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1. Introduction

In the 1965 Hedrick Lectures,2 I described the state of Differential Topology, a
field which was then young but growing very rapidly. During the intervening years,
many problems in differential and geometric topology which had seemed totally
impossible have been solved, often using drastically new tools. The following is a
brief survey, describing some of the highlights of these many developments.

2. Major Developments

The first big breakthrough, by [Kirby-Siebenmann, 1969, 1977], was an ob-
struction theory for the problem of triangulating a given topological manifold as
a PL (= Piecewise-Linear) manifold. If BTop and BPL are the stable classify-
ing spaces (as described in the lectures), they showed that the relative homotopy
group πj(BTop, BPL) is cyclic of order two for j = 4, and zero otherwise. Given
an n-dimensional topological manifold Mn, it follows that there is an obstruction
o ∈ H4(Mn; Z/2) to triangulating Mn as a PL-manifold. In dimensions n ≥ 5 this
is the only obstruction. Given such a triangulation, there is a similar obstruction
in H3(Mn; Z/2) to its uniqueness up to a PL-isomorphism which is topologically
isotopic to the identity. In particular, they proved the following.

Theorem 2.1. If a topological manifold Mn without boundary satisfies

H3(Mn; Z/2) = H4(Mn; Z/2) = 0 with n ≥ 5 ,

then it possesses a PL-manifold structure which is unique up to PL-isomorphism.

(For manifolds with boundary one needs n > 5.) The corresponding theorem for
all manifolds of dimension n ≤ 3 had been proved much earlier by [Moise, 1952].
However, we will see that the corresponding statement in dimension 4 is false.

An analogous obstruction theory for the problem of passing from a PL-structure
to a smooth structure had previously been introduced by [Munkres 1960, 1964a,
1964b] and [Hirsch, 1963]. (See also [Hirsch-Mazur, 1974].) Furthermore Cerf
had filled in a crucial step by proving that the space of orientation preserving
diffeomorphisms of the 3-sphere is connected. (See the Cartan Seminar Lectures of
1962/63, as well as [Cerf, 1968].) Combined with other known results, this led to
the following.

1I want to thank Mike Hopkins, Rob Kirby, John Morgan, Larry Siebenmann, and Jonathan
Sondow for their help. Also I want to thank the NSF for its support under grant DMSO757856.

2These lectures have recently been digitized by MSRI. For a temporary version, see
http://www.math.sunysb.edu/Videos/jack/Differential Topology . Thanks to Dusa McDuff for
unearthing the original tapes. ( With regard to Wilder’s introduction, compare [Milnor, 1999].)
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Theorem 2.2. Every PL-manifold of dimension n ≤ 7 possesses a compatible
differentiable structure; and this structure is unique up to diffeomorphism whenever
n < 7.

For further details see §4.

The next big breakthrough was the classification of simply-connected closed
topological 4-manifolds by [Freedman, 1982]. He proved, using wildly non-differentiable
methods, that such a manifold is uniquely determined by

(1) the isomorphism class of the symmetric bilinear form H2 ⊗
H2 → H4 ∼= Z, where Hk = Hk(M4; Z), together with
(2) the Kirby-Siebenmann invariant o ∈ H4(M4; Z/2) ∼= Z/2.

These can be prescribed arbitrarily, except for two restrictions: The bilinear form
must have determinant ±1; and in the “even case” where x∪x ≡ 0 (mod 2H4) for
every x ∈ H2, the Kirby-Siebenmann class must be congruent to (1/8)-th of the
signature. As an example, the Poincaré Hypothesis for 4-dimensional topological
manifolds is an immediate consequence. For if M4 is a homotopy sphere, then both
H2 and the obstruction class must be zero.

One year later, [Donaldson, 1983] used gauge theoretic methods to show that
many of these topological manifolds can not possess any smooth structure (and
hence by Theorem 2 cannot be triangulated as PL-manifolds). More explicitly, if
M4 is smooth and simply-connected with positive definite bilinear form, he showed
that this form must be diagonalizable. In other words, M4 must be homeomorphic
to a connected sum of copies of the complex projective plane. There are many
positive definite bilinear forms with determinant ±1 (and with signature divisible
by 16 in the even case) which are not diagonalizable. (See for example [Milnor-
Husemoller, 1973].) Each of these corresponds to a topological manifold M4 with
no smooth structure, but such that M4 ×R does have a smooth structure which is
unique up to diffeomorphism.

The combination of Freedman’s topological results and Donaldson’s analytic
results quickly led to rather amazing consequences. For example, it followed that
there are uncountably many non-isomorphic smooth or PL structures on R

4. (Com-
pare [Gompf, 1993].) All other dimensions are better behaved: For n > 4, [Stallings,
1962] showed that the topological space R

n has a unique PL-structure up to PL-
isomorphism. Using the Moise result for n < 4 together with the Munkres-Hirsch-
Mazur obstruction theory, it follows that the differentiable structure of Rn is unique
up to diffeomorphism for n 6= 4.

A satisfactory theory of 3-dimensional manifolds took longer. The first milestone
was the Geometrization Conjecture by [Thurston,1982, 1986], which set the goal for
what a theory of 3-manifolds should look like. This conjecture was finally verified
by [Perelman, 2002, 2003a, 2003b]. (Compare the expositions of [Morgan-Tian
2007], and [Kleiner-Lott, 2008].) The 3-dimensional Poincaré Hypothesis followed
as a special case.

3. The Poincaré Hypothesis: three versions

First consider the purely topological version.

Theorem 3.1. The Topological Poincaré Hypothesis is true in all dimensions.
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That is, every closed topological manifold with the homotopy type of an n-
sphere is actually homeomorphic to the n-sphere. For n > 4 this was proved by
[Newman, 1966] and by [Connell, 1967], both making use of the “engulfing method”
of [Stallings, 1960]. For n = 4 it is of course due to Freedman. For n = 3 it is
due to Perelman, using [Moise, 1952] to pass from the topological to the PL case,
and then using the Munkres-Hirsch-Mazur obstruction theory to pass from PL to
smooth. �

Theorem 3.2. The Piecewise-Linear Poincaré Hypothesis is true for n-dimen-
sional manifolds except possibly when n = 4.

That is, any closed PL manifold of dimension n 6= 4 with the homotopy type of
an n-sphere is PL-homeomorphic to the n-sphere. For n > 4 this was proved by
[Smale, 1962]; while for n = 3 it follows from Perelman’s work, together with the
Munkres-Hirsch-Mazur obstruction theory. �

The Differentiable Poincaré Hypothesis is more complicated, being true in some
dimensions and false in others, while remaining totally mysterious in dimension
4. We can formulate the question more precisely by noting that the set of all ori-
ented diffeomorphism classes of closed smooth homotopy (or topological) n-spheres
forms a commutative monoid Sn under the connected sum operation. In fact this
monoid is actually a finite abelian group except possibly when n = 4. Much of
the following outline is based on [Kervaire-Milnor, 1963], which showed in principle
how to compute these groups3 in terms of the stable homotopy groups of spheres for
n > 4. Unfortunately, many proofs were put off to Part II of this paper, which was
never completed. However, the missing arguments have been supplied elsewhere;
see especially [Levine, 1985].

Using Perelman’s result for n = 3, the group Sn can be described as follows for
small n. (Here for example 2 · 8 stands for the group Z/2⊕ Z/8.)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Sn 1 1 1 ? 1 1 28 2 2·4 6 992 1 3 2 2·8128 2 2·8 2·8

Thus the Differentiable Poincaré Hypothesis is true in dimensions 1, 2, 3, 5, 6, and
12, but unknown in dimension 4. Conjecturally it is false in all other dimensions:

Conjecture 3.3. The group Sn is non-trivial for all n > 6, n 6= 12.

(Any precise computation for large n is impossible at the present time, since not
enough is known about the stable homotopy groups of spheres. However, it seems
likely that enough is known to prove this conjecture.)

Denote the stable homotopy groups of spheres by

Πn = πn+q(S
q) for q > n+ 1 ,

3The Kervaire-Milnor paper worked rather with the group Θn of homotopy spheres up to
h-cobordism. This makes a difference only for n = 4, since it is follows from the h-cobordism

theorem of [Smale, 1962] that Sn

∼=
−→Θn for n 6= 4. However the difference is important in the

4-dimensional case, since Θ4 is trivial but the semigroup S4 is completely mysterious.
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and let Jn ⊂ Πn be the image of the stable Whitehead homorphism J : πn(SO) → Πn.
(See [Whitehead, 1942].) This subgroup Jn is cyclic of order4

|Jn| =











denominator
(

Bk

4k

)

for n = 4k − 1 ,

2 for n ≡ 0, 1 (mod 8) , and

1 for n ≡ 2, 4, 5, 6(mod 8) ,

where the Bk are Bernoulli numbers; for example:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, B5 =

5

66
, B6 =

691

2730
.

(Compare [Milnor-Stasheff, 1974, Appendix B].)

According to Pontrjagin and Thom, the stable n-stem Πn can also be described as
the group of all framed cobordism classes of framed manifolds. (Here one considers
manifolds smoothly embedded in a high dimensional Euclidean space, and a framing
means a choice of trivialization for the normal bundle.) Every homotopy sphere is
stably parallelizable, and hence possesses such a framing. If we change the framing,
then the corresponding class in Πn will be changed by an element of the subgroup
Jn. Thus there is an exact sequence

0 → S
bp
n → Sn → Πn/Jn , (1)

where S
bp
n ⊂ Sn stands for the subgroup represented by homotopy spheres

which bound parallelizable manifolds. This subgroup is the part of Sn which is
best understood. It can be partially described as follows.

Theorem 3.4. For n 6= 4 the group S bp
n is finite cyclic with an explicitly known

generator. In fact this group is:

• trivial when n is even,
• either trivial or cyclic of order two when n = 4k − 3, and
• cyclic of order 22k−2(22k−1−1) numerator

(

4Bk

k

)

when n = 4k−1 > 3.

(This last number depends on the computation of |J4k−1| as described above.)

In the odd cases, setting n = 2q − 1, an explicit generator for the S
bp
2q−1 can be

constructed using one basic building block, namely the tangent disk-bundle of the
q-sphere, together with one of the following two diagrams.

Here each circle represents one of our 2q-dimensional building blocks, which is a
2q-dimensional parallelizable manifold with boundary, and each dot represents a
plumbing construction in which two of these manifolds are pasted across each other

4This computation of |J4k−1| is a special case of the Adams Conjecture ([Adams, 1963,
1965]). The proof was completed by [Mahowald, 1970]; and the full Adams Conjecture was
proved by [Quillen, 1971], [Sullivan, 1974], and by [Becker-Gottlieb, 1975]. Adams also showed
that Jn is always a direct summand of Πn.
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so that their central q-spheres intersect transversally with intersection number +1.
The result will be a smooth parallelizable manifold with corners. After smoothing
these corners we obtain a smooth manifold X2q with smooth boundary.

For q odd, use the left diagram, and for q even use the right diagram. In either
case, if q 6= 2, the resulting smooth boundary ∂X2q will be a homotopy sphere

representing the required generator of S
bp
2q−1. (The case q = 2 is exceptional since

∂X4 has only the homology of the 3-sphere. In all other cases where S
bp
2q−1 is

trivial, the boundary will be diffeomorphic to the standard (2q − 1)-sphere.)

The exact sequence (1) can be complemented by the following information.

Theorem 3.5. For n 6≡ 2 (mod 4), n 6= 4, every element of Πn can be represented
by a homotopy sphere. Hence the exact sequence (1) takes the more precise form

0 → S
bp
n → Sn → Πn/Jn → 0 . (2)

However, for n = 4k − 2 it rather extends to an exact sequence

0 = S
bp
4k−2 → S4k−2 → Π4k−2/J4k−2

Φk−→ Z/2 → S
bp
4k−3 → 0 . (3)

Furthermore, [Brumfiel, 1968, 1970] showed that the exact sequence (2) is split
exact, except possibly in the case where n has the form 2k − 3. (In fact it could fail
to split only in the cases n = 2k − 3 ≥ 125. See the discussion below.)

The Kervaire homomomorphism Φk in (3) was introduced in [Kervaire,
1960]. (The image Φk(θ) ∈ Z/2 is called the Kervaire invariant of the homotopy
class θ.) Thus there are two possibilities:

• If Φk = 0, then S
bp
4k−3

∼= Z/2, generated by the manifold ∂X4k−2 described
above, and every element of Π4k−2 can be represented by a homotopy sphere.

• If Φk 6= 0, then S
bp
4k−3 = 0. This means that the boundary of X4k−2 is

diffeomorphic to the standard S4k−3. We can glue a 4k− 2 ball onto this boundary
to obtain a framed (4k−2)-manifold which is not framed cobordant to any homotopy
sphere. In this case the kernel of Φk forms a subgroup of index two in Π4k−2/J4k−2

consisting of those framed cobordism classes which can be represented by homotopy
spheres.

The question as to just when Φk = 0 was the last major unsolved problem in
understanding the group of homotopy spheres. It has recently been solved in all
but one case:

Theorem 3.6 (Hill, Hopkins, and Ravenel). The Kervaire homorphism Φk

is non-zero for k = 1, 2, 4, 8, 16, and possibly for k = 32, but is zero in all other
cases.

In fact [Browder, 1969] showed that Φk can be non-zero only if n is a power
of two, and [Barratt-Jones-Mahowald, 1984] completed the verification that Φk is
indeed non-zero for k = 1, 2, 4, 8, 16. Finally, [Hill-Hopkins-Ravenel, 2010] have
shown shown that Φk = 0 whenever k > 32. Thus only the case k = 32, with
4k − 2 = 126, remains unsettled. �

In particular, for n 6= 4, 125, 126, if the order |Πn| is known, then we can compute
the number |Sn| of exotic n-spheres precisely. In fact, except for a few sparse
exceptions, the group Sn can be described completely whenever the structure of
Πn is known.
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4. Further Details

In conclusion, here is an argument that was postponed above.

Outline Proof of Theorem 2.2. It is not difficult to check that the group
π0

(

Diff+(Sn)
)

consisting of all smooth isotopy classes of orientation preserving
diffeomorphisms of the unit n-sphere is abelian. Define Γn to be the quotient of
π0

(

Diff+(Sn−1)
)

by the subgroup consisting of those isotopy classes which extend
over the closed unit n-disk. There is a natural embedding Γn ⊂ Sn which sends
each (f) ∈ Γn to the “twisted n-sphere” obtained by gluing the boundaries of two
n-disks together under f . It followed from [Smale, 1962] that Γn = Sn for n ≥ 5,
and from [Smale, 1959] that Γ3 = 0. Since it is easy to check that Γ1 = 0 and
Γ2 = 0, we have

Γn = Sn for every n 6= 4 .

On the other hand, Cerf proved5 that π0

(

Diff+(S3)
)

= 0 and hence that Γ4 = 0
(although S4 is completely unknown). Using results about Sn as described above,
it follows that Γn = 0 for n < 7, and that Γn is finite abelian for all n.

The Munkres-Hirsch-Mazur obstructions to the existence of a smooth structure
on a given PL-manifold Mn lie in the groups Hk(Mn; Γk−1); while obstructions
to its uniqueness lie in Hk(Mn; Γk). (Unlike most of the constructions discussed
above, this works even in dimension four.) Evidently Theorem 2.2 follows. �

For further historical discussion see [Milnor, 1999, 2007, 2009].
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Mathematics Monographs, 3. Amer. Math. Soc., Providence, RI; Clay Mathe-
matics Institute, Cambridge, MA, xii+521 pp.

Munkres, J. [1960] Obstructions to the smoothing of piecewise-differentiable home-
omorphisms, Ann. of Math. 72: 521–554.

Munkres, J. [1964a] Obstructions to imposing differentiable structures. Illinois J.
Math. 8, 361–376.

Munkres, J. [1964b] Obstructions to extending diffeomorphisms. Proc. Amer. Math.
Soc. 15, 297–299.

Newman, M. H. A. [1966] The engulfing theorem for topological manifolds, Ann. of
Math. 84: 555–571.

Novikov, S. P. [1963] Homotopy properties of the group of diffeomorphisms of the
sphere. (Russian) Dokl. Akad. Nauk SSSR 148, 32–35.

Perelman, G. [2002] The entropy formula for the Ricci flow and its geometric ap-
plications, arXiv: math.DG/0211159 .

Perelman, G. [2003a] Ricci flow with surgery on three-manifolds,
arXiv:math.DG/0303109 .

Perelman, G. [2003b] Finite extinction time for the solutions to the Ricci flow on
certain three-manifolds, arXiv:math.DG/0307245 .

Quillen, D. [1971] The Adams conjecture, Topology 10: 67–80.
Smale, S. [1959] Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10, 621-

626.
Smale, S. [1962] On the structure of manifolds, Amer. J. Math. 84: 387–399
Stallings, J. [1960] Polyhedral homotopy-spheres. Bull. Amer. Math. Soc. 66: 485–

488.
Stallings, J. [1962] The piecewise-linear structure of Euclidean space, Proc. Cam-

bridge Philos. Soc. 58: 481–488.
Sullivan, D. [1974] Genetics of homotopy theory and the Adams Conjecture, Annals

of Math. 100: 1–79.
Thurston, W. [1982] Hyperbolic geometry and 3-manifolds, In:“Low-dimensional

topology,” (Bangor, 1979), 9–25, London Math. Soc. Lecture Note Ser., 48,
Cambridge Univ. Press, Cambridge-New York.

Thurston, W. [1986] Hyperbolic structures on 3-manifolds. I. Deformation of acylin-
drical manifolds, Ann. of Math. (2) 124: 203–246.

Whitehead, G. W. [1942] On the homotopy groups of spheres and rotation groups.
Ann. of Math. 43: 634–640.


