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A study of rational maps of the real or complex projective plane of degree two or more,
concentrating on those which map an elliptic curve onto itself, necessarily by an expanding
map. We describe relatively simple examples with a rich variety of exotic dynamical behav-
iors which are perhaps familar to the applied dynamics community but not to specialists
in several complex variables. For example, we describe smooth attractors with riddled or
intermingled atttracting basins, and we observe “blowout” bifurcations when the transverse
Lyapunov exponent for the invariant curve changes sign. In the complex case, the elliptic
curve (a topological torus) can never have a trapping neighborhood, yet it can have an at-
tracting basin of large measure (perhaps even of full measure). We also describe examples
where there appear to be Herman rings (that is topological cylinders mapped to themselves
with irrational rotation number) with open attracting basin. In some cases we provide
proofs, but in other cases the discussion is empirical, based on numerical computation.

1 Introduction.

In the paper “Self-maps of P2 with invariant elliptic curves”, Bonifant and Dabija [2002] constructed a
number of examples of rational maps f of the real or complex projective plane of degree d ≥ 2 with an
elliptic curve C = f(C) as invariant subset. This case of a curve of genus one is of particular interest,
since genus zero examples are easy to construct while higher genus examples cannot exist. (Compare
Remarks 1.2 and 2.1.) The present paper studies the extent to which such an invariant elliptic curve
C ⊂ P2 can be an “attractor”. Here we must distinguish between possible degrees of attraction. By
definition, a compact set A = f(A) ⊂ P2 will be called:

• a measure-theoretic attracting set if its attracting basin, consisting of all points whose orbits
converge to A, has positive Lebesgue measure, and

• a trapped attracting set if there it has a compact trapping neighborhood N such that
f(N) ⊂ N and A =

⋂
n f◦n(N).

†Died June 22, 2003.
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In both cases, the word attractor will be reserved for an attracting set A which contains a dense orbit.1

A measure-theoretic attractor will be called a global attractor if its attracting basin has full measure in
the ambient space P

2.

In both the real and complex cases, we provide examples in which a smooth elliptic curve C
is a measure-theoretic attractor. In fact there are examples in which there are two distinct smooth
measure-theoretic attractors whose attracting basins are thoroughly intermingled, so that they have
the same topological closure. We provide an example of a singular real elliptic curve which is a trapped
attractor; but we prove that a complex elliptic curve can never be a trapped attractor. In fact, it seems
likely that the attracting basin of a complex elliptic curve cannot have interior points, so that the set
of points not attracted to C must be everywhere dense. (Compare Lemma 4.4, as well as Proposition
6.3.)

We describe examples in which it seems possible that the elliptic curve is a global attractor so that
its attracting basin has full measure. We also provide a family of examples where there appears to be
a pair of Herman rings as attractor, with an open neighborhood as attracting basin. However, in many
cases the dynamical behavior is sufficiently confusing that we are not even sure what to conjecture.

An Outline of the Following Sections. Section 2 describes some basic ideas, including the trans-
verse Lyapunov exponent along an invariant elliptic curve, which is a primary indicator of whether or
not the curve is attracting. Methods for actually computing this transverse exponent will be described
in Part 2, the sequel to this paper; however, the conclusions of these computations are often quoted
below. Section 3 describes the very restrictive class of rational maps with a first integral. These are
used in Sec. 4 to construct a three parameter family of more interesting rational maps of degree four.
Section 5 studies eight explicit examples, with conjectured descriptions based on numerical computa-
tion. In the first three examples, all observed randomly chosen orbits seem to converge to the Fermat
curve x3 + y3 + z3 = 0, both in the real case with ambient space P

2(R) and in the complex case with
ambient space P2(C). This suggests that the real or complex Fermat curve may be a global attractor,
with attracting basin of full measure. (However, other attractors with basins of extremely small mea-
sure could easily be missed by such random samples.) Example 5.4 suggests that a cycle of two Herman
rings can be a measure theoretic attractor in P2(C) (perhaps even be a global attractor) for such a map
with invariant elliptic curve. In Example 5.5, there is an attracting fixed point at the “north pole”,
while the “equator” forms a measure theoretic attractor, while in Example 5.6 a typical orbit bounces
between three near-attractors. This section concludes with examples of lower degree maps which have
a smooth invariant elliptic curve. In particular, Example 5.8 describes a degree 3 map of P2(C) which
appear to have the Fermat curve as a global attractor. All of these conclusions have been empirical.
However, Secs. 6 and 7 provide cases with explicit proofs. Example 6.1 describes maps with three
different attractors with thoroughly intermingled basins, all of positive measure. (Compare [Alexander
et al., 1992].) Two of these basins are dense in the Julia set, while the third basin, which is everywhere
dense, is equal to the Fatou set. Theorem 7.2 provides examples of singular real elliptic curves which
are trapped attractors under suitable rational maps; while Theorem 7.4 shows that a complex elliptic
curve can never be a trapped attractor. (We don’t know whether non-singular real curves can be
trapped attractors.) Section 8 provides a more general discussion of Herman rings. The transverse

1For some purposes it is important to have a more restrictive definition, as in [Milnor, 1985]. Compare the discussion
of “Milnor attractors” in [Kaneko, 2002] or [Ashwin et al., 1996]. For other concepts of attractor, see Remark 5.7, as
well as [Auslander et al., 1964]; and for exotic examples see [Alexander et al., 1992], [Kan, 1994], [Maistrenko et al.,1998],
[Ashwin et al., 1996], [Ott & Sommerer, 1994], [Ott et al., 1993]. For dynamics in P

2(C) see [Fornaæss & Sibony, 2001],
[Fornæss & Weickert, 1999], [Jonsson & Weickert, 2000], [Sibony, 1999], [Ueda, 1998].
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Lyapunov exponent for a (complex 1-dimensional) Herman ring or Siegel disk in P
2(C) provides a strict

criterion for attraction or repulsion. This exponent is no longer constant, as it was in the case of an
elliptic curve, but is rather a convex piecewise linear function on the ring or disk, constant on each
invariant circle. We prove the persistence of invariant circles in P2(R) under suitable hypotheses, but
our results are not strong enough to prove the conjecture that the associated Herman rings in P2(C)
are also persistent. Section 9 concludes the discussion by providing a brief outline of open problems.

We will usually concentrate on the complex case, although many of the illustrations will necessarily
illustrate the real case.

Remark 1.1. Computation. Numerical computations are extremely delicate near the invariant
curve C. Thus it is essential to work with multiple precision arithmetic; but even so, numerical
simulation of the dynamics must be understood as a hint of the true state of affairs, rather than a
definitive answer. One surprising aspect of these maps is that in some cases orbits tend to spend quite
a bit of time extremely close to C even when the transverse exponent is positive. (Compare Figs.
5 and 8.) In a similar situation, Maistrenko, Maistrenko and Popovich [1998, p. 2713] report that,
in the presence of a small positive value of the transverse exponent: “a trajectory may spend a very
long time in the neighborhood of the invariant subspace. From time to time, the repulsive character
of the chaotic set manifests itself, and the trajectory exhibits a burst in which it moves far away from
the invariant subspace, to be reinjected again into the proximity of this subspace. · · · [The] positive
value of the Lyapunov exponent applies over long periods of time. For shorter time intervals, the net
contribution · · · may be negative, and the trajectory is attracted to the chaotic set.” (Similar behavior
was described in [Platt et al., 1993].)

Remark 1.2. Genus Zero. Attracting curves of genus zero are easy to construct. (Compare
Example 8.1.) Thus, for the map (x : y : z) 7→ (x : y : z/2), the line z = 0 is an attracting curve with
the region |z|2 < |x|2 + |y|2 as trapping neighborhood. Similarly, if (x : y) 7→ (f1(x, y) : f2(x, y)) is
any rational map of P1 of degree d ≥ 2, then the line z = 0 is a trapped attracting curve for the map
(x : y : z) 7→ (f1(x, y) : f2(x, y) : zd) . In particular, if we start with a map of P1 which has a dense
orbit (for example a Lattès map—compare Remark 4.7), then we obtain a trapped attractor.

2 Rational Maps and the Transverse Lyapunov Exponent.

Let f be a rational map of P2 = P2(C). We can write f : P2rI → P2 , where

f(x : y : z) =
(
f1(x, y, z) : f2(x, y, z) : f3(x, y, z)

)
,

using homogeneous coordinates (x : y : z) where (x, y, z) ∈ C3r{(0, 0, 0)} are well defined up to
multiplication by a common non-zero factor. Here f1 , f2 , f3 are to be homogeneous polynomials of
the same degree d = d(f) ≥ 2 with no common factor, and I = I(f), the indeterminacy set, is the finite
set consisting of all common zeros of f1 , f2 , f3. By definition, d is the algebraic degree of f . Such a
rational map f is called regular if If is vacuous so that f is an everywhere defined holomorphic map
from P2 to itself. The topological degree of f as a map from P2 to itself is then equal to d2, while the
algebraic number of fixed points is d2 + d + 1. However, if I 6= ∅, then there will be fewer fixed points
(or sometimes an entire curve of fixed points), and a generic point will have fewer than d2 preimages.

Now consider an algebraic curve C ⊂ P2, defined by a homogeneous equation Φ(x, y, z) = 0 of
degree deg(C) ≥ 1. We will say that a rational map f is well defined on C if the intersection C ∩ If
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is empty so that f is defined and holomorphic throughout a neighborhood of C. It then follows that
the image C ′ = f(C) is itself an algebraic curve of degree deg(C ′) ≥ 1. Furthermore, the degree of the
restriction f |C : C → C′ is determined by the relation2

d(f) deg(C) = d(f |C) deg(C′) . (1)

Definition. An algebraic curve C ⊂ P
2 will be called invariant under f if f is well defined on C

and if f(C) = C. It then follows from Eq. (1) that the degree of the restriction f |C : C → C is precisely
equal to d(f), the degree of the equations which define f .

Remark 2.1. Curves of Higher Genus. As one consequence of this discussion, it follows that a
curve of genus g ≥ 2 can never be invariant under a map of P

2 of degree d ≥ 2. For it follows from the
Riemann-Hurwitz formula (see for example [Milnor, 2006b]) that a curve of genus ≥ 2 does not admit
any self-maps of degree ≥ 2.

On the other hand, if C contains points of indeterminacy then these remarks break down. For
example, Cr(I ∩ C) may consist entirely of fixed points, or may map to a single point under f . In
cases where I ∩ C may be nonempty, but the image f

(
Cr(I ∩ C)

)
is contained in C, the curve C

will be called weakly f -invariant. If C is smooth and weakly invariant, then f extends uniquely to a
holomorphic map from C to itself; but the degree on C may be smaller than d(f). (Compare Remarks
4.2 and 6.8 below.)

Let D(n) = nD(1) be the divisor class on C which is obtained by intersecting C with a generic
curve of degree n in P2. A given holomorphic map g : C → C of degree d > 0 extends to a rational map
of P

2 which is well defined on C if and only if

g∗D(1) = D(d) .

(See [Bonifant & Dabija, 2002, §2].) If d < deg(C) then this extension is unique; but if d ≥ deg(C)

then there exists a 3
(

d−d(Φ)+2
2

)
dimensional family of such extensions since we can always replace the

associated homogeneous polynomial map F : C
3 → C

3 by F +ΦH where Φ = 0 is the defining equation
for C with d(Φ) = deg(C), and where H : C

3 → C
3 is any homogeneous map of degree d − d(Φ). In

this case, a generic extension will be regular (that is, defined and holomorphic everywhere).
One particular virtue of an elliptic curve C ⊂ P2 is that any holomorphic self-map must be linear in

terms of suitable coordinates. In fact such a curve is conformally isomorphic to some flat torus C/Ω,
where Ω is a lattice. More precisely, there is a holomorphic uniformizing map

υ : C/Ω → C

which is biholomorphic in the case of a smooth elliptic curve, and is one-to-one except on finitely many
singular points in the case of a singular curve. Any holomorphic self-map of C lifts to a holomorphic
self-map of C/Ω which is necessarily linear, t 7→ at + b. It follows easily that the normalized Lebesgue
measure on C/Ω pushes forward to a canonical smooth probability measure λ on C which is invariant
under every non-constant self-map. The derivative a of the linear map on C/Ω will be called the

2Proof Outline: A generic line L intersects C ′ in deg(C′) distinct points, none of which is a critical value of f |C . Each
of these has deg(f |C) preimages in C. On the other hand by Bezout’s Theorem, the curve f−1(L) of degree d(f) will
intersect C in d(f) deg(C) points, counted with multiplicity. In fact, for generic L, each of these intersections will be
transverse, and it follows that d(f) deg(C) = d(f |C) deg(C′), as required.
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multiplier of f on C. Note that the product a Ω is a sublattice of finite index in Ω, and that |a|2 is
equal to the index of this sublattice. Equivalently, |a|2 is the topological degree of f considered as a
map from C to itself. In particular, |a|2 is equal to the algebraic degree d of f whenever C ⊂ P

2 is
invariant under the rational map f . Since we always assume that d ≥ 2, it follows that this canonical
measure λ is ergodic.

In the case of an elliptic curve defined by equations with real coefficients, the real curve

CR = C ∩ P
2(R)

has at most two connected components. In the case where there are two components, if CR is mapped
into itself by a rational map f of P2(R), then at least one of the two components, say C0

R
, must map

onto itself under f (or at least under f ◦ f). In this case we have a uniformizing map R/Z → C0
R
, such

that f (or f ◦ f) corresponds to a map on R/Z which is linear with constant integer multiplier. Such
an invariant component C0

R
has a canonical invariant probability measure.

The Transverse Lyapunov Exponent. Let C be a smooth curve, invariant under the rational
map f . We will describe an associated real number which is conjectured to be negative if and only if C
is a measure theoretic attractor. To fix ideas we will concentrate on the complex case, but constructions
in the real case are completely analogous. The notation TP2|C will be used for the complex 2-plane
bundle of vectors tangent to P2(C) at points of the submanifold C, and the abbreviated notation T C
will be used for the “transverse” complex line bundle over C having the quotient vector space

T (C, p) = T (P2, p)/T (C, p)

as typical fiber. In other words, there is a short exact sequence 0 → TC → TP2|C → T C → 0
of complex vector bundles over C . It is sometimes convenient to refer to T C as the “normal bundle”
of C , although that designation isn’t strictly correct. If f : P2 → P2 with f(C) ⊂ C , then f induces
linear maps

f ′(p) : T (C, p) → T (C, f(p)) , (2)

and these linear maps collectively form a fiberwise linear self-map f ′ : T C → T C .
Now choose a metric on this complex normal bundle. That is, choose a norm ‖~v ‖ on each quo-

tient vector space T C which depends continuously on ~v, vanishes only on zero vectors, and satisfies
‖t~v‖ = |t| ‖~v‖ . Then the linear map f ′ of (2) has an operator norm

‖f ′(p)‖ = ‖f ′~v ‖ /‖~v‖ (3)

which is well defined and satisfies the chain rule. Here ~v can be any non-zero vector in the fiber T (C, p)
over p. By definition, the transverse Lyapunov exponent along the invariant curve C is equal to the rate
of exponential growth

Lyap C = lim
k→∞

(1/k) log ‖(f◦k)′ (p)‖

for almost every choice of initial point p ∈ C. By the Birkhoff Ergodic Theorem, this coincides with
the average value

Lyap C(f) =

∫

C
log ‖f ′(p)‖ dλ(p) .

Using the fact that the measure λ is invariant under f , it is not hard to check directly that this
average value is independent of the choice of metric.
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Thus a negative value of Lyap C means that under iteration of f almost any point which is
“infinitesimally close” to C will converge towards C. A key role in this case is played by the sta-
ble sets of the various points p ∈ C . By definition, the stable set of p is the union of all connected
sets containing p for which the diameter of the n-th forward image tends to zero as n → ∞ .
Many such stable sets are smooth curves. With a little imagination, some of these are clearly visible
in Figs. 3 through 11. It is natural to expect that negative values of Lyap C will imply that C is
a measure-theoretic attractor. (A sketch of a proof is given in [Alexander et al., 1992]; and a very
special case will be proved in Theorem 6.2 below.) On the other hand, if Lyap C > 0 then almost any
“infinitesimally close” point will be pushed away from C. It seems natural to conjecture that positive
values of Lyap C should imply that the attracting basin of C has measure zero. However, this seems
like a difficult question. (Compare Remark 6.7.)

The term blowout bifurcation has been introduced in [Ott & Sommerer, 1994] for a transition in
which a transverse Lyapunov exponent crosses through zero. (Compare [Maistrenko et al.,1998] or
[Ashwin et al., 1998].)

3 Maps with First Integral.

By definition, a first integral for a dynamical system is a non-constant function which is constant on
each orbit. In particular, by a first integral for a rational map f : P

2
rIf → P

2 we will mean a rational
function η : P

2
rIη → P

1 , with values in the projective line, which satisfies

η
(
f(x : y : z)

)
= η(x : y : z) (4)

whenever both sides are defined. Identifying P1 with the Riemann sphere Ĉ = C ∪ {∞}, we will write

η(x : y : z) = Φ(x, y, z)/Ψ(x, y, z) ∈ Ĉ ,

where Φ and Ψ are homogeneous polynomials of the same degree without common factor. It follows
that P

2 has a somewhat singular “foliation” by algebraic curves of the form

α Φ(x, y, z) + β Ψ(x, y, z) = 0 , (5)

which intersect only in the finite set Iη consisting of common zeros of Φ and Ψ, and such that each of
these curves is weakly invariant under f as defined in §2. (A point can be contained in two such curves
only if it is either periodic, or a point of indeterminacy for f .) Such maps are exceedingly special. For
example we have the following.

LEMMA 3.1. Some Maps with First Integral. Let f be a rational map with first integral,
such that a generic point of P2 is contained in an elliptic curve which is mapped to itself with
degree d ≥ 2. Then:

• There are no dense orbits, since every orbit is contained in a weakly invariant curve.

• Periodic points, repelling along this curve, are everywhere dense. Hence the Fatou set, that
is the union of open sets on which the iterates of f form a normal family, is empty.

• For most values of n there are infinitely many fixed points of f ◦n, with at least one in each
weakly invariant curve. Hence there must be an entire algebraic curve of such points.

• The indeterminacy set If is necessarily non-empty.
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The last statement follows since there are infinitely many points of fixed period n, or since a generic
point has d preimages in the invariant curve which passes through it, but also just d (rather than d2)
preimages in all of P

2. The other statements are easily verified.

Here is a class of examples which generalize a construction due to A. Desboves [1886]. For any
smooth cubic curve C ⊂ P2, there is a canonical map f : C → C called the tangent process, constructed
as follows. For any point p ∈ C, let Lp ⊂ P

2 be the unique line which is tangent to C at p. Then the
image f(p) is defined by the equation

Lp ∩ C = {p} ∪ {f(p)} .

In fact if we choose the parametrization υ : C/Ω → C of §2 correctly, then three points tj of C/Ω will
correspond to collinear points of C if and only if t1 + t2 + t3 = 0. In our case, since there is a double
intersection at p, we obtain the equation 2t1 + t3 = 0 or t1 7→ t3 = −2t1. Thus f has multiplier −2 and
degree 4.

Now start with two distinct cubic curves in P2, described by homogeneous equations Φ(x, y, z) = 0
and Ψ(x, y, z) = 0 . Then there is an entire one-parameter family of such curves (Eq. (5)) filling out
the projective plane. In fact, any point of P2 which is not a common zero of Φ and Ψ belongs to a
unique curve

Φ/Ψ = constant = − β/α ∈ Ĉ .

If a generic curve in our one parameter family is smooth, then a generic point p ∈ P
2 belongs to a

unique smooth curve Cp in the family. Applying the tangent process at p, we obtain a well defined
image point f(p) ∈ Cp. Since p is generic, this extends to a uniquely defined rational map of P2 which
carries each curve of our family into itself.

Let us specialize to the classical example, with Φ(x, y, z) = x3 +y3 +z3 and Ψ(x, y, z) = 3xyz , as
studied by Desboves (where the factor 3 is inserted for later convenience). The corresponding foliation
of the real projective plane P2(R) by the curves of Eq. (5) is illustrated in Fig. 1. This foliation has
three kinds of singularities, all represented in the figure. There are:

(a) Three singularities where two of the three coordinates x, y, z are zero. These all lie in the real
plane P2(R) ⊂ P2(C).

(b) Three singularities in the real plane (or nine in the complex plane) where all of these curves
intersect. Each of these lies along just one of the three coordinate axes.

(c) One real singularity (or nine complex singularities) where x3 = y3 = z3, represented by the
center in the upper right of Fig.1.

According to Desboves, the tangent processes for these various curves Φ/Ψ = k fit together to
yield a well defined rational map f0 : P2rI → P2 which is given by the formula

f0(x : y : z) =
(
x(y3 − z3) : y(z3 − x3) : z(x3 − y3)

)
. (6)

The indeterminacy set I = I(f0) for this classical Desboves map consists of the twelve points of type
(a) and (c), as listed above. This particular example has the advantage (as compared with a generic
choice for Φ and Ψ) that most of the curves in our one parameter family are non-singular, and contain
no points of indeterminacy. The only exceptions are the curves Φ = kΨ with k3 = 1, which are singular
at points of indeterminacy of type (c), and the degenerate case Ψ = 0 (corresponding to k = ∞ ∈ Ĉ)
with singular indeterminacy points of type (a). The foliation singularities of type (b), where all of the
curves intersect, are all fixed points at which the value f0(p) = p is well defined.

For further examples of rational maps of P2 with first integral, see Example 5.8 and Remark 6.8.
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Fig. 1: “Foliation” of the real projective plane by the family of elliptic curves Φ/Ψ = k ∈ Ĉ ,
where Φ = x3 + y3 + z3 and Ψ = 3xyz . Here P

2(R) is represented as a unit 2-sphere with
antipodal points identified. These real curves intersect only at their three common inflection
points, which look dark in the figure. In the limiting case as k → ∞ , the curve Φ = kΨ

degenerates to the union xyz = 0 of the three coordinate lines, which intersect at the points
(−1, 0, 0) , (0, 1, 0) and (0, 0, 1) respectively near the left, top, and center of the figure.

4 The Desboves Family.

Let Φ(x, y, z) be the homogeneous polynomial x3 +y3 + z3. The Fermat curve F is defined as the locus
of zeros Φ(x, y, z) = 0 in the projective plane P

2. (Here we can work either over the real numbers or
over the complex numbers.) Most of the examples in §5 will belong to a family of 4th-degree rational
maps of P

2 which carry this Fermat curve into itself, as introduced in [Bonifant & Dabija, 2002, §6.3].
We will call these Desboves maps, since they arise from a simple perturbation of the classical Desboves
map f0 of Eq. (6). Evidently f0 lifts to a homogeneous polynomial map

F0(x, y, z) =
(
x(y3 − z3) , y(z3 − x3) , z(x3 − y3)

)

from C3 to itself. Geometrically, f0 is defined by the property that the line from p to f0(p) is
tangent to the elliptic curve (x3 + y3 + z3)/3xyz = k which passes through the point p . Its set of
fixed points on each smooth curve in our family coincides with the intersection

x3 + y3 + z3 = 3xyz = 0 ,

and can also be identified with the set of points of inflection on any one of these curves, or as the set
of points where all of these curves intersect. This map f0 is not everywhere defined: it has a twelve
point set of points of indeterminacy as described at the end of §3. However, for any specified curve
Φk(x, y, z) = x3 + y3 + z3 − 3kxyz = 0 in our family, if we replace F0 by the sum

FL(x, y, z) = F0(x, y, z) + L(x, y, z) Φk(x, y, z)
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where L is any linear map from C
3 to itself, then we obtain a new map fL of P

2(C) which coincides
with f0 on the particular curve Φk(x, y, z) = 0 . For a generic choice of L, the resulting map fL of
P

2(C) is well defined everywhere.

To simplify the discussion, we will restrict attention to the case k = 0, taking

Φ(x, y, z) = Φ0(x, y, z) = x3 + y3 + z3 ,

and will take a linear map L which is described by a diagonal matrix, L(x, y, z) = (a x , b y , c z) .

Definition 4.1. Desboves Maps. The resulting 3-parameter family of maps of the real or complex
projective plane will be called the family of Desboves maps. These maps f = fa,b,c are given by the
formula

f(x : y : z) =
(
x(y3 − z3 + a Φ) : y(z3 − x3 + b Φ) : z(x3 − y3 + c Φ)

)
, (7)

where a, b, c are the parameters. Each such f maps the Fermat curve F , defined by the equation
Φ(x, y, z) = 0 , into itself. Furthermore, each f maps each of the coordinate lines x = 0 or y = 0 or
z = 0 into itself.

For special values of the parameters, the map f may have points of indeterminacy (but never on
the curve). However, for a generic choice of parameters f is everywhere defined. More explicitly, it is
not hard to see that f is an everywhere defined holomorphic map from P2 to itself if and only if we
avoid a union of seven hyperplanes in the space C

3 of parameters, defined by the equation

abc(a + b + c)(a + 1 − b)(b + 1 − c)(c + 1 − a) = 0 . (8)

Remark 4.2. Fixed Points. Generically, each Desboves map has 21 distinct fixed points (nine
with xyz 6= 0, nine on the Fermat curve with just one of the coordinates equal to zero, and three with
two coordinates equal to zero). However, there are two kinds of exception:

• If the product a b c (a+b+c) is zero, then one or more of the fixed points will be replaced
by an indeterminacy point.

• If one or more of the differences b − a , c − b, or a − c is equal to +1, then there is not
only an indeterminacy point but also an entire line of fixed points.

In any case, there are exactly nine fixed points on the complex Fermat curve F , forming the intersection
of F with the locus xyz = 0 . Consider for example the three points (0 : 3

√
−1 : 1) obtained by

intersecting the curve F with the invariant line x = 0. If we introduce the coordinate Y = y/z ∈ Ĉ

on this line, then the restriction of the map f to this line is a rational map given by the formula

Y 7→ Y
b Y 3 + (b + 1)

(c − 1) Y 3 + c
,

with fixed points at Y = 0, at Y = ∞, and at the three points Y 3 = −1. A brief computation shows
that the derivative of this one variable map at these five fixed points is respectively

(b + 1)/c , (c − 1)/b , and 3(c − b) − 2 , where the last is counted three times . (9)

(Something very special occurs when c = b+1. In that case, all five derivatives are +1, and in fact it is
easy to check that every point on the line x = 0 is fixed under f .) Similarly, permuting the coordinates
cyclically, we obtain corresponding formulas for the invariant lines y = 0 and z = 0 .
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Remark 4.3. The Attracting Basin. According to [Bonifant & Dabija, 2002, Theorem 5.4],
if C = f(C) is any invariant elliptic curve, then the set of iterated preimages of any point of C is
everywhere dense in the Julia set J(f) (the complement of the Fatou set). It seems likely that the
following further statement is true:

Conjecture. The entire attracting basin B(C), consisting of all points whose forward orbits
converge to C, is contained in the Julia set J(f); hence the closure B(C) is precisely equal to
J(f).

An immediate consequence would be the following.

LEMMA 4.4. No Interior Points? If this conjecture is true, then for any map fa,b,c in the
Desboves family, the attracting basin B(F) has no interior points. In other words, the closure
of the complementary set P2(C)rB(F) , consisting of points which are not attracted to F , is
the entire plane P

2(C).

Proof. The conjecture asserts that points outside of the Julia set are not in the basin B = B(F), so
we need only show that every point of J can be approximated by points outside of B. Since the average
of the differences c − b , b − a , a − c is zero, it follows from (9) that the average of the transverse
derivatives at the fixed points of f in F is −2. Hence at least one of these fixed points is strictly
repelling. Suppose for example that the point (0 : −1 : 1) is repelling within the line x = 0. Then
the intersection of the basin B with this line consists only of countably many iterated preimages of
(0 : −1 : 1). Therefore there are points (0 : y : z) arbitrarily close to (0 : −1 : 1) which are not in this
basin. Since every point of J can be approximated by iterated preimages of (0 : −1 : 1), it can also be
approximated by iterated preimages of such points (0 : y : z), as required.

On the other hand, some of these fixed points on F may be attracting in the transverse direction.
For example, if |3(c − b) − 2| < 1 then each of the three fixed points where F intersects the line
x = 0 is a saddle, repelling along the Fermat curve, but attracting along this line, which intersects it
transversally. The stable manifold for such a saddle point can be identified with its immediate attracting
basin within the line x = 0. It is not hard to check that this stable manifold is contained in the Julia
set. Hence its iterated preimages must be dense in the Julia set.

The attraction within this stable manifold will be particularly strong if c − b = 2
3 , so that the

transverse derivative 3(c − b) − 2 is zero, or in other words so that the associated fixed point is
transversally superattracting. Similarly, the transverse derivative at the three points where y = 0 (or
where z = 0) is zero if and only if a − c = 2

3 (or respectively b − a = 2
3).

Definition 4.5. The Two-Thirds Family. We will say that f belongs to the two-thirds family if
two of the three differences b − a , c − b and a − c are equal to 2

3 , or equivalently if two out of
three of the fixed points on the Fermat curve are transversally superattracting. Since the average of
the three values of the transverse derivative is always −2 , if two out of three values are zero then it
follows that the remaining one is −6 (rather strongly repelling). To fix our ideas, let us suppose that

(a, b, c) = (b − 2
3 , b , b + 2

3) , (10)

so that the transverse derivative is zero when x = 0 or z = 0. The associated transverse Lyapunov
exponent, plotted as a function of b, is shown in Fig. 2. In the real case, this transverse exponent is
negative (that is attracting) if and only if |b| < 0.901 · · · , while in the complex case is is negative if and
only if b < 0.274 · · · . See Part 2 of this paper for such computations.
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Fig. 2: Graph of the transverse exponents along the real and complex Fermat curves as functions
of the middle parameter b for the “two-thirds family” of Definition 4.5, with Desboves parameters
(b − 2

3
, b , b + 2

3
) . The lower graph represents the real case, with a transverse exponent which is

strictly smaller (more attracting). In both cases the function is even, with a sharp minimum at
b = ±1/9. The box encloses the region −1 ≤ b ≤ 1 with −2.1 ≤ LyapF ≤ 1.

Remark 4.6. Symmetries. We conclude this section with some more technical remarks. If we
permute the three parameters (a, b, c) cyclically, then clearly we obtain a new map fb,c,a which is
holomorphically conjugate to fa,b,c. We can generalize this construction very slightly by allowing odd
permutations also, but changing signs. If S3 is the symmetric group consisting of all permutations
i 7→ σi of the three symbols {1, 2, 3}, then S3 acts as a group of rotations of R

3 or C
3 as follows. For

each σ ∈ S3, consider the sign-corrected permutation of coordinates

σ̂(z1 , z2 , z3) = sgn(σ)
(
zσ1

, zσ2
, zσ3

)
. (11)

Then a brief computation shows that the homogeneous map Fa,b,c of R3 or C3 is linearly conjugate to
the map

Fbσ(a,b,c) = σ̂ ◦ Fa,b,c ◦ σ̂−1 .

It follows that the associated map fa,b,c of the projective plane is holomorphically conjugate to the map
fbσ(a,b,c). One can check that these are the only holomorphic conjugacies between Desboves maps (for
example, by making use of the eigenvalues of the first derivative of f at the 21 fixed points).

In the complex case, note also that each Desboves map f commutes with a finite group
G ∼= Z/3 × Z/3 of symmetries of the projective plane. In fact f ◦ g = g ◦ f for each g in the
group G consisting of all automorphisms

g(x : y : z) = (αx : βy : z) with α3 = β3 = 1 . (12)

Remark 4.7. A Closely Related Map. It is sometimes convenient to eliminate these last
symmetries by passing to the quotient space P2/G which is isomorphic to P2 itself, but with coordinates
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(x3 : y3 : z3). If we introduce variables ξ = x3 , η = y3 , and ζ = z3 , and set φ = ξ + η + ζ , then
the map (x : y : z) 7→ (ξ : η : ζ) transforms the Fermat curve F to a line φ = 0 . Under this
transformation, the Desboves map (7) is semiconjugate to a different rational map

(ξ : η : ζ) 7→
(
ξ(η − ζ + aφ)3 : η(ζ − ξ + bφ)3 : ζ(ξ − η + cφ)3)

)
,

also of degree four. Evidently this new map carries the line φ = 0 into itself by a Lattès map, that is
the image of a rigid torus map under a holomorphic semiconjugacy. (Compare [Milnor, 2006a].)

5 Empirical Examples.

This section will provide empirical discussions of six examples from the Desboves family of degree four
maps, as described in §4, plus two examples of lower degree maps. Four of the six examples from the
Desboves family, belong to the “two-thirds” subfamily of Definition 4.5.

Note on Pictorial Conventions. Each of the color pictures which follow shows the real projective
plane, represented as a unit 2-sphere with antipodal points identified, oriented as in Fig. 1. Thus the
x-axis, pointing towards the right, and the y-axis, pointing almost vertically, are close to the plane of
the paper, while the z-axis points up out of the paper. (Because of this choice of orientation, we will
sometimes refer to the coordinate point (0 : 1 : 0) near the top of the picture as the north pole.) The
Fermat curve x3 + y3 + z3 = 0 is traced out in white. In Figs. 3 and 4, other points are colored from
red to blue according as their orbits converge more rapidly or more slowly towards this Fermat curve,
and subsequent figures use various modifications of this scheme. As an example, in Fig. 3 the equator
y = 0 shows up as a blue circle, since orbits in the invariant line y = 0 cannot converge to F , hence
orbits near this line cannot converge rapidly towards F .

The graphs to the right of Figs. 3, 4, 5, 6, 8, 9 illustrate some more or less typical randomly chosen
orbit for the associated complex map. Here each orbit point (x : y : z) has been normalized so that
|x|2 + |y|2 + |z|2 = 1 . The horizontal coordinate measures the number of iterations, while the vertical
coordinates in each of the four stacked graphs represent respectively |x|2 , |y|2 , |z|2 , and |Φ(x, y, z)| .

Example 5.1. The Fermat Curve as a Global Attractor? If we choose Desboves parameters
(b − 2

3 , b , b + 2
3) with |b| small, then the transverse Lyapunov exponent is negative in both the real

and complex cases. Numerical computation suggests that nearly all orbits actually converge to the
Fermat curve. (Perhaps even all but a set of measure zero?) As an example, consider the case
(a, b, c) = (−2

3 , 0 , 2
3). Using the Gnu multiple precision arithmetic package, and starting with several

thousand randomly chosen points on the real or complex projective plane, one can check that all orbits
land on the curve, to the specified accuracy, within a few hundred iterations. Of course, even if we
could work with infinite precision arithmetic, such a computation could not prove that a given orbit
converges to the curve, and also could not rule out the possibility of other attractors with extremely
small basins. In fact it seems possible that periodic attractors with high period and small basin exist
for a dense open set of parameter values. This case b = 0 is rather special in one way, since the map
f−2/3 , 0 , 2/3 has points of indeterminacy; namely those points where (x3 : y3 : z3) is equal to either
(1 : 7 : 1) or (0 : 1 : 0). However, the behavior for small non-zero values of b seems qualitatively similar.

Example 5.2. An Even Stronger Attractor. The case b = ± 1
9 yields a even more strongly

attracting Fermat curve, as illustrated in Fig. 3. The transverse derivative has a simple zero at the
point (−1, 1, 0)/

√
2 to the upper left of the figure, and a double zero at the point (0,−1, 1)/

√
2 near
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|x|2

|y|2

|z|2

0 200

|Φ|

Fig. 3: (Example 5.2.) On the left: dynamics on the real projective plane for the Desboves map in
the two-thirds family with parameters (a, b, c) = (− 5

9
, 1

9
, 7

9
) . The sphere is oriented as in Fig. 1.

On the right: plot of |x|2 , |y|2 , |z|2 and |Φ| as functions of the number of iterations for a
typical randomly chosen complex orbit. Here each orbit point (x : y : z) has been normalized so
that |x|2 + |y|2 + |z|2 = 1 . In this run, it took 23 iterations to come close enough to the Fermat
curve so that |Φ| appears to be zero on the graph.

|x|2

|y|2

|z|2

0 200

|Φ|

Fig. 4: (See Example 5.3.) For the map with Desboves parameters ( 1

3
, 0 , − 1

3
), the Fermat curve

again seems to attract all or nearly all orbits in both the real and complex cases.
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|x|2

|y|2

|z|2

0 8000

|Φ|

Fig. 5: (Example 5.4.) Dynamics for the parameters (− 1

5
, 7

15
, 17

15
). Left: In the real case there

are two attractors. The basin of the Fermat curve is colored as in Figs. 3, 4. However, the
two small white circles also form an attractor. The corresponding basin is shown in dark grey.
Right: A typical randomly chosen orbit for the complex map. This orbit often comes very close
to the Fermat curve during the first 4000 iterations, but then seems to converge to a cycle of two
Herman rings.

|x|2

|y|2

|z|2

0 200

|Φ|

Fig. 6: (Example 5.5 .) Plots for the map with Desboves parameters (−1.4 , −.8 , 1.4) . Here the
coloring is as in the previous figures except that it describes convergence to the “equator” y = 0,
rather than to the invariant Fermat curve. For this map, the “north pole” (0 : 1 : 0) also attracts
many orbits.
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the bottom. A numerical search suggests that this is the most attracting example within the real or
complex Desboves family, in the sense that the transverse exponent takes its most negative value of
−2.0404 . . . for the real map or −0.6801 . . . for the complex map. Certainly these are the extreme
values for real parameters within the two-thirds family, as graphed in Fig. 2.

Example 5.3. Another Global Attractor? If we take Desboves coordinates ( 1
3 , 0 , −1

3), then
again the Fermat curve seems to attract nearly all orbits. Compare Fig. 4. Here the transverse
derivative has a double zero at the fixed point (−1 : 0 : 1) in the middle of the large red region. It is
a curious fact that the transverse exponents in this case are precisely the same as those for Example
5.1, namely −1.456 · · · for the real map, or −.549 . . . for the complex map.

Example 5.4. A Cycle of Herman Rings? Now suppose that we choose Desboves parameters
in the two-thirds family, with (a, b, c) equal to (− 1

5 , 7
15 , 17

15). Here the transverse exponent is −.509 · · ·
for the real map, but +.402 · · · for the complex map. Thus we can expect the Fermat curve to be an
attractor in the real case, but not in the complex case. The left half of Fig. 5 illustrates the dynamics
in the real case. Numerical computation suggests that some 83% of the orbits converge to the Fermat
curve, while the remaining 17% converge to a pair of small circle. The attractive basin for this pair
of circles is conjecturally a dense open subset of P

2(R). The map f = fa,b,c carries each of these
circles to the other, reversing orientation, while f ◦ f carries each circle to itself with rotation number
±0.18587 · · · . Of course such a phenomenon can be expected to be highly sensitive to small changes in
the parameters—We cannot really distinguish between a rotation circle with irrational rotation number
and one with a rational rotation number which has very large denominator (although the later would
necessarily contain a periodic orbit).

In the complex case, the Fermat curve is no longer an attractor. In fact, almost all orbits seem to
eventually land near this cycle of circles and then to behave just like an orbit on a pair of nearby circles
with the same rotation number. This suggests that most orbits converge to a cycle of two Herman rings
in P2(C), with the pair of real circles as their central circles. (For a more detailed discussion of Herman
rings in P

2(C), see §8.) Again we must be cautious, since such a phenomenon must be highly sensitive
to perturbations; but the empirical evidence certainly suggests the existence of a cycle of two Fatou
components which could only be the immediate basins for attracting Herman rings.3 (The convergence
is very slow, and there may be other much more chaotic attractors.) These attracting circles persist
under small perturbation of the parameters. (Compare Theorem 8.9.) A plot of the rotation number
for these circles as a function of the parameter c, keeping a and b fixed, is shown in Fig. 7. It seems
empirically that Herman rings also persist under perturbation, but we have been unable to justify this
statement theoretically.

Example 5.5. The Line z = 0 as a Measure Theoretic Attractor? (Compare Fig. 6.)
For the parameter values (a, b, c) = (−1.4 , −.8 , 1.4), the Lyapunov exponent turns out to be strictly
positive, equal to 0.247 · · · in the real case, or to 0.352 · · · in the complex case. The invariant Fermat
curve does not seem to play any significant dynamical role in this case. On the other hand, the equator
y = 0 seems to be at least a measure-theoretic attractor; and there is also an attracting fixed point at
the north pole (0 : 1 : 0). In fact many randomly chosen real or complex orbits converge to the north
pole (0 : 1 : 0), but even more seem to converge to the equator.

3For the description of possible Fatou components in P
2, compare [Fornaæss & Sibony, 1995], [Ueda, 1994].
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1.12 1.13 1.14

.17

.18

.19

.20

Fig. 7: An empirical plot of the rotation number for the pair of attracting circles in P2(R) as a
function of the parameter c in Example 5.4, keeping a and b fixed. Presumably for each rational
value for the rotation number there corresponds an entire plateau of c values for which the pair
of circles contains an attracting periodic orbit. Only the plateaus of height 1

5
and 1

6
are visible

in this figure; but with higher resolution, tiny blips at height 3

16
and 2

11
would also be visible. As

c decreases past 1.12 the attracting circles shrink to points; while as c increases past 1.144 they
expand until they break up upon hitting the boundary of their attracting basin. It is conjectured
that whenever the rotation number is Diophantine, the corresponding pair of circles in P

2(R) are
contained in a pair of Herman rings in P

2(C).

Example 5.6. A Composite “Almost” Attractor. For the real or complex map with Desboves
parameters ( 1

3 , 1 , 5
3) as illustrated in Fig. 8, typical orbits seem to spend a great deal of time quite

close to the Fermat curve F , even though the transverse exponent is strictly positive, equal to 0.081 · · ·
in the real case or to 1.032 · · · in the complex case. This curve is not an attractor by itself, since
nearby orbits eventually get kicked away from it. However, the union

A = {x = 0} ∪ {y = 0} ∪ {z = 0} ∪ F , (13)

or in other words the variety x y z Φ(x, y, z) = 0 , does seem to behave like an attractor, at least in
a statistical sense. (Compare [Gorodetski & Ilyashenko, 1996].) Typical orbits seem to spend most of
the time extremely close to this variety. However, they do not stay in any one of its four irreducible
components, but sometimes jump from one component to another. Furthermore, it seems likely that
typical orbits will escape completely from a neighborhood of this variety, very infrequently but infinitely
often.

Here is a more detailed description, as illustrated in Fig. 12. To fix ideas, we will refer to the
real case; but the complex case is not essentially different. A randomly chosen orbit seems to spend
most of the time either wandering chaotically very close to the Fermat curve or else almost stationary,
very close to one of the four saddle fixed points (the black dots in Fig. 12). However, such an orbit
does not seem to stay close to any one of the four components of this variety forever. For example,
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|x|2

|y|2

|z|2

0 10000

|Φ|

Fig. 8: (Example 5.6.) On the left: Corresponding figure for the real Desboves map with
parameters ( 1

3
, 1 , 5

3
), again describing convergence to (or at least coming close to) the Fermat

curve. On the right: One randomly chosen orbit for the complex map through 10000 iterations.

|x|2

|y|2

|z|2

0 400

|Φ|

Fig. 9: (Example 6.5.) Plots for the “elementary map” with parameters (a, b, c) = (−1 , 1

3
, 1). In

this case, every great circle through the north pole (0 : 1 : 0) maps to a great circle through the
north pole. There are three attractors: the Fermat curve F , the equator {y = 0} , and the north
pole, each marked in white. The corresponding attracting basins are colored red, blue, and grey
respectively. (However, the closely intermingled blue and red yield a purple effect.) The graphs
on the right show an orbit which nearly converges to {y = 0} but then escapes towards F .



18 Elliptic Curves as Attractors in P
2, Part I

Fig. 10: (Example 7.1.) The Cassini quartic with parameter k = 1

8
, shown in black, consists of

an outer circle C0

R
with two self-intersections and a much smaller inner circle C1

R
. Here the warmer

colors describe convergence towards C0

R
for the rational map f1 with parameter a = 1. The blue

region is the basin of a superattracting fixed point at (0 : 0 : 1), while the grey region is the basin
of another attracting fixed point directly above it at (0 : 1 : 2).

Fig. 11: Corresponding picture for the same Cassini curve with k = 1

8
, but using the map with

parameter a = 2

5
.
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Fermat curve

y=0

x=0

z=0

Fig. 12: Schematic diagram illustrating Example 5.6.

it is likely to escape from the neighborhood of the Fermat curve F when it comes very close to the
strongly repelling point F ∩ {y = 0} which is circled in Fig. 12. It will then shadow the coordinate
line y = 0 , jumping quickly to a small neighborhood of the saddle point x = y = 0 , and then slowly
coming closer to this point for thousands of iterates. Again it must eventually escape, now shadowing
the line x = 0 and jumping quickly either towards the saddle point F ∩ {x = 0} or towards the
saddle point x = z = 0 . In either case it again spends a long time approaching this saddle point, but
then escapes. In the first case, it is now very close to the Fermat curve and shadows it for a long time
with a highly chaotic orbit before starting the cycle again. In the second case where it escapes near
the saddle point x = z = 0 , it then shadows the line z = 0 as it quickly converges towards the saddle
point F ∩ {z = 0} , where it again remains for a long time before repeating the cycle.

Remark 5.7. The Concept of Attractor. Such examples have led authors such as [Gorodetski &
Ilyashenko, 1996] and [Ashwin et al., 1998] to suggest modified definitions of attractor, emphasizing not
the omega-limit set of a typical orbit, but rather its asymptotic probability distribution. To illustrate
the effect of such a change, think of a dynamical system in the plane in which orbits spiral out towards
a limit cycle Γ which consists of a homoclinic loop, begining and ending at a fixed point p. Then the
unique “measure theoretic attracting set” for the region inside the loop is the entire loop Γ. No orbit
starting inside actually converges to the point p. However, every orbit starting inside the loop spends
most of its time apparently converging to p, with a statistically insignificant (but infinite) collection
of exceptional times. Thus, from the point of view of Gorodetski and Ilyashenko or of Ashwin, Aston
and Nicol, the “attractor” is the single point p.

Example 5.8. A Family of Degree Three Maps. In the case of a map of degree three (or
indeed for any degree which is not a perfect square), the multiplier on an invariant elliptic curve cannot
be a real number. Hence we cannot describe both the map and the invariant curve by equations with
real coefficients—we can only consider the complex case.
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|x|2

|y|2

|z|2

0 200

|Φ|

Fig. 13: A plot of 200 iterations with a random start for the degree three map of Example 5.8,
taking parameters (a, b, c) = (0, γ,−1)/2,

Here is one explicit family of degree three maps which send the Fermat curve F into itself. As in
§4, we start with a rather degenerate self-map of P

2. Let

H0(x, y, z) =
(
kxyz , y3 − γz3 , z3 − γy3

)

where γ is the cube root of unity (−1 + i
√

3)/2 and where k3 = 3(γ2 − γ). (For example k = γ2 − 1
or k = i

√
3.) Then the associated map

h0(x : y : z) =
(
kxyz : y3 − γz3 : z3 − γy3

)

of projective space has a first integral Φ/Ψ, where Φ(x, y, z) = x3 + y3 + z3 and Ψ(x, y, z) = x3. In fact
a brief computation shows that

Φ(H0(x, y, z))

Φ(x, y, z)
=

Ψ(H0(x, y, z))

Ψ(x, y, z)
= 3 y3z3 ,

and it follows immediately that the rational function Φ/Ψ is invariant under h0. In particular, the
Fermat curve, defined by Φ = 0, is h0-invariant. (However, in contrast to the Desboves case of §4, the
various elliptic curves Φ/Ψ = constant ∈ Cr{1} are all mutually isomorphic. A similar example will
be described in Remark 6.8.) This map h0 has just one point of indeterminacy, namely (1 : 0 : 0),
which is not on F .

Like all maps of P2 with first integral, h0 is not very interesting as a dynamical system, but it
does embed in a family of more interesting maps. Consider the 3-parameter family of homogeneous
polynomials

H = Ha,b,c = H0 + (a, b, c) Φ .

Each of the associated maps ha,b,c of the projective plane carries the Fermat curve F to itself with
degree three and multiplier γk. There is only one fixed point of ha,b,c on F , namely (0 : −1 : 1).



Araceli Bonifant, Marius Dabija, John Milnor 21

First consider the 1-parameter subfamily of maps satisfying the conditions that a = b + γc = 0,
with x = 0 as invariant line. (The use of these special parameters simplifies the computation of the
transverse Lyapunov exponent.) When b = γ/2, the transverse Lyapunov exponent takes its most
negative value of -1.647918. Thus F appears to be more strongly attracting under this map than under
any of the complex Desboves maps, where the most negative transverse exponent was −0.6801 · · · .
(See Example 5.2. Such computations will be explained in Part 2 of this paper.) In Fig. 13, we
show the extraordinary attracting properties of the Fermat curve for this map. Most randomly chosen
points seemed to hit the Fermat curve, up to the resolution of the graph, after only 6 or so iterations.
(Compare with the right hand sides of Figs.: 3, 4 and 9.)

It is also interesting to consider the subfamily consisting of maps ha, 0, 0 with b = c = 0. These are
elementary maps , as described in Example 6.1. For this particular elementary family, it appears that
the transverse exponent is always non-negative, so that the Fermat curve is never an attractor.

Example 5.9. The Degree Two Case. According to [Bonifant & Dabija, 2002, Proposition
6.6], up to holomorphic conjugacy, there are exactly 20 distinct examples of holomorphic self-maps of
P2(C) of algebraic degree two with an invariant smooth elliptic curve. See Example 6.9 of their paper
for a detailed study of one of these degree two maps. This example, with multiplier equal to i

√
2, has

five attracting cycles, with common basin boundary equal to the Julia set. Four of these are attracting
fixed points, and the fifth is an attracting period 2 orbit. Empirically, randomly chosen orbits for this
example always seem to converge to one of these five cycles.

6 Intermingled Basins

Example 6.1. Elementary Maps. Finally we come to examples where we can provide complete
proofs. Following [Bonifant & Dabija, 2002, p. 16], a rational map of P2 is called elementary , with
center p0, if every line through p0 maps to a line through p0. Elementary maps are easier to analyze
than more general rational maps since we can separate the variables to simplify the discussion.

In particular, consider a Desboves map f = fa, b, c as in formula (7) of §4, where the parameters
a, b, c satisfy a = −1 and c = 1. Then the image f(x : y : z) = (x′ : y′ : z′) satisfies

x′ = x(−x3 − 2z3) and z′ = z(2x3 + z3) .

It follows that each line (x : z) = constant through the coordinate point p0 = (0 : 1 : 0) maps
to another line (x′ : z′) = constant′ through p0. If we set X = x/z and X ′ = x′/z′ , then the
correspondence

f̂ : X 7→ X ′ = −X
X3 + 2

2X3 + 1
(14)

does not depend on the choice of parameter. This rational map (14) is described as a Lattès map, since
it is the image of a rigid map on the torus F ∼= C/Ω under the semiconjugacy (x : y : z) 7→ (x : z) of
degree three. (In fact f̂ is conformally conjugate to the Lattès map described in Remark 4.7.) It has
an ergodic invariant measure which is smooth except at its critical values, the cube roots of −1. Over
the real numbers, f̂ is a covering map from the circle P1(R) to itself with topological degree −2 .

Over either the real or complex numbers, if we think of P2r{p0} as a (real or complex) line-bundle
over the projective line P1 with projection π : (x : y : z) 7→ (x : z) , then we have the commutative
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Fig. 14: On the left: Plot of the transverse Lyapunov exponent along the Fermat curve as a
function of the parameter b for the elementary family of Example 6.1, with Desboves parameters
(−1 , b , 1) . On the right: Corresponding plot for the transverse exponent along the line y = 0 .
In both cases, the graph for the complex map lies above the graph for the real map.

diagram

P
2
r{p0} f→ P

2
r{p0}

π ↓ π ↓
P

1
bf→ P

1

(15)

where f carries each fiber into a fiber by a polynomial map, with coefficients which vary with the
fiber. As an example, for the two invariant fibers x = 0 and z = 0 we get the maps

(0 : y : 1) 7→ (0 : by4 + (1 + b)y : 1) and (−1 : y : 0) 7→ (−1 : by4 + (1 − b)y : 0)

respectively. If we exclude the degenerate case b = 0 (compare Remark 6.8), then these polynomial
maps all have degree four. Furthermore, the center point p0 = (0 : 1 : 0) is superattracting, and
serves as the point at infinity for each one. In the real case, these polynomial maps are all unimodal,
while in the complex case they all have 120◦ rotational symmetry.

Since the rational map f̂ of the base space has no attracting cycles, it follows that an elementary
map with invariant elliptic curve can have no attracting cycles other than its center point.

In this special case of an elementary map, we can give a relatively easy proof that a negative trans-
verse exponent for any invariant elliptic curve implies that this curve is a measure-theoretic attractor.
(The most attracting Desboves example, with b = 1

3 , is illustrated in Fig. 9.) However, in the case of
an elementary Desboves map f we get a surprising bonus. The invariant line {y = 0} is also carried
into itself by the Lattès map of Eq. (14). Hence it also has a canonical ergodic invariant measure, and
a well defined transverse Lyapunov exponent. According to Fig. 14, for real values of b both of these
transverse exponents are strictly negative provided that |b| is fairly small and non-zero.

THEOREM 6.2. Basins of Positive Measure. Let f be a real or complex elementary
map with an invariant elliptic curve C. If the transverse Lyapunov exponent Lyap C is strictly
negative, then the attracting basin B(C) , consisting of points whose orbit converges to C , has
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strictly positive measure. In fact any neighborhood of a point of C intersects B(C) in a
set of positive measure. Similarly, if such an f has an invariant line L with strictly negative
transverse exponent, then the attracting basin for this line has positive measure, and intersects
any neighborhood of a point of this line in a set of positive measure.

In the complex case we can give a much more precise picture. As usual, define the Fatou set to
be the largest open set on which the sequence of iterates of f forms a normal family, and define the
Julia set J to be its complement in P

2(C) . If p is any point of an invariant elliptic curve, then
according to Bonifant and Dabija [2002, Theorem 5.4 and Proposition 6.16] the iterated preimages of
p are everywhere dense in the Julia set; and furthermore:

PROPOSITION 6.3. The Fatou Set is a Dense Open Basin. If f is a complex
elementary map with smooth invariant elliptic curve, and if the center p0 is not a point of
indeterminacy, then p0 is a superattracting fixed point whose basin coincides with the Fatou
set. This basin is connected and everywhere dense in P

2. Furthermore, if U is a small
neighborhood of a point of the Julia set, then the union of the forward images of U is the
entire space P2r{p0} .

In particular, it follows that the attracting basin for the the elliptic curve has no interior points.
Similarly, if there is an invariant line L disjoint from the center p0, then the attracting basin of L
cannot have any interior point. It also follows that f is topologically transitive on the Julia set. This
means that the orbit of a “generic” point of the Julia set J is everywhere dense in J . Such a generic
point of J cannot belong to any of the attracting basins B(C) , B(L), or B(p0).

COROLLARY 6.4. Intermingled Basins. If a complex elementary map has both an in-
variant line L which does not pass through its center, and an invariant elliptic curve C, then
the two topological closures B(C) and B(L) are both precisely equal to the Julia set. Further-
more, if the transverse Lyapunov exponent for C (or for L) is negative, then every neighborhood
U of a point of the Julia set intersects B(C) (or respectively B(L) ) in a set of positive Lebesgue
measure.

Remark 6.5. Three Basins. In the case where the transverse exponents LyapC(f) and
LyapL(f) are both negative, it follows that the basins for these two attractors are intimately in-
termingled. For the real Desboves map illustrated in Fig. 9, a very rough estimate suggests that about
66% of the points in P2 are attracted to the center (0 : 1 : 0) , about 17% to the line {y = 0} , and
about 17% to the Fermat curve. For the associated complex mapping, the figures are 81%, 13%, and
6%. (However, the computation is highly sensitive, and these estimates may well be quite inaccurate.)
It may be conjectured that every point outside of a set of measure zero lies in the union of these three
attracting basins.

Remark 6.6. Terminology. Such exotic behavior has been studied extensively, particularly in
the applied dynamics literature. The term “riddled basin” was introduced in [Alexander et al., 1992]
to indicate an attracting basin whose complement intersects every disk in a set of positive measure.
They define two basins to be intermingled if every disk which intersects one basin in a set of positive
measure also intersects the other basin in a set of positive measure. For a particularly clear example,
see [Kan, 1994]. Such examples of intermingled basins seem to be known only in cases where the
attractors themselves are quite smooth—We don’t know whether there can be two fractal attractors
whose basins have the same closure.
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Proof of Theorem 6.2. Without loss of generality, we may assume that the center of the real
or complex elementary map is (0 : 1 : 0). Furthermore, an invariant line with negative transverse
exponent certainly cannot pass through this center; so if there is such a line L, we may assume that it
is the line {y = 0}, as in Fig. 9. (Since we assume that there is an invariant elliptic curve C, it follows
that any invariant line not passing through the center is mapped to itself by a Lattès map, with an
absolutely continuous invariant measure so that the transverse exponent is well defined.) Each fiber
(x : z) = constant of the fibration π(x : y : z) = (x : z) has a canonical flat metric

|dy|/
√
|dx|2 + |dz|2 , (16)

which gives rise to a norm ‖~v ‖t for vectors tangent to the fiber. Let

‖f ′
t(p)‖ = ‖f ′~v ‖t/‖~v ‖t

be the norm of the partial derivative along the fiber; where ~v can be any non-zero vector tangent to
the fiber at p . (Note that any vector tangent to its fiber must map to a vector tangent to the image
fiber.) This norm is well defined, depending only on the base point p of ~v . At points of the curve C ,
we want to compare ‖~v ‖t with the semi-definite norm ‖~v ‖ which is obtained by first projecting ~v
to the quotient vector space T (P2, p)/T (C, p) and then using a positive definite norm in this quotient
space. Note that most fibers intersects the degree three curve C transversally in three distinct points.
There are only a finite number of exceptional fibers which intersect tangentially. Therefore the ratio
‖~v ‖ /‖~v ‖t ≥ 0 is a continuous function on C which vanishes only at these points of tangency.
Furthermore, the logarithm `(p) of this ratio has only logarithmic singularities, and hence is an
integrable function on C . Since the measure dλ is f -invariant, it follows that the difference

∫

C
log ‖f ′ ‖ dλ −

∫

C
log ‖f ′

t‖ dλ =

∫

C
` ◦ f dλ −

∫

C
` dλ

is zero. In other words, the average value
∫
C log ‖f ′

t‖ dλ coincides with the transverse exponent LyapC

of §2.
For any p and q belonging to the same fiber, let δ(q, p) ≥ 0 be the distance of q from p , using

the flat metric of Eq. (16) on this fiber. Then

δ(f(q), f(p)) = ‖f ′
t(p)‖ δ(q, p) + o(δ(q, p))

as δ(q, p) tends to 0 . This estimate holds uniformly throughout a neighborhood of C. Hence, given
any ε > 0 , we can choose δ0 so that

δ(f(q), f(p)) ≤
(
‖f ′

t(p)‖ + ε
)
δ(q, p) when p ∈ C and δ(q, p) < δ0 with π(p) = π(q) . (17)

Choose ε small enough so that
∫

C
log

(
‖f ′

t(p)‖ + ε
)
dλ(p) < 0 . (18)

Let p0 7→ p1 7→ · · · be the orbit of an arbitrary initial point p0 ∈ C under f . By the Birkhoff Ergodic
Theorem, the averages

1

n

(
log(‖f ′

t(p0)‖ + ε) + log(‖f ′
t(p1)‖ + ε) + · · · + log(‖f ′

t(pn−1)‖ + ε)
)
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converge to the integral of Eq. (18) for almost all p0 ∈ C . In particular, for almost all p0 it follows
that the number

log
(
‖f ′

t(p0)‖ + ε
)

+ log
(
‖f ′

t(p1)‖ + ε
)

+ · · · + log
(
‖f ′

t(pn−1)‖ + ε
)

= log
(
(‖f ′

t(p0)‖ + ε
)
· · · (‖f ′

t(pn−1)‖ + ε
))

is negative for large n. Hence the maximum

M(p0) = max
n≥0

(
(‖f ′

t(p0)‖ + ε
)
(‖f ′

t(p1)‖ + ε
)
· · · (‖f ′

t(pn−1)‖ + ε
))

≥ 1

is well defined, measurable, and finite almost everywhere. If δ(q, p0) ≤ δ0/M(p0) , then it follows from
the inequality (17) that δ

(
f◦n(q) , f◦n(p0)

)
≤ δ0 for all n , and also that this distance converges to

zero as n → ∞ . Now let S be the set of positive measure consisting of all q with δ(q, p) ≤ δ0/M(p)
for some p ∈ C with π(p) = π(q). (Here we take δ0/∞ to be 0.) Then for all q ∈ S it follows that
the orbit of q converges to C . Evidently, S intersects every neighborhood of a point of C in a set
of positive measure. The proof for the basin of the line y = 0 is completely analogous.

Remark 6.7. What about Positive Transverse Exponent? Conversely, it seems natural
to conjecture that the basin of C has measure zero whenever the transverse Lyapunov exponent is
positive. However, this cannot be proved simply by reversing the inequalities in the argument above.
The problem is that log

(
‖f ′

t‖ − ε
)

is not a meaningful approximation to log ‖f ′
t‖ , since ‖f ′

t‖ must
sometimes be smaller than any given ε . In fact, almost every orbit near C must pass arbitrarily close
to the critical locus of f . But whenever p is very close to the critical locus, there is a real possibility
that f(p) will be much closer to C than would have been predicted from the differential inequality.
We don’t know whether this effect could be strong enough to make C a measure theoretic attractor
even in some cases where the transverse Lyapunov exponent is positive. (Compare Remark 1.1.)

Proof of Corollary 6.4. It follows immediately from Proposition 6.3 that the basins of C and
L are contained in the Julia set. On the other hand, if p ∈ C ∩ L then the iterated preimages of p
are contained in both basins, and are dense in J . Therefore, the closure of either basin is equal to J .

Now if the open set U intersects the Julia set, then it contains an iterated preimage of p . Since
f is an open mapping, it follows that some forward image f ◦n(U) is an open neighborhood of p .
If C (or L) has negative transverse exponent, then by Theorem 6.2 the image f ◦n(U) intersects the
corresponding basin in a set of positive measure. Choosing a regular value of f ◦n which is a point of
density for this intersection, and choosing a point q ∈ U which maps to this regular value, it follows
easily that any neighborhood of q intersects the corresponding basin in a set of positive measure.

Remark 6.8. The Special Case b = 0. The above discussion of elementary Desboves maps
f = f−1,b,1 always assumed that the parameter b is non-zero. For the case b = 0 , we have a much
simpler situation. The center (0 : 1 : 0) then becomes a point of indeterminacy. If we think of
each fiber V as a one-dimensional complex vector space, taking V ∩ L to be its zero vector, then each
fiber maps linearly to a fiber. In fact it is not hard to see that f is well defined as a holomorphic
map from the complement P2r{(0 : 1 : 0)} onto itself, and that this complement is “foliated” by
f -invariant copies of the Fermat curve, which intersect only along the locus F ∩ L . In particular, the
map f = f−1,0,1 has a first integral. (Compare Lemma 3.1.)
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7 Trapped Attractors: Existence and Nonexistence.

The first half of this section will provide explicit examples of everywhere defined rational maps of P2(R)
which have a smoothly immersed real elliptic curve as trapped attractor. The second half will prove
that a complex elliptic curve, with or without singular points, can never be a trapped attractor.

Example 7.1. A Real Elliptic Curve as Trapped Attractor. This last example will study
the case of a singular elliptic curve. As in [Bonifant & Dabija, 2002, §8.6], consider the Cassini quartic
curve C with homogeneous equation Φ(x, y, z) = 0 , where 4

Φ(x, y, z) = Φk(x, y, z) = x2y2 − (x2 + y2)z2 + kz4 (19)

depends on a single parameter k 6= 0, 1 . Over the complex numbers, this is an elliptic curve with
nodes at the two points (1 : 0 : 0) and (0 : 1 : 0) . That is, the uniformizing map C/Ω → C ⊂ P

2(C)
has transverse self-intersections at these two points. Define a one-parameter family of homogeneous
polynomial maps from C

3 to itself by the formula F (x, y, z) = Fa(x, y, z) = (X, Y, Z) , where

X = −2xy(x2 + y2 − 2kz2) , Y = y4 − x4 , Z = −a Φ(x, y, z) + 2xy(x2 − y2) . (20)

According to [Bonifant & Dabija, 2002], the curve C is invariant under the induced rational map
f = fa : P2 → P2 . It is not hard to check that the singular point (0 : 1 : 0) ∈ C (the “north pole” in
Figs. 10 and 11) is a saddle fixed point of fa , with eigenvalues −2 and 0, and that the point (0 : 0 : 1)
(near the center of these figures) is a superattracting fixed point whenever a 6= 0.

If the parameters k and a are real, then the corresponding real curve CR = C∩P
2(R) is connected

when k < 0 , but has two connected components when k > 0. These maps are illustrated in Figs. 10
and 11 for the case k = 1/8 > 0, with CR in black. Here the smaller nonsingular component maps to
the larger singular component. The two branches of CR through the singular point (1 : 0 : 0) map to
one of the two branches through the fixed point (0 : 1 : 0) while both branches through (0 : 1 : 0) map
to the other branch through (0 : 1 : 0). (All four branches lie within a single immersed circle which
crosses itself twice within the nonorientable manifold P

2(R).) Note the identities

F (−x,−y, z) = F (x, y, z) and F ◦2(−y, x, z) = F ◦2(x, y, z) ,

which imply that the Julia set of fa has 90◦-rotational symmetry about the point (0 : 0 : 1) .

Let C0
R

be the connected component of the real curve which contains this singular fixed point, and
hence maps onto itself. We will prove the following result.

THEOREM 7.2. A Trapped Attractor. If 0 < |k| < 1/4, and if a is sufficiently small,
then the curve C0

R
is a trapped attractor for the map fa on the real projective plane.

Proof. Let (X, Y, Z) = F (x, y, z) . The quotient

ΦF (x, y, z) = Φ(X, Y, Z)/Φ(x, y, z)

4This expression yields curves which are equivalent, under a complex linear change of coordinates, to quartic curves
introduced in 1680 by the French-Italian astronomer Giovanni Domenico Cassini, in connection with planetary orbits.
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is a polynomial of degree 12 in x, y, z, depending on the parameter a. In general this polynomial seems
rather complicated, but in the special case a = 0 computation shows that it takes the simple form

ΦF (x, y, z) = 16 k x2y2(x2 − y2)4 . (21)

As a convenient measure of the distance of a point of P2 from the curve Φ = 0 we take the ratio

r(x : y : z) = |Φ(x, y, z)|/(x2 + y2)2 ,

with Φ as in (19). This ratio is finite except at the value r(0 : 0 : 1) = +∞, and it vanishes only on
the Cassini curve. We want to prove an inequality of the form

r(X : Y : Z) ≤ λ r(x : y : z) (22)

whenever r(x : y : z) is sufficiently small, where λ < 1 is constant. To do this, we consider the ratio

rf (x, y, z) =
r(X : Y : Z)

r(x : y : z)
=

∣∣∣∣
Φ(X, Y, Z)

Φ(x, y, z)

∣∣∣∣
(x2 + y2)2

(X2 + Y 2)2
.

In the special case a = 0, using the identity (21) and the inequality

X2 + Y 2 ≥ Y 2 = (y4 − x4)2 = (x2 + y2)2(x2 − y2)2 , (23)

together with |2xy| ≤ x2 + y2, we see that

r(X : Y : Z)

r(x : y : z)
≤

∣∣∣∣
Φ(X, Y, Z)

Φ(x, y, z)

∣∣∣∣
(x2 + y2)2

(x2 + y2)4(x2 − y2)4
=

16|k|x2y2

(x2 + y2)2
≤ 4|k| .

If 0 < |k| < 1/4 , then we can choose λ so that 4|k| < λ < 1 . If N is any compact subset
of P2(R)r{(0 : 0 : 1)}, then for any a which is sufficiently close to zero it then follows by continuity
that the required inequality (22) holds uniformly throughout N . Thus all orbits of fa in N converge
uniformly towards the subset CR. In the case where there are two components, the image fa(CR) is
necessarily equal to the component C0

R
⊂ CR which contains the fixed point, so it follows that all orbits

in N converge uniformly to C0
R
.

Remark 7.3. The Case a = 0. In the limiting case a = 0 , there is no superattracting point, and
in fact (0 : 0 : 1) becomes a point of indeterminacy. The proof shows that the basin of C0

R
under this

limiting map f0 is its entire domain of definition P2(R)r{(0 : 0 : 1)} , provided that 0 < |k| < 1/4 .

Now let us work over the complex numbers. We will show that a complex elliptic curve can never
be a trapped attractor. The proof will occupy the rest of this section.

THEOREM 7.4. No Complex Trapping. Let C ⊂ P2 = P2(C) be an elliptic curve and
let N be a neighborhood of C. Then there cannot exist any holomorphic map f : N → N
such that

⋂
n f◦n(N) = C.
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We first carry out the argument for a smooth elliptic curve (necessarily of degree three), and then
show how to modify the proof for a singular curve (necessarily of degree greater than three). The proof
for a smooth C will be based on the following construction.

Let Nε be the ε-neighborhood consisting of all points with distance less than ε from C, using the
standard Fubini-Study metric5 on P2. If C is smooth and ε is sufficiently small, then Nε is the total
space of a real analytic fibration π : Nε → C, where π(p) is defined to be that point q ∈ C which is
closest to p. Furthermore, although this projection map π is not holomorphic, each fiber Fq = π−1(q)
is a holomorphically embedded complex disk which is contained in the complex line orthogonal to C
at q.

LEMMA 7.5. Curves in a Neighborhood. With C ⊂ Nε as above, any non-constant
holomorphic map φ : C1 → Nε from an elliptic curve into Nε must be an immersion, and must
intersect each fiber Fq transversally, so that the composition π ◦φ is a real analytic immersion
of C1 onto C of degree ≥ 1.

Proof. Suppose to the contrary that there exists a critical point for the composition π ◦φ : C1 → C.
It will be convenient to rotate the coordinates for P2 as follows. Using (x, y) as an abbreviation for the
point with coordinates (x : y : 1), we may assume that the critical value in C ⊂ P2 has coordinates
(0, 0) and that the tangent line to C at this critical value has equation y = 0. The fiber through
this point is then a disk in the line x = 0. Choose a parametrization t 7→

(
x(t), y(t)

)
for C so that

x(0) = y(0) = y′(0) = 0, and choose a parametrization s 7→
(
x1(s), y1(s)

)
for φ(C1) so that the critical

point in C1 is s = 0, mapping to a point
(
x1(0), y1(0)

)
= (0, y0) which lies in the fiber x = 0. Now

expand the function x1(s) as a power series

x1(s) = c sn + (higher order terms) ,

with c 6= 0. Here n ≥ 2, since otherwise φ(C1) would cross the fiber x = 0 transversally.
Using coordinates (x, y) for Nε and t for C, we can think of the real analytic projection π : Nε → C

as a correspondence π : (x, y) 7→ t = t̂(x, y). Setting y = y0+η, we can write the power series expansion
for t̂(x, y) at the point (0, y0) =

(
x1(0), y1(0)

)
as

t̂ = x
(
a1 + (a2x + a3x + a4η + a5η) + · · ·

)
+ x

(
b1 + (b2x + b3x + b4η + b5η) + · · ·

)
,

where the dots stands for terms of degree ≥ 2 in x, x, η, and η, and where the aj and bj are complex
numbers with |a1| > |b1| since the projection from (x, y0) to its image in C must preserve orientation
for x near 0. (Here we can assume that b2 = a3.) Therefore the composition s 7→ (x1(s), y1(s)) 7→ t̂
has power series

t̂ = a1 c sn + b1 c sn + (higher order terms) .

This proves that the composition π ◦φ : C1 → C has an isolated critical point of local degree n ≥ 2 (and
hence multiplicity n − 1 ≥ 1) at the point s = 0. Thus every critical point is isolated, and it follows
that π ◦ φ is a branched covering, with only finitely many critical points.

As in Remark 2.1, we apply the Riemann-Hurwitz Theorem, which asserts that the Euler charac-
teristic χ(C1) is equal to δ χ(C)− ν, where δ is the degree of π ◦φ and where ν is the number of critical
points counted with multiplicity. Since χ(C1) = χ(C) = 0, this proves that ν = 0, as required.

5In terms of homogeneous coordinates (x0 : x1 : · · · : xn) normalized so that
P

|xk|
2 = 1, this metric takes the form

dt2 =
P

|dxk|
2 − |

P
xk dxk)|2. With this normalization, the Riemannian distance 0 ≤ θ ≤ π/2 between two points

(x : y : z) and (u : v : w) of P
2 can be computed by the formula cos(θ) = |xu + yv + zw| .
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In particular, it follows that the composition π ◦ φ : C ′ → C is quasiconformal. We will need the
following.

Definitions. The complex dilatation of a quasi-conformal map g(z) is the ratio

µg(z) = (∂g/∂z)/(∂g/∂z) .

(The absolute value |µg| < 1 is sometimes known as the “small dilatation”, while the ratio

K(z) = (1 + |µg|)/(1 − |µg|) ≥ 1

is called the dilatation. The associated Teichmüller distance can be defined by first taking the maximum
max K(z) as z ranges over the Riemann surface, and then taking the infimum of log

(
max K(z)

)
over

an isotopy class of maps.)
Now consider an infinite sequence of holomorphic immersions φj : Cj → Nε, where each Cj is a

compact Riemann surface of genus one.

LEMMA 7.6. Converging Quasiconformal Maps. If the successive images φj(Cj) con-
verge to C in the Hausdorff topology (or in other words if the distance of each point of φj(Cj)
from C converges uniformly to zero), then the complex dilatation of the quasiconformal map
π ◦ φj : Cj → C converges uniformly to zero as j → ∞.

The proof of Lemma 7.6 will be based on the following preliminary statement, which is needed in
order to control first derivatives.

LEMMA 7.7. Converging Tangent Spaces. With the φj as in Lemma 7.6, consider a
sequence of points φj(pj) ∈ φj(Cj) converging to a point q ∈ C. Then the tangent space to
φj(Cj) at φj(pj) converges to the tangent space to C at q. Furthermore, this convergence is
uniform as we vary the points pj and q.

It will be convenient to describe a tangent vector at a point p ∈ Nε as being parallel to C if it it
orthogonal to the fiber through p, as described in the proof of Lemma 7.5. Thus to prove Lemma 7.7
we must show that the angle θj between6 the tangent space at φj(pj) and the directions parallel to C
at this point must converge to zero as j → ∞. The proof will use the methods of Lemma 7.5, but with
a more flexible construction.

Proof of Lemma 7.7. Let σ be a C∞-function which assigns to each point q ∈ C a complex
line σ(q) which cuts the curve C transversally at q, and let Dε(q) be the disk of radius ε centered
at q within this transverse line. Then the union N(σ, ε) of all of these transverse disks forms a
neighborhood of C. Furthermore, there exists a number εσ > 0 which is small enough so that the
projection πσ : N(σ, εσ) → C which sends each such disk to its center q is well defined and smooth.
Just as in the proof of Lemma 7.5, any immersion of an elliptic curve into N(σ, εσ) must cut every
fiber transversally.

We will construct a compact family K of such transverse line fields σ. Since a radius εσ which is
small enough for a given σ will also work for any nearby σ, it follows that, for any such K, we can

6This angle is measured in the tangent space of P
2 at the given point. By definition, the angle 0 ≤ θ ≤ π/2 between

two complex lines through the origin in a Hermitian vector space is defined by the formula cos(θ) = |〈v1, v2〉|, where
v1 and v2 are representative unit vectors. (This can be identified with the geodesic distance between the corresponding
points in the projective space of lines through the origin.)
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choose a number εK > 0 which is small enough so that πσ fibers N(σ, εK) over C for every σ ∈ K.
Furthermore, since the distance of the boundary of N(σ, εK) from C depends continuously on σ, it
follows that the intersection N(K, εK) =

⋂
σ∈K N(σ, εK) is itself a neighborhood of C.

Now suppose that Lemma 7.7 were false, so that we could find a sequence of points pj ∈ Cj such
that the corresponding angles θj did not converge to zero. After passing to an infinite subsequence, we
may assume that the images φj(pj) converge to some point q0 ∈ C, and that the corresponding angles
θj are bounded away from zero, say θj ≥ α > 0. Choose the compact family K of sections σ such
that, for any q in some neighborhood U0 of q0 in C, every possible transverse line which intersects
C at q at an angle greater than α/2 will occur as the value σ(q) for some σ ∈ K. For example we
can construct such a K as follows: First choose a nonzero tangent vector field ~v(q) and a nonzero
orthogonal vector field ~w(q), where q varies over some neighborhood U of q0 within C. Then choose
a C∞ function ρ : C → R which has compact support contained in U , and which takes the value +1
throughout a smaller neighborhood U0 of q0. For any complex constant a, define a transverse line field
q 7→ σa(q) as follows. For q ∈ U let σa(q) be the transverse line spanned by the vector

~wa(q) = a ρ(q)~v(q) + ~w(q) ,

while for q 6∈ U let σa(q) be the line orthogonal to C. Now we can choose the compact set K to be the
set of all σa with |a| ≤ c, where c is some large constant.

Then for j sufficiently large, the point φj(Cj) will be contained in the intersection N(K, εK).
Furthermore, the tangent line to φj(Cj) at pj will intersect C at a point of the neighborhood U0 and
at an angle greater than α/2. Hence, for a corresponding choice of σ, this tangent line will contain the
fiber of πσ through pj . Since this is impossible, we obtain a contradiction which completes the proof
of Lemma 7.7.

Remark 7.8. Convergence of Nearby Curves. Lemma 7.7 actually implies the stronger state-
ment that, as j → ∞, each branch of the image curve φj(Cj) converges, with all of its derivatives, to
C. (The number of such branches is equal to the degree of the map π ◦ φj : Cj → C.) In fact, given
any point q ∈ C, we can rotate coordinates, as in the proof of Lemma 7.5, so that q has coordinates
(x, y) = (0, 0), and so that the fiber π−1(q) is contained in the line x = 0. Then C can be described
locally as the graph of a holomorphic function y = y(x), and it follows from Lemma 7.7 that, for large
j, each branch of the image φj(Cj) can be described as the graph of a holomorphic function y = yj(x)
which converges uniformly to y(x) throughout some neighborhood as j → ∞. It then follows from a
theorem of Weierstrass that every iterated derivative dnyj(x)/dxn converges uniformly to dny(x)/dxn

throughout a smaller neighborhood.

Proof of Lemma 7.6. With coordinates (x, y) as in the preceding remark, let t 7→
(
x(t), y(t)

)
be

a local parametrization of the curve C with x(0) = y(0) = y′(0) = 0. It will be convenient to construct
new local holomorphic coordinates (u, v) by the formula

(x, y) =
(
x(u), y(u) + v

)
.

In these new coordinates, the curve C has equation v = 0. The projection π is then represented by a
real analytic map (u, v) 7→ t̂(u, v), where t̂(u, 0) = u, so that ∂t̂/∂u = 1 and ∂t̂/∂u = 0, when v = 0.
For j large, we can choose s = u as parameter for the nearby curve φj(Cj), so that the parametrization
takes the form s 7→

(
uj(s), vj(s)

)
with uj(s) = s. For the composition s 7→ t̂(s, vj(s)), it follows that

∂t̂

∂s
=

∂t̂

∂u
+

∂t̂

∂v
dvj/ds ,
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where ∂t̂/∂u tends to zero as vj → 0 by the remarks above, and where dvj/ds tends to zero as vj → 0
by Lemma 7.7. It follows easily that the complex dilatation

µπ◦φ =
∂t̂/∂s

∂t̂/∂s

tends to zero as j → ∞, as required.

Proof of Theorem 7.4 for an embedded curve. The proof will be based on the fact that any
smooth elliptic curve C ⊂ P

2(C) can be approximated arbitrarily closely by other elliptic curves which
are not conformally isomorphic to it. For example, after a linear change of coordinates, any such C is
defined by an equation of the form x3 + y3 + z3 = 3k xyz, and by varying the parameter k we can then
find nearby curves which are not conformally isomorphic to C.

Now assume that C is a trapped attractor. Let Nε be a tubular neighborhood, as in Lemma 7.5.
Then we can chose a trapping neighborhood Ntrap ⊂ Nε and then a smaller tubular neighborhood
Nδ ⊂ Ntrap, so that

C ⊂ Nδ ⊂ Ntrap ⊂ Nε .

We will then construct a sequence of real analytic retractions gh : Nδ → C of the form

gh = f−h ◦ π ◦ f◦h .

(Compare Fig. 15.) More precisely, since f ◦h is many-to-one, we will construct gh : N → C so that

f◦h ◦ gh = π ◦ f◦h ,

with gh equal to the identity map on C. (Here π : Nε → C is again the orthogonal projection which
carries each p ∈ Nε to the closest point of C.) To do this, let us first pass to the universal covering
spaces C̃ ⊂ Ñδ ⊂ Ñε. (Since C ∼= C/Ω, it follows that C̃ ∼= C.) Then f and π lift to smooth maps

C̃ ⊂ Ñδ

ef−→ Ñε
eπ−→ C̃ ,

where we can choose the lift so that π̃ reduces to the identity map on C̃. Since f̃ is a linear map of
C̃ ∼= C, it follows that f̃−1 is well defined. Therefore the map

g̃k = f̃−k ◦ π̃ ◦ f̃◦k : Ñδ → C̃

is well defined; and reduces to the identity map on C̃. Finally, since g̃k commutes with the group of deck
transformations7 of Ñδ over Nδ, it follows that g̃k gives rise to a corresponding retraction gk : Nδ → C.

Let C′ ⊂ Nδ be a smoothly embedded elliptic curve which is not conformally equivalent to C.
Then it follows using Lemma 7.5 that each gh maps C′ diffeomorphically onto C. Furthermore, since
the successive images f◦h(C′) must converge towards C, it follows from Lemma 7.6 that the complex
dilatation of the immersion π ◦ f ◦h : C′ → C tends to zero as h → ∞. Since f ◦h is biholomorphic on
both C′ and C, this implies that the complex dilatation of gh : C′ → C also tends to zero as h → ∞.
Thus, to complete the proof of Theorem 7.4, we need only note the following well known statement
from Teichmüller theory.

7On the other hand, the lifted map ef does not commute with deck transformations. In fact, if Π is the group of deck
transformations, then f induces an embedding f∗ : Π → Π, with ef(σep) = f∗(σ) ef(ep) for each σ ∈ Π.
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C

gh

f˚h

f˚h

π

Fig. 15: Construction of the retraction gh.

LEMMA 7.9. A Conformal Isomorphism Criterion. Suppose that there exist quasicon-
formal homeomorphisms from the elliptic curve C1 to C2 with complex dilatation arbitrarily
close to zero. Then C1 must be conformally isomorphic to C2.

Proof. This is an immediate consequence of compactness of the space of quasiconformal homeo-
morphisms with bounded complex dilatation. On a more elementary level, if C1

∼= C/Ω1 and C2
∼= C/Ω2

where Ω1 and Ω2 are unimodular lattices, then the optimal quasiconformal map in any homotopy class
is given by a real-linear map, corresponding to a linear transformation L ∈ SL(2, R) with L(Ω1) = Ω2.
(Compare [Krushkal′, 1979, p. 101].) Such a linear transformation has complex dilatation zero only if
L is a rotation. Similarly if a sequence of elements of SL(2, R) has complex dilatation converging to
zero, then some subsequence must converges to a rotation. The conclusion of Lemma 7.9 follows easily.
This completes the proof of Theorem 7.4 for the case of an embedded curve.

Proof in the Singular Case. Now consider an elliptic curve C ⊂ P
2 (necessarily of degree four

or more) which has singular points, so that the uniformizing map ι : C/Ω → C has either critical points
or self-intersections or both. We will first prove the following preliminary statement.

LEMMA 7.10. The Branches Fold Together. If C is a trapped attractor under some
rational map f of P2, then the uniformizing map ι : C/Ω → C is necessarily an immersion.
In particular, C cannot have any cusps. Furthermore, some iterate f ◦n must map all of the
branches of C through any singular point p into a single branch through f ◦n(p).

Proof. Recall that the map f restricted to C lifts to a linear map, which we will denote by f#,
from C/Ω to itself. First suppose that the uniformizing map ι has critical points in C/Ω. Since there
can be only finitely many, and since the lifted map f# must send critical points to critical points, it
follows that there must be a periodic critical point. Thus replacing f and f# by some iterate, we may
assume that there is a fixed critical point. In terms of suitable local coordinates around this point and
its image in P2, the map ι will have power series expansion of the form t 7→ (x, y) = (tm + · · · , tn + · · · )
with m > n ≥ 2. Let λ be the multiplier of f#. Then the equation ι(λ t) = f

(
ι(t)

)
implies that the

eigenvalues of the derivative f ′ at the critical value are λm and λn. Since |λ| > 1, it follows that this
critical value is a repelling fixed point for f ; which contradicts the hypothesis that C has a trapping
neighborhood.
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Now suppose that we could find two branches through ι(t1) = ι(t2) = p which map to distinct
branches under all iterates of f . Since there are only finitely many singular points, these images must
eventually cycle periodically. Thus, after replacing f by an iterate, we could find two distinct branches
through some singular point q which both map to themselves. Since f# has multiplier λ, it would
follow easily that the eigenvalues of f ′ at q have the form λ and λm, where m ≥ 1 is the intersection
number between these two branches. Again this shows that q is a repelling point, contradicting the
hypothesis that C has a trapping neighborhood.

The Pulled Back Neighborhood. For any small ε > 0 we can “pull back” the ε-neighborhood
Nε = Nε(C) under the immersion ι to construct a formal neighborhood of N#

ε ⊃ C/Ω. For each
t ∈ C/Ω, let Dε(t, ι) ⊂ P

2 be the open unit disk in the line normal to ι(C/Ω) at ι(t), and let

N#
ε = N#

ε (ι) ⊂ (C/Ω) × P
2

be the set of all pairs (t, p) ∈ C/Ω × P2 with t ∈ C/Ω and p ∈ Dε(t, ι). Then N#
ε is a real analytic

manifold, and the projection π(t, p) = t is a real analytic fibration of N#
ε over C/Ω. Furthermore, if

ε is sufficiently small, then the projection ι̃(t, p) = p will be a local diffeomorphism from N#
ε onto the

open neighborhood Nε ⊂ P2. Using this local diffeomorphism ι̃, we can pull back the complex structure
and make N#

ε into a complex manifold.

For the next lemma, we assume that f has been replaced by a suitable iterate f ◦n, as in Lemma
7.10.

LEMMA 7.11. Lifting the Trapping Neighborhood. If the singular curve C is a trapped
attractor under some rational map f of P2 which folds branches together as in Lemma 7.10,
then f lifts to a holomorphic map f# from a neighborhood of C/Ω in N#

ε into N#
ε , with C/Ω

as trapped attractor.

Proof. Given a neighborhood N#
ε = N#

ε (ι) as above, by the uniform continuity of f on the compact
set N ε(C), we can choose δ < ε so that any curve of length < δ in Nε(C) maps to a curve of length < ε

in P2. We can then form the neighborhood N#
δ (ι) ⊂ N#

ε (ι) of C/Ω , with image C ⊂ Nδ(C) ⊂ Nε(C),
and with f(Nδ) ⊂ Nε. We may also assume that δ is small enough so that the projection which sends
each point of Nδ to the closest point of C is uniquely defined, except within the ε-neighborhood of a
branch point.

Now let T ⊂ Nδ be a trapping neighborhood for C and let T # be the full preimage of T in N#
ε .

Then a lifted map f# : T# → T# can be constructed as follows. For each point (t, p) ∈ T # ⊂ N#
ε

we can drop a perpendicular of length < δ from p to some point q ∈ C. The image under f will then
be a curve of length < ε joining f(p) to f(q) ∈ C. Deforming this curve to a minimal geodesic from
f(p) which meets C orthogonally, say at q̂ = ι(t̂), it follows that (t̂, f(p)) ∈ T#, and we will set
f#(t, p) = (t̂, f(p)).

This construction does not appear to be well defined in the neighborhood of a singular point, since
there may be perpendiculars of length < δ from p to points on two or more branches of C. However,
by hypothesis these branches all map to a single branch of C, so that the minimal geodesic from f(p)
to that branch of C is unique.

Finally, we must show that the intersection A# of the iterated forward images of T # is equal to
C/Ω. Clearly the projection from T # onto T maps A# onto C. Therefore A# is contained in the
preimage of C in T#. This consists of C, together with preimages of the ε-neighborhoods of the various
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branch points. (If ι(t1) = · · · = ι(tk), then there are k − 1 extra preimage branches through each of
the points t1 , . . . , tk.) But f# maps each of these extra branches back to C/Ω, so the attractor A# is
precisely C/Ω.

The proof of Theorem 7.4 now proceeds just as in Lemmas 7.5 through 7.9 above. However, to
carry out the argument in this new context, we must show that there are nearby curves which are not
conformally isomorphic to C/Ω. In fact, we will prove the following, which will complete the proof.

LEMMA 7.12. Deforming Immersed Curves. Consider a Riemann surface of genus one
of the form C/Ω. and let FΩ : C/Ω → P2 be an immersion. Then for any small deformation
Ωt of the lattice Ω, we can construct a corresponding deformation FΩt

of the immersion FΩ.

Proof. Let P̂
2 be the projective plane blown up at the three coordinate points (1 : 0 : 0), (0 : 1 : 0),

and (0 : 0 : 1). The following two statements are easily verified.

1. Any holomorphic immersion of a Riemann surface into P2 lifts uniquely to an immersion
into P̂2 , and any immersion into P̂2 projects to a map into P2 which is an immersion, except
possibly over the three coordinate points.

(The qualification is necessary since, for example, the non-immersion t 7→ (t3 : t2 : 1) from P1 into P2

lifts to an immersion into P̂2.)

2. We can construct a smooth embedding of P̂
2 as a hypersurface in P

1×P
1×P

1 by sending
each (x : y : z) ∈ P̂2 to the triple (f, g, h) where

f = x/y, g = y/z, h = z/x.

with product fgh = 1.

(The blowup guarantees, for example, that x/y makes sense, even at the point (0 : 0 : 1). Interpreted
in terms of local coordinates for P

1, the equation fgh = 1 is well behaved, even when one or two of
these functions take the value ∞ . For example, near a point where h = ∞ but f and g are finite, we
use h−1 as local coordinate, so that the equation takes the form h−1 = fg.)

Thus to immerse a Riemann surface S into P2 we need only find three holomorphic functions f, g, h
from S to P1 which yield an immersion of S into P1 × P1 × P1 , and which have product equal to 1,
taking care that nothing goes wrong over the three coordinate points. (The maps f, g, h need not
have the same degree. For example the functions f(t) = g(t) = t, h(t) = 1/t2 from P1 to P1 yield the
smooth quadratic variety xz = y2.)

As noted above, FΩ lifts to an embedding t 7→
(
f(t), g(t), h(t)

)
of C/Ω into the subset

P̂2 ⊂ P1 × P1 × P1. Furthermore, each of the functions f and g can be expressed as a rational function
of the Weierstrass function ℘Ω(t) and its derivative ℘′

Ω(t). Choosing some explicit expressions for these
rational functions and setting h = 1/(fg), it follows that the map t 7→

(
f(t), g(t), h(t)

)
deforms

smoothly as we modify the lattice Ω. Evidently the requirement that this map project to an immersion
into P2 will remain satisfied for all sufficiently small deformations. This completes the proof of Lemma
7.12 and hence of Theorem 7.4.
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8 Herman Rings in P
2.

By a Herman ring for a rational map f of P
2 = P

2(C) we mean a (complex one-dimensional) annulus
H which is smoothly embedded in P2 and which maps to itself by an irrational rotation under f , or
under some iterate of f . In Example 5.4 we presented empirical evidence for the existence of attracting
Herman rings, invariant under f ◦ f , for a substantial collection of maps in the Desboves family with
real parameters. This section will explore what we can say more generally about Herman rings in P2.
Note first that it is easy to construct special examples.

Example 8.1. Rings Contained in a Complex Line. Let (z0 : z1) 7→
(
p(z0, z1) : q(z0, z1)

)

be any degree d rational map of P
1(C) which possesses a Herman ring. (Compare Remark 8.8, and

see for example [Shishikura, 1987].) Let r(z0, z1, z2) be any nonzero homogeneous polynomial of degree
d − 1. Then the map

f(z0 : z1 : z2) =
(
p(z0, z1) : q(z0, z1) : z2 r(z0, z1, z2)

)

of P
2(C) clearly has a Herman ring H which lies in the invariant line z2 = 0. We can measure the

extent to which this ring is attracting or repelling by using the ratio ρ(z0 : z1 : z2) = |z2|/
√
|z0|2 + |z1|2

as a measure of distance from the line z2 = 0. If the ratio

ρ(f(z0 : z1 : z2))

ρ(z0 : z1 : z2)
= |r|

√
|z0|2 + |z1|2
|p|2 + |q|2

is less than 1 everywhere on H then this ring will be locally uniformly attracting, while if it is greater
than 1 everywhere on H then it will be locally uniformly repelling. Thus we can always obtain
an attracting H simply by multiplying any given r(z0, z1, z2) by a constant which is close to zero.
Similarly, if r(z0 : z1 : 0) is bounded away from zero throughout H, then we can obtain a repelling H
by multiplying r(z0, z1, z2) by a large constant. In the first case, note that H will be contained in the
Fatou set, while in the second case it will be contained in the Julia set.

Note however that a Herman ring can never be a trapped attractor, since its boundary points will
never be attracted to it. Thus it can never attract a closed neighborhood of itself.

Example 8.2. The Ueda Construction. Here is a quite different procedure. (Compare [Fornæss,
1996, p. 13].) Recall that the n-fold symmetric product of P1(C) with itself, that is the quotient
(P1×· · ·×P1)/Sn of the n-fold product by the symmetric group Sn of permutations of the n coordinates,
can be naturally identified with Pn(C). Hence any rational map f of P1 gives rise to an everywhere
defined rational map (f × · · · × f)/Sn of Pn. In particular, it gives rise to a map8 (f × f)/S2 of P2.
Now if U1 and U2 are disjoint invariant Fatou components in P1, then the product U1 × U2 ⊂ P1 × P1

projects diffeomorphically to an invariant Fatou component in P2. In particular, if U1 is a Herman
ring and U2 is the immediate basin of an attracting fixed point, then the image of U1 ×U2 in P2 is the
immediate basin of an attracting Herman ring. Similarly, given two disjoint Herman rings, we obtain
their cartesian product as a Fatou component,9 but given a Herman ring and a parabolic or repelling
point we obtain a Herman ring which is contained in the Julia set.

8More explicitly, if f(x : y) =
`
p(x, y) : q(x : y)

´
then the map (f × f)/S2 can be described by the formula

(x1x2 : x1y2 + y1x2 : y1y2) 7→ (p1p2 : p1q2 + q1p2 : q1q2) , where pj = p(xj , yj) and qj = q(xj , yj).
9This construction can even be used to construct a Herman ring (or Siegel disk) in the real projective plane: Start with

a rational map of P
1(C) with real coefficients which has two complex conjugate Herman rings (or Siegel disks). Carry out

the construction described above, and then intersect with P
2(R).
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The Transverse Lyapunov Exponent. For any f -invariant Herman ring or Siegel disk the
transverse Lyapunov exponent is defined much as in the case of an f -invariant elliptic curve, but is
even more decisive as a test for attraction or repulsion. However, in these rotation domain cases, this
transverse exponent is no longer a constant, but is rather a convex piecewise linear real valued function
(constant on each invariant circle). To fix our ideas, we will concentrate on the Herman ring case.

To begin the discussion, note that for any Herman ring H ⊂ P2(C) (and more generally any annulus)
there is an essentially unique conformal embedding t : H → C/Z which maps H isomorphically onto
a cylinder of the form h0 < =(t) < h1 in C/Z. (More precisely, this embedding is unique up to a
translation or change of sign t 7→ ±t + constant. The difference h1 − h0 is called the modulus of H.)
We will call t a canonical parameter on H.

LEMMA 8.3. Holomorphic Tubular Neighborhoods. Let Γh ⊂ H ⊂ P2 be the invariant
circle =(t) = h contained in a Herman ring in the complex projective plane. Then we can
parametrize some neighborhood N = N(Γh) in P2 by holomorphic coordinates (t, u), where u
ranges over a neighborhood of zero in C and t ranges over a neighborhood of the circle =(t) = h
in C/Z. Furthermore these coordinates can be chosen so that we have u = 0 on the intersection
N ∩ H, with t the canonical parameter for H.

Proof. In the dual projective space consisting of all lines in P2, those lines which intersect Γh form
a real 3-dimensional subset. Hence we can choose a line which misses Γh. After rotating the coordinates
(x : y : z), we may assume that this is the line z = 0. In other words, setting X = x/z , Y = y/z,
we can introduce the affine coordinates (X : Y : 1) = (x : y : z) throughout some neighborhood of Γh.
Let X = X(t) , Y = Y (t) be the canonical parametrization of H throughout this neighborhood. Then
the space of all unit vectors in C2 which are multiples of the tangent vector

(
Ẋ(t) , Ẏ (t)

)
for some(

X(t) , Y (t)
)
∈ Γh has real dimension 2. Hence we can choose a fixed unit vector ~V ∈ C

2 which is not
tangent to H at any point of Γh. The required coordinates (t, u) are now defined by the formula

(t , u) 7→
(
X(t) , Y (t)

)
+ u ~V

for all (t, u) ∈ (C/Z) × C with both |=(t) − h| and |u| sufficiently small.

The map f , expressed in terms of these tubular coordinates in a neighborhood of Γh, has the form
(t, u) 7→ (T, U), where (t, 0) maps to (t + α, 0) for some irrational rotation number α. Evidently we
can identify the transverse derivative along H0 with the partial derivative

∂U

∂u

(
t, 0) .

The transverse Lyapunov exponent is then defined as the horizontal average

Lyap(t) =

∫ 1

0
log

∣∣∣∣
∂U

∂u
(t + τ)

∣∣∣∣ dτ ,

where we integrate over the interval 0 ≤ τ ≤ 1. If there are no zeros of ∂U/∂u in the strip
h0 < =(t) < h1 , u = 0, then Lyap(t) is an average of harmonic functions, and hence is harmonic. Since
this harmonic function is constant on horizontal lines, it must be a linear function of the imaginary part
=(t). (We will sharpen this statement in Lemma 8.5.) The dynamical implications of this Lyapunov
exponent can be described as follows.
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LEMMA 8.4. Attraction or Repulsion. If Lyap(t) is negative along the invariant circle
Γh ⊂ H, then a neighborhood of Γh in the Herman ring H is uniformly attracting, and hence is
contained in the Fatou set of f . On the other hand, if Lyap(t) is positive, then Γh is contained
in the Julia set.

However, in the intermediate case where Lyap(t) is identically zero near Γh, we do not have enough
information to decide. In fact, using Ueda’s construction (Example 8.2), we can find examples illustrat-
ing both possibilities. We can choose f so that a neighborhood of H, with its dynamics, is isomorphic
to (Herman ring)×(Siegel disk) and hence belong to the Fatou set. On the other hand, we can choose
f so that H corresponds to (Herman ring)×(parabolic point), and hence belong to the Julia set.

Proof of Lemma 8.4. Recall that the map f restricted to the ring H has the form t 7→ t + α
where the rotation number α is irrational. To simplify the notation, let us translate the canonical
parameter t so that it takes real values (modulo one) on our invariant circle, with h = 0. Following
Hermann Weyl, for any continuous function g : R/Z → C, the successive averages

Ang(t) = (1/n)
∑

0≤j<n

g(t + jα)

converge uniformly to the integral
∫

R/Z
g(t) dt . To prove this, note that any continuous g can be

uniformly approximated by trigonometric polynomials of the form
∑

|k|≤N ak e2πikt. But this statement
is easily verified for each such trigonometric polynomial.

First suppose that the transverse derivative ∂U
∂u (t, 0) has no zeros on R/Z, so that the function

t 7→ g(t) = log
∣∣∂U

∂u (t, 0)
∣∣ is finite valued near R/Z. If the average Lyap(0) of g on R/Z is strictly

positive (or strictly negative), then we can choose an integer n > 0 so that Ang(t) is strictly positive
(or negative) and bounded away from zero on R/Z, and hence throughout some neighborhood of R/Z

in C/Z. Now consider an orbit (t0, u0) 7→ (t1, u1) 7→ · · · 7→ (tn, un) near the given circle Γ0. Note that

lim
u0→0

un

u0
=

∂un

∂u0

(
t0, 0) =

∏

0≤j<n

∂uj+1

∂uj

(
t0 + jα, 0) = exp

(
n Ang(t)

)
.

Taking the log absolute value of both sides, if Ang(t) < log(c) < 0 on R/Z, then |∂un/∂u0| < cn

when u0 = 0, and it follows easily that |un| ≤ cn |u0| uniformly throughout a neighborhood of our
invariant circle. This proves that some neighborhood H0 in H is uniformly attracted to Γ0. Similarly,
if Ang(t) > log(c) > 0, then a neighborhood is uniformly repelled, so that Γ0 is contained in the Julia
set.

Now suppose that the holomorphic function t 7→ ∂U
∂u (t, 0) has zeros along the real axis. The

superattracting case where this derivative is identically zero on H is easily dealt with, so we will
assume that these zeros are isolated. If Lyap(0) < 0, then we can replace g(t) by the truncated function
gν(t) = max(g(t) , ν), where ν is some negative real constant. If ν is sufficiently negative, then the
integral

∫ 1
0 gν(t) dt will still be negative. Hence we can choose n so that Ang(t) ≤ Angν(t) < log(c) < 0,

and it again follows that a neighborhood H0 of Γ0 is uniformly attracting. In the case Lyap(0) > 0, we
cannot assert that a neighborhood is uniformly repelling when it contains zeros of ∂U/∂u. However, it
is not hard to check that the function t 7→ Lyap(=(t)) is continuous, and hence is positive throughout
a neighborhood. Since the Julia set of f is closed, we can at least conclude that Γ0 is contained in the
Julia set.
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LEMMA 8.5. Piecewise Linearity. Let H ⊂ P
2 be a Herman ring with canonical parameter

t ∈ C/Z, where h0 < =(t) < h1. Then the function Lyap : (h0 , h1) → R is convex and
piecewise linear, with a jump in derivative at h if and only if the transverse derivative ∂U/∂u
has a zero on the circle =(t) = h. In fact the change in derivative at h is equal to 2π times
the number of zeros of ∂U/∂u on this circle, counted with multiplicity.

Proof. We will adapt a classical argument due to Jensen. (See for example [Milnor, 2006b,
Appendix A].) It will be convenient to use the abbreviated notation φ(t) = ∂U/∂u for the transverse
derivative evaluated at (t, 0), and φ′(t) for its derivative. If φ has no zeros on the circle =(t) = h,
then we can compute the derivative of the transverse Lyapunov exponent by differentiating under the
integral sign. Setting t = τ + ih, we have

∂

∂h
log |φ(t)| =

∂

∂h
<
(
log φ(t)

)
= <

(d log φ(t)

dt

∂t

∂h

)
= <

(φ′

φ
i
)

and therefore

Lyap′(h) =
d

dh

∫ 1

0
log |φ(τ + ih)| dτ = <

∫ 1

0
i
φ′

φ
dτ ,

where φ′ and φ are evaluated at t = τ + ih for 0 ≤ τ ≤ 1 with h constant. Briefly, we can write

Lyap′(h) = <
∫

[0,1]×{h}
i
dφ

φ
.

Given two numbers h0 < h1 such that φ has no zeros at height h0 or h1, we can now compute the
difference Lyap′(h1) − Lyap′(h0) as follows. Translating the parameter t horizontally if necessary we
may assume also that φ has no zeros on the vertical line <(t) = 0. Let R be the rectangle consisting
of all t ∈ C with 0 ≤ <(t) ≤ 1 and h0 ≤ =(t) ≤ h1. Integrating in the positive direction around the
boundary of R, since the integrals around the left and right sides cancel out, we obtain

Lyap′(h0) − Lyap′(h1) = <
∮

∂R
i
dφ

φ
.

But the integral
∮
∂R dφ/φ is equal to 2πi N(R), where N(R) is the number of zeros of φ in R,

so this equation reduces to Lyap′(h1) − Lyap′(h0) = 2π N(R). This proves Lemma 8.5.

Remark 8.6. Siegel Disks There is an analogous statement for the transverse exponent of a Siegel
disk in P2. Let us parametrize the Siegel disk by the unit disk D consisting of all z ∈ C with |z| = r < 1,
taking z = 0 for the center point. Then the transverse Lyapunov exponent can be expressed as a a
convex piecewise linear function of log(r). In fact, it is determined up to an additive constant by the
identity

d Lyap

d log(r)
= N(Dr) ≥ 0 ,

where N(Dr) is the number of zeros of the transverse derivative, counted with multiplicity, in the disk
of radius r. The proof, similar to that above, is essentially Jensen’s original computation.

Herman Rings for Maps with Real Coefficients. Most known examples of Herman rings
have been specially constructed. The surprise in 5.4 was to find an apparent example which appeared
out of the blue, with no obvious reason to expect it. The set of complex rational maps of specified
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degree with a Herman ring presumably has measure zero, so that a randomly chosen example will never
have a Herman ring. However, if we consider rational maps with real coefficients then the situation is
different, and the discussion in Example 5.4 suggests that the set of real parameters which give rise to
a complex Herman ring should have positive Lebesgue measure.

Let f be a rational map of P2 with real coefficients, and suppose that there exists an embedded
f -invariant circle Γ ⊂ P2(R) with irrational rotation number. If Γ is smooth of class C2, then according
to Denjoy’s Theorem the restriction f |Γ is topologically conjugate to a circle rotation. In particular,
there is a canonical f -invariant probability measure dµ with support equal to the entire circle. The
transverse Lyapunov exponent of Γ in P2(R) is then well defined. Just as in the proof of Lemma 8.4,
a positive Lyapunov exponent implies that Γ is uniformly repelling, and similarly, a negative exponent
implies that Γ is uniformly attracting and hence is a trapped attractor.

In the real analytic case we can complexify the circle Γ.

LEMMA 8.7. From Circle to Ring. Let f be a rational map of P
2(R). If Γ is a

real analytic f-invariant circle with Diophantine rotation number, then the associated map
from P

2(C) to itself possesses a Herman ring H ⊃ Γ. Furthermore, the transverse Lyapunov
exponent of Γ in P2(R) is identical with the transverse Lyapunov exponent of H along Γ.

If we exclude the special case where the transverse exponent is exactly zero, then it follows that
Γ is repelling (or attracting) in the real projective plane if and only if a neighborhood of Γ in H is
repelling (or attracting) in the complex projective plane.

Remark 8.8. The One-Dimensional Case. It is interesting to compare the situation in one
variable. For any odd number d ≥ 3, the set of degree d rational maps which carry the real projective
line P

1(R) diffeomorphically onto itself is open, and all possible rotation numbers are realized. If such a
map has Diophantine rotation number, then a similar argument shows that the corresponding rational
map of P

1(C) contains a Herman ring.

Proof of Lemma 8.7. By a theorem of Herman, as sharpened by Yoccoz, [2002], any orientation
preserving real analytic diffeomorphism of a circle with Diophantine rotation number α is real analyt-
ically conjugate to the rigid rotation t 7→ t + α (mod Z) of the standard circle R/Z. That is, there is a
real analytic diffeomorphism h : R/Z → Γ ⊂ P2(R) so that f(h(t)) = h(t+α). Since h is real analytic, it
extends to a complex analytic diffeomorphism from a neighborhood of R/Z in the cylinder C/Z into the
complex projective plane. The image of this extended map on some neighborhood {t mod Z ; |=(t)| < ε}
is the required Herman ring H ⊂ P2(C). Evidently the translation t 7→ t + α on this neighborhood
is conjugate to the rational map f on H. Further details are straightforward, since any norm on the
normal bundle of H in P2(C) will restrict to a norm on the normal bundle of Γ in P2(R).

Now consider a C∞-smoothly embedded circle Γ0 in a real 2-dimensional manifold M .
Let f0 : M → M be a C∞-smooth map which restricts to an irrational rotation on Γ0, and which
has negative transverse exponent on Γ0. As noted above, this implies that Γ0 is a trapped attractor.
Let N ⊂ M be a trapping neighborhood, with f0(N) ⊂ interior(N).

THEOREM 8.9. Persistence of Invariant Circles. In this situation, for any C∞-map fτ

which is close enough to f0 in the C1-topology, the intersection

Γτ =
⋂

n

f ◦n
τ (N)
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of the iterated forward images of N under fτ will be a topological circle; and fτ will map this
circle homeomorphically onto itself with a rotation number ρτ which varies continuously with
τ . Furthermore, for any finite k, if fτ is C1-sufficiently close to f0, then Γτ will be Ck-smooth.

Here we can expect the continuous function τ 7→ ρτ to have an interval of constancy whenever ρτ

takes a rational value. In fact, a generic map fτ with ρτ = p/q will have an attracting period q orbit
contained in Γτ . In this case, Γτ cannot contain any dense orbit. Evidently such an attracting orbit
will be stable under perturbation.

Proof of Theorem 8.9. If a neighborhood of Γ0 is orientable, then we can choose local coordinates
t ∈ R/Z and −ε < x < ε throughout some neighborhood of Γ0 so that Γ0 is given by the equation
x = 0, and is mapped to itself by t 7→ t + α with α irrational. In the non-orientable case, we can first
pass to the 2-fold orientable covering of a neighborhood and then choose such coordinates.

We will denote the map f0 in these coordinates by f0(t, x) = (T, U). It will be convenient to use
abbreviated notations such as

∂tU =
∂

∂t
U(t, x) , ∂xU =

∂

∂x
U(t, x) .

Given 0 < c < 1, after replacing f0 by some high iterate, we may assume that |∂xU | < c when x = 0.
Furthermore, after a carefully chosen change of coordinates, we will show that ∂xT = 0 when x = 0,
so that

∂tT = 1, ∂xT = 0,
∂tU = 0, |∂xU | < c

(24)

along the circle x = 0. In order to construct this change of coordinates, we first introduce the smooth
functions

rn = rn(t) = ∂xU(t + nα, 0) , sn = sn(t) = ∂xT (t + nα, 0) ,

with |rn| < c. Now introduce the change of coordinates

(t, x) ↔ ( t̂, x) where t̂ = t + (s0 + r0s1 + r0r1s2 + · · · ) x .

A brief calculation shows that the induced map ( t̂, x) → (T̂ , U) in these new coordinates satisfies the
required condition ∂xT̂ = 0 when x = 0. Henceforth, we will omit the hat and simply assume that
∂xT = 0 along the circle x = 0.

Given any 0 < η < 1, we can first choose a trapping neighborhood N = {(t, x) ; |x| ≤ b0} for Γ0

which is small enough so that the inequalities

|∂tT − 1| < η, |∂xT | < η,
|∂tU | < η, |∂xU | < c,

(25)

are valid throughout this neighborhood. We can then choose fτ close enough to f0, so that
fτ (N) ⊂ interior(N), so that these inequalities (25) remain true for the map fτ (t, x) = (T, U).

Now consider a curve t 7→ x(t) with slope v(t) = dx/dt. Setting fτ

(
t, x(t)

)
= (T, U), we have

d T
(
t, x(t)

)

dt
=

∂T

∂t
+

dx

dt

∂T

∂x
or briefly DtT =

(
∂t + v ∂x)T ,

and similarly DtX =
(
∂t +v ∂x)X. Given some upper bound b1 for |v| = |dx/dt|, we can estimate that

DtT > 1 − η − b1η and |DtX| < η + b1c ,
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and hence ∣∣∣∣
dX

dT

∣∣∣∣ =
|DtX|
DtT

<
η + b1c

1 − η − b1η
.

If η is sufficiently small, then this upper bound will be strictly less than b1. More precisely, if

0 < η <
b1(1 − c)

1 + b1 + b2
1

,

then a brief computation shows that DtT > 0 and that (η + b1c)/(1 − η − b1η) < b1. It will then
follow that the image curve is the graph of a well defined function X = X(T ), and furthermore that
the slope of this image curve is bounded by the same constant,

|dX/dT | < b1 .

It follows inductively that each iterated forward image of the initial curve will again be a well defined
curve with |slope| < b1.

As trapping neighborhood N we can choose a union of horizontal circles x = x̂ with −b0 ≤ x̂ ≤ b0.
Then each iterated image f ◦n

τ (N) ⊂ N will be a corresponding union of a continuum of curves of the
form xn = xn(t) with |dxn/dt| ≤ b1. If x−

N (t) is the infimum of these curves and x+
n (t) is the supremum,

then it follows easily that the n-th forward image of N is given by

f ◦n
τ (N) = {(x, t) ; x−

n (t) ≤ x ≤ x+
n (t)}.

Here the upper and lower boundaries both satisfy a Lipschitz condition

|x±
n (t1) − x±

n (t0)| ≤ b1|t1 − t0|.

On the other hand, it is easy to check that the Jacobian determinant is bounded by

|Jacobian| < (1 + η)c + η2 ,

and we may assume that this upper bound is strictly less than one. Hence the areas of these successive
images shrink to zero. Thus

∫ 1
0

(
x+

n (t) − x−
n (t)

)
dt tends to zero as n → ∞. It follows easily that the

upper and lower bounding curves tend to a common Lipschitz limit. This proves that the attracting set

Γτ =
⋂

n≥0

f ◦n
τ (N)

is itself the graph of a function t 7→ limn→∞ x±
n (t) which is continuous (and in fact Lipschitz with

Lipschitz constant b1).
In order to prove that this attracting curve is C1 smooth, we must estimate second derivatives.

Computations show that
d2X

dT 2
=

(D 2
t X)(DtT ) − (D 2

t T )(DtX)

(DtT )3
,

where
D 2

t = ∂ 2
t + 2v∂t∂x + v2∂ 2

x + (dv/dt)∂x .
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Separating out the dv/dt = d2x/dt2 terms, we can write this as

d2X

dT 2
= A2 + B2

d2x

dt2
, (26)

where A2 is uniformly bounded and where

B2 =
∂xX

(DtT )2
− (∂xT )(DtX)

(DtT )3
,

so that

|B2| <
c

(1 − η − b1η)2
+

η(η + b1c)

(1 − η − b1η)3
.

Evidently, if η is small enough, then |B2| < constant < 1. We can then choose a constant

b2 > |A2|/(1 − |B2|) , so that b2 > A2 + B2 b2 .

Then if |d2x/dt2| < b2, it follows that |d2X/dT 2| < b2. Thus, with these choices, the successive forward
images of Γ0 will be curves xn = xn(t) which converge uniformly to a limit, with both |dxn/dt| and
|d2xn/dt2| uniformly bounded.

Now we can continue inductively. By successively differentiating the formula (26) we find formulas
of the form

dkX

dT k
= Ak + Bk

dkx

dtk
,

where Ak depends not only on the iterated partial derivatives of T (t, x) and X(t, x) but also on the
derivatives d`x/dt` with ` < k, and where

Bk+1 = Bk/DtT < Bk/(1 − η − b1η) .

Thus, choosing η small enough so that Bk < constant < 1, we can find a suitable upper bound bk

for |dkx/dtk| which is preserved when we replace a curve Γ by fτ (Γ). Thus, given any finite k, we
can choose η small enough so that the iterated forward images of a curve x = x(t) which satisfies the
inequalities

|d`x/dt`| ≤ b` for all ` ≤ k

will be a curve which satisfies these same inequalities.

To complete the proof of Theorem 8.9, we need the following.

LEMMA 8.10. A Derivative Inequality. If a C2-smooth function x = x(t) satisfies
uniform inequalities |x(t)| < α and |d2x/dt2| < β, then it follows that

|dx/dt| <
√

2αβ .

Proof. Suppose, for example, that the first derivative x′ = dx/dt satisfied x′(0) ≥ √
2αβ with

x(0) ≥ 0. Using the lower bound x′′(t) > −β and integrating twice, we see that

x′(t) >
√

2αβ − βt and x(t) >
√

2αβ t − βt2/2
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for t > 0. In particular, substituting t0 =
√

2α/β, it would follow that x(t0) > α, thus contradicting
the hypothesis. Other cases can be handled similarly.

The proof of Theorem 8.9 concludes as follows. Again let xn = xn(t) be the n-th forward image
of Γ0 under fτ . As m and n tend to infinity, the difference xn(t) − xm(t) tends to zero, while the
difference x′′

n(t)−x′′
m(t) remains uniformly bounded. Thus it follows from Lemma 8.10 that the difference

x′
n(t) − x′

m(t) converges uniformly to zero. Similarly, it follows inductively that differences of higher
derivatives converge to zero. This completes the proof that the limit curve Γτ is Ck-smooth for any
specified k < ∞. Further details of the proof are not difficult.

Note that this argument does not produce a C∞ curve, since we need to impose tighter and tighter
restrictions on fτ in order to get successive higher derivatives. The argument certainly does not produce
a real analytic curve, which is what we would need in order to show that Γτ is contained in a Herman
ring. We have no idea how to prove real analyticity, even assuming that the rotation number ρτ is
Diophantine.10

9 Open Problems.

The results of this note leave a number of conjectures and open questions. Here is a brief list.

Conjecture 9.1. For any f -invariant elliptic curve C ⊂ P2(C), the basin of attraction, consisting
of all points whose orbits converge to C, is contained in the Julia set of f . (Intuitive proof: Otherwise
the basin would have to contain an open set U such that every sequence of iterates of f on U contains
a subsequence converging to a constant c ∈ C. This looks very unlikely, given the fact that f is highly
expanding in directions tangent to C.)

The following two conjectures are closely related. Compare the discussion in Remark 4.3.

Conjecture 9.2. Such an attracting basin cannot contain any nonvacuous open set. In other
words, the set of all points not attracted to C is always everywhere dense.

Conjecture 9.3. Every invariant complex elliptic curve contains a repelling periodic point. (In all
examples known to us there is a repelling fixed point.)

Conjecture 9.4. In the space of complex Desboves maps with real coefficients, there is a subset
of positive measure consisting of maps which have a cycle of attracting Herman rings. (Compare §8
and Example 5.4.)

There are also many questions where we have no idea what to guess.

• To what extent are maps with an attracting periodic orbit common in the space of all degree d
maps preserving a given elliptic curve? For example, do they form a dense open set?

10It is interesting to compare the boundaries of Siegel disks for rational maps of P
1. These are simple closed curves in

all known cases. They can never be real analytic, but in the non-Diophantine case they can be C∞-smooth. (Compare
[Avila et al., 2004].) In the Diophantine case, such a boundary necessarily contains a critical point, and hence cannot be
smooth. (See [Ghys, 1984].)
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• Can an invariant elliptic curve be a global attractor, with an attracting basin of full measure?
We have constructed a number of examples where this seems to be true empirically; but how can
one exclude the possibility of other attractors with basins of very small measure?

• Can a smooth real elliptic curve be a trapped attractor?

• What can one say about the dynamics when the elliptic curve has positive transverse Lyapunov
exponent? Could such a map have an absolutely continuous invariant measure? Is it true that an
elliptic curve can never be a measure-theoretic attractor when its transverse exponent is positive?
(Compare Remarks 1.1 and 6.7.)

• What other kinds of attractor can occur for a rational map with invariant elliptic curve? Can
there be fractal attractors? Can there be a set of dense orbits of positive measure, or even of full
measure? Can the Julia set have positive measure, even when it has no proper sub-attractors?
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