Critically Periodic Cubic Polynomials

John Milnor

Stony Brook University (www.math.sunysb.edu)

IN MEMORY OF ADRIEN DOUADY

Paris, May 26 2008

Parameter Space

THE PROBLEM: To study cubic polynomial maps F with a marked critical point which is periodic under F.

-work in progress with Araceli Bonifant-

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

 $F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v).$

Here *a* is the marked critical point, F(a) = v is the marked critical value, -a is the free critical point.

> The set of all such maps $F = F_{a,v}$ will be identified with the **parameter space**, consisting of all pairs $(a, v) \in \mathbb{C}^2$.

The Period p Curve

Definition: the **period p curve** $S_p \subset \mathbb{C}^2$, consists of all maps $F = F_{a,v}$ such that the marked critical point *a* has period exactly *p*.

Assertion. S_p is a smooth affine curve in \mathbb{C}^2 .

Complication: The genus of S_p increases rapidly with *p*.

- \mathcal{S}_1 has genus zero with one puncture ($\cong \mathbb{C}$),
- \mathcal{S}_2 has genus zero with two punctures,
- \mathcal{S}_3 has genus one with 8 punctures,
- \mathcal{S}_4 has genus 15 with 20 punctures, \cdots

We can simplify a little by passing to to the **moduli space** S_p/\mathcal{I} of holomorphic conjugacy classes. Here \mathcal{I} is the involution

$$F(z) \leftrightarrow -F(-z)$$
, so that $F_{a,v} \leftrightarrow F_{-a,-v}$.

The genus of S_p/\mathcal{I} is smaller, but still increases with *p*.

Picture of Part of \mathcal{S}_3

Part of S_3 , labeled

A Cell Structure in \overline{S}_p .

5.

Let $\overline{\mathcal{S}}_p$ be the smooth compact surface obtained from \mathcal{S}_p by filling in each puncture point.

Conjecture. There is a canonical cell subdivision of each \overline{S}_p . For $p \ge 2$, the 1-skeleton can be identified with the union of all simple closed regulated curves.

Escape Regions

Let $C(S_p)$ be the **connectedness locus** in S_p .

Each connected component \mathcal{E} of the complement $\mathcal{S}_p \smallsetminus \mathcal{C}(\mathcal{S}_p)$ will be called an **escape region** in \mathcal{S}_p .

Theorem. For each \mathcal{E} , there is a canonical covering map

 $\mathcal{E} \ \to \ \mathbb{C} \smallsetminus \overline{\mathbb{D}} \ .$

The degree of this covering map will be called the **multiplicity** $\mu \ge 1$ of the escape region.

We can talk about **equipotentials** and **parameter rays** in each escape region.

Notation: A parameter ray in the escape region \mathcal{E} will be denoted by $\mathcal{R}_{\mathcal{E}}(t)$. Here $t \in \mathbb{R}/\mu\mathbb{Z}$.

If $\mu > 1$, then *t* will be called a **generalized angle**.

The Dynamic Plane for a map $F \in \mathcal{E}$.

For *F* in the escape region \mathcal{E} , the equipotential through 2*a* and -a is a figure eight curve. Here 2*a* is the free **cocritical point**, with F(2a) = F(-a).

The Böttcher coordinate $\beta(2a) \in \mathbb{C} \setminus \overline{\mathbb{D}}$ of the escaping cocritical point is well defined, and the correspondence $F \mapsto \beta(2a)$ is the required covering map

$$\mathcal{E} \to \mathbb{C} \setminus \overline{\mathbb{D}}.$$

The Kneading Sequence.

Let U_0 and U_1 be the two bounded regions cut out by the figure eight curve, with $a \in U_0$. Any bounded orbit $z_1 \mapsto z_2 \mapsto \cdots$ determines a sequence $\sigma_1, \sigma_2, \ldots$ of zeros and ones with

$$z_j \in U_{\sigma_j}$$

Now take z_1 equal to the marked critical value v = F(a). The associated sequence $\{\sigma_j\}$ will be called the **kneading** sequence of the escape region \mathcal{E} . Thus

$$F^{\circ j}(a) \in U_{\sigma_j} \quad \text{for } j \geq 1.$$

The Associated Quadratic Map. 9.

The kneading sequence of any escape region $\mathcal{E} \subset \mathcal{S}_p$ is clearly periodic: its period p_1 divides p.

Theorem (Branner and Hubbard). Suppose that *F* belongs to the escape region $\mathcal{E} \subset S_p$. Then the Julia set J(F) consists of countably many copies of a quadratic Julia set J(Q), together with uncountably many single point components. Here the quadratic polynomial $Q = Q_{\mathcal{E}}$ is critically periodic of period p_2 where

 $p = p_1 p_2$.

In other words:

Period of marked critical point

= (kneading period)×(associated quadratic period).

Period 2 Examples

Here the kneading sequence is $\overline{00}$, and the associated quadratic map is $z^2 - 1$ (the "basilica").

Kneading sequence $\overline{10}$, with associated quadratic z^2 .

Canonical Coordinates for S_p .

Consider the function

$$H_p: \mathbb{C}^2 \to \mathbb{C}, \qquad H_p(a, v) = F_{a,v}^{\circ p}(a) - a$$

which vanishes everywhere on S_p . Think of H_p as a "complex Hamiltonian function", and consider the Hamiltonian differential equation

$$\frac{da}{dt} = \frac{\partial H_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial H_p}{\partial v}.$$

There are holomorphic local solutions

$$t \mapsto (a, v) = \Phi(t).$$

These lie in curves $H_p = \text{constant}$, parallel to S_p . Those solutions which lie in S_p provide a local holomorphic parametrization, unique up to translation of the *t*-coordinate.

Equivalent description: There is a canonical 1-form dt which is well defined and non-zero throughout S_p .

Part of S_4 in canonical coordinates

The 1010 Region: sample Julia set.

Kneading sequence $1010\cdots$, with period $p_1 = 2$. $Q(z) = z^2 - 1$ with critical period $p_2 = 2$.

Example in the Double-Basilica Region.

Kneading sequence $0000\cdots$, with period $p_1 = 1$. $Q(z) = z^2 - 1.3107\ldots$ with critical period $p_2 = 4$.

Quadratic Julia sets:

Double-Basilica

Two More Quadratic Julia Sets

Kokopelli

(1/4)-Rabbit

Comparing Rays in the Mandelbrot Set

Parameter Rays

Let $\mathcal{E} \subset \mathcal{S}_p$ be any escape region.

Theorem. If the generalized angle t_0 is rational, then the ray $\mathcal{R}_{\mathcal{E}}(t_0)$ lands at a well defined point F_0 in the boundary $\partial \mathcal{E}$. Furthermore, F_0 is either critically finite, or parabolic.

Define $t \in \mathbb{Q}/\mathbb{Z}$ to be **co-periodic** if:

 $t \pm 1/3$ is periodic under angle tripling,

- \Leftrightarrow 3*t* is periodic but *t* is not periodic,
- \Leftrightarrow t has the form $\frac{m}{3n}$ where m and n are not divisible by 3.

Theorem. If $t_0 \pmod{\mathbb{Z}}$ is co-periodic, then the landing point of $\mathcal{R}_{\mathcal{E}}(t_0)$ is parabolic.

We believe that this should be an if and only if statement: t_0 co-periodic \Leftrightarrow the landing point is parabolic.

The Period *q* Decomposition of S_p .

If $t \pm 1/3$ has period q, we say that t has **co-period** q. Note that any angle of co-period q can be written as a fraction

$$t = \frac{m}{3(3^q-1)}$$

For example, $q = 1 \Rightarrow t = m/6$, $q = 2 \Rightarrow t = m/24$.

Period *q* **decomposition:** The collection of all rays of co-period *q*, together with their landing points, decomposes the parameter curve S_p into a finite number of connected open sets U_j .

Example: The Period 1 Decomposition of S_2 .

Period 2 Decomposition of S_2 .

Stability of Periodic Orbits.

Let U_j be any connected component of

$$\mathcal{S}_p \setminus \bigcup$$
 rays of coperiod q ,

and let $t_0 \in \mathbb{Q}/\mathbb{Z}$ have period q.

As *F* varies over U_j , the dynamic ray $\mathcal{R}_F(t_0)$ varies smoothly:

Theorem. For each $F \in U_j$, and each angle $t_0 \in \mathbb{Q}/\mathbb{Z}$ of period q, the ray $\mathcal{R}_F(t_0)$ lands at a repelling periodic point $z_F \in J(F) \subset \mathbb{C}$. Furthermore, the correspondence $F \mapsto z_F$ defines a holomorphic function $U_j \to \mathbb{C}$. The pattern of which dynamic rays of period q have a common landing point is the same for all $F \in U_j$.

Corollary. Every parabolic map $F_0 \in S_p$ is the landing point of at least one co-periodic ray.

A Small Mandelbrot Set in S_4

Detail of $J(F_0)$ near 2a

Comparing Parameter Space and Julia Set 26.

(Empirical Claims)

Every Mandelbrot component $\mathcal{M} \subset S_p$ has a well defined root point F_0 , and every parabolic point $F_0 \in S_p$ is the root point of a unique Mandelbrot component $\mathcal{M} \subset S_p$.

For $F \in \mathcal{M}$, let r_0 be the root point of the Fatou component U(2a) containing the cocritical point 2a. Then a neighborhood of F_0 in S_p is closely related to a neighborhood of r_0 in the dynamic plane for F. More precisely:

• The two closest parameter rays at F_0 which enclose \mathcal{M} have the same angles (modulo \mathbb{Z}) as the two closest dynamic rays at r_0 which enclose U(2a).

• Furthermore, *any* parameter ray landing at F_0 has the same angle (modulo \mathbb{Z}) as some dynamic ray landing at r_0 .

A Small Mandelbrot Set in S_5

Detail of corresponding Julia Set

