
Modeling Evolution

John Milnor

Stony Brook University

DAVID EPSTEIN CELEBRATION

Warwick University, July 14, 2007



A First Model for Evolution: The Phylogenetic Tree,
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showing how a few of the millions of species have evolved.
At some point in time, one species may split up into two or
more distinct species. (U, V , W in the diagram.)
Most species eventually become extinct. (X in the diagram.)
Tree Properties: Lines can only separate —never come back
together. Any two distinct species at two points in time have a
unique most recent common ancestor. (Thus for F and G,
the most recent common ancestor is V .)



Common Ancestry

Such diagrams are based on the fundamental
hypothesis that all existing forms of life are
descended from a common ancestor.

One minor difficulty:
The tree structure can be rather fuzzy.

ancestral canid
grey wolf

coyote
red wolf

There is a similar fuzziness in connection with the separation
between humans and chimps. See Patterson et al. [2006].
(References will be listed at the end.)



A more serious difficulty:
How do we account for symbiotic species?

Lynn Margulis (1997): “· · · a more important source of
Darwinian evolutionary novelty in living beings is
symbiogenesis, evolutionary change through long-term
physical contact between members of different species. · · ·

“Random mutations in DNA · · · lead to small, mostly harmful
changes. Mergers of symbionts lead to large, functional
evolutionary jumps: new organs or major new groups of
organisms.”

To the extent that this is true, it contradicts the
hypothesis that separate species can never join together!

(This difficulty is most important for single-celled organisms.)



ALL life (Doolittle 1999):

A “Phylogenetic Tangle” ?



The Fitness Landscape Model.
Sewall Wright (1932) described the evolution of the gene pool
within a population as a walk on a fitness landscape.

The plane of the screen is a 2-dimensional substitute for the
space of all possible mixtures of genotypes within a population.
The contours are loci of constant Darwinian fitness, and the
course of evolution is described as a random path which
tends to climb towards the nearest peak.



Goal of this talk:
To describe a mathematically precise model,
compatible with Wright’s picture, thus
interpreting evolution within a species as
a random dynamical system.

(based on Shahshahani 1979, Akin 1980, etc.)

First some standard definitions:
A gene is a stretch of DNA at a specific location (or
locus) on a specific chromosome with some biologically
meaningful function, for example a recipe for manufacturing
some protein. (In mathematical terms, a gene is a word in an
alphabet which has four letters.)

Most genes have several alternative versions called alleles.

Each human (or each mammal) has exactly two copies of
each chromosome in each cell (excluding the X and Y
chromosomes), hence two copies of each gene.



Genotype:
The two copies of this gene will correspond

to two (not necessarily distinct) alleles.

If these alleles are Aj and Ak , then the individual is said to
have genotype AjAk = AkAj for this gene.

If a gene has n distinct alleles A1, . . . , An, then there are
n(n + 1)/2 possible genotypes for this gene.

Example: Two alleles =⇒ three possible genotypes.

Now consider 25 different genes, with two alleles each.
Then there are

325 = 847, 288, 609, 443

possible genotypes, if we consider only these 25 genes.
This is much larger that the number of human beings who have
ever lived! Yet there are actually many thousands of
genes. How can we deal with such numbers?



G.H. Hardy to the rescue!
Let Nj be the number of copies of the allele Aj within a large
population; and let

aj =
Nj

N1 + · · ·+ Nn
=

Nj

2P
be its statistical frequency.

Thus a1 + · · ·+ an = 1 with aj ≥ 0.

In other words the frequency vector ~a = (a1, . . . , an)
belongs to the standard simplex ∆n−1 ⊂ Rn.

Hardy-Weinberg Law (1908): Under “suitable conditions,”
allele frequencies determine genotype frequencies:
The frequency fj,k of the genotype AjAk within the
population is approximately

fj,k =

{
2ajak if j 6= k ,

ajak if j = k .

(Unfortunately, these “suitable conditions” include the rather
unrealistic hypothesis of completely random mating.)



Hardy-Weinberg for a gene with two alleles
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The triangle of possible genotype frequencies for a gene with
two alleles (above), projected to the interval of possible allele
frequencies (below). Each genotype frequency vector,
represented by a point in the triangle, corresponds to an allele
frequency represented by the point on the interval directly
below it. Conversely, under random mating, each point on the
interval below corresponds to the point directly above it on the
Hardy-Weinberg parabola which is defined by the equation
f1,2 = 2a1a2 = 2a2(1− a2).



Changes with time.
Two basic mechanisms make the gene pool gradually change:

I Selection. Those genotypes which are most successful in
surviving and reproducing will tend to predominate in
future generations.

I Genetic Drift. Due to the random nature of reproduction,
the frequencies of different alleles in the gene pool will vary
in a chaotic fashion (even without selective pressure).

Other important mechanisms that I will not discuss:

I Mutation and copying errors. Accidental errors in
reproducing a gene are usually bad, and often fatal.
However, accidental changes which are actually viable
could be a major source of new genetic possibilities.

I Lateral transfer of genes. A symbiotic relationship may
lead to sharing or transfer of genes. A retroviral infection
(such as HIV) can inject new genes into the genotype
(.03% of the human genome)!



Genetic Drift. The Wright-Fisher Model:
Consider a single gene with n alleles, in a population of P
individuals. Then there are 2P copies of this gene altogether.

Each of the 2P copies of this gene in the next
generation is to be randomly chosen, according to

the probability distribution (a1, . . . , an) . These 2P
choices are to be independent random variables.

Thus the frequency vector (a1, . . . , an) ∈ ∆n−1 will vary from
generation to generation, in a random manner (Markov chain).

Theorem. If this process is continued long enough,
then with probability one, all but one of the alleles

will eventually become extinct.
The probability that Ai will be the unique eventual survivor is
precisely equal to its initial frequency ai .

Example: One mutant allele in a large population is very
unlikely to survive (unless it has a big selective advantage)!



Allele extinction
VERY ROUGH ESTIMATE: The number of generations until
the first extinction among significant alleles of a specified gene
has the same order of magnitude as the total population size.

Example: Blood type B is almost totally missing among Native
Americans. Presumably the corresponding allele became
extinct twelve thousand years ago when small populations
wandered from Asia over many generations.



The Spherical Geometry for a Fitness Landscape.
Again consider a single gene with alleles A1, . . . , An.
Its frequency vector (a1, . . . , an) within a given population
belongs to the standard simplex ∆n−1 ⊂ Rn.

But the flat geometry for ∆n−1 is misleading!
Whether studying genetic drift or selection, it is often
more useful to work with the root-frequency vector

~u =
(√

a1, . . . ,
√

an) ∈ Sn−1 ⊂ Rn .

This belongs to the standard spherical simplex,
with the n standard basis vectors for Rn as vertices.



Genetic Drift as a Random Walk on the Sphere.
Using this spherical model for allele frequencies, the course of
genetic drift can be described as a (nearly) unbiased random
walk on the standard spherical simplex.

To a first approximation, all directions are equally probable, and
the likely step size is independent of position, until the walk
hits some boundary simplex. At that point one allele
becomes permanently extinct, and the walk continues on this
boundary simplex.



The Two Allele Case
For a gene with only two alleles, the geometry is much simpler.

θ

u = (cos θ , sin θ)

In this case, the standard spherical simplex becomes a
quarter-circle. The alleles frequencies are now described by
the root-frequency angle θ = θA, defined by the equation

~u = (cos θ , sin θ) , or equivalently ~a = (cos2 θ , sin2 θ) ,

where θ measures arclength along the quarter-circle.



The Two Allele Case: A sample run

t

a2

plotting the allele frequency a2 as a function of time over 230
generations, with a population of fixed size P = 100.
Here A2 becomes the sole survivor after 223 generations.

t

θA

The same run, but plotting the angle θA rather than the
frequency a2 = sin2 θA as a function of time. The “roughness”
of the graph is more uniform in this version.



Selection: Genotype Fitness
Let Pjk (t) be the total number of individuals of genotype AjAk
at time t . Then the number Nj(t) of copies of allele Aj can be
computed as Nj = Pjj +

∑
k

Pjk .

Hypothesis: To each genotype AjAk there corresponds a
constant Φ(AjAk ), or briefly Φjk = Φkj , which I will call its
fitness, so that the following differential equation is satisfied:

dNi

dt
= ΦjjPjj +

∑
k

ΦjkPjk .

Intuitively we can interpret this fitness as the difference

Φjk = βjk/2 − δjk ,

where βjk is the number of children per unit time born to a
parent of genotype AjAk , and where δjk is the number of
deaths per unit time for this genotype. (The factor 1/2 is
inserted since each parent contributes only half of the genotype
of the child.)



Allele Fitness

Now suppose that the frequencies Pjk/P of the various
genotypes are determined by the allele frequencies aj ,

according to the Hardy-Weinberg formula.

Assertion. The exponential growth rate for Nj , the number of
copies of the allele Aj in the population, is then given by

d log Nj

dt
=

∑
k

Φjkak .

Proof. Just substitute the Hardy-Weinberg expression into the
differential equation for dNj/dt and simplify. �

This weighted average
∑

k Φjkak will be called the fitness
Φj of the allele Aj . Thus

Φj =
d log Nj

dt
⇐⇒ NjΦj =

dNj

dt
.



Total Population Fitness.

Define the weighted average

Φ =
∑

j

Φjaj =
∑

jk

Φjkajak

to be the fitness for the entire population.
Corollary. Φ measures the exponential growth rate for the
population size P. That is,

d log P
dt

= Φ .

Proof. Sum over j in the equation
dNj

dt
= Nj Φj = (2P aj) Φj =⇒ d2P

dt
= 2P Φ .

Dividing by 2P, the conclusion follows. �



The basic differential equation.
Using these equations, we can compute the exponential growth
rate for the allele frequency

aj =
Nj

2P
.

In fact, d log Nj

dt
= Φj , and

d log P
dt

= Φ .

Thus the exponential growth rate for aj is the difference

d log aj

dt
= Φj − Φ ⇐⇒

daj

dt
= (Φj − Φ)aj .

Thus d~a/dt is a well defined smooth function of ~a,
and the course of evolution is described by an ODE on the
standard simplex ∆n−1 .

However, this equation takes a more convenient form
if we replace the Euclidean simplex of allele frequencies

by the spherical simplex of allele root-frequencies.



The Spherical Gradient
We continue to consider the alleles of a single gene, with
frequencies aj . Set uj =

√
aj , and consider the population

fitness Φ as a function of the uj . In fact

Φ = Φ(~u) =
∑

jk

Φjk u 2
j u 2

k .

Theorem
Our differential equation d log aj/dt = Φj − Φ for evolution
driven by selection corresponds to a gradient dynamical
system on the sphere:
The velocity vector d~u/dt satisfies the differential equation

d~u
dt

=
1
8

−→
grad SΦ(~u) , where

−→
grad S is the gradient on the sphere .

In other words, the path ~u(t) always moves directly “uphill” on
the sphere, in the direction of steepest ascent, with speed
‖d~u/dt‖ which is directly proportional to the steepness.

There are no periodic cycles and no chaotic orbits!



Proof Outline
If we think of

Φ =
∑

jk

Φjkajak =
∑

jk

Φjku 2
j u 2

k

as a function which is defined for all ~u ∈ Rn, then its
Euclidean gradient has j-th component( −→

gradE Φ(~u)
)

j
=

∂Φ

∂uj
=

∂Φ

∂aj

daj

duj
= (2Φj)(2uj) = 4Φjuj .

The component of this Euclidean gradient in the direction
orthogonal to the sphere is given by the inner product

(
−→

gradEΦ) · ~u = 4
∑

Φju 2
j = 4Φ. Thus, in order to compute the

component
−→

gradSΦ which is tangent to the sphere, we must

subtract the normal vector (4Φ)~u from
−→

gradEΦ. This yields( −→
gradS Φ

)
j

= 4(Φj − Φ)uj . (1)



Proof Outline (continued)

On the other hand, since uj =
√aj , we have

d log uj

dt
=

1
2

d log aj

dt
=

1
2

(Φj − Φ) ,

hence
duj

dt
=

1
2

(Φj − Φ)uj . (2)

Comparing Equation (1):( −→
gradS Φ

)
j

= 4(Φj − Φ)uj ,

it follows that
d~u
dt

=
1
8

−→
gradSΦ ,

as required. �



The “Fundamental Theorem of Natural Selection.”
R. A. Fisher’s fundamental theorem was stated as follows in
1930:

"The rate of increase in fitness of any organism at any
time is equal to its genetic variance in fitness at that
time."

In our terminology, this statement (for the single gene case)
would be expressed by the equation

dΦ

dt
=

−→
gradS(Φ) · d~u

dt
=

1
8

∥∥∥ −→gradS(Φ)
∥∥∥2

≥ 0 .

Thus the fitness Φ strictly increases with time,

except at a stationary point where
−→

gradSΦ = 0.

Caution: This is a theorem about a highly simplified
mathematical model. It is not a statement about the
real world.



The Two Allele case

is governed by the equation

dθ

dt
=

1
8

dΦ

dθ
.

θ

Φ

θ

Φ

θ

Φ

1

Three possible shapes for the graph of Φ as a function of the
root-frequency angle θ.



Example with 3 Alleles: Fitness and Gradient Flow

On the left, a contour plot for a possible fitness function Φ(~u)
associated with a gene with three alleles, where ~u ranges over
the standard spherical 2-simplex. On the right, the arrows
indicate the direction of the associated gradient flow.
Each of the flow curves travels straight uphill, and nearly all of
them start at one of the two pits and converge towards one of
the two peaks.



Two or More Genes
If we consider two genes A and B at the same time, we must be
more careful.
Case 1. Separate Chromosomes. Two genes A and B are
said to be unlinked if they lie on different chromosomes.
In this case. the allele frequencies ai for A and bk for B can
be considered as independent random variables, and the
theory goes through much as before:

Let Φ(Ai1Ai2Bk1Bk2) be the “fitness” for genotype Ai1Ai2Bk1Bk2 .
Then we can define a corresponding fitness function

Φ =
∑

Φ(Ai1Ai2Bk1Bk2) ai1ai2bk1bk2 .

The appropriate phase space is now the cartesian product
SA × SB of standard spherical simplexes for A and B,
and we again get a gradient dynamical system:

d~u
dt

=
1
8

−→
gradSA×SB

Φ(~u) , so that
dΦ

dt
=

1
8
‖
−→

gradSA×SB
Φ‖2 .



An Example
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On the left: Contour levels for one possible fitness landscape
for two unlinked genes A and B with two alleles each, plotted as
a function of the root frequency angles θA and θB.

On the right: The associated gradient flow.



Case 2: Genes on the Same Chromosome
In the case of two genes A and B which belong to the same
chromosome, the allele probabilities ai and bk are no longer
independent random variables.

Such genes are said to be linked.

Theorem (Akin 1981, Hastings 1981). The appropriate
differential equation for d~u/dt in the case of two linked genes
is not a gradient dynamical system.

There can be periodic orbits.
Fitness does not always increase.

Hence Fisher’s Fundamental Theorem also fails.

One can ask whether such models with linked genes can lead
to chaotic dynamical systems, with sensitive dependence on
initial conditions. (The Poincaré-Bendixson Theorem says that
this cannot happen in dimension two; but higher dimensional
examples could well be chaotic.)
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