomials. It follows that
there is a commutative diagram of semiconjugacies

R/Z 2·

↙ γ1 ↘ γ2 ◦ −

K1 f1 K2 f2

↘ µ1 ↙ µ2

Ĉ F .

(9)

(Compare the diagram (5).) Here γ2 ◦ − stands for the semiconjugacy t 7→ γ2(−t) from R/Z
onto ∂K2 , and µj : Kj → Ĉ is the composition of the natural map of Kj into K1 ⊥⊥ K2 composed

with the homeomorphism K1 ⊥⊥ K2
∼=→ Ĉ which conjugates f1 ⊥⊥ f2 to F . Going either way around

this diagram, we obtain a semiconjugacy γ̂ : R/Z → Ĉ , onto the Julia set of F , where

γ̂(t) = µ1 ◦ γ1(t) = µ2 ◦ γ2(−t) . (10)
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4.1 Definitions We will call γ̂ the mating semiconjugacy which is associated with the mating
F ∼= f1 ⊥⊥ f2 . It will be convenient to say that a semiconjugacy γ : R/Z→ J is primitive if γ−1(γ(0))
is equal to the single point zero (mod Z ).

A quadratic rational map F is called symmetric if there exists a Möbius involution σ of Ĉ which
commutes with F and interchanges the two critical points of F . (Compare (Milnor, 1993). Such an
involution is unique, except in the very special case of the map z 7→ 1/z2 , which cannot occur as a
mating.) The semiconjugacy γ will be called symmetric if F is symmetric, and if γ(−t) = σ(γ(t)) .
Recall that γ is τ -equivariant if γ(t + 1/2) = τ(γ(t)) , where τ is the canonical involution which
interchanges the points of F−1(z) . (See 2.4.)

4.2 Lemma. The mating semiconjugacy γ̂ : R/Z → Ĉ is a primitive and τ -equivariant
semiconjugacy from the doubling map on R/Z onto the Julia set of F . In the special case of
a self-mating with f1 = f2 , this semiconjugacy γ̂ is also symmetric.

Proof. It follows immediately from 2.5 that γ̂ is primitive and τ -equivariant. As in 3.1, we may
assume that F is in the normal form

F (z) = a(z + z−1) + b ,

with the image of the critical points of f1 and f2 at −1 and +1 respectively, and with the image
β̂ of the two β fixed points at infinity. If we interchange the roles of f1 and f2 , then F (z) will
be replaced by −F (−z) = a(z + z−1) − b , with the two critical points interchanged. Thus, in the
special case of a self-mating, with f1 = f2 hence γ1 = γ2 , we must have b = 0 , so that F commutes
with the symmetry σ(z) = −z , which fixes the points β̂ and τ(β̂) and interchanges the two critical
points. This symmetry must correspond to the 180◦ rotation (3 of S2 . Hence µ1 = σ ◦ µ2 = −µ2 .
The equation

γ̂(t) = µ1(γ1(t)) = µ2(γ2(−t)) = − µ1(γ1(−t))
then says that γ̂(t) = −γ̂(−t) , which proves that γ̂ is symmetric.

Now let us specialize to the map F (z) = (i/2)(z+z−1) of 3.2 and 3.9. We will prove the following.

4.3 Theorem. For this F , there is one and up to sign only one semiconjugacy γ̂ : R/Z→ Ĉ

which is symmetric, τ -equivariant, and primitive.

The proof, which gives an explicit construction of this map γ̂ , will make no mention of mating. To
begin the argument, we will prove the following. Let γ̂ be any symmetric τ -invariant semiconjugacy
from the doubling map on R/Z to this F .

4.4 Lemma. The value γ̂(1/8) is necessarily equal to ±1 . If we normalize so that γ̂(1/8) =
+1 , then we have the following table, with t a multiple of 1/8 and with γ̂(t) in the set of
critical or postcritical points.

t ≡ 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8
γ̂(t) = ∞ 1 i −1 0 1 −i −1

If we assume also that γ̂ is primitive, then these are the only angles in R/Z which map to
critical or postcritical points of F .

16



Proof. Since γ̂ is symmetric, and since z 7→ −z is the only automorphism commuting with F , we
have γ̂(−t) = −γ̂(t) , hence the fixed point γ̂(0) must be the point ∞ . Hence γ̂(1/2) must be
equal to τ(∞) = 0 , and γ̂(1/4) must belong to F−1(0) = {±i} . Suppose to fix our ideas, that
γ̂(1/4) = +i . Then γ̂(1/8) ∈ F−1(i) = {1} . Further details of the argument are straightforward.

Let ℘̂ : T→ Ĉ be the Weierstrass map associated with the lattice Λ = Z[i] of Gaussian integers,
normalized as in 3.9 so that

F (z) = ℘̂ ◦ L ◦ ℘̂−1(z) = (i/2)(z + z−1)

where L(w) = (1− i)w . The four critical values of ℘̂ are equal to the four postcritical points of F
by 3.6. It is not hard to see that the critical orbits correspond to:

w ≡ ± (1 + i)/4 7→ 1/2 7→ (1 + i)/2 7→ 0 , (1− i)/4 7→ i/2 7→ (1 + i)/2 7→ 0 ,
℘̂(w) = 1 7→ i 7→ 0 7→ ∞ , −1 7→ −i 7→ 0 7→ ∞ .

Note the identities

℘̂(iw) = − ℘̂(w) ,
℘̂
(

w + (1 + i)/2
)

= 1/℘̂(w) . (11)

In fact the first equation follows as in 3.9 since multiplication by i maps Z[i] isomorphically onto
itself, and the second follows since the canonical involution 2.4 for the degree two map w 7→ (1−i)w is
given by τL(w) = w+1/(1−i) = w+(1+i)/2 , while the canonical involution for F is τF (z) = 1/z .

We want to lift γ̂ : R/Z→ Ĉ to a map g : R/Z→ T with ℘̂ ◦ g = γ̂ . Suppose that we subdivide
R/Z as a cell complex with vertices at the four points 0 , 1/4 , 1/2 , 3/4 . Then each vertex maps to
a critical value of ℘̂ , which lifts uniquely, and we must have:

t ≡ 0 1/4 1/2 3/4 (mod Z)
g(t) ≡ 0 1/2 (1 + i)/2 i/2 (mod Z[i]).

(12)

However, each edge of this cell complex can be lifted in two different ways, hence there are sixteen
possible liftings in all. Whatever choice we make, the hypotheses of 4.3 translate to the following four
conditions, making use of (11):

• semiconjugacy: g(2t) ≡ ± (1− i)g(t) (mod Z[i] ) ,

• symmetry: g(−t) ≡ ±i g(t) .
• τ -equivariance: g(t+ 1/2) ≡ ±g(t) + 1/(1− i) ≡ ±g(t) + g(1/2) ,

• primitivity: g(t) ≡ 0 (mod Z[i] ) ⇐⇒ t ≡ 0 (mod Z) ,

In fact let us restrict to two out of the sixteen possible liftings, as follows. Start with either of
the two liftings g restricted to the interval [0 , 1/4] . Then g(2t) ≡ η g(t) for 0 ≤ t ≤ 1/8 , where
the coefficient η = ±(1 − i) remains constant by continuity. Choose the lifting g on [1/4 , 1/2] by
requiring that g(2t) = η g(t) for 1/8 ≤ t ≤ 1/4 , with the same constant η . Finally, extend to the
interval [1/2 , 1] (mod Z) by setting

g(t+ 1/2) ≡ g(t) + g(1/2) for all t .

This makes sense, since g(1/2) + g(1/2) ≡ 0 (mod Z[i]) .

As a final step, note that any map g : R/Z → C/Z[i] with g(0) ≡ 0 lifts uniquely to a map
g̃ : R→ C between the universal covering spaces with

g̃(0) = 0 , and g̃(t) ≡ g(t) (mod Z[i] ) for all t .
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Here the identity
g̃(t+ 1) = g̃(t) + g̃(1)

is always satisfied. Evidently the maps g and g̃ determine each other uniquely. For any g with the
above four properties we will prove the following.

4.5 Lemma. This lifted map g̃ : R→ C satisfies the following four conditions:

(a) g̃(2t) = (1− i)g̃(t) for 0 ≤ t ≤ 1/4 ,

(b) g̃(−t) = i g̃(t) for 0 ≤ t ≤ 1/4 ,

(c) g̃(t+ 1/2) = g̃(t) + g̃(1/2) for all t , and

(d) g̃(t) ≡ 0 (mod Z[i] ) ⇐⇒ t ≡ 0 (mod Z) .

Proof. It is straightforward to check that conditions (c) and (d) are satisfied. Similarly, it is straight-
forward to check that (a) and (b) are satisfied up to sign. That is:

g̃(2t) = ε(1− i) g̃(t) for t ∈ [0, 1/4] and
g̃(−t) = ε′i g̃(t) for t ∈ [0, 1/4] ,

where ε = ±1 and ε′ = ±1 are fixed signs. Combining these facts with (c), we see that

g̃(1/2) = ε(1− i) g̃(1/4) , g̃(−1/4) = ε′i g̃(1/4) , and g̃(1/2) + g̃(−1/4)− g̃(1/4) = 0 .

Substituting the two equations on the left into the right hand one, we have

(ε(1− i) + ε′ i − 1) g̃(1/4) = 0 ,

and hence, since g̃(1/4) 6= 0 by (d),

ε(1− i) + ε′ i − 1 = 0 .

But this last equation implies that ε = ε′ = +1 . Hence conditions (a) and (b) are satisfied also.

Now let us temporarily forget condition (d), and study functions satisfying the remaining three
conditions.

4.6 Lemma. Given any constant g̃(1) ∈ C , there exists one and only one continuous function
g̃ : R→ C satisfying conditions (a), (b), (c) of 4.5 .

Proof of uniqueness. Suppose that there were two functions g̃ and h satisfying these same conditions,
with g̃(1) = h(1) and hence g̃(1/2) = h(1/2) by (c). Let K be the maximum of |g̃ − h| on the
interval [0 , 1/4] . Then using (b) and (c) we see that |g̃(t) − h(t)| ≤ K for all t , and using (a) we
see that |g̃(t)−h(t)| ≤ K/|1− i| = K/

√
2 for 0 ≤ t ≤ 1/4 . This proves that K = 0 , as required.
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0 1/2

η/2-i/2

0 1/2

η/2

Figure 6: The images Gn = g̃n[0 , 1/2] for n = 1, 2, 3 , with Gn+1 shown as a dotted path. The
“old” vertices, which already existed in Gn−1 when n > 0 , are indicated by heavy dots.

Proof of existence. Construct a sequence of continuous functions g̃n : R → C as follows. Start with
the linear function g̃1(t) = k t , where k = g̃(1) . Suppose inductively that we have a continuous
function g̃n which satisfies g̃n(t+ 1/2) = g̃n(t) + k/2 for all t , with g̃n(0) = 0 . Construct g̃n+1 in
three steps, as follows. Let

g̃n+1(t) = g̃n(2t)/(1− i) for 0 ≤ t ≤ 1/4 ,

and note that (1 − i)g̃n+1(1/4) = g̃n(1/2) = k/2 . Then extend over the interval [−1/4 , 1/4] by
setting

g̃n+1(−t) = i g̃n+1(t) for 0 ≤ t ≤ 1/4 ,

and note that the difference g̃n+1(1/4)− g̃n+1(−1/4) = (1− i)g̃n+1(1/4) is also equal to k/2 . Hence
there is a unique extension g̃n : R→ C which satisfies the required equation g̃n+1(t+1/2) = g̃n+1(t) +
k/2 for all real numbers t . It is not difficult to check that

|g̃2(t) − g̃1(t)| ≤ |g̃2(1/4)− g̃1(1/4)| < |k|/
√
2

for all t , and it follows inductively that

|g̃n+1(t)− g̃n(t)| <
∣

∣

∣

∣

k

(1− i)n
∣

∣

∣

∣

=
|k|√
2n

.

Thus the sequence of functions g̃n converges uniformly to a function g̃ , which clearly satisfies all of
the required conditions.

4.7 A Geometric Description: The Heighway Dragon. The proof of 4.6 has been com-
pletely constructive, and is easily implemented on a computer. (See 4.10.) However, the formal con-
struction has obscured some fascinating fractal geometry. We can describe the proof more geometrically
as follows. (Compare the discussion of the “Heighway Dragon” in (Edgar, 1990).) The function g̃ on
the interval 0 ≤ t ≤ 1/2 is the limit of a sequence of piecewise linear functions g̃n : [0 , 1/2]→ C which
are defined inductively, with the following properties: If we subdivide [0 , 1/2] into 2n−1 subintervals
of length 1/2n , then g̃n will be linear on each subinterval, with constant speed |dg̃n(t)/dt| =

√
2n .

Hence the image Gn = g̃n[0 , 1/2] will be a union of 2n−1 line segments, each of length 1/
√
2n .

To begin the inductive definition, let g̃1(t) = η t for t ∈ [0 , 1/2] , with η = 1 − i , so that
G1 = g̃1[0 , 1/2] is a straight line segment leading from from 0 to η/2 , as indicated by the solid line
in Figure 6(left). By definition, 0 will be called an “old” vertex and η/2 a “new” vertex. For the
inductive step, suppose that Gn is given as a piecewise linear path, where the vertices are alternately
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Figure 7: Successive approximations G5 , G11 , and G15 to the image G = g̃ [0, 1/2] ⊂ C .
(Compare Figure 16.)

“old” and “new”. To construct Gn+1 we replace any line segment of Gn leading from v to v′ by a
broken path, leading from v to v′′ to v′ , where

v′′ =

{

1
2(v

′ + v) + i
2(v

′ − v) if v′ is a “new” vertex
1
2(v

′ + v) − i
2(v

′ − v) if v′ is an “old” vertex.

For the next stage of the construction, both v and v′ will be considered as old vertices, while v′′ is
a new vertex. This completes the inductive construction.

With this geometric definition, it again follows that the sequence of functions g̃n : [0 , 1/2] → C

converges uniformly and geometrically. In fact the sharp estimate

∣

∣g̃n+1(t)− g̃n(t)
∣

∣ ≤ 1

2
√
2n

for all t

can be verified by induction on n . Now extending the limit function g̃ over R so that g̃(t+ 1/2) =
g̃(t)+ g̃(1/2) , it is not difficult to check that the resulting function satisfies all of the conditions of 4.6.
With this geometric description, we can also prove primitivity:

4.8 Lemma. This function g̃ : R→ C , with g̃(1) = 1− i , satisfies the condition that

g̃(t) ≡ 0 (mod Z[i] ) ⇐⇒ t ≡ 0 (mod Z) .

Proof. Let us start with any line segment of length s = 1/
√
2n in the graph Gn . Examining Figure

6, we see that, passing to Gn+3 , this line segment will be replaced by eight line segments of length
s/
√
8 , all lying within a neighborhood of radius s/2 of the original. Similarly, passing to Gn+3k , the

original segment will be replaced by 8k segments of length s/
√
8k , all lying within a neighborhood

of radius
s

2

(

1 +
1√
8
+

1√
82

+ · · · 1√
8k−1

)

.
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Passing to the limit as k → ∞ , the corresponding segment of G will lie within a neighborhood of
radius

s

2(1− 1/
√
8)
≈ s

1.29
< s

of the original line segment.

Now let us apply this argument to the vertical line segment g̃2[1/4, 1/2] of length 1/2, joining
1/2 to (1 − i)/2 . This argument proves that the image g̃[1/4, 1/2] lies within a neighborhood of
radius strictly less than 1/2 of the original segment. Hence g̃[1/4, 1/2] cannot contain any lattice
point. Similarly, the image g̃(0, 1/4] cannot contain any lattice point. For if g̃(t) ≡ 0 (mod Z[i] )
with 0 < t ≤ 1/4 , then choosing k so that 1/4 ≤ 2kt ≤ 1/2 it would follow by 4.5(a) that
g̃(2kt) ≡ 0 (mod Z[i] ) , which we have seen is impossible. The case 1/2 ≤ t < 1 is handled with a
similar argument.

Proof of Theorem 4.3. Let g̃ = g̃0 : R → C be the function of 3.6 and 3.8, with g̃0(1) = 1 − i , and
let g0 be the induced function from R/Z to C/Z[i] . Then we will first prove that the composition

γ̂0 = ℘̂ ◦ g0 : R/Z → Ĉ

is a primitive, symmetric, τ -equivariant semiconjugacy from the doubling map on R/Z to the map
F (z) = (i/2)(z + z−1) on Ĉ . In fact follows immediately from the construction that:

• γ̂0(2t) = F (γ̂0(t)) for 0 ≤ t ≤ 1/4 ,

• γ̂0(−t) = −γ̂0(t) for 0 ≤ t ≤ 1/4 , and

• γ̂0(t+ 1/2) = 1/γ̂0(t) for all t .

Using the last condition, it is not hard to check that γ̂0(−t) = −γ̂0(t) for all t . It then follows easily
that the semiconjugacy equation γ̂0(2t) = F (γ̂0(t)) also holds for all t . Since γ̂0 is primitive by 4.8,
it has all of the specified properties.

Note also that the image Γ = γ̂0(R/Z) must be equal to the entire Riemann sphere. In fact
using the semiconjugacy condition together with τ -equivariance, we see that Γ is compact and fully
F -invariant, Γ = F−1(Γ) . Since iterated preimages of any point of the Julia set are dense in the Julia
set, and since the Julia set J(F ) is the entire Riemann sphere, this proves that Γ = Ĉ .

Conversely, let γ̂ : R/Z→ Ĉ be any primitive, symmetric, τ -equivariant semiconjugacy from the
doubling map to F . By 4.4 and 4.5, the corresponding lifted map g̃ : R → C must be a multiple of
g̃0 , say

g̃(t) = k g̃0(t) for all t .

Now g̃(1/2) ≡ (1 − i)/2 (mod Z[i] ) by (4.1), and g̃0(1/2) is equal to (1 − i)/2 . Therefore
g̃(1/2) = g̃0(1/2) + λ for some λ ∈ Z[i] , and we have

k =
g̃(1/2)

g̃0(1/2)
= 1 +

λ

(1− i)/2 = 1 + (1 + i)λ .

In particular, this constant k must be a non-zero element of the lattice Z[i] .

Case 1. If |k| = 1 then either k = ±1 and γ̂ = ℘̂ ◦ g̃ = γ̂0 or k = ±i and γ̂ = ℘̂ ◦ g̃ = −γ̂0 .

Case 2. If |k| > 1 , then 1/k 6∈ Z[i] . Since γ̂0 = ℘̂ ◦ g̃0 maps R/Z onto the Riemann
sphere, we can choose 0 < t < 1 so that g̃0(t) = ±1/k . It follows that g̃(t) = ±1 ∈ Z[i] , hence
γ̂(t) = ℘̂ ◦ g̃(t) = ∞ , contradicting the hypothesis that γ̂ is primitive. Hence Case 2 cannot occur,
which completes the proof of 4.3.
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4.9 Some Related Semiconjugacies. For any constant k 6= 0 in Z[i] , the map

t 7→ γ(t) = ℘̂(k g̃0(t))

is clearly another symmetric semiconjugacy from the dynamical system (R/Z , 2·) onto (Ĉ , F ) . This
semiconjugacy can also be written as

γ = (℘̂ ◦ Lk ◦ ℘̂−1) ◦ (℘̂ ◦ g̃0) = (℘̂ ◦ Lk ◦ ℘̂−1) ◦ γ0 ,

where Lk(w) = k w so that Fk = ℘̂ ◦ Lk ◦ ℘̂−1 is a Lattès map of degree |k|2 which commutes with
F . More generally, for any constant k′ 6= 0 in Z we can also consider the semiconjugacy

t 7→ γ(k′ t) = Fk ◦ γ0(k
′t)

from R/Z onto Ĉ . Note however that this related semiconjugacy is not primitive when either |k| > 1
or |k′| > 1 .

4.10 A note on computation. We conclude this section by noting that it is quite easy to
compute the function g̃(t) . For any real number t0 , let us set

2t0 = ε t1 + k with ε = ±1 , t1 ∈ [0 , 1/2] , and k ∈ Z .

Then it follows easily from 4.5 that

g̃(t0) =
√
ε g̃(t1)/η + k η/2 , (13)

where η = 1− i , taking
√
+1 to be +1 and

√
−1 to be +i . For computational purposes, we may

assume that t0 is a dyadic rational, say t0 = m/2n . Since t1 has smaller denominator than t0 , and
since g̃(0) is zero by definition, this yields a recursive definition which is easily implemented.

It is interesting to note that the correspondence t0 7→ t1 , restricted to the interval [0 , 1/2] , is
just the familiar tent map on this interval. For an arbitrary rational number t0 , note that the orbit
t0 7→ t1 7→ t2 7→ · · · under this tent map is eventually periodic. Hence (13) yields a finite set of linear
equations which we can solve for g̃(t0) . It follows that g̃(t0) necessarily belongs to the field Q[i] of
Gaussian rational numbers.

Here is an example. Since the external rays R1/7 , R2/7 and R4/7 for the polynomial z 7→ z2+c1/4
of §3 all land at a common point, namely the α-fixed point, we know that the values g̃(1/7) , g̃(2/7)
and g̃(4/7) must all represent the same point in the quotient space ℘̂(C) = Ĉ . In other words, we
must have g̃(1/7) ≡ ±g̃(2/7) ≡ ±g̃(4/7) (mod Z[i]) . In fact, computing by the algorithm described
above, it turns out that

g̃(1/7) =
2 + i

5
, g̃(2/7) = g̃(4/7) =

3− i
5

,

with g̃(1/7) ≡ ±g̃(2/7) as expected.

5 Measure Properties.

We know from 2.9 and 3.5 that:

• One-dimensional Lebesgue measure on R/Z pushes forward, under the mating semiconjugacy γ̂
from (R/Z , 2·) to (Ĉ , F ) , to the Lyubich measure for F .
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0 1

i 1+i

Figure 8: The left hand figure shows the image g2(R/Z) ⊂ C/Z[i] , lifted to the universal covering
space C . Here, as in Figure 6, the “old” vertices are indicated by heavy dots. In the middle
figure, the rotated image −g2(R/Z) has been added. Evidently the union g2(R/Z) ∪−g2(R/Z) ,
lifted to C , forms a full rectilinear grid. In the right hand picture, the inductive construction of
Figure 6 has been applied to each edge, to obtain g3(R/Z)∪−g3(R/Z) . The resulting picture in
the universal covering is isomorphic to that for g2(R/Z) ∪ −g2(R/Z) , except for a 45◦ rotation
and a scale change of 1/

√
2 . Continuing inductively, we get an analogous picture for any n ≥ 2 .

• Two-dimensional Lebesgue measure on C/Z[i] pushes forward under the normalized Weierstrass
map ℘̂ to this same Lyubich measure on Ĉ .

Since γ̂ is equal to the composition

R/Z
g−→ C/Z[i]

℘̂−→ Ĉ ,

this might suggest that the 1-dimensional Lebesgue measure on R/Z pushes forward under g : R/Z→
C/Z[i] to the 2-dimensional Lebesgue measure on the torus. However this is not quite right. In fact
the map ℘̂ is two-to-one, and the image g(R/Z) covers only about half of the torus. The correct
statement is as follows.

5.1 Lemma. Let {±1} × R/Z be the union of two disjoint circles, mapped to C/Z[i] by
the correspondence (±1 , t) 7→ ± g(t) . Then the push forward m of 1-dimensional Lebesgue
measure on {±1} × R/Z is equal to twice the 2-dimensional Lebesgue measure on the torus.

Proof Outline. If we subdivide R/Z into 2n intervals of length 1/2n , then the approximation gn
of 4.6 or 4.7 maps each of these to an interval of length s = 1/

√
2n in the torus. Combining these with

the corresponding 2n intervals for −gn , we obtain a rectilinear configuration consisting of 2n+1 edges
of length s which subdivide the torus into 2n squares of area s2 = 1/2n , as illustrated in Figure 8.
(It is important to note that there are twice as many edges as squares.) Now consider a region U of
area A with piecewise smooth boundary in this torus. For large values of n the number of squares in
U is asymptotic to A/s2 = 2nA . Since there are twice as many edges as squares,the number of edges
is asymptotic to 2n+1A , and the push forward of the Lebesgue measure on {±1} × R/Z , evaluated
on U , is asymptotic to this number of edges multiplied by the 1-dimensional Lebesgue measure 1/2n

of each edge in the preimage. Hence the total is asymptotic to m(U) = 2A , as required.
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0 1/2

i/2 (1+i)/2

Figure 9: The image of an approximation to g9 : R/Z → T/± , where T = C/Z[i] . The region
shown is a fundamental domain for the action of {±1} on the torus, with ramification points
at the midpoints of the four edges. The quotient T/± can be obtained from this region by
identifying each edge with itself under a 180◦ rotation about its midpoint. The grid ±g9(R/Z)

cuts this region into 28 small squares, each of area 1/29 .

Remark. This last figure illustrates the image gn(R/Z) ∪−gn(R/Z) without giving any clue as
to whether we must turn left or right upon reaching a vertex, as we traverse one of the two copies of
R/Z . In fact the required pattern is extremely complicated. It can best be visualized by choosing a
suitable approximation to gn .

5.2 Lemma. The mating semiconjugacy γ̂ from R/Z onto Ĉ can be uniformly approximated
by a topological embedding.4 Similarly each map (±1 , t) 7→ ±g̃n(t) from {±1} × R/Z onto
C/Z[i] can be uniformly approximated by a topological embedding.

Proof. Examining the construction above we see that the image gn(R/Z) ∪ −gn(R/Z) never crosses
itself. It has many double points, but these are always places where two segments of this image come
together and then bounce off at right angles, without crossing. Hence by a slight deformation, we can get
rid of all of these double points. For example, if we replace gn(t) by the average

(

gn(t)+gn(t+ ε)
)

/2 ,
then for ε sufficiently small we obtain the required embedding which approximates g . (Compare
Figure 9.) The corresponding statement for γ̂ = ℘̂ ◦ g follows easily. (Figure 10.)

Although the area filling curve γ̂ : R/Z→ Ĉ (or g : R/Z→ T/± ) has many self-intersections, we
will show that it is one-to-one almost everywhere. We must first consider the corresponding question
for the Carathéodory semiconjugacy γ : R/Z→ J(f) .

4Rees and Shishikura have shown that this statement is true for any postcritically finite mating, but the following
proof applies only to our special example.
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Figure 10: An analogous approximation to ℘̂ ◦ g11(R/Z) ≈ γ̂(R/Z) on the Riemann sphere
(orthonormal projection). The image is a Jordan curve which cuts the sphere into two simply
connected regions, each made up out of 29 approximate squares of Lyubich area 1/210 . Note
that this image becomes highly compressed and distorted around the critical values of ℘̂ , where
Lyubich measure tends to be concentrated. (The sphere has been rotated so that two of these
four critical values are visible.)

Let f : C → C be any polynomial which is postcritically finite. To simplify the exposition, we
assume also that f has no attracting cycles, so that the Julia set J(f) is equal to the filled Julia set
K(f) .

Definition. The minimal Hubbard tree H0 of f is the smallest connected subset of J(f) which
contains the orbits of the critical points. We will also need the enlarged trees Hn = f−n(H0) ⊂ J(f) .
Here are some basic properties:

5.3 Lemma. Each of these sets H0 ⊂ H1 ⊂ H2 ⊂ · · · is a finite topological tree, with
f(Hn) = Hn−1 for n > 0 and f(H0) = H0 . Furthermore, the union

⋃

Hn is dense in
J(f) . If two distinct external rays land at a point z ∈ J(f) , then z must belong to some
Hn . If we exclude Chebyshev5 maps such as f(z) = z2 − 2 , for which H0(f) = J(f) ,
then each Hn is a set of Brolin measure zero in J(f) . It follows that each γ−1(Hn) has
Lebesgue measure zero in R/Z , and that the Carathéodory semiconjugacy γ : R/Z → J(f)

5See Appendix B.2.
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Figure 11: The Hubbard tree H0 = H0(f1/4) ⊂ J(f1/4) .

is one-to-one almost everywhere in the sense that γ−1
(

γ(t)
)

= {t} for Lebesgue almost every
t .

To the naive eye, the Hubbard tree seems to occupy a large part of the Julia set. (Compare Figures 1,
2, 11, 12.) However, in terms of Brolin measure, it occupies a negligibly small part.

Proof of 5.3. The first statement is straightforward. The union is dense since the preimages of any
point are dense in the Julia set J(f) . If two rays land at z , then it follows from the Theorem of F. and
M. Riesz that these two rays, together with their landing point, cut J(f) into two non-degenerate
subsets. Since the union of the Hn is dense, some Hn must intersect both of these subsets, hence
z ∈ Hn . Finally, since the Brolin measure m is f -invariant, we have m(H0) = m(H1) , hence the
difference H1 r H0 has measure zero. If H0 6= J , then the forward images of H1 r H0 cover H0 .
For otherwise, if H0 contained a point z which is not in any f ◦n(H1 rH0) , then all of the iterated
preimages of z would belong to H0 , hence the closure H0 = H0 would be the entire Julia set.

It is not difficult to check, using §2.8, that the image of any set of Brohlin measure zero also
has Brohlin measure zero. It follows that H0 has measure zero. Therefore every Hn has measure
zero. Since the push-forward of Lebesgue measure on R/Z is the Brolin measure on J(f) , the last
statement follows.

5.4 Remark. (Zakeri, 2000) has proved the more general statement that γ : R/Z → J(f) is
one-to-one almost everywhere provided only that f is quadratic and not a Chebyshev map, with J(f)
locally connected. As an immediate corollary to his result we have the following:

If F ∼= f1 ⊥⊥ f2 is a geometric mating between non-Chebyshev quadratic polynomials, then
the mating semiconjugacy γ̂ : R/Z → Ĉ is one-to-one almost everywhere, using Lebesgue
measure on R/Z and Lyubich measure on J(F ) ⊂ Ĉ . If I ⊂ R/Z is any closed line
segment of length ` , it follows that the image γ̂(I) is a compact set of Lyubich measure
` , with boundary of measure zero.

Proof. Let γ1 and γ2 be the Carathéodory semiconjugacies for f1 and f2 . By Zakeri’s statement
5.4, there are subsets X1 and X2 of measure zero in R/Z so that γ−1

j (γj(t)) is the single point
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Figure 12: Enlarged Hubbard trees Hn = f−n(H0) for n = 1 , 2 , 3 .

t for t 6∈ Xj . It follows easily that γ̂−1(γ̂(t)) = {t} for t 6∈ X1 ∪ (−X2) . Therefore the image

X = γ̂(X1 ∪ (−X2)) is a set of Lyubich measure zero in Ĉ , such that γ̂−1(z) is a single point for
every z 6∈ X .

Now given an interval I ⊂ R/Z , since γ̂−1 ◦ γ̂(I) is equal to I together with a set of measure
zero, it follows that m(γ̂(I)) , which is equal to the Lebesgue measure of γ̂−1γ̂(I) , must be equal to
`(I) . If I ′ is the complementary interval R/Z r I , then since m(γ̂(I)) +m(γ̂(I ′)) = 1 , it follows
that the common boundary must have measure zero.

5.5 Corollary. The map g̃ : R→ C of 4.8 carries any closed line segment of length ` to a
compact set of Lebesgue area equal to `/2 . The topological boundary of this set has Lebesgue
measure zero.

Proof. This follows by applying 5.3 or 5.4 to the mating F ∼= f1/4 ⊥⊥ f1/4 of §3.

6 Fractal Tiling with Hubbard Tree Boundaries.

Let F ∼= f1 ⊥⊥ f2 be any geometric mating, where the Julia sets of f1 and f2 are full, so that
J = K , and so that the Julia set J(F ) is the entire sphere Ĉ . Then corresponding to any partition
of R/Z into non-overlapping intervals Ij we get a partition of Ĉ into compact subsets Tj = γ̂(Ij) .
Note that any overlap Tj ∩ Tk has Lyubich measure zero. In particular, such intersections have no
interior.

The simplest partition divides R/Z into the two intervals [0, 1/2] and [1/2, 1] . The corresponding
sets T1 and T2 both map onto the whole sphere under F , and map to each other under the canonical
involution τ which fixes both critical points. In the symmetric case, when f1 = f2 , they also map
to each other under the symmetry involution, which interchanges the two critical points. For a Lattès
mating, this tiling of Ĉ lifts to a tiling of the branched covering space C .

The common boundary ∂T1 = ∂T2 = T1 ∩ T2 can be described as follows. By the spine Sj of
the Julia set Jj = J(fj) we will mean the unique arc Sj ⊂ Jj which joins the β fixed point to its
preimage −β . (This definition makes sense for any quadratic Julia set which is locally connected and
full.) Recall the notations from (9) in §4. We have maps µj : Kj → Ĉ with

γ̂(t) = µ1 ◦ γ1(t) = µ2 ◦ γ2(−t) ,
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µ(β)

µ(−β)

µ(  )c

Figure 13: Image µ1(H1) of the symmetric Hubbard tree in the complex plane, using a normal-
ization with the two critical points at zero and infinity. This image is topologically embedded (see
Appendix C.6) as a subset of measure zero.

and with F ◦ µj = µj ◦ fj .

6.1 Lemma. The intersection T1 ∩ T2 is equal to the union Ŝ = µ1(S1) ∪ µ2(S2) of the
images of the spines of the two Julia sets.

Note that these two spine images certainly meet at their endpoints β̂ and τ(β̂) . If µ1(S1) and
µ2(S2) met only at these endpoints then T1 and T2 would be Jordan domains, but in practice the
situation is more complicated. For example for the mating f1/4 ⊥⊥ f1/4 of §3, since the rays of angle
2/5 and −2/5 ≡ 3/5 both land on the spine in Figure 2, it follows that µ1(S1) and µ2(S2) meet also
at the points γ̂(2/5) = µ1(γ(2/5)) = µ2(γ(3/5)) . Similarly they meet at the sequence of points γ̂(tn)
and at the sequence of points γ̂(1/2 − tn) , where tn = 1/(2n · 10) for n ≥ 0 . These intersections
between the two boundary curves explain the pinchings which are visible in Figures 7, 14, 15, 16. See
Appendix C for details.

of 6.1. If J = J(f) is full and locally connected, then the union

S(J) ∪ R0(J) ∪ R1/2(J) ⊂ C

cuts the complex plane into two open sets, one containing all rays Rt(J) with 0 < t < 1/2 and the
other containing all rays Rt(J) with 1/2 < t < 1 . It follows that the intersection γ[0, 1/2]∩γ[1/2, 1] ,
for the associated semiconjugacy γ = γf , is precisely equal to the spine S(J) . Now consider a mating

F ∼= f1 ⊥⊥ f2 with f1 and f2 as above. Evidently the associated γ̂ : R/Z→ Ĉ satisfies the following:

The image γ̂(t) is equal to γ̂(t′) if and only if there exists a finite chain

t = t0 , t1 , . . . , tn = t′

so that, for every i between 1 and n , either γ1(ti−1) = γ1(ti) or γ2(−ti−1) =
γ2(−ti) .
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Figure 14: Tiling of the Riemann sphere by the sets γ̂[0, 1/4] , γ̂[1/4 , 1/2] , γ̂[1/2 , 3/4] and
γ̂[3/4, , 1] . Here γ̂ is the semiconjugacy of 4.3 , associated with the mating f1/4 ⊥⊥ f1/4 of
3.1 .

Figure 15: Corresponding tiling lifted to C via the ℘-function. (The number of colors has
been doubled, since each tile lifts to the torus in two different ways.) The illustrated square is
somewhat larger than a fundamental domain for the lattice Z[i] . The pattern is invariant under
180◦ rotations about the critical points of ℘̂ . Furthermore, a suitably chosen translation or
rotation will carry regions of one color into regions of any other color.
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Figure 16: A picture of the dragon ĝ[0, 1/2] of Figure 7, subdivided into images ĝ[1/2n , 1/2n−1]

in order to illustrate the dynamics. Each of these regions (except the last) maps isomorphically
onto the next under multiplication by 1− i . The last maps isomorphically onto a set iĝ[0, 1/2]− i
which can be rotated isomorphically onto the whole set ĝ[0, 1/2] .

In particular, if this condition is satisfied with 0 ≤ t ≤ 1/2 ≤ t′ ≤ 1 then there must exists some i
with 0 ≤ ti−1 ≤ 1/2 ≤ ti ≤ 1 , and it follows that γ̂(t) belongs either to µ1(S1) or to µ2(S2) , as
required.

Similarly, if we partition R/Z into four equal intervals [j/4 , (j + 1)/4] , then we obtain a corre-
sponding partition of the Riemann sphere into four tiles. The analogue of 6.1 is the statement that the
union of the boundaries of these four tiles is equal to Ŝ ∪ F−1(Ŝ) , or in other words is equal to the
union of the set µ1(S1 ∪ f−1

1 (S1)) with the corresponding set for f2 . In fact the set S1 ∪ f−1
1 (S1) ,

together with the rays of angle 0 , 1/4 , 1/2 , 3/4 , cuts the complex plane up into four regions, and
the discussion proceeds as above.

For the special case F ∼= f1/4 ⊥⊥ f1/4 of §3, the situation is particularly simple, since the set
S(f) ∪ f−1(S(f)) is just the symmetric Hubbard tree H1 of Figure 12. Hence the union of the
boundaries of the regions in Figure 14 is made up out of two copies of the set µ(H1) of Figure 13 . If
these two copies intersected only at the points ±β̂ and γ̂(±1/4) , then they would cut the sphere up
neatly into four Jordan domains. However, as noted above and in Appendix C, there are many other
intersections and the situation is much more complicated. These extra intersections occur precisely at
the angles

t = · · · 1/40 , 1/20 , 1/10 , 1/5 , 2/5 , 9/20 , 19/40 , · · · . (14)

Under the associated Weierstrass function ℘̂ : T→ Ĉ , each of these four tiles lifts in two ways. Thus
we obtain a tiling of the torus T by eight Heighway dragons, as illustrated in Figure 15 . Similarly,
if we subdivide each [j/4 , (j + 1)/4] into 2n equal intervals, then each dragon of area 1/8 will be
subdivided into 2n dragons of area 1/(8 · 2n) . See Figure 16 to get some idea of how these dragons
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map under multiplication by 1 − i . (For the theory of such self-similar tilings, compare (Kenyon,
1996).)

7 Further Questions.

The basic question raised by this paper is the following: What is the relationship between semiconjugacy
and mating? First one can ask: Does the semiconjugacy γ̂ : R/Z→ Ĉ associated with a mating F ∼=
f1 ⊥⊥ f2 uniquely determine the polynomials f1 , f2 and the mating homeomorphism K1 ⊥⊥ K2

∼=→Ĉ ?
This seems very likely, but I don’t have a proof.

What conditions on a semiconjugacy are needed in order to conclude that it comes from some
mating? We know that γ̂ must be primitive and τ -equivariant, with γ̂(2t) = F (γ̂(t)) . However, A.
Douady has pointed out to me that these conditions are not sufficient. His example is based on the
following observations.

There exist quadratic polynomials f and g which are topologically conjugate on their filled Julia
sets,

h : K(g)
∼=→ K(f) with h ◦ g = f ◦ h ,

even though g is not topologically conjugate to f on the whole complex plane. Some examples are
described in Appendix D. Given such an h , we can construct an exotic semiconjugacy η : R/Z →
∂K(f) by setting η = h◦γg . Now if the mating F ∼= f1 ⊥⊥ f2 is defined, with f = f1 , then in place
of the mating semiconjugacy γ̂(t) = µ1 ◦ γ1(t) = µ2 ◦ γ2(−t) we can consider the exotic semiconjugacy
η̂ = µ1 ◦ η from R/Z to J(F ) . There is no reason to expect that this η̂ is the semiconjugacy
associated with any mating. Taking account of such examples, Douady suggests the following further
requirement:

Almost Embedding Condition. It must be possible to uniformly approximate the semi-
conjugacy γ̂ : R/Z → J(F ) by topological embeddings of the circle into the sphere.
(Compare 5.2 and Figure 10.)

We can then ask: Are the primitive τ -equivariant semiconjugacies satisfying this Douady almost em-
bedding condition exactly the ones which arise from matings?

Even in the special case of the mating f1/4 ⊥⊥ f1/4 which has been studied above, there remain
many questions: Is it necessary to assume symmetry in order to prove Theorem 4.3? What semiconju-
gacies from (R/Z , 2·) to (Ĉ , F ) actually exist? Furthermore, can one carry out a similar program
for the other Lattès matings described in Appendix B.8? How much of this program can be carried out
for more general matings?

A Appendix - The Weierstrass ℘-function.

Let Λ be some fixed lattice in C , and let T be the quotient torus C/Λ . It will be convenient to
use the term Weierstrass ℘-function loosely to mean any holomorphic function ℘ : T → Ĉ of degree
two which satisfies

℘(−w) = ℘(w) , and ℘(0) = ∞ .
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Evidently any such ℘ induces a conformal isomorphism between the quotient T/± and the Riemann
sphere. It will be convenient to write the Laurent series for ℘ as

℘(w) = (a/w)2 + b +
∞
∑

1

ckw
2k ,

where a 6= 0 . We can then set ℘(w) = a2 ℘0(w) + b , where ℘0 is the standard Weierstrass function,
satisfying ℘0(w) = 1/w2 +O(w2) . (Compare (Ahlfors, 1966).)

A.1 A rapidly converging series. After a linear change of the variable w , we may assume
that the lattice Λ is generated by 1 and τ , with τ ∈ C r R . One choice of ℘-function for the
lattice Λ = Z + τ Z is then given by the series

℘1(w) =
∑

n∈Z

η(w + nτ) , where η(w) = 1 + cot2(πw) . (15)

This series converges very rapidly. In fact we will prove the asymptotic estimate

|η(u+ iv)| ∼ 4/e2π|v| , (16)

which holds uniformly in u as |v| → ∞ . (Note that the constant e2π ≈ 535.49 is quite large.) Since
η(w) = η(−w) = η(w + 1) , it follows that the sum of this series satisfies

℘1(w) = ℘1(−w) = ℘1(w + 1) = ℘1(w + τ) .

It is often convenient to make the substitution

E = e2πiw , cot(πw) = i
eπiw + e−πiw

eπiw − e−πiw
= i

E + 1

E − 1
, (17)

hence

η(w) = 1 −
(E + 1

E − 1

)2

=
−4E

(E − 1)2
=

4

2− E − E−1
.

In particular, note that

η(w) = ∞ ⇐⇒ E = 1 ⇐⇒ w ∈ Z .

It follows that ℘1 has poles only at the points of Z + τZ . If w = u+ iv , then |E| = e−2πv . As v
tends to +∞ , E tends rapidly to zero, hence

η(w) ∼ − 4E , |η(w)| ∼ |4E| = 4/e2πv .

This proves (16) as v → +∞ , and the proof when v → −∞ is similar. Thus the series (15) converges.
Its sum clearly gives rise to an even, degree two map from T to Ĉ , with ℘1(0) = ∞ . Therefore
℘1(w) = a2 ℘0(w) + b for suitable a 6= 0 and b . In fact since

η(w) = 1/(πw)2 + O(1) as w → 0 ,

it follows that a = 1/π . For the computation of b , see A.4 below.

32



A.2 Remark on computation. To actually compute, one uses the series

℘1(w) = − 4
∑

n∈Z

cnE
(cnE − 1)2

=
∑ 4

2− cnE − (cnE)−1
, where c = e2πiτ , (18)

with E as in (17). For the application in §4, it was convenient to choose a specific Weierstrass function
℘̂ by specifying the values ℘̂(w1) and ℘̂(w2) at two designated points w1 and w2 of C/Λ . Any
such function can be evaluated as ℘̂(w) = α℘1(w) + β , where the coefficients α and β can be
computed by solving the linear equations ℘̂(wj) = α℘1(wj) + β .

A.3 The inverse function. Given distinct points v1 , v2 , v3 in the complex plane, and given
a constant a 6= 0 , consider the elliptic integral

w(z) = a

∫ z

∞

dζ
√

4(ζ − v1) (ζ − v2) (ζ − v3)
. (19)

We can make sense of this many-valued function as follows. Let T be the smooth projective variety
consisting of all pairs (z, r) ∈ C2 with

r2 = f(z) , where f(z) = 4(z − v1) (z − v2) (z − v3) ,

together with one point at infinity. Then T is a 2-fold branched covering of Ĉ under the projection
(z, r) 7→ z . There are four branch points, hence T is a surface of genus one by the Riemann-Hurwitz
formula. Given any smooth path P in T which leads from the point at infinity to (z, r) , the integral

w = a

∫

P
dz/r = a

∫

P
2 dr/f ′(z) (20)

is well defined. (If we exclude the point at infinity, note that we can use z as local parameter except
at the three points where r = 0 , and that we can use r as a local parameter except at the two points
where f ′(z) = 0 . The ramification point at infinity is more complicated, and will be discussed in the
proof of A.4.) If we pass to the universal covering space T̃ , then this integral does not depend on the
choice of path, so we obtain a well defined holomorphic mapping from T̃ to C ,

(z̃ , r̃) 7→ w(z̃ , r̃) for (z̃ , r̃) ∈ T̃ .

Now map the fundamental group π1(T ) ∼= Z ⊕ Z into C by mapping any closed loop in T to the
integral (20) around this loop. Then the image Λ ⊂ C of π1(T ) is an additive group Λ with two
generators. In fact Λ must be a lattice, that is its generators must be linearly independent over R .
For otherwise, if both generators were contained in a real 1-dimensional sub vector space RΛ ⊂ C ,
then the correspondence (z, r) 7→ w (mod RΛ) would be an open mapping from the compact set T to
the quotient vector space C/RΛ , which is impossible. Thus the quotient C/Λ is also a torus, and we
have a holomorphic mapping from T to C/Λ which induces an isomorphism of fundamental groups.
But any holomorphic map from one torus to another is necessarily linear, since the first derivative
is a well defined holomorphic map from torus to C , and hence is constant. This proves that our
correspondence

(z , r) 7→ w(z̃ , r̃) = a

∫ (z,r)

∞
dz/r (mod Λ)

maps the Riemann surface T biholomorphically onto the torus C/Λ .

We will prove the following.
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A.4 Lemma. The inverse mapping

℘ : w(z̃ , r̃) 7→ z ∈ Ĉ

is a Weierstrass function of the form ℘(w) = a2℘0(w) + b , with a as in (19) , and with b
equal to the average (v1 + v2 + v3)/3 of the finite critical values.

Proof. To understand behavior of the integral (19) near infinity, we introduce a local uniformizing
parameter t , where

z = 1/t2 , r =
√

f(1/t2) = 2
(

1− 3b t2/2 + · · ·
)

/t3 ,

with b = (v1 + v2 + v3)/3 . A brief computation shows that

w = a

∫

dz/r = − a
∫

dt/(1− 3b t2/2 + · · · ) = − a t
(

1 + b t2/2 + · · ·
)

,

hence

(a/w)2 =
1

t2

(

1− bt2 +O(t4)
)

= z − b+O(t2) ,

or z = a2/w2 + b+O(w2) , as required.

A.5 The preferred area form on ℘(T) . If we push forward the Lebesgue area form du dv
on the torus under the map ℘ : T→ Ĉ , then we obtain an area form ρ(x+ iy) dx dy on the Riemann
sphere. Since dw = a dz/

√

f(z) , the density function is easily computed as

ρ(z) = 2|a2/f(z)| .

(The factor of two arises since every point of the sphere has two preimages on the torus, counting
multiplicity.) Thus ρ is smooth except at the three finite critical values of ℘ . Using 3.5, we obtain
the following.

A.6 Corollary. The Lyubich measure for any Lattès mapping

F (z) = ℘ ◦ L ◦ ℘−1(z)

with finite postcritical points v1 , v2 , v3 is given by the area form ρ(x+ iy) dx dy where

ρ(z) =
k

|(z − v1)(z − v2)(z − v3)|
.

Here the normalizing constant k is equal to |a|2/2 divided by the area of T .

Note that there are infinitely many such Lattès maps for any such torus; however we obtain this same
Lyubich measure for all of them. As one example, using the specific Weierstrass map ℘̂ : C/Z[i]→ Ĉ ,
with critical values ±i and 0 , it follows that the Lyubich measure for the rational map F (z) =
(i/2)(z + z−1) is given by ρ(x+ iy) dx dy with density

ρ(z) =

∣

∣

∣

∣

a2/2

z3 + z

∣

∣

∣

∣

.
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A.7 The centered spherical metric. We conclude this appendix with a digression. The
standard spherical metric

2|dz|/(1 + |z|2)
on the Riemann sphere can be obtained by pulling back the usual Riemannian metric on the unit
sphere in 3-space under stereographic projection

→
s : Ĉ

∼=−→ S2 ⊂ R3 ,
→
s (x+ iy) =

(2x , 2y , x2 + y2 − 1)

x2 + y2 + 1
.

A Möbius transformation z 7→ (az + b)/(cz + d) will be called a Möbius rotation if it preserves this
metric. Its matrix of coefficients then belongs to the projective unitary group, with

d = a , b = − c ,

up to a constant factor. The antipodal map for this metric is given by z 7→ −1/z .

Definition. We will say that a rational map F is centered if the centroid, with respect to the
Lyubich measure m , of the image of its Julia set under stereographic projection to S2 is equal to
the origin:

∫ ∫

Ĉ

→
s (z) dm(z) =

→
0 .

Intuitively, this means that the interesting features of its Julia set are distributed in a balanced way
around the sphere S2 . Using the methods of (Douady and Earle, 1986), we see that: Every rational
map is conjugate to one which is centered, and this centered map is unique up to conjugation by a
rotation. Pulling back the standard spherical metric by this conjugacy, we conclude that: There is a
preferred spherical metric for any rational Julia set.

In the case of a quadratic rational map, note that the critical points are always antipodal with
respect to this preferred metric. To see this, suppose that the critical points are at 0 and ∞ , so that
the canonical involution τF corresponds to the 180◦ rotation of S2 about its poles. Since Lyubich
measure is invariant under τF , it follows that the centroid

∫ ∫ →
s (z)dm(z) lies on the axis through the

poles. A suitable scale change, replacing F (z) by F (cz)/c , will then move this centroid to the origin.
(Note however that the critical values of F can be arbitrarily close to each other in the preferred
metric.)

In the special case of a symmetric quadratic map, it is not hard to check that the normal form
z 7→ a(z + z−1) is always centered. However, in general, the operation of “centering” a rational map
seems computationally awkward.

Similarly, we can say that a Weierstrass ℘-function is centered if
∫ ∫

T

→
s
(

℘(u+ iv)
)

du dv =
→
0 .

so that the push forward of Lebesgue measure is distributed in a balanced way around the unit 2-
sphere. Evidently, a Weierstrass function is centered if and only if all of its associated Lattès maps are
centered. Any ℘-function can be centered by composing it with some Möbius transformation, which
is unique up to rotation. In fact, this centering operation for Weierstrass functions is computationally
straightforward: To every lattice T = C/Λ there is associated a commutative group consisting of the
three translations L : w 7→ w + λ/2 of order two, together with the identity map. These give rise to
three commuting involutions

z 7→ ℘ ◦ L ◦ ℘−1(z)
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of the Riemann sphere, each of which has two easily computed fixed points. The map ℘ is centered if
and only if the fixed points of each of these involutions are antipodal, so that the involution is a 180◦

rotation. To achieve this condition, we can for example compose ℘ with a Möbius transformation
which carries these three pairs to {±1} , {±i} , and {0,∞} respectively. In order to satisfy the usual
requirement that ℘(0) =∞ , we can then compose with a further Möbius rotation.

B Appendix - Lattès Maps and Matings.

We first discuss Lattès maps of arbitrary degree, and then specialize to the quadratic case. According
to Lemma 3.6, every Lattès map F has the following two properties:

• F is a rational map of degree d ≥ 2 with only simple critical points, so that there are
exactly 2d− 2 critical points.

• F has exactly four postcritical points, and none of these four points is also critical.

Conversely we have the following, as promised in 3.7.

B.1 Lemma. Any F with these two properties is a Lattès map.

Proof. First note that every immediate preimage of one of the four postcritical points is either critical
or postcritical. In other words, if V is the set of postcritical points, then F−1(V ) r V is the set
of all critical points. In fact there are 4d elements of F−1(V ) counted with multiplicity, where d
is the degree and where each critical point must be counted with multiplicity two. Since there are
2d− 2 critical points by the Riemann-Hurwitz formula, and 4 postcritical points, we can account for
all 2(2d−2)+4 = 4d of the elements of F−1(V ) . Hence every point in this set must be either critical
or postcritical.

Proceeding as in A.3, we form the 2-fold branched covering T of Ĉ , branched over the four
postcritical points. Now however, it will be more convenient to assume that the critical and postcritical
points are all finite, defining T to be the set of all (z, r) ∈ C2 with

r2 = p(z) where p(z) =
∏

vj∈V

(z − vj) ,

together with two points at infinity corresponding to the two branches of the function
√

p(z) as
|z| → ∞ , with r ∼ +z2 or r ∼ −z2 respectively. By the Riemann-Hurwitz formula, χ(T ) = 0 ,
hence T is conformally isomorphic to C/Λ for some lattice Λ . Choosing this conformal isomorphism
so that the zero point in C/Λ corresponds to the postcritical point v1 ∈ V , it follows that the
involution (z, r) 7→ (z,−r) of T must correspond to some involution of C/Λ , which can only be
w 7→ −w (mod Λ) .

We must show that F lifts to a holomorphic map L : T → T , which is unique up to composition
with the involution (z, r) 7→ (z,−r) . First consider the local problem, near some point (z0 , r0) ∈ T .
There are four cases, as follows:

(a) If z0 is neither a critical point nor a postcritical point nor a pole of F , then p(F (z0)) 6= 0 .
Hence we can simply set

L(z, r) =
(

F (z) , ±
√

p(F (z))
)

, (21)
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making some consistent choice of sign throughout a neighborhood of (z0 , r0) .

(b) If F (z0) =∞ , the argument is similar.

(c) Now suppose that z0 is a critical point, with F (z0) = vj . Then the Taylor expansion for F
around z0 has the form F (z0+h) = vj + c2h

2+ c3h
3+ · · · with c2 6= 0 . Since p′(vj) 6= 0 , the Taylor

expansion for p ◦ F has the form

p ◦ F (z0 + h) = c′2h
2 + c′3h

3 + · · ·

with c′2 6= 0 . Again we can make a consistent choice of sign in (21) for z = z0+h in some neighborhood
of (z0 , r0) .

(d) Finally, if z0 ∈ V is a postcritical point, then since the derivative p′(z0) is non-zero. we can
solve locally for z as a smooth function z = p−1(p(z)) = p−1(r2) . Furthermore, (p ◦ F )′(z0) 6= 0 , so
the composition r 7→ p ◦F ◦ p−1(r2) has Taylor series of the form r 7→ c2r

2 + c4r
4 + · · · with c2 6= 0 .

Therefore we can set
L(z , r) =

(

F (z) , ±
√

p ◦ F ◦ p−1(r2)
)

,

again making a consistent choice of sign throughout some neighborhood.

Thus, near any point z0 ∈ Ĉ there are exactly two possible liftings, and these local liftings form an
unbranched two-sheeted covering of the Riemann sphere Ĉ . Since Ĉ is simply-connected, this means
that there exists a global lifting L : T → T . Since every holomorphic map from a torus to itself is
linear, it follows that F is indeed a Lattès map.

B.2 Chebyshev maps. The theory of Chebyshev maps is quite similar to the theory of Lattès
maps. Let M = C/Z be the infinite cylinder, and let M/± be the quotient space in which each
w (modulo Z ) is identified with −w . The analogue of the Weierstrass ℘-function for this quotient
is the function w 7→ 2 cos(2πw) which maps M/± biholomorphically onto the complex plane C .
Equivalently, the function w 7→ e2πiw maps M biholomorphically onto C r {0} , and if we identify
z = e2πiw with 1/z = e−2πiw then the correspondence z 7→ z + z−1 = 2 cos(2πw) maps the quotient
space biholomorphically onto C . For any integer d ≥ 2 the linear map w 7→ dw (mod Z) from M
to itself (or z 7→ zd from C r {0} to itself) induces a monic polynomial map

2 cos(θ) 7→ Φd(2 cos θ) = 2 cos(d θ) ,

or equivalently
z + z−1 7→ Φd(z + z−1) = zd + z−d ,

which is called the degree d Chebyshev map. As examples,

Φ2(z) = z2 − 2 , Φ3(z) = z3 − 3z , Φ4(z) = z4 − 4z2 + 2 .

The analogue of B.1 is the following statement.

B.3 Lemma. A polynomial map f of degree d is linearly conjugate to ±Φd if and only if
it has d − 1 distinct critical points and exactly two postcritical points in the finite plane C ,
neither of these postcritical points being also critical.
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Figure 17: Graph of Φ7(x) = x7 − 7x5 + 14x3 − 7x in the square [−2, 2]× [−2, 2] .

Proof Outline. After a linear conjugation, we may assume that the postcritical points are ±2 . Form
the 2-fold branched covering z 7→ s = z + z−1 , branched over s = ±2 . Proceeding as in the proof
of B.1, the polynomial s 7→ f(s) lifts to a rational function z 7→ F (z) which has critical points and
critical values only at zero and infinity. Such a rational function, with F (2) = ±2 , must be given by
F (z) = ±z±d , and it follows that f(s) = ±Φd(s) .

It is not difficult to check that the Julia set J(±Φd) is equal to the interval [−2 , 2] . Conversely:

B.4 Lemma. Any degree d polynomial f whose Julia set is homeomorphic to an interval
(or more generally to a finite topological tree) is linearly conjugate to ±Φd .

Proof. Since J is connected, it contains all finite critical points. Define the valence v(z) at a point
z ∈ J to be the number of connected components of Jr{z} , and note that v(z) is equal to v

(

f(z)
)

multiplied by the local degree of f at z . It follows that the tree J must actually be a simple arc.
For otherwise there would be at least one point z with v(z) ≥ 3 . Hence, taking iterated preimages,
there would be infinitely many such points, which is impossible. It now follows easily that the local
degree is two if z is a critical point, which must belong to the open arc and map to an endpoint, and
is one otherwise. The d − 1 critical points cut J into d closed intervals, each of which maps onto
J . It follows that both endpoints must be postcritical, and the conclusion then follows from B.3.

B.5 Algebraic description of Lattès maps. Let us identify T with the quotient torus T =
C/Λ for some lattice Λ ⊂ C and write this linear map as

L(w) = ηw + κ (mod Λ) .

As in 3.4, we must have ηΛ ⊂ Λ and 2κ ∈ Λ . Without loss of generality, we may assume that
1 ∈ Λ , and hence that η , η2 , η3 , . . . ∈ Λ . In other words, Λ must contain the additive group Z[η]
generated by all the powers ηk , k ≥ 0 . Since this additive group is finitely generated, it follows that
η must be an algebraic integer, satisfying a polynomial equation with integer coefficients and with
leading coefficient 1 . There are now two possibilities:

(a) If η is a rational integer, η ∈ Z , then there is no restriction at all on the lattice Λ . The
maps L : T→ T and F : Ĉ→ Ĉ have degree d = η2 ≥ 4 . In particular, these rational maps F are
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non-rigid; there is an entire one-parameter family of topologically conjugate maps which are distinct
from the analytic point of view.

(b) Otherwise the additive group Z[η] ⊂ C has rank two, and it follows that η is a quadratic
algebraic integer, satisfying an equation of the form

η2 − cη + d = 0 (22)

with integer coefficients. In particular, it follows that Z[η] = Z+ ηZ . Here the constant d = |η|2 ≥ 2
is the degree, and c is the real part of 2η . Note that η is an invariant of the Lattès map only up
to sign, since the two linear maps L(w) and −L(w) give rise to the same F = ℘ ◦ L ◦ ℘−1 . To
eliminate this ambiguity, we will often list η2 rather than η . Changing the sign of η if necessary,
we may assume that c ≥ 0 . Since η is assumed to be non-real, the discriminant c2 − 4d must be
negative, hence

0 ≤ c < 2
√
d . (23)

B.6 The degree two case. We will show that there are exactly seven distinct Lattès maps of
degree two, up to holomorphic conjugation. (More precisely, there are three pairs of complex conjugate
Lattès maps, plus one real Lattès map.) First note, using (22) and (23) , that either:

c = 0 , η2 + 2 = 0 , with η2 = − 2 , or

c = 1 , η2 − η + 2 = 0 , with η2 = (−3± i
√
7)/2 , or

c = 2 , η2 − 2η + 2 = 0 , with η2 = ± 2i .

(24)

Thus there are five distinct possibilities for η2 . (Correspondingly η can take the values ±i
√
2 ,

±(1± i
√
7)/2 , and ±(1± i) .)

Next we must ask which lattices are possible, for a given η . By a scale change, we can always
assume that the minimum distance between distinct lattice elements is equal to 1 , so that |λ| ≥ 1 for
all non-zero λ ∈ Λ . Furthermore, by rotating the coordinates we can then assume that 1 ∈ Λ and
hence that Z[η] ⊂ Λ . In the degree two case, these two conditions suffice to guarantee that Λ = Z[η] .
In fact, in each of the cases listed in (24) it is not hard to choose a compact fundamental domain for
Z[η] which is strictly contained in the open unit disk. Hence it is not possible to add more points to
the lattice Z[η] without violating the condition that |λ| ≥ 1 for λ 6= 0 .

Finally, fixing the multiplier η and the lattice Λ = Z[η] , we must consider the additive constant
κ ∈ 1

2Λ . This is not an invariant of the Lattès map. In fact if we replace L(w) = ηw + κ by

L(w + λ/2)− λ/2 = η w + κ′ with κ′ = κ+ (η − 1)λ/2 ,

then we obtain a holomorphically conjugate Lattès map, provided that λ/2 is a fixed point of the
involution w 7→ −w (mod Λ) , or in other words provided that λ ∈ Λ . In the cases c = 0 and
c = 2 , it is not hard to check that every element of 1

2Λ can be written as (η − 1)λ/2 (mod Λ) for
some λ ∈ Λ . Hence in these cases we can always choose the origin in C/Λ so that κ = 0 . However,
when η = ±(1 ±

√
−7)/2 the equation (η − 1)λ/2 ≡ 1/2 (mod Λ) has no solution λ ∈ Λ . Hence

the two linear maps
L(w) = ηw and L(w) = ηw + 1/2

give rise to distinct Lattès maps.

The census of quadratic Lattès maps can now be tabulated as follows. Here the bottom two lines
of the table give the number of postcritical fixed points for F , and the information as to whether or
not F admits a holomorphic conjugacy which interchanges its critical points.
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B.7 Lemma. Up to holomorphic conjugacy there are exactly seven distinct Lattès maps of
degree two, corresponding to seven linear maps L(w) = η w+κ with the following descriptions:

η2 = −2 (−3± i
√
7)/2 (−3± i

√
7)/2 ±2i

κ = 0 0 1/2 0
postcrit. f.p. 1 2 0 1
symmetric? no yes yes yes.

Proof. The number of postcritical fixed points is the most elementary and easily computable invariant
for a Lattès map. If there is just one postcritical fixed point, then (in the degree two case) it is easy to
check that we must have the following schematic diagram for the critical orbits.

•

c1 7→ • 7→ • • c2

Here the cj are the two critical points and the four heavy dots are the four postcritical points. If
there are two postcritical fixed points, then the diagram splits into two parts as follows.

c1 7→ • 7→ • • • c2

Finally, if there are no postcritical fixed points, then there must be a postcritical cycle of period two,
and the diagram takes the following form.

c1 7→ • 7→ • ↔ • • c2

To distinguish between these three possibilities for the seven examples of B.7, it is simply necessary to
compute the mapping w 7→ η w + κ on the four element set 1

2Λ/Λ
∼= V . This computation will be

left to the reader.

In each case, we can give explicit examples of rational maps in the Lattès conjugacy class as follows.
This will also enable us to decide which of these maps are symmetric.

First suppose that η2 = −2 . Putting the critical points at ±1 and the postcritical fixed point of
multiplier η2 at infinity, the map must have the form

F (z) = (z + z−1)/η2 + b = − (z + z−1)/2 + b

for some constant b . Thus the critical points ±1 map to b∓ 1 , which must map to the preimage 0
of ∞ . This yields the two equations 2b = (b ∓ 1) + (b ∓ 1)−1 , with solution b = ±

√
2 . Thus F

is a rational map with real coefficients. For example, taking b = +
√
2 , we have

F (z) = − (z + z−1)/2 +
√
2 (25)

with critical orbits ±1 7→
√
2∓ 1 7→ 0 7→ ∞ . Since b 6= 0 , this map is not symmetric.

Next suppose that η2 = (−3± i
√
7)/2 , with two postcritical fixed points. Any quadratic rational

map with fixed points of multiplier α and β can be put in the normal form z 7→ z(z + α)/(βz + 1) ,
with these designated fixed points at zero and infinity. (Compare (Milnor, 1993).) In the special case
α = β , this map commutes with the involution σ(z) = 1/z , and hence is symmetric. In our case, the
map has two postcritical fixed points of multiplier η2 . Hence it has the form

F (z) = z
z + η2

η2z + 1
with η2 = (−3± i

√
7)/2 , (26)
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and commutes with σ(z) = 1/z . Now consider the composition

F ◦ σ(z) = σ ◦ F (z) =
η2z + 1

z(z + η2)
. (27)

Evidently this map has exactly four postcritical points, with a postcritical cycle 0↔∞ of multiplier
η4 . Hence it is the required Lattès map, corresponding to L(w) = η w + 1/2 . Evidently this map is
also symmetric.

Finally suppose that η2 = ±2i . Then as described in §3, we can put the critical points at ±1 and
the postcritical fixed point of multiplier η2 at infinity, to obtain the symmetric normal form

F (z) = (z + z−1)/η2 , with η2 = 2i (28)

and with critical orbits ±1 7→ ∓ i 7→ 0 7→ ∞ . This completes the proof of B.7.

B.8 Lattès matings. This section will give examples of matings which satisfy the conditions of
B.1, and hence can also be described as Lattès mappings. I am indebted to Shishikura for providing
the following table, which gives more examples and more precise information than I was able to obtain.
Recall the notation

fp/q(z) = z2 + cp/q

where cp/q is the landing point of the p/q -ray in the Mandelbrot set. (Compare Figure 5.) The first
two columns of this table list pairs p/q and r/s for a mating fp/q ⊥⊥ fr/s , while the remaining two
columns list the constants η2 for the associated linear map L(w) = η w+ κ . Here only the examples
with η2 in the upper half-plane have been listed. In each case, a complex conjugate Lattès mating
can be obtained by changing the signs of the angles. For example the mating f1/4 ⊥⊥ f1/4 of §3, with
η = 1− i , η2 = −2i , corresponds to the complex conjugate of the first entry. With these conventions,
here is Shishikura’s list.

p/q r/s η2 κ

3/4 3/4 2i 0

1/12 5/12 −2 0

5/6 5/6 (−3 + i
√
7)/2 1/2

1/6 5/14 (−3 + i
√
7)/2 0

3/14 3/14 (−3 + i
√
7)/2 0

3/14 1/2 (−3 + i
√
7)/2 0

5/6 1/2 (−3 + i
√
7)/2 0

B.9 A non-unique mating. Kevin Pilgrim has pointed out that this discussion leads to an
example in degree four where the analytic structure is not at all uniquely defined. Let F be the
degree two Lattès map of (25) with multiplier η = i

√
2 . Then F ◦ F is the degree four Lattès map

with multiplier η2 = −2 ∈ Z . Thus F ◦ F belongs to a one-parameter family of Lattès maps which
are topologically conjugate but analytically distinct. Since F ∼= f1/12 ⊥⊥ f5/12 , it follows that the
topological mating

(f1/12 ◦ f1/12) ⊥⊥ (f5/12 ◦ f5/12) ∼= F ◦ F
can be provided with a compatible analytic structure in uncountably many distinct ways.
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The last four rows of this table describe another noteworthy example: They show that the Lattès
map (26) with two postcritical fixed points can be presented as a mating in four essentially different
ways. Furthermore, three of these mating structures are non-symmetric, even though the map itself is
symmetric. Thus there are seven different mating structures for this Lattès map if we mark the critical
points and hence distinguish between fp/q ⊥⊥ fr/s and fr/s ⊥⊥ fp/q .

We will first give a case by case discussion, proving the following, and giving a rough idea as to
which mating corresponds to which Lattès map. (The more difficult question as to precisely which
mating corresponds to which Lattès map will be postponed until §B.12.)

B.10 Lemma. Each of these seven matings yields a rational map which can be given the
structure of a Lattès map.

Proof. The discussion will be divided into three cases, according to the number of postcritical fixed
points.

Case 0. For f5/6 ⊥⊥ f5/6 we have

γ̂(5/6) 7→ γ̂(2/3) ↔ γ̂(1/3) γ̂(−5/6) .
Thus both critical orbits end on a common cycle of period two. There is no postcritical fixed point.

Case 1. The mating f3/4 ⊥⊥ f3/4 is clearly symmetric, with postcritical orbits

γ̂(3/4) 7→ γ̂(1/2) 7→ γ̂(0) and γ̂(−3/4) 7→ γ̂(1/2) 7→ γ̂(0) ,

with just one postcritical fixed point. (Compare §3.) Similarly, the mating f1/12 ⊥⊥ f5/12 has post-
critical orbits

γ̂(1/12) 7→ γ̂(1/6) 7→ γ̂(1/3) ,

where γ̂(1/3) = γ̂(2/3) is a fixed point since c5/12 belongs to the 1/2-limb of the Mandelbrot set,
and

γ̂(−5/12) 7→ γ̂(1/6) 7→ γ̂(1/3) .

(The proof that this example is not symmetric is non-trivial. Note that f1/12 ⊥⊥ f5/12 = f1/12 ⊥⊥ f7/12

since c5/12 = c7/12 ∈ R .)

Case 2. For the mating f5/6 ⊥⊥ f1/2 we have

γ̂(5/6) 7→ γ̂(2/3) and γ̂(−1/2) 7→ γ̂(0) .

Here γ̂(2/3) is a fixed point because c1/2 belongs to the 1/2-limb. Note that

f1/2(z) = z2 − 2 , f1/6(z) = z2 + i , f5/6(z) = z2 − i .
(Compare B.11.) For f1/6 ⊥⊥ f5/14 we have:

γ̂(1/6) 7→ γ̂(1/3) and γ̂(−5/14) 7→ γ̂(2/7) ,

where γ̂(1/3) is fixed because c−5/14 belongs to the 1/2-limb, and γ̂(2/7) is fixed because c1/6
belongs to the 1/3-limb. For f3/14 ⊥⊥ f3/14 :

γ̂(3/14) 7→ γ̂(3/7) and γ̂(−3/14) 7→ γ̂(−3/7) ,

using the fact that c3/14 belongs to the 1/3-limb while c−3/14 belongs to the 2/3-limb. Similarly,
for f3/14 ⊥⊥ f1/2 we have

γ̂(3/14) 7→ γ̂(3/7) and γ̂(1/2) 7→ γ̂(0) .

Since all of these maps have exactly four postcritical points, the conclusion follows from Lemma B.1.
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B.11 Generalized Lattès maps. If we allow a mild generalization of the concept of Lattès
map, then there is one more example which is also a mating. Let ωn be the n-th root of unity
exp(2πi/n) with n equal to 3, 4, or 6, and consider the ωn -symmetrical lattice Λn = Z[ωn] , that is

Λ4 = Z[i] , or Λ3 = Λ6 = Z
[(

± 1 + i
√
3
)

/2
]

.

The group of n-th roots of unity acts by multiplication on the torus Tn = C/Λn , and the quotient
Tn/(t ≡ ωn t) is a Riemann surface of genus zero. Now any η 6= 0 in Z[ωn] acts by multiplication
on this quotient surface, yielding a rational map of degree |η|2 which I will call a generalized Lattès
map. Like the ordinary Lattès maps, these have a bounded flat orbifold metric.6 On the other hand,
like Chebyshev maps or the negatives of Chebyshev maps, they have only three postcritical points. In
fact these are the only maps with these properties. Compare (Douady and Hubbard, 1993, §9.2).

Among these generalized Lattès maps, there is only one of degree two, corresponding to the case
n = 4 and η = 1± i . (Here the sign doesn’t matter since ω4(1− i) = 1+ i .) The resulting quadratic
rational map has critical orbit diagram

c1 7→ c2 7→ • 7→ •

and can be represented for example as z 7→ −(2 + z + z−1)/4 . It is not hard to see that this map
can also be realized as the mating of our familiar polynomial f1/4 with the Chebyshev polynomial
f1/2(z) = z2 − 2 .

Matings with the Chebyshev map f1/2(z) = z2 − 2 deserve special mention. First, these are the
only matings such that the associated γ̂ : R/Z→ J(F ) is not one-to-one almost everywhere, but rather
satisfies γ̂(t) = γ̂(−t) . (Compare 5.4.) Also, they are closely related to self-matings. C. Petersen has
pointed out that for any quadratic rational map which is symmetric (that is satisfies σ ◦ F = F ◦ σ
as in 4.1), we can collapse the Riemann sphere under the involution σ to obtain a new rational map,
which we may denote by F/σ , on the quotient Riemann surface Ĉ/σ ∼= Ĉ . If we use the normal form
F (z) = a(z + z−1) with σ(z) = −z , then we can introduce the coordinate Z = z2 on Ĉ/σ , with
associated map

Z 7→ F
(√

Z
)2

= a2 (Z + Z−1 + 2) .

Here the two critical points z = ±1 for F correspond to the single critical point Z = +1 , while
a new preperiodic critical point appears, namely Z = −1 7→ 0 7→ ∞ . Conversely, any quadratic
rational map having a critical point for which the second forward image is a fixed point arises in this
way from a symmetric map.

If F ∼= f ⊥⊥ f is a self-mating, then it is easy to check that the associated F/σ can be identified
with f ⊥⊥ f1/2 . As noted above, the matings f3/14 ⊥⊥ f1/2

∼= f5/6 ⊥⊥ f1/2 can be given a Lattès
structure. On the other hand, the mating f1/4 ⊥⊥ f1/2 does not have a Lattès structure in the classical
sense, but does have a generalized Lattès structure.

B.12 The algorithm Here is an outline of a slightly modified form of Shishikura’s procedure
for determining exactly which mating corresponds to which Lattès map. It is best carried out with a
set of colored markers and a quantity of blank paper. Start with a schematic diagram, as in Figure
18(a), for the two Julia sets Jp/q and Jr/s embedded in the sphere S2 . (Compare Figure 3.) Then
make a simplified version which includes only the following key features: the equator, represented by
the circle in Figure 18(b), with points in the critical and postcritical ray classes marked, and with any
ray pair Aj joining one of these marked points to another within the northern or southern hemisphere

6For a discussion of orbifold structure, see for example (Douady and Hubbard, 1993) or (Milnor, 1999, §19).
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Figure 18: (a) Schematic diagram for the mating f1/4 ⊥⊥ f1/4 , and (b) a simplified version.

Figure 19: This shows (a) Figure 18(b) lifted to the torus, and (b) the preimage of E1 lifted to the torus.

drawn in. (These are the dotted curves in the figure.) Note that each such Aj corresponds to a single

point in the quotient sphere Kp/q ⊥⊥ Kr/s = S2/
ray∼ . Choose four base points among these marked

points, one in each postcritical ray equivalence class. These cut the equator into four arcs, which we
number consecutively as E1 through E4 . (In the figure, each Ej is indicated by an arrow with j
heads.) Next form the 2-fold covering torus T , branched over these four points. Then each Ei will
be covered by a simple closed curve Êi in T , where Ê1 and Ê3 are disjoint, but cross Ê2 and
Ê4 transversally. The universal covering of T can be identified with the complex numbers. In this
universal covering, we obtain a grid of non-intersecting curved lines covering Ê1 and Ê3 crossed by
curved lines covering Ê2 and Ê4 . Figure 19(a) repesents a single fundamental parallelogram for this
torus. We can identify the vertices of this fundamental domain (the circled points in the figure) with
four points of the lattice Λ , say 0 and 1 on the real axis and ξ and ξ + 1 in the upper half-plane.
This lattice can also be identified with the homology group H1(T;Z) .

The smaller squares in this figure represent alternately the northern and southern hemispheres of
S2 . Now lift each of the dotted arcs Aj of Figure 18 to each of the two rectangles corresponding
to its hemisphere, as indicated in Figure 19(a). Next determine the preimage of E1 under the angle
doubling map from the equator to itself. Lift both components of this preimage to T in two ways,
and join them up by following the lifted arcs Aj as necessary, to form a simple closed curve or pair of
simple closed curves Ê′1 in T . (Figure 19(b).) We see from the resulting picture that, in this case, the
induced linear map on H1(T;Z) ∼= Λ ⊂ C caries the diagonal homology class ξ + 1 to the horizontal
class ±2 . Here we could choose either sign; let us take the plus sign to fix our ideas. It follows that
the corresponding muliplier is given by η = 2/(ξ + 1) . Now do the same for E2 . A similar argument
shows that the linear map carries ξ− 1 to 2ξ . Thus η = 2ξ/(ξ− 1) = 2/(ξ+1) . Since ξ lies in the
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Figure 20: Diagram of the Hubbard tree for f1/4 , with labels for the two sides of the three edges.

upper half-plane, we can solve uniquely for ξ = i and η = 1− i . (Compare 3.2, 3.9.)

C Appendix - External Angles and the Hubbard Tree.

This will be a brief outline of how one computes the external angles of points on the Hubbard tree
H0 = H0(f1/4) . (For much more detail on how one computes such things, see (Douady, 1986).) Let us
start with a schematic diagram of H0 as shown in Figure 20. Here the two sides of each edge in H0

have been labeled separately since an external ray must land on one side or the other (if we exclude
the four vertices). For any external ray which lands at a point z ∈ H0 we obtain an infinite sequence
of symbols in {A,B,C,D,E, F} by following its orbit under f1/4 . The possible transitions between
these six symbols under the map f1/4 can be described briefly by the diagram

C → E → A → A ∪B ∪ C
B → D → F → B ∪ C ∪ F ,

or equivalently by the following diagram

D ← B ← A
↘ ↑ ↓ ↖

F → C → E .
(29)

(Compare Figure 21. As an example, A maps onto the union A∪B ∪C , but B maps only to D .)
For each ray landing at an interior point z of some edge in H0 , there is a different ray which lands
at the same point z from the opposite side of this edge. Its symbol sequence is obtained from the
original sequence by permuting the six symbols according to the scheme

A ↔ F , B ↔ C , D ↔ E . (30)

This corresponds to a rotation of the transition diagram (29) by 180◦ .

Now replace each of these six symbols by a zero or one according as it lies above or below the path
from −β to β , so that

A , B , C , D 7→ 0 , E , F 7→ 1 .

Then we obtain the following transition diagram.

0 ← 0 ← 0
↘ ↑ ↓ ↖

1 → 0 → 1
(31)
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Figure 21: Graph of a piecewise linear circle map which represents the allowed transitions between
edges in Figure 20. This graph has a jump discontinuity, since nothing in F maps to D or E .

Starting anywhere in this diagram and following the arrows, making an arbitrary choice whenever there
is more than one outward arrow, we obtain an infinite sequence of zeros and ones which represents
the binary expansion of a corresponding external angle. The angles obtained in this way are precisely
those whose rays land on H0 . As an example, the sequence FFBD repeated periodically, denoted
briefly by FFBD , leads to the periodic binary expansion .1100 = 4/5 , hence the 4/5-ray lands
on H0 . If we apply the involution (30) , we obtain the periodic sequence AACE , corresponding to
.0001 = 1/15 . Thus the 1/15 and 4/5-rays land at exactly the same point of H0 . (Figure 2.)

We would like to know when the rays Rt and R−t both land on H0 . As one example, note that
the sequence BDFF corresponds to .0011 = 1/5 . We have just seen that the ray R−1/5 = R4/5

lands on H0 . Thus the 1/5 and the −1/5-rays both land on the tree H0 . (They land at different
points since the first lands on edge B while the second lands on F . Compare Figure 2.) Similarly,
the 2/5 and −2/5-rays land on H0 , as do the 1/10 and −1/10 rays, the 1/20 and −1/20-rays,
and so on. These coincidences lead to infinitely many intersections between the images µ1(H0) and
µ2(H0) in Ĉ , and hence to the complications seen in Figures 7, 14, 15, 16. Here is a precise statement.
(Compare (14) in §6.)

C.1 Lemma. The external rays Rt and R−t for J(f1/4) both land on the Hubbard tree
H0 ⊂ J(f1/4) if and only if t is either 0 , 1/2 , or an angle of the form ±1/(2n 5) or
±(1− 1/(2n 5))/2 with n ≥ 0 .

Proof. Note that the bit sequence for −t is obtained from the sequence for t by reversing all bits, so
that 0 ↔ 1 . In the case of a ray Rt landing on H0 , we see by inspecting (31) that the sequence
1011 can never occur in the binary expansion of t . Now suppose that R−t lands on H0 . Then the
dual sequence 0100 cannot occur in the expansion of t . Comparing (29) and (31) , this implies that
the symbol C cannot occur in the symbol sequence for t . It follows that the sequence 101 cannot
occur in its binary expansion, and that 1 0n1 with n > 2 cannot occur except as an initial segment.
Now suppose that both Rt and R−t land on H0 . Then the sequence 010 cannot occur, and 0 1n0
with n > 2 can occur only as an initial segment. It is now straightforward to check that the only
possible sequences are

.1n1100 ↔ .0n0011 and .10n0011 ↔ .01n1100
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with n ≥ 0 , corresponding to the angles listed.

C.2 Remark. Generically there are two external rays landing on each point of H0 . The only
exceptions are the fixed point α and its iterated preimages where three rays land, and the three points
c 7→ −β 7→ β where only one ray lands. The angle of an external ray determines its symbol sequence
except in the case of the iterated preimages of α and β . As examples, the two symbol sequences
BDF and ACE both determine the angle .001 = 1/7 with γ(1/7) = α , while the two symbol
sequences ACEA 7→ .0010 and ABDF 7→ .0001 both correspond to the ray R1/8 which lands at
γ(1/8) = 0 .

If two different rays land on a common point z , recall from 5.3 that z must belong to the union
⋃

Hn of the iterated preimages of H0 . We can supplement C.1 as follows.

C.3 Lemma. If both Rt and R−t land on
⋃

Hn , then either t is a dyadic rational p/2m ,
or else the binary expansion of t is eventually periodic with period 0011 . In the latter case,
there is a unique angle s 6≡ t with γ(s) = γ(t) and its binary expansion has eventual period
0100 . Similarly, there is a unique u 6≡ t with γ(−u) = γ(−t) and its binary expansion has
eventual period 1011 .

More explicitly, since .0011 = 1/5 and .0101 = 4/15 , it follows that the orbits of t and s under
angle doubling are eventually periodic, of the form

t 7→ 2t 7→ · · · 7→ 1/5 7→ 2/5 7→ 4/5 7→ 3/5 7→ 1/5
s 7→ 2s 7→ · · · 7→ 4/15 7→ 8/15 7→ 1/15 7→ 2/15 7→ 4/15 .

The same is true for −t and −u .

Proof of C.3. After doubling the angles sufficiently often, we may assume that both γ(t) and γ(−t)
belong to H0 , so that C.1 applies. The proof is then straightforward.

Now consider the mating F ∼= f1/4 ⊥⊥ f1/4 and the associated semiconjugacy

γ̂ : (R/Z , 2·) → (Ĉ , F ) .

It follows from 2.1 that γ̂(t) = γ̂(t′) if and only if there exists a chain t = t1 , t2 , . . . , tn = t′ such
that:

either γ(ti) = γ(ti+1) or γ(−ti) = γ(−ti+1) (32)

for each i between 1 and n− 1 . Here we may assume that the ti are distinct and that the + and
− conditions alternate, since otherwise t and t′ could be joined by a shorter such chain.

C.4 Corollary. For this particular mating, it suffices to consider chains of length n ≤ 3 in
order to test whether γ̂(t) = γ̂(t′) .

Proof. Given a chain t1 , t2 , t3 , t4 of length four satisfying (32) , first suppose that t2 is not a dyadic
rational. Then it follows from C.3, applied to t1 , t2 , t3 , that the binary expansion of t2 has eventual
period 0011 while the binary expansion of t3 has eventual period 0001 or 0111 . But C.3 applied
to t2 , t3 , t4 shows similarly that t3 must have eventual period 0011 , yielding a contradiction. Now
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suppose that t2 is a dyadic rational, with say γ(t1) = γ(t2) = z . Then the orbit of z must pass
through the critical point, since otherwise we would obtain two distinct rays landing at the β -fixed
point. It follows that the orbit of γ(−t2) does not pass through the critical point, hence the condition
γ(−t2) = γ(−t3) cannot be satisfied with t2 6≡ t3 . This contradiction completes the proof.

C.5 Remark. We can use this same argument to verify the condition of Moore’s Theorem 2.2 as
applied to this particular mating. Recall that the ray equivalence relation on the 2-sphere was defined
as the smallest equivalence relation

ray∼ such that the closure of each ν1(Rt(J)) ∪ ν2(R−t(J)) lies in
a single equivalence class. (Compare Figure 2.) The arguments above show that each ray equivalence
class has one of the following four forms, where each edge represents such a ray pair closure, joining a
point of ν1(J) to a point of ν2(J) .

Each end vertex in one of these four graphs represents the image under ν1 or ν2 of a point in J
where only one external ray lands, while each interior vertex represents the image of a point where two
different rays land. Thus the first three graphs represent chains of length one, two, and three. In the
last two graphs the vertices are all eventually periodic. The eventual periods involve only angles with
denominator 5 and 15 in one case, and 7 in the other (corresponding to the α fixed point).

Since none of these four graphs can separate the plane, we see that the conditions of Moore’s
Theorem are satisfied, so that (S2/

ray∼ ) = J ⊥⊥ J is indeed a topological sphere. (Of course this is
only one step in Shishikura’s proof that this topological-mating can be given a holomorphic structure.)

Here is another consequence. (Compare Figure 13.)

C.6 Corollary. The symmetric Hubbard tree H1 = H0 ∪ (−H0) is embedded injectively into
the Riemann sphere by the map µ1 : J(f1/4)→ J(F ) = Ĉ .

Proof. If γ(t) and γ(t′) are two distinct points of H1 which map to the same point under µ1 , then
γ̂(t) = γ̂(t′) , hence t and t′ are joined by a chain satisfying (32) . If there is more than one ray landing
at γ(t) and at γ(t′) , then combining these with a chain from t to t′ we get a chain of length ≥ 4 ,
contradicting C.4. On the other hand, if only one ray lands on γ(t) , then t ∈ {0 , 1/4 , 1/2 , 3/4} .
Hence only one ray lands on γ(−t) also, and the equivalence class is a singleton.

Note however that the preimage H2 = f−1(H1) is not mapped injectively, since γ(3/8) and
γ(7/8) are distinct points of H2 but γ(−3/8) = γ(−7/8) = 0 , hence

µ1(γ(3/8)) = µ1(γ(7/8)) .

C.7 A note on computation. In order to actually plot an image of the Hubbard tree, it
is convenient to work with an associated circle map, as graphed in Figure 21. For each point of the
associated circle which parametrizes H0 , it is not difficult to iterate this circle map, and hence compute
the binary expansion of the corresponding angle t . It is then easy to plot the image µ1(γ(t)) = ℘(ĝ(t)) ,
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using §4 and Appendix A.2. (See Figure 13.) It is much harder to compute the point γ(t) itself, since
the operation of following an external ray to locate its landing point is rather slow. One quite general
method for plotting Hubbard trees of full Julia sets has been suggested to me by Zakeri: First make a
raster file for the Julia set, and then use an algorithm to search for a minimal path between specified
pixels within this set. A quite different procedure was actually used for Figures 11, 12, as follows.
Given any dyadic rational t0 with binary expansion t0 = .b1b2 · · · bn , let tk = .bk+1 · · · bn ≡ 2kt0 ,
and let zk = γ(tk) . Since zk+1 = f(zk) and zn = β , we can try to solve for

zk = ±
√

zk+1 − c ∈ f−1(zk+1)

by backwards induction. The problem is to make the correct choice of sign at each step. Inspecting
Figure 2, we see that to a first approximation the point zk lies in the left half-plane if and only if its
angle tk lies in the interval [1/8 , 5/8] . This observation gives a simple rule for choosing the sign,
and yields a good first approximation to the required picture. However this choice of sign may well
be wrong when zk is very close to the origin. To make a correct choice in this case, one needs the
observation that J is asymptotically self-similar near the preperiodic point 0 with expansion factor
of
√

f ′(β) =
√
2β . (Compare (Tan Lei, 2000).) Further details will be omitted.

D Appendix - Some Non-standard Topological Conjugacies.

I am indebted to A. Douady for pointing out that there exists topological conjugacies between filled
Julia sets which cannot be extended over any neighborhood in C . This appendix will describe the
simplest such examples.

For any rational number 0 < p/q < 1 , let c(p/q) be the “center point” for the p/q -limb of the
Mandelbrot set (or more precisely the center point for that hyperbolic component in the p/q -limb
which is an immediate satellite attached to the central cardioid). Let K(p/q) be the filled Julia set
for the corresponding polynomial z 7→ z2 + c(p/q) . This polynomial has a periodic critical orbit of
period q . Furthermore, the periodic Fatou components are arranged around their common boundary
point α in a cyclic order as if they corresponded under a rotation through the angle of p/q ∈ R/Z .
(Compare Figure 22 for the case p/q = 2/5 .)

D.1 Theorem. If 0 < p/q < p′/q < 1 are distinct fractions in lowest terms with the same
denominator, then there exists a unique topological conjugacy K(p/q) → K(p′/q) which is
holomorphic on the interior. However, this conjugacy cannot be extended as a homeomorphism
over any neighborhood of K(p/q) .

(Compare (Branner and Fagella, 1999) for a quite different homeomorphism between K(p/q) and
K(p′/q) which is compatible with the embedding into C but not with the dynamics.)

Proof. To prove D.1, we will show how to construct K = K(p/q) as a topological space, together with
its dynamics, given only the denominator q , without any reference to the numerator p . In fact, let K0

be the union of the closures of the bounded periodic Fatou components of f , and let Kn = f−n(K0) .
We will first give a description of K0 which depends only on q , and then extend inductively to give a
corresponding description of Kn . Finally, we will show that the entire filled Julia set can be described
as the inverse limit of an appropriate sequence of maps K0 ← K1 ← K2 ← · · · .
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Figure 22: Filled Julia set K(2/5) for the center point of the 2/5-limb of the Mandelbrot set.
The periodic Fatou components have been labeled so that f(Ui) = Ui+1 , with 0 ∈ U0 = U5 .

First note that the closure U of an arbitrary bounded Fatou component U is canonically home-
omorphic to the closed unit disk D . In the case of a periodic Fatou component, this canonical
homeomorphism can be identified with the Böttcher coordinate for the first return map f ◦q . In the
case of an arbitrary component U , simply choose the smallest n so that f ◦n(U) is periodic, and then
use the homeomorphism f ◦n : U → f◦n(U) to pull back the Böttcher coordinate. In all cases but one,
note that the map f : U → f(U) preserves this canonical coordinate. However, in the exceptional
case when U is the central component, a point in U with coordinate w maps to a point in f(U)
with coordinate w2 .

Let us number the closures of the periodic Fatou components as

K0,1
∼=→ K0,2

∼=→ · · ·
∼=→ K0,q → K0,1 ,

where K0,q is the central component containing the critical point, and K0,1 contains the critical
value. Then K0 is equal to the union K0,1∪· · ·∪K0,q . Since each K0,j is canonically homeomorphic
to D , and since the K0,j intersect only at their common root point α , which has coordinate +1
in each K0,j , this yields the required description of K0 , together with the map f |K0

, without any
reference to the numerator p .

Next we will construct K1 = f−1(K0) = K0 ∪ τ(K0) . Here τ is the involution z 7→ −z , so that
f ◦ τ = f . Then K1 can be obtained from K0 by adjoining new copies K1,j = τ(K0,j) of D to K0

for 1 ≤ j < q . Each of these new disks is to be attached by identifying its root point with coordinate
+1 to the point τ(α) ∈ K0,q , which has coordinate −1 in K0,q . The map f extends over K1 by
setting f

(

τ(z)
)

= f(z) for all τ(z) ∈ K1,j = τ(K0,j) .

Now suppose inductively that we have constructed K0 ⊂ K1 ⊂ · · · ⊂ Kn together with the map
f |Kn

: Kn → Kn−1 , which is exactly two-to-one except at the critical point. Suppose further that Kn

is obtained from Kn−1 by adjoining closed topological disks Kn,j for 1 ≤ j ≤ 2n−1(q − 1) , where
these disks are attached by their root points to corresponding points z(n, j) ∈ ∂Kn−1 , Then each
f−1

(

z(n, j)
)

consists of two points in ∂Kn , which we will call z(n + 1 , 2j − 1) and z(n + 1 , 2j)
respectively. Form Kn+1 from Kn by attaching a copy Kn+1 , k of D at each of these 2n(q − 1)
points z(n + 1 , k) , and extend f |Kn

to a map from Kn+1 to Kn which carries both Kn+1 , 2j−1
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and Kn+1 , 2j onto Kn−1 , j , preserving the canonical homeomorphism with D . This completes the
inductive construction.

Let rn : Kn → Kn−1 be the retraction which collapses each attached disk Kn,j to its point of
attachment z(n, j) , while fixing every point of Kn−1 , and let K̂ be the inverse limit of the sequence

K0
r1←− K1

r2←− K2
r3←− · · · .

Then K̂ is a compact topological space. Using the commutative diagram

Kn+1
f−→ Kn

↓ rn+1 ↓ rn
Kn

f−→ Kn−1

we see that the maps f |Kn : Kn → Kn−1 give rise to a map f̂ : K̂ → K̂ in the limit.

We must show that this limit K̂ can be identified with the original filled Julia set K = K(p/q) .
(Compare (Douady, 1993).) Let O ⊂ K0 be the critical orbit of period q ≥ 2 . Then the Riemann
surface C r O has a Poincaré metric which is strictly expanding on the Julia set, and also on every
disk Kn,j with n > 1 . (More precisely, there exists a constant k > 1 so that ‖f ′(z)‖ ≥ k for every
z in the compact set

⋃

n>1

⋃

j Kn,j , using the Poincaré metric at z and f(z) to define the norm of
such a derivative.) Let dn be the maximum of the diameters of the disks Kn,j in this metric. Then
the sequence d1 > d2 > d3 > · · · tends geometrically to zero, and it follows easily that every sequence
of points

z0
r1
z1

r2
z2

r3
z3

r4 · · ·

converges to a unique point of K . This yields the required homeomorphism K̂
∼=→ K .

Since this description of K = K(p/q) makes no mention of p , it yields a homeomorphism

K(p/q)
∼=→ K(p′/q) which is holomorphic on the interior and compatible with the dynamics. For

p 6= p′ it cannot be extended as a homeomorphism over any neighborhood of the α fixed point, since
the various K0,j are arranged in a different cyclic order around α in these two filled Julia sets.
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