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Comments on a much loved book: 1.

“On Growth and Form,” first published in 1917.

D’ARCY THOMPSON (1860-1948)



Comparison of Shapes 2.

Thompson compared the shapes of related species.
For example:

Left: Parrotfish (Scarus sp.); Right: Angelfish (Pomacanthus)
“Let us deform its rectilinear coordinates [for the Parrotfish] into a
system of (approximately) coaxial circles, · · · , then filling into the new
system, · · · we obtain a very good outline of an allied fish · · · of the
genus Pomacanthus.”



Angelfish in color. 3.

“This case is very interesting since upon the body of the
Pomacanthus there are striking color bands, which correspond
in direction very closely to the lines of our new coordinates.”



Porcupine-fish and Sunfish 4.

“· · · on the right I have deformed its vertical coordinates into a system
of concentric circles, and its horizontal coordinates into a system of
curves which, approximately and provisionally, are made to resemble
a system of hyperbolas [to obtain] a representation of the closely
allied sunfish.”



Three Marine Crustacea: 5.

1. Harpinia plumosa Kr.; 2. Stegocephalus inflatus Kr.; 3. Hyperia
galba. The last picture requires a greater deformation, so is
less accurate but still a tolerable representation of Hyperia
galba.



Comparison of skulls: human, chimpanzee, 6.

and baboon.



Conformal Transformations? 7.

“The empirical coordinates which I have sketched in for the
chimpanzee as a conformal transformation of the Cartesian
coordinates of the human skull look as if they might find their
place in an equipotential elliptic field.”

“I have shewn the similar deformation in the case of the
baboon, and it is obvious that the transformation is of precisely
the same order [as that for the chimpanzee], and differs only in
an increased intensity or degree of deformation.”

MY QUESTION: To what extent is it true that
individuals of closely related species can be
transformed, one into the other, by a

conformal transformation
which carries every significant feature of one into the
corresponding feature of the other?



The Mathematics of Conformal Transformations 8.

Thompson’s diagrams are necessarily 2-dimensional,
yet they represent 3-dimensional organisms.
Conformal transformations in 3-space are much more restricted
than those in two dimensions:

They form a finite dimensional Lie group:

Theorem of Liouville. If a smooth transformation
from one region in R3 to another preserves angles,
then it extends uniquely to a smooth angle preserving
transformation from R3 ∪∞ onto itself.



Distance Cross-Ratios 9.
The most convenient invariant of a conformal transformation of
Rn ∪∞ is the cross-ratio of Euclidean distances between four
distinct points:
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[p, q, r , s] =
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.

This extends by continuity to the case s =∞ :

[p, q, r , ∞] =
‖p − r‖
‖p − q‖

.

Lemma 1. A transformation of Rn ∪∞ fixes the point at infinity,
and preserves distance cross-ratios, if and only if it is a
Euclidean similarity transformation, multiplying all distances by
a fixed constant.



Two Dimensional Examples 10.
If we identify R2 with the complex numbers,
then

[p, q, r , s] =

∣∣∣∣(p − r)(q − s)
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.



Inversion 11.

Lemma 2. The inversion

x 7→ x∗ =
x
‖x‖2

maps Rn ∪∞ to itself,

0

x

x*

preserving distance cross-ratios:

[p∗, q∗, r∗, s∗] = [p, q, r , s] . (1)

Equation (1) follows easily from the identity

‖x∗ − y∗‖ =
‖x − y‖
‖x‖ · ‖y‖

. (2)

Proof of (2) for n = 2. Identifying R2 with C, note that

z∗ = z/(zz) = 1/z , with
∣∣1/z−1/w

∣∣ =
∣∣(z−w)/(zw)

∣∣.
Since any two vectors in Rn are contained in a copy of R2, this

proves (2) for any n, and (1) follows. �



The Möbius Group in dimensions n ≥ 1. 12.

Define the Möbius group Möb(n) to be the group of all
transformations of Rn ∪∞ which preserve the distance
cross-ratio [p, q, r , s]. This makes sense for any n ≥ 1.

Other descriptions which hold for all n ≥ 1:
• Möb(n) is generated by inversion, together with all similarity
transformations of Rn. (This follows from Lemmas 1 and 2.)

• Locality: Any transformation from a region in Rn into
Rn which preserves distance cross-ratios can be extended
uniquely to a Möbius transformation of Rn ∪∞.
• Möb(n) can be identified with the group of all transformations
of the unit sphere Sn ⊂ Rn+1 which preserve cross-ratios of
Euclidean distances.
• Möb(n) is isomorphic:

to the group of all isometries of hyperbolic (n + 1)-space,
or to the projective orthogonal group PO(n + 1, 1).



The Möbius Group for n ≥ 2: Conformality. 13.

For n ≥ 2, a smooth transformation of Rn ∪∞
(or of Sn ) is Möbius if and only it preserves angles,

or if and only if it maps circle and lines to circles or lines.



Back to Biology 14.

RECALL THE QUESTION: To what extent is it true
that individuals of closely related species can be
transformed, one into the other, by a conformal
transformation which carries every significant feature
of one into the corresponding feature of the other?

One difficulty was well known to Thompson:

Comparison between bones of a small animal and a large
animal (from Galileo’s “Two New Sciences”).



Elephant and Deer 15.

If we try to increase the dimensions of an organism by a
constant factor of c, then the weight will increase by a factor of
c3, but the supporting strength only by a factor of c2.

If nature tried to create an elephant sized deer by a linear
change of scale, the result would be unable to support its own
weight!



Thompson’s comparison of foot bones 16.



Relative measurements 17.

o a b c y cy
oa

Ox : 0 18 27 42 100 3.2
Sheep : 0 10 19 36 100 6.4
Giraffe : 0 5 10 24 100 15.2

Thus the distance ratio cy
oa for a giraffe is almost five

times the corresponding distance ratio for an ox.
Cross-ratios in the vertical direction are much closer:

[o, a , b, c] [ a, b , c, y ]
Ox : [0, 18 , 27, 42] = 2.40 , [18, 27 , 42, 100] = 3.36
Sheep : [0, 10 , 19, 36] = 2.91 , [10, 19 , 36, 100] = 3.66
Giraffe : [0, 5 , 10, 24] = 2.71 , [ 5, 10 , 24, 100] = 4.50



2-dimensional distance cross-ratios 18

However, if we consider changes in both the x and y
coordinates, then the cross-ratios change much more.
For a rectangle with edge lengths ∆x and ∆y , recall that the
distance cross-ratio of the four vertices of the rectangle,
appropriately ordered, is (∆y/∆x)2.
For the rectangles drawn by Thompson, we get the following:

Ox Sheep Giraffe
∆y
∆x ≈ 4.8 5.8 11.6

(
∆y
∆x

)2
≈ 23. 34. 135.

Thus we have a paradox: Vertical cross-ratios don’t change
very much between these three species;

but 2-dimensional distance cross-ratios change a lot !



Graphical test for conformality 19
The action of the Möbius group Möb(2)+ on R2 ∪∞
is simply 3-transitive.
We can take three marked points on Thompson’s Ox figure,
and choose the unique element of Möb(2)+ which carries them
to the three corresponding points on the Sheep (or Giraffe)
figure.

o

a

b

c

d

Ox "Sheep" "Giraffe"



A Very Different Example: The Brain. 20.

Mouse Human

Starting with the relatively smooth brain of a simpler mammal,
natural selection leads to a huge expansion of the surface area,
with much smaller expansion of overall size.

Clearly this is NOT a Möbius transformation.
The evolutionary solution— drastic wrinkling and furrowing of
the outer layers of the brain— seems to be far from conformal.



But think only of the Surface of the Brain. 21.
Image of the human brain surface, conformally mapped onto S2

from Gu, Wang, Chan, Thompson, and Yau.

Conformal mapping from the surface of the brain to a sphere
seems to be relatively stable, so that it can actually be used as
an effective tool in medical imaging. Perhaps the expansion of
the cerebral cortex is roughly conformal if we consider only
the two-dimensional surface ??



Growth. 22.

Organisms seem to grow by transformations which are roughly
conformal.

As an example, a human child has a relatively large head and
small torso in comparison to an adult. The ratio of head size to
torso size is not at all invariant under growth.

But if we look at the transformation which carries each point of
a child’s body to the corresponding point of an adult’s body,
then it does seem to be very roughly conformal.

In particular, cross-ratios change far less than simple ratios of
distances.



Human growth (after Petukhov) 23.

Age AB (head) BC (torso) CD (legs) CD
AB [A, B, C, D]

0 10.6 18.3 28.6 2.70 4.47
4 18.9 31.4 58.4 3.09 4.09
7 21.0 35.3 71.7 3.41 4.00

10 22.5 38.0 80.6 3.58 3.96
20 25.3 51.8 109.9 4.34 4.48

The legs grow almost twice as much as the head; but the
cross-ratios remain relatively stable.



Finger growth 24.

If we consider only a very small region of the body, then
conformal growth would approximately be growth by a similarity
transformation.

Consider growth of
the middle finger.

Age AB BC CD Ratios [A, B, C, D]
4 2.42 1.43 0.96 (.51 : .30 : .18) 4.24
8 3.00 1.88 1.19 (.49 : .31 : .20) 4.19

14 3.56 2.27 1.46 (.49 : .31 : .20) 4.18
21 4.41 2.78 1.76 (.49 : .31 : .20) 4.21

In this case ratios, and hence cross-ratios, are quite stable.



Another Possibility: The Projective Group 25.
There is of course a quite different group which preserves the
cross-ratios for any four points lying in a straight line,

namely the projective group

Proj(n) ∼= PGL(n + 1, R)

consisting of all projective transformations from the
real projective space RPn ⊃ Rn to itself.

Could this be the right group for modeling changes in shape?
Would it fit the data better?

Caution. It may be easier to match data with the projective
group, just because it has more free parameters.

dim
(
Möb(3)

)
= 10, dim

(
Proj(3)

)
= 15 .

(To study only changes in shape, we should quotient by the
7 dimensional group of similarity transformations, leaving
3 free parameters for Möb(3), and 8 for Proj(3).)



Projective Test: the Ox-Sheep-Giraffe Example 26

The group Proj(2) is simply 4-transitive, for 4-tuples in RP2

which are not collinear.

o

a

b

c

d

Ox "Sheep" "Giraffe"



A Conformal Chimp? 27.
Here is an attempt to convert a human skull to a chimp skull by
a conformal transformation.



A Projective Chimp? 28.
Now an attempt to convert a human skull to a chimp skull by a
projective transformation.



A Related Problem: Convergent Evolution. 29.
There are many examples of animals which have similar
features, although they are not closely related.

Some form of eye has evolved independently
at least 40 different times.

Venomous stings have evolved independently in:

jellyfish, spiders, scorpions, centipedes, insects,
molluscs, snakes, stingrays, stonefish, platypus,

(and in some plants: nettles).

Genetic analysis often shows that animals which were thought
to be close relatives are actually very distantly related.

The progression from dissimilar ancestors to similar
descendants is called Convergent Evolution.

Problem. Does this convergence occur because both species
are evolving towards the same optimal configuration,
or does it occur simply because there are such strong
constraints on what forms are evolutionarily possible?



“Skeleton Space.” 30.

One approach to this problem, by Thomas and Reif, sounds
quite interesting.

They describe an enormous abstract “space” of theoretically
possible skeletal configurations.

Their claim: There is a much smaller subset of efficient
configurations which form a “topological attractor”.
Evolution of any organism must inevitably converge towards
this subset of efficient configurations.

(However, their description is quite vague by mathematical
standards, and seems difficult to test.)



Conclusions 31

The geometrically simplest way to change the relative size of
different body parts would be by a conformal transformation.
It seems plausible that this simplest solution will often be the
most efficient, so that natural selection tend to choose it.
But natural selection will surely deviate from conformality
whenever the deviation confers a clear selective advantage.
There clearly is a great deal of deviation from conformality,
and the projective group doesn’t seem to work any better.

However, there seems to be a real tendency to preserve
cross-ratios, at least along many straight lines, even when the
transformation is far from conformal or projective.

Is this a real effect? If so, why does it occur?



Possible Explanations 32.

1. Engineering Explanation. Transformations which preserve
appropriate cross-ratios confer some selective advantage.
They are more efficient, and hence tend to be chosen by
natural selection.

2. Control Mechanism Explanation. The bio-chemical
systems which regulate growth tend to yield transformations
which preserve cross-ratios, even when other patterns of
growth would work just as well or better.

3. Skeptical Explanation. Perhaps these approximately
preserved cross-ratios are just numerical accidents, with no
biological meaning at all.
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